JP2023159652A - Temperature control device and heating apparatus - Google Patents

Temperature control device and heating apparatus Download PDF

Info

Publication number
JP2023159652A
JP2023159652A JP2022069484A JP2022069484A JP2023159652A JP 2023159652 A JP2023159652 A JP 2023159652A JP 2022069484 A JP2022069484 A JP 2022069484A JP 2022069484 A JP2022069484 A JP 2022069484A JP 2023159652 A JP2023159652 A JP 2023159652A
Authority
JP
Japan
Prior art keywords
region
heat flow
flow control
control device
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022069484A
Other languages
Japanese (ja)
Inventor
良 安井
Makoto Yasui
ジ ジュン タン
Jijung Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAI DENKI SEISAKUSHO KK
Original Assignee
KAWAI DENKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAI DENKI SEISAKUSHO KK filed Critical KAWAI DENKI SEISAKUSHO KK
Priority to JP2022069484A priority Critical patent/JP2023159652A/en
Publication of JP2023159652A publication Critical patent/JP2023159652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

To provide a technique capable of controlling a temperature distribution of a workpiece surface.SOLUTION: A temperature control device that is used so as to be arranged between a heat source and a workpiece, and can control a temperature transmitted to a workpiece, comprises a heat flow control part. The heat flow control part contains a sheet-like high heat conduction member with an excellent heat conduction rate to a surface direction. The heat flow control part includes: a first region; and a second region. The first region is a region occupying a predetermined range in a front surface of the heat flow control part. The second region is a region provided so as to surround the circumference of the first region. The first and second regions are constructed so that the heat conduction rate in a thickness direction vertical to at least surface direction is different.SELECTED DRAWING: Figure 1

Description

本開示は、温度制御装置及び加熱装置に関する。 The present disclosure relates to a temperature control device and a heating device.

半導体ウェハなどのワークを加熱するために様々なヒータが用いられることが知られている。特許文献1には、シート状の発熱体における両側の面に、金属やグラファイト等からなる熱拡散材料層がそれぞれ積層された構成を有するフィルムヒータが開示されている。 It is known that various heaters are used to heat workpieces such as semiconductor wafers. Patent Document 1 discloses a film heater having a structure in which heat diffusion material layers made of metal, graphite, etc. are laminated on both sides of a sheet-like heating element.

近年、半導体における回路配線の微細化に伴い、ワーク面における温度分布の均一化が求められている。ここで、ワーク面の温度分布を均一化する方法として、例えば、ヒータの発熱量を部分的に操作することで入熱量を増減させて表面温度を調整する方法がある。また、例えば、ヒータ及びワークの材料を高熱伝導材にすることにより物理的に均一化させる方法がある。また、例えば、ワークの内部にヒートパイプなどの高熱伝導を有した別部材を挿入することで均一化させる方法がある。 In recent years, with the miniaturization of circuit wiring in semiconductors, there has been a demand for uniform temperature distribution on the work surface. Here, as a method of making the temperature distribution on the work surface uniform, for example, there is a method of adjusting the surface temperature by partially manipulating the amount of heat generated by the heater to increase or decrease the amount of heat input. Furthermore, for example, there is a method of physically uniformizing the material of the heater and the workpiece by using high heat conductive materials. Furthermore, for example, there is a method of making the temperature uniform by inserting a separate member having high thermal conductivity, such as a heat pipe, inside the workpiece.

特開2016-110757号公報Japanese Patent Application Publication No. 2016-110757

しかしながら、上述した方法では、ワーク面の温度変化に対するフィードバック制御の遅れにより、温度を小さい変化幅で安定させることが困難であったり、ワークが目標値を満たす温度分布となるように温度制御を行うための、ワークに適合する発熱体の配置やワーク内部のヒートパイプの配置など、構造の微調整が難しかったりする。 However, with the above method, due to the delay in feedback control for temperature changes on the workpiece surface, it is difficult to stabilize the temperature within a small range of change, or it is difficult to control the temperature so that the workpiece has a temperature distribution that satisfies the target value. Therefore, it is difficult to make fine adjustments to the structure, such as arranging the heating element to suit the workpiece and arranging the heat pipe inside the workpiece.

上述したように、従来の方法では、十分に均一な温度分布が実現できない場合があるため、ワーク面の温度分布を均一化するための新たな方法が望まれている。
本開示の一局面は、ワーク面の温度分布を制御可能な技術を提供することを目的としている。
As described above, with the conventional methods, it may not be possible to achieve a sufficiently uniform temperature distribution, so a new method for making the temperature distribution uniform on the workpiece surface is desired.
One aspect of the present disclosure aims to provide a technique capable of controlling temperature distribution on a workpiece surface.

本開示の一態様は、熱源とワークとの間に配置して用いられ、ワークに伝わる温度を制御可能な温度制御装置であって、熱流制御部を備える。熱流制御部は、面方向への熱伝導率に優れたシート形状の高熱伝導材を含む。熱流制御部は、第1領域と、第2領域と、を有する。第1領域は、当該熱流制御部の表面における所定の範囲を占める領域である。第2領域は、第1領域の周囲を囲むように設けられる領域である。第1領域及び第2領域は、少なくとも面方向に垂直な厚さ方向における熱伝導率が異なるように構成されている。 One aspect of the present disclosure is a temperature control device that is used by being placed between a heat source and a workpiece, and is capable of controlling the temperature transmitted to the workpiece, and includes a heat flow control section. The heat flow control section includes a sheet-shaped high thermal conductive material that has excellent thermal conductivity in the planar direction. The heat flow control section has a first region and a second region. The first region is a region occupying a predetermined range on the surface of the heat flow control section. The second area is an area provided to surround the first area. The first region and the second region are configured to have different thermal conductivities at least in the thickness direction perpendicular to the surface direction.

このような構成では、熱流制御部における第1領域及び第2領域の厚さ方向の熱伝導率が異なる。これにより、第1領域及び第2領域を通過する熱流量を制御することができる。その結果、ワーク面に伝わる温度が各領域で変化するため、ワーク面の温度分布を制御可能である。したがって、面方向において均一な温度分布が得られやすい。 In such a configuration, the first region and the second region in the heat flow control section have different thermal conductivities in the thickness direction. Thereby, the amount of heat passing through the first region and the second region can be controlled. As a result, the temperature transmitted to the work surface changes in each region, making it possible to control the temperature distribution on the work surface. Therefore, it is easy to obtain a uniform temperature distribution in the surface direction.

本開示の一態様では、熱流制御部は、第1領域に、熱流制御部を厚さ方向に貫通する複数の貫通孔を有してもよい。このような構成では、第1領域に熱流制御部を厚さ方向に貫通する複数の貫通孔が設けられる。すなわち、熱流制御部の第1領域には、厚さ方向において高熱伝導材が存在しない部分が設けられる。このため、第1領域の厚さ方向における熱伝導率が第2領域の厚さ方向における熱伝導率よりも下がる。ここで、例えば、第1領域が熱流制御部における面方向において内側の領域であり、第2領域が前記第2領域を囲む外側の領域である。このような構成では、例えば、ワークの端面から熱が逃げやすいために、ワーク面の中央部分の温度が高く、ワーク面の端面側の温度が低くなりやすい場合でも、内側の領域である第1領域に伝わる熱流量を減らし外側の領域である第2領域に伝わる熱流量を増やすように制御することで、面方向において均一な温度分布を得やすい。 In one aspect of the present disclosure, the heat flow control section may have a plurality of through holes in the first region that penetrate the heat flow control section in the thickness direction. In such a configuration, a plurality of through holes that penetrate the heat flow control section in the thickness direction are provided in the first region. That is, the first region of the heat flow control section is provided with a portion where no high thermal conductive material exists in the thickness direction. Therefore, the thermal conductivity in the thickness direction of the first region is lower than the thermal conductivity in the thickness direction of the second region. Here, for example, the first region is an inner region in the plane direction of the heat flow control section, and the second region is an outer region surrounding the second region. In such a configuration, for example, even if the temperature at the center of the workpiece surface is high and the temperature at the end surface side of the workpiece surface tends to be low because heat easily escapes from the end surface of the workpiece, the first By controlling the amount of heat transmitted to the region to be reduced and the amount of heat transmitted to the second region which is the outer region to be increased, it is easy to obtain a uniform temperature distribution in the surface direction.

本開示の一態様では、熱流制御部は、第2領域に、熱流制御部を厚さ方向に貫通する複数の貫通孔を有してもよい。このような構成では、第2領域に熱流制御部を厚さ方向に貫通する複数の貫通孔が設けられる。すなわち、熱流制御部の第2領域には、厚さ方向において高熱伝導材が存在しない部分が設けられる。このため、第2領域の厚さ方向における熱伝導率が第1領域の厚さ方向における熱伝導率よりも下がる。ここで、例えば、第1領域が熱流制御部における面方向において内側の領域であり、第2領域が前記第2領域を囲む外側の領域である。このような構成では、例えば、ワークの端面から熱が逃げにくいために、ワーク面の中央部分の温度よりもワーク面の端面側の温度が高くなりやすい場合でも、外側の領域である第2領域に伝わる熱流量を減らし内側の領域である第1領域に伝わる熱流量を増やすように制御することで、面方向において均一な温度分布を得やすい。 In one aspect of the present disclosure, the heat flow control section may have a plurality of through holes in the second region that penetrate the heat flow control section in the thickness direction. In such a configuration, the second region is provided with a plurality of through holes that penetrate the heat flow control section in the thickness direction. That is, the second region of the heat flow control section is provided with a portion where no high thermal conductive material exists in the thickness direction. Therefore, the thermal conductivity in the thickness direction of the second region is lower than the thermal conductivity in the thickness direction of the first region. Here, for example, the first region is an inner region in the plane direction of the heat flow control section, and the second region is an outer region surrounding the second region. In such a configuration, for example, even if the temperature on the end surface side of the workpiece surface tends to be higher than the temperature on the central portion of the workpiece surface because heat is difficult to escape from the end surface of the workpiece, the second region which is the outer region By controlling the amount of heat transmitted to the first region, which is the inner region, to reduce the amount of heat transmitted to the first region, it is easy to obtain a uniform temperature distribution in the surface direction.

本開示の一態様では、複数の貫通孔は、円形、多角形及びしずく形の少なくとも何れかの形状を有してもよい。このような構成によれば、円形、多角形及びしずく形の何れの形状を採用した場合にも、複数の貫通孔が設けられる内側領域及び外側領域の何れか一方に伝わる熱流量を他方の領域よりも十分に下げることが可能である。 In one aspect of the present disclosure, the plurality of through holes may have at least one of a circular shape, a polygonal shape, and a droplet shape. According to such a configuration, regardless of whether the shape is circular, polygonal, or drop-shaped, the heat flow transmitted to either the inner region or the outer region where the plurality of through holes are provided is transferred to the other region. It is possible to lower it sufficiently.

本開示の一態様では、熱流制御部は、第1領域に、第2領域よりも熱伝導率が低い材料を含んでもよい。このような構成では、第1領域に第2領域よりも熱伝導率が低い材料が含まれるため、第1領域の熱伝導率が第2領域の熱伝導率よりも下がる。ここで、例えば、第1領域が熱流制御部における面方向において内側の領域であり、第2領域が前記第2領域を囲む外側の領域である。このような構成では、例えば、ワークの端面から熱が逃げやすいために、ワーク面の中央部分の温度が高く、ワーク面の端面の温度が低くなりやすい場合でも、内側の領域である第1領域に伝わる熱流量を減らし外側の領域である第2領域に伝わる熱流量を増やすように制御することで、面方向における均一な温度分布を得やすい。 In one aspect of the present disclosure, the heat flow control unit may include a material in the first region that has a lower thermal conductivity than the second region. In such a configuration, since the first region includes a material having a lower thermal conductivity than the second region, the thermal conductivity of the first region is lower than that of the second region. Here, for example, the first region is an inner region in the plane direction of the heat flow control section, and the second region is an outer region surrounding the second region. In such a configuration, for example, even if the temperature of the central portion of the workpiece surface is high and the temperature of the end surface of the workpiece surface is likely to be low because heat easily escapes from the end surface of the workpiece, the first region which is the inner region A uniform temperature distribution in the surface direction can be easily obtained by controlling the amount of heat transmitted to the second region, which is the outer region, to be increased by reducing the amount of heat transmitted to the second region.

本開示の一態様では、熱流制御部は、第2領域に、第1領域よりも熱伝導率が低い材料を含んでもよい。このような構成では、第2領域に第1領域よりも熱伝導率が低い材料が含まれるため、第2領域の熱伝導率が第1領域の熱伝導率よりも下がる。ここで、例えば、第1領域が熱流制御部における面方向において内側の領域であり、第2領域が前記第2領域を囲む外側の領域である。このような構成では、例えば、ワークの端面から熱が逃げにくいために、ワーク面の中央部分の温度よりもワーク面の端面の温度が高くなりやすい場合でも、外側の領域である第2領域に伝わる熱流量を減らし内側の領域である第1領域に伝わる熱流量を増やすように制御することで、面方向における均一な温度分布を得やすい。 In one aspect of the present disclosure, the heat flow control unit may include a material in the second region that has a lower thermal conductivity than the first region. In such a configuration, since the second region includes a material whose thermal conductivity is lower than that of the first region, the thermal conductivity of the second region is lower than that of the first region. Here, for example, the first region is an inner region in the plane direction of the heat flow control section, and the second region is an outer region surrounding the second region. In such a configuration, for example, even if the temperature of the end surface of the workpiece surface tends to be higher than the temperature of the central portion of the workpiece surface because heat is difficult to escape from the end surface of the workpiece, the temperature of the end surface of the workpiece surface is likely to be higher than the temperature of the central portion of the workpiece surface. A uniform temperature distribution in the surface direction can be easily obtained by controlling the amount of heat transmitted to be reduced and the amount of heat transmitted to the first region, which is the inner region, to be increased.

本開示の一態様は、補助伝導部と、保護部と、を更に備えてもよい。補助伝導部は、面方向への熱伝導率に優れたシート形状の高熱伝導材を含み、熱流制御部に積層される。保護部は、熱流制御部及び補助伝導部に積層され、熱流制御部及び補助伝導部を保護する。このような構成によれば、温度制御装置が補助伝導部を備えない構成と比較して、面方向に熱を拡散させやすくすることができる。また、熱流制御部及び補助伝導部に保護部を積層させることによって、熱流制御部及び補助伝導部の破損を抑制することができる。 One aspect of the present disclosure may further include an auxiliary conductive section and a protective section. The auxiliary conductive part includes a sheet-shaped high thermal conductive material having excellent in-plane thermal conductivity, and is laminated on the heat flow control part. The protection part is laminated on the heat flow control part and the auxiliary conduction part, and protects the heat flow control part and the auxiliary conduction part. According to such a configuration, compared to a configuration in which the temperature control device does not include an auxiliary conductive portion, heat can be more easily diffused in the planar direction. Further, by laminating the protective portion on the heat flow control portion and the auxiliary conduction portion, damage to the heat flow control portion and the auxiliary conduction portion can be suppressed.

本開示の一態様は、加熱装置であって、熱源と、上述した温度制御装置と、を備える。上述した温度制御装置は、熱源に重ね合わせて配置される。このような構成によれば、熱源と、内側領域及び外側領域を通過する熱流量を制御することができる温度制御装置と、を用いて、ワーク面の温度分布を制御可能な加熱装置を提供することができる。 One aspect of the present disclosure is a heating device including a heat source and the temperature control device described above. The temperature control device described above is placed superimposed on the heat source. According to such a configuration, there is provided a heating device that can control the temperature distribution on the work surface using the heat source and the temperature control device that can control the heat flow rate passing through the inner region and the outer region. be able to.

熱流制御部及び補助伝導部を有する温度制御装置を示す側面断面図である。FIG. 3 is a side cross-sectional view showing a temperature control device having a heat flow control section and an auxiliary conduction section. 熱流制御部における内側領域及び外側領域を模式的に示す図である。It is a figure which shows typically the inner area|region and outer area|region in a heat flow control part. 複数の貫通孔を有する円形状の熱流制御部を示す平面図である。FIG. 3 is a plan view showing a circular heat flow control section having a plurality of through holes. 熱源及び温度制御装置が一体化された加熱装置を示す側面断面図である。FIG. 2 is a side sectional view showing a heating device in which a heat source and a temperature control device are integrated. 熱流制御部における熱流制御を検証するための実験態様を模式的に示す図である。FIG. 3 is a diagram schematically showing an experimental mode for verifying heat flow control in a heat flow control section. Z方向における熱流制御の効果を検証したグラフを示す図である。It is a figure which shows the graph which verified the effect of heat flow control in Z direction. XY方向における熱流制御の効果を検証したグラフを示す図である。It is a figure which shows the graph which verified the effect of heat flow control in an XY direction. 複数の貫通孔を有する四角形状の熱流制御部を示す平面図である。FIG. 3 is a plan view showing a rectangular heat flow control section having a plurality of through holes. 内側領域が四角形状に設けられる四角形状の熱流制御部を示す平面図である。FIG. 3 is a plan view showing a square-shaped heat flow control section in which an inner region is provided in a square shape. 形状が異なる複数の貫通孔を有する熱流制御部を示す平面図である。It is a top view which shows the heat flow control part which has several through-holes with a different shape. 内側領域が低熱伝導部及び外側領域が高熱伝導材により構成される熱流制御部を有する温度制御装置を示す側面断面図である。FIG. 3 is a side cross-sectional view showing a temperature control device having a heat flow control section whose inner region is a low heat conduction part and whose outer region is made of a high heat conduction material. 高熱伝導材の中央部分に低熱伝導材が積層される構成の熱流制御部を有する温度制御装置を示す側面断面図である。FIG. 2 is a side cross-sectional view showing a temperature control device having a heat flow control section in which a low thermal conductive material is laminated on a central portion of a high thermal conductive material. 熱流制御部を有する温度制御装置を示す側面断面図である。FIG. 2 is a side cross-sectional view showing a temperature control device having a heat flow control section. 熱流制御部、補助伝導部及び接触熱抵抗低減部を有する温度制御装置及び熱源が一体化された加熱装置を示す側面断面図である。FIG. 2 is a side cross-sectional view showing a heating device in which a temperature control device and a heat source are integrated, each having a heat flow control section, an auxiliary conduction section, and a contact thermal resistance reduction section.

以下、本開示の例示的な実施形態について図面を参照しながら説明する。
[1.構成]
<温度制御装置>
図1に示す温度制御装置100は、例えば半導体ウェハなどのワーク200と、当該ワーク200を加熱するための熱源300と、の間に配置して用いられ、ワーク200面の温度分布を制御可能である。熱源300には、例えば、フィルムヒータ、ET600高温用面状ヒータ、セラミックヒータ、シリコンラバーヒータ等の様々な種類のヒータが用いられる。また、熱源300には、シーズヒータ、カートリッジヒータ等が内蔵されたプレート等が用いられてもよい。なお図1は、温度制御装置100の構造を模式的に表したものであるため、実際の温度制御装置と比較して厳密な配置、形状、大きさの比率等が相違する場合がある。図4及び図11~図14についても同様である。
Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
[1. composition]
<Temperature control device>
The temperature control device 100 shown in FIG. 1 is used by being placed between a workpiece 200 such as a semiconductor wafer, and a heat source 300 for heating the workpiece 200, and can control the temperature distribution on the surface of the workpiece 200. be. Various types of heaters are used for the heat source 300, such as a film heater, an ET600 high-temperature planar heater, a ceramic heater, and a silicon rubber heater. Further, the heat source 300 may include a plate having a built-in sheathed heater, cartridge heater, or the like. Note that since FIG. 1 schematically represents the structure of the temperature control device 100, the exact arrangement, shape, size ratio, etc. may be different from the actual temperature control device. The same applies to FIG. 4 and FIGS. 11 to 14.

温度制御装置100は、熱流制御部11と、補助伝導部12と、接着部13と、保護部14と、を備える。温度制御装置100は、熱流制御部11、補助伝導部12、接着部13及び保護部14が積層された積層体である。なお、温度制御装置には、接着部13及び保護部14が積層されなくてもよい。 The temperature control device 100 includes a heat flow control section 11, an auxiliary conduction section 12, an adhesive section 13, and a protection section 14. The temperature control device 100 is a laminate in which a heat flow control section 11, an auxiliary conduction section 12, an adhesive section 13, and a protection section 14 are stacked. In addition, the adhesive part 13 and the protection part 14 do not need to be laminated|stacked on the temperature control device.

熱流制御部11は、面方向への熱伝導率に優れたシート形状の高熱伝導材により構成される部材である。シート形状とは、広く薄く広がる形状をいう。面方向とは、当該シート形状の平らな面の広がりに沿った方向である。高熱伝導材として、例えば、銅、窒化アルミニウム、アルミニウム等の金属、グラファイト等の熱伝導率の高い材料が用いられる。熱流制御部11は、第1の面111と、第1の面111とは反対側の面である第2の面112と、を有する。 The heat flow control unit 11 is a member made of a sheet-shaped high thermal conductive material that has excellent thermal conductivity in the planar direction. The sheet shape refers to a shape that spreads wide and thin. The plane direction is a direction along the extent of the flat surface of the sheet shape. As the high thermal conductivity material, for example, metals such as copper, aluminum nitride, and aluminum, and materials with high thermal conductivity such as graphite are used. The heat flow control unit 11 has a first surface 111 and a second surface 112 that is a surface opposite to the first surface 111.

熱流制御部11の第1の面111には、補助伝導部12が積層される。補助伝導部12は、接着部13を介して熱流制御部11に接着される。
補助伝導部12は、面方向への熱伝導率に優れたシート形状の高熱伝導材により構成される部材である。高熱伝導材として、例えば、銅、窒化アルミニウム、アルミニウム等の金属、グラファイト等が用いられる。
The auxiliary conduction section 12 is laminated on the first surface 111 of the heat flow control section 11 . The auxiliary conductive section 12 is bonded to the heat flow control section 11 via the bonding section 13 .
The auxiliary conductive part 12 is a member made of a sheet-shaped high thermally conductive material that has excellent thermal conductivity in the planar direction. As the highly thermally conductive material, for example, metals such as copper, aluminum nitride, and aluminum, graphite, and the like are used.

熱流制御部11の第2の面112には、接着部13及び保護部14が、保護部14が最表面となる順に積層される。また、補助伝導部12の熱流制御部11側を向く面とは反対側の面にも、接着部13及び保護部14が、保護部14が最表面となる順に積層される。 The adhesive part 13 and the protection part 14 are laminated on the second surface 112 of the heat flow control part 11 in the order that the protection part 14 is the outermost surface. Further, the adhesive part 13 and the protective part 14 are also laminated on the surface of the auxiliary conductive part 12 opposite to the surface facing the heat flow control part 11 in the order that the protective part 14 is the outermost surface.

保護部14は、熱流制御部11の第2の面112、及び、補助伝導部12の熱流制御部11側を向く面とは反対側の面を保護するシート形状の部材である。保護部14には、例えば、ポリイミド系の材料により構成されるシート、マイカシート、シリコン樹脂シートが用いられる。保護部14は、接着部13を介して、熱流制御部11の第2の面112、及び、補助伝導部12の熱流制御部11側を向く面とは反対側の面に接着される。 The protection section 14 is a sheet-shaped member that protects the second surface 112 of the heat flow control section 11 and the surface of the auxiliary conduction section 12 opposite to the surface facing the heat flow control section 11 side. For example, a sheet made of a polyimide material, a mica sheet, or a silicone resin sheet is used for the protection part 14. The protection part 14 is bonded via the adhesive part 13 to the second surface 112 of the heat flow control part 11 and to the surface of the auxiliary conduction part 12 opposite to the surface facing the heat flow control part 11 side.

図2に示すように、本実施形態では、熱流制御部11は、円形状に形成されている。熱流制御部11は、面方向において内側の領域である内側領域Bと、内側領域Bを囲む外側の領域である外側領域Aと、を有する。つまり、熱流制御部11は、外側領域A及び内側領域Bの2つの領域に区分けされるように構成される。 As shown in FIG. 2, in this embodiment, the heat flow control section 11 is formed in a circular shape. The heat flow control unit 11 has an inner region B, which is an inner region in the plane direction, and an outer region A, which is an outer region surrounding the inner region B. That is, the heat flow control unit 11 is configured to be divided into two regions, an outer region A and an inner region B.

本実施形態では、内側領域Bは、熱流制御部11の中心点Cを中心とする円形状の領域である。外側領域Aは、熱流制御部11における内側領域B以外の円環状の領域である。外側領域A及び内側領域Bは、少なくとも面方向に垂直な厚さ方向における熱伝導率が異なるように構成されている。なお、図2に示すXY方向が面方向であり、図2に示すZ方向が厚さ方向である。 In this embodiment, the inner region B is a circular region centered on the center point C of the heat flow control section 11. The outer region A is an annular region other than the inner region B in the heat flow control section 11 . The outer region A and the inner region B are configured to have different thermal conductivities at least in the thickness direction perpendicular to the surface direction. Note that the XY directions shown in FIG. 2 are the surface directions, and the Z direction shown in FIG. 2 is the thickness direction.

本実施形態では、図3に示すように、熱流制御部11は、内側領域Bに、熱流制御部11を厚さ方向に貫通する、すなわち第1の面111及び第2の面112を貫通する複数の貫通孔113を有する。複数の貫通孔113が設けられている部分は、熱伝導材が存在しない部分である。このように、複数の貫通孔113を形成して高熱伝導材が存在しない箇所を設けることで、内側領域Bに熱流量を低減させる熱流低減構造を持たせると、内側領域Bの厚さ方向における熱伝導率が外側領域Aの厚さ方向における熱伝導率よりも低くなる。ここで、内側領域Bの厚さ方向における熱伝導率には、例えば、内側領域Bの面方向全体における厚さ方向の熱伝導率の平均値が用いられる。これにより、外側領域Aを通過する熱源300からの熱流量よりも内側領域Bを通過する熱流量を小さくすることが可能である。 In the present embodiment, as shown in FIG. 3, the heat flow control section 11 is provided in the inner region B by penetrating the heat flow control section 11 in the thickness direction, that is, through the first surface 111 and the second surface 112. It has a plurality of through holes 113. The portion where the plurality of through holes 113 are provided is a portion where no thermally conductive material is present. In this way, by forming a plurality of through holes 113 and providing a portion where no high thermal conductive material is present, if the inner region B is provided with a heat flow reduction structure that reduces the heat flow, the thickness of the inner region B is reduced. The thermal conductivity is lower than that of the outer region A in the thickness direction. Here, for the thermal conductivity of the inner region B in the thickness direction, for example, the average value of the thermal conductivity in the thickness direction of the entire inner region B in the surface direction is used. Thereby, the heat flow rate passing through the inner region B can be made smaller than the heat flow rate from the heat source 300 passing through the outer region A.

本実施形態では、複数の貫通孔113は、円形状を有する。複数の貫通孔113は、内側領域Bにおける高熱伝導材が存在する部分の領域が小さくなるように、隣合う貫通孔113同士の間隔を狭めて内側領域B内に設けられる。これにより、隣合う貫通孔113同士の間隔が広く設けられる場合と比較して、内側領域Bの厚さ方向における熱伝導率を低くすることができる。その結果、外側領域A及び内側領域Bの厚さ方向における熱伝導率比が高くなりやすい。例えば、複数の貫通孔113は、貫通孔113の最長幅よりも隣接する貫通孔113までの距離が短くなるような配置で設けられる。本実施形態では、複数の貫通孔113は、千鳥状に配列される。なお、複数の貫通孔の配列はこれに限定されるものではなく、例えば、複数の貫通孔は、熱流制御部11の中心点Cを中心に放射状に広がるように配列されていてもよい。本実施形態では、熱流制御部11に接着部13が積層される場合に、複数の貫通孔113の内部に接着部13を構成する材料である粘着材が一部又は全部入り込む。このような場合でも、内側領域Bの厚さ方向における熱伝導率は外側領域Aの厚さ方向における熱伝導率よりも低くなる。なお、熱流制御部11に接着部13が積層される場合に、複数の貫通孔113の内部に粘着材が入り込まなくてもよい。 In this embodiment, the plurality of through holes 113 have a circular shape. The plurality of through holes 113 are provided in the inner region B such that the distance between adjacent through holes 113 is narrowed so that the region of the portion of the inner region B where the high thermal conductive material exists is small. Thereby, the thermal conductivity in the thickness direction of the inner region B can be lowered compared to a case where the distance between adjacent through holes 113 is wide. As a result, the thermal conductivity ratio in the thickness direction of the outer region A and the inner region B tends to be high. For example, the plurality of through holes 113 are arranged such that the distance to an adjacent through hole 113 is shorter than the longest width of the through hole 113. In this embodiment, the plurality of through holes 113 are arranged in a staggered manner. Note that the arrangement of the plurality of through holes is not limited to this, and for example, the plurality of through holes may be arranged so as to spread radially around the center point C of the heat flow control section 11. In this embodiment, when the adhesive part 13 is laminated on the heat flow control part 11, the adhesive material that is the material forming the adhesive part 13 partially or completely enters inside the plurality of through holes 113. Even in such a case, the thermal conductivity of the inner region B in the thickness direction is lower than that of the outer region A in the thickness direction. In addition, when the adhesive part 13 is laminated|stacked on the heat flow control part 11, the adhesive material does not need to enter into the inside of the several through-hole 113.

<加熱装置>
図4に示す加熱装置400は、熱源300と、温度制御装置100と、が一体化した装置である。加熱装置400は、2つのワーク200の間に配置され、ワーク200面に伝わる温度を任意の温度分布に制御可能である。加熱装置400は、熱源300と、2つの温度制御装置100と、を備える。加熱装置400は、熱源300の両側の面にそれぞれ温度制御装置100が積層した積層体である。換言すると、加熱装置400は、熱源300が2つの温度制御装置100の間に挟まれた状態の構成を有する。
<Heating device>
A heating device 400 shown in FIG. 4 is a device in which a heat source 300 and a temperature control device 100 are integrated. The heating device 400 is placed between the two workpieces 200, and can control the temperature transmitted to the surface of the workpieces 200 to have an arbitrary temperature distribution. Heating device 400 includes a heat source 300 and two temperature control devices 100. The heating device 400 is a stacked body in which temperature control devices 100 are stacked on both sides of a heat source 300, respectively. In other words, the heating device 400 has a configuration in which the heat source 300 is sandwiched between two temperature control devices 100.

加熱装置400では、熱流制御部11が補助伝導部12よりも外側に位置するように、温度制御装置100が熱源300に積層される。すなわち、補助伝導部12が熱源300側に位置するように、温度制御装置100が熱源300に積層される。つまり、熱源300及び熱流制御部11の間に、補助伝導部12が配置される。補助伝導部12は、接着部13を介して熱源300に接着される。具体的には、温度制御装置100における補助伝導部12側の保護部14を有しない接着部13が露出した状態で、温度制御装置100が熱源300に接着される。なお、加熱装置400には、熱流制御部11の第2の面112側に接着部13及び保護部14が積層されなくてもよい。また、加熱装置は、熱源300の一方の面に熱流制御部11及び補助伝導部12を有しない構成であってもよい。すなわち、加熱装置は、熱源300の一方の面に接着部13及び保護部14のみが積層されていてもよい。 In heating device 400, temperature control device 100 is stacked on heat source 300 such that heat flow control section 11 is located outside of auxiliary conduction section 12. That is, the temperature control device 100 is stacked on the heat source 300 such that the auxiliary conductive portion 12 is located on the heat source 300 side. That is, the auxiliary conduction section 12 is arranged between the heat source 300 and the heat flow control section 11. The auxiliary conductive part 12 is adhered to the heat source 300 via the adhesive part 13. Specifically, the temperature control device 100 is bonded to the heat source 300 with the adhesive portion 13 on the auxiliary conductive portion 12 side of the temperature control device 100 that does not have the protection portion 14 exposed. Note that, in the heating device 400, the adhesive portion 13 and the protection portion 14 do not need to be laminated on the second surface 112 side of the heat flow control portion 11. Further, the heating device may have a configuration in which the heat flow control section 11 and the auxiliary conduction section 12 are not provided on one surface of the heat source 300. That is, in the heating device, only the adhesive part 13 and the protection part 14 may be laminated on one surface of the heat source 300.

<熱流制御部における熱流制御の検証結果>
図5には、熱流制御部11における熱流制御を検証するための検証態様を模式的に示す。本実施形態では、熱流制御の検証結果は、CFDを利用したシミュレーション(以下、CFDシミュレーションという)に基づくものである。CFDとは、Computational Fluid Dynamicsの略である。CFDシミュレーションは、外気温度21℃、ヒータ熱量1500W、ワーク200の材質がSUS304及びヒータ温度調節点がワーク200の上面の中心という条件下において行われた。具体的には、ワーク200と、熱源300と、の間に、外側領域A及び内側領域Bを有する熱流検証部110及び補助伝導部12を重ねて配置して、温度制御装置100を模擬的に構成して検証が行われた。熱流検証部110及び補助伝導部12は、熱流検証部110がワーク200側、補助伝導部12が熱源300側に位置するように配置する。なお、熱流検証部110は、図6においては熱流制御部11に該当する構造であり、図7においては熱流制御部11に該当しない構造である。
<Verification results of heat flow control in the heat flow control section>
FIG. 5 schematically shows a verification mode for verifying heat flow control in the heat flow control section 11. In this embodiment, the verification results of heat flow control are based on a simulation using CFD (hereinafter referred to as CFD simulation). CFD is an abbreviation for Computational Fluid Dynamics. The CFD simulation was performed under the conditions that the outside air temperature was 21° C., the heater heat amount was 1500 W, the material of the workpiece 200 was SUS304, and the heater temperature adjustment point was at the center of the upper surface of the workpiece 200. Specifically, the heat flow verification section 110 and the auxiliary conduction section 12 having an outer region A and an inner region B are placed between the workpiece 200 and the heat source 300 to simulate the temperature control device 100. It was configured and verified. The heat flow verification section 110 and the auxiliary conduction section 12 are arranged such that the heat flow verification section 110 is located on the workpiece 200 side and the auxiliary conduction section 12 is located on the heat source 300 side. Note that the heat flow verification section 110 has a structure that corresponds to the heat flow control section 11 in FIG. 6, and has a structure that does not correspond to the heat flow control section 11 in FIG.

図6は、熱流検証部110において、内側領域BのZ方向における熱伝導率を変更した場合のワーク面の温度の均一性への影響を示すグラフである。
例えば、熱流検証部110において、外側領域A及び内側領域BのXY方向における熱伝導率を同一の500として、外側領域A及び内側領域BのZ方向における熱伝導率比を変え、ワーク200の面方向、すなわちXY方向における最大温度及び最小温度の温度差を比較する。具体的には、熱流検証部110において、外側領域A及び内側領域BのXY方向における熱伝導率を同一の500とし、内側領域BのZ方向における熱伝導率を0.5とし、外側領域AのZ方向における熱伝導率を3.84とした条件を検証条件T1とする。なお、検証条件T1において、補助伝導部12のXY方向における熱伝導率は500であり、Z方向における熱伝導率は3.84である。また、補助伝導部12のみにより実質構成された条件、すなわち、熱流検証部110において、外側領域A及び内側領域BのXY方向における熱伝導率を同一の500とし、外側領域A及び内側領域BのZ方向における熱伝導率を同一の3.84とした条件を比較条件T2とする。そして、検証条件T1及び比較条件T2を比較した。
FIG. 6 is a graph showing the effect on the temperature uniformity of the work surface when the thermal conductivity in the Z direction of the inner region B is changed in the heat flow verification section 110.
For example, in the heat flow verification unit 110, the thermal conductivity of the outer region A and the inner region B in the XY direction is set to the same 500, and the thermal conductivity ratio of the outer region A and the inner region B in the Z direction is changed, and the surface of the workpiece 200 is The temperature difference between the maximum temperature and the minimum temperature in the directions, that is, the XY directions is compared. Specifically, in the heat flow verification unit 110, the thermal conductivity of the outer region A and the inner region B in the XY direction is set to the same 500, the thermal conductivity of the inner region B in the Z direction is set to 0.5, and the thermal conductivity of the outer region A and the inner region B is set to the same 500. A condition in which the thermal conductivity in the Z direction is 3.84 is defined as verification condition T1. Note that under the verification condition T1, the thermal conductivity of the auxiliary conductive section 12 in the XY direction is 500, and the thermal conductivity in the Z direction is 3.84. In addition, under the conditions substantially constituted only by the auxiliary conductive section 12, that is, in the heat flow verification section 110, the thermal conductivity of the outer region A and the inner region B in the XY direction is the same 500, and the outer region A and the inner region B have the same thermal conductivity of 500. A condition in which the thermal conductivity in the Z direction is the same at 3.84 is defined as a comparison condition T2. Then, the verification condition T1 and the comparison condition T2 were compared.

図6に示すように、内側領域BのZ方向における熱伝導率を外側領域AのZ方向における熱伝導率よりも低くした検証条件T1の温度差の方が、比較条件T2の温度差よりも小さいという結果となった。XY方向における温度差は、小さいほどワーク200面の温度分布が均一となる。このため、熱流制御部11は、内側領域BのZ方向における熱伝導率が、外側領域AのZ方向における熱伝導率よりも低いことが望ましいことがわかる。換言すると、熱流制御部11は、内側領域Bと外側領域AとのZ方向における熱伝導率比を高くすることが望ましいことがわかる。 As shown in FIG. 6, the temperature difference under verification condition T1 in which the thermal conductivity in the Z direction of inner region B is lower than that of outer region A in the Z direction is greater than the temperature difference under comparison condition T2. The result was that it was small. The smaller the temperature difference in the XY directions, the more uniform the temperature distribution on the surface of the workpiece 200 becomes. Therefore, it can be seen that in the heat flow control unit 11, it is desirable that the thermal conductivity of the inner region B in the Z direction is lower than the thermal conductivity of the outer region A in the Z direction. In other words, it can be seen that it is desirable for the heat flow control unit 11 to increase the thermal conductivity ratio between the inner region B and the outer region A in the Z direction.

また、図7は、熱流検証部110において、内側領域BのXY方向における熱伝導率を変更した場合のワーク面の温度の均一性への影響を示すグラフである。
例えば、熱流検証部110において、外側領域A及び内側領域BのZ方向における熱伝導率を同一の3.84として、外側領域A及び内側領域BのXY方向における熱伝導率比を変え、ワーク200の面方向、すなわちXY方向における最大温度及び最小温度の温度差を比較する。具体的には、熱流検証部110において、外側領域A及び内側領域BのZ方向における熱伝導率を同一の3.84とし、内側領域BのXY方向における熱伝導率を340とし、外側領域AのXY方向における熱伝導率を500とした条件を検証条件T3とする。なお、検証条件T3において、補助伝導部12のZ方向における熱伝導率は3.84であり、XY方向における熱伝導率は500である。また、補助伝導部12のみにより実質構成された条件、すなわち、熱流検証部110において、外側領域A及び内側領域BのZ方向における熱伝導率を同一の3.84とし、外側領域A及び内側領域BのXY方向における熱伝導率を同一の500とした条件を比較条件T4とする。そして、検証条件T3及び比較条件T4を比較した。
Further, FIG. 7 is a graph showing the influence on the temperature uniformity of the work surface when the thermal conductivity in the XY directions of the inner region B is changed in the heat flow verification section 110.
For example, in the heat flow verification unit 110, the thermal conductivity of the outer region A and the inner region B in the Z direction is set to the same 3.84, and the thermal conductivity ratio of the outer region A and the inner region B in the XY direction is changed. The temperature difference between the maximum temperature and the minimum temperature in the plane direction, that is, the XY direction is compared. Specifically, in the heat flow verification unit 110, the thermal conductivity in the Z direction of the outer region A and the inner region B is set to the same 3.84, the thermal conductivity of the inner region B in the XY direction is set to 340, and the thermal conductivity of the outer region A and the inner region B in the A condition in which the thermal conductivity in the XY directions is 500 is defined as verification condition T3. Note that under verification condition T3, the thermal conductivity of the auxiliary conductive section 12 in the Z direction is 3.84, and the thermal conductivity in the XY directions is 500. In addition, under the conditions substantially configured only by the auxiliary conductive section 12, that is, in the heat flow verification section 110, the thermal conductivity in the Z direction of the outer region A and the inner region B is set to be the same 3.84, and the outer region A and the inner region A condition in which the thermal conductivity of B in the X and Y directions is the same 500 is defined as comparison condition T4. Then, the verification condition T3 and the comparison condition T4 were compared.

図7に示すように、外側領域A及び内側領域BのXY方向における熱伝導率を共に高くした比較条件T4の温度差の方が、検証条件T3の温度差よりも小さいという結果となった。すなわち、内側領域Bにおける面方向への熱伝導率を下げると、ワーク200面の温度分布の均一性が低下する方向への影響が出得る。 As shown in FIG. 7, the temperature difference under comparison condition T4, in which both the outer region A and the inner region B had high thermal conductivities in the XY directions, was smaller than the temperature difference under verification condition T3. That is, if the thermal conductivity in the surface direction in the inner region B is lowered, the uniformity of the temperature distribution on the surface of the workpiece 200 may be reduced.

上述した図6及び図7の検証結果から、熱流制御部11においては、外側領域A及び内側領域Bの面方向への熱伝導率比は変えずに、外側領域A及び内側領域Bの厚さ方向における熱伝導率を変更することが、ワーク200面の温度分布の均一性を向上させるために重要であることがわかる。 From the verification results of FIGS. 6 and 7 described above, in the heat flow control unit 11, the thickness of the outer region A and the inner region B can be changed without changing the thermal conductivity ratio in the surface direction of the outer region A and the inner region B. It can be seen that changing the thermal conductivity in the direction is important for improving the uniformity of the temperature distribution on the surface of the workpiece 200.

[2.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(2a)本実施形態では、熱流制御部11における外側領域A及び内側領域Bの厚さ方向の熱伝導率が異なるように構成されている。これにより、外側領域A及び内側領域Bを通過する熱流量を制御することができる。その結果、ワーク200面に伝わる温度が各領域A,Bで変化するため、ワーク200面の温度分布を制御可能である。
[2. effect]
According to the embodiment detailed above, the following effects can be obtained.
(2a) In this embodiment, the outer region A and the inner region B of the heat flow control unit 11 are configured to have different thermal conductivities in the thickness direction. Thereby, the amount of heat passing through the outer region A and the inner region B can be controlled. As a result, the temperature transmitted to the surface of the workpiece 200 changes in each area A and B, so the temperature distribution on the surface of the workpiece 200 can be controlled.

具体的には、内側領域Bに熱流制御部11を厚さ方向に貫通する複数の貫通孔113が設けられる。すなわち、熱流制御部11の内側領域Bには、厚さ方向において高熱伝導材が存在しない部分が設けられる。これにより、内側領域Bの厚さ方向における熱伝導率が外側領域Aの厚さ方向における熱伝導率よりも下がる。このため、内側領域Bに伝わる熱流量が減り、外側領域Aに伝わる熱流量が増える。したがって、例えば、ワーク200の端面から熱が逃げやすいために、ワーク200面の中央部分の温度が高く、ワーク200面の端面側の温度が低くなりやすい場合でも、熱が逃げやすい部分である外側領域Aに伝わる熱流量が増えるため、ワーク200面における中央部分と端面側との温度差を小さくすることができる。その結果、ワーク200面の温度分布の均一性が向上する。 Specifically, a plurality of through holes 113 are provided in the inner region B to penetrate the heat flow control section 11 in the thickness direction. That is, the inner region B of the heat flow control section 11 is provided with a portion in which no high thermal conductive material exists in the thickness direction. As a result, the thermal conductivity of the inner region B in the thickness direction is lower than that of the outer region A in the thickness direction. Therefore, the amount of heat transmitted to the inner region B decreases, and the amount of heat transmitted to the outer region A increases. Therefore, for example, even if the temperature of the center part of the work 200 surface is high and the temperature of the end surface of the work 200 tends to be low because heat easily escapes from the end surface of the work 200, the outside part where heat can easily escape is Since the heat flow transmitted to the region A increases, the temperature difference between the center portion and the end surface side of the workpiece 200 surface can be reduced. As a result, the uniformity of temperature distribution on the surface of the workpiece 200 is improved.

(2b)本実施形態では、温度制御装置100は、熱流制御部11、補助伝導部12、接着部13及び保護部14を備える。このように、温度制御装置100が熱流制御部11に加え、補助伝導部12を備えることによって、温度制御装置が補助伝導部を備えない構成と比較して、面方向に熱を拡散させやすくすることができる。また、熱源300上に温度制御装置100を配置する場合に、熱流制御部11に積層される補助伝導部12を熱源300側に配置することによって、熱流制御部11の内側領域Bにおける複数の貫通孔113が熱源300の真上に配置されることで複数の貫通孔113の直下で生じ得る急激な温度上昇が抑制される。その結果、温度制御装置100の故障を抑制することができる。すなわち、絶縁されていない状態の熱源300にも温度制御装置100を用いることができる。 (2b) In this embodiment, the temperature control device 100 includes a heat flow control section 11, an auxiliary conduction section 12, an adhesive section 13, and a protection section 14. In this way, the temperature control device 100 includes the auxiliary conduction section 12 in addition to the heat flow control section 11, thereby making it easier to diffuse heat in the planar direction compared to a configuration in which the temperature control device does not include the auxiliary conduction section. be able to. Furthermore, when the temperature control device 100 is disposed on the heat source 300, by arranging the auxiliary conductive section 12 stacked on the heat flow control section 11 on the heat source 300 side, a plurality of through holes in the inner region B of the heat flow control section 11 can be formed. By arranging the holes 113 directly above the heat source 300, a sudden temperature rise that may occur directly below the plurality of through holes 113 is suppressed. As a result, failure of the temperature control device 100 can be suppressed. That is, the temperature control device 100 can also be used for the heat source 300 that is not insulated.

また、熱流制御部11及び補助伝導部12に保護部14を積層させることによって、温度制御装置100において、熱流制御部11及び補助伝導部12が露出しないため、熱流制御部11及び補助伝導部12の破損を抑制することができる。また、温度制御装置100単体での取り扱い時に熱流制御部11及び補助伝導部12が保護されているため、材料が脆いため取り扱いが難しいグラファイトにより構成される熱流制御部11及び補助伝導部12等を取り扱い易くすることができる。
なお、本実施形態では、内側領域Bが第1領域の一例に相当し、外側領域Aが第2領域の一例に相当する。
Furthermore, by stacking the protection part 14 on the heat flow control part 11 and the auxiliary conduction part 12, the heat flow control part 11 and the auxiliary conduction part 12 are not exposed in the temperature control device 100. damage can be suppressed. In addition, since the heat flow control section 11 and the auxiliary conduction section 12 are protected when handling the temperature control device 100 alone, the heat flow control section 11 and the auxiliary conduction section 12, etc., which are made of graphite, which is difficult to handle due to its brittle material, are protected. It can be made easier to handle.
Note that in this embodiment, the inner region B corresponds to an example of the first region, and the outer region A corresponds to an example of the second region.

[3.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[3. Other embodiments]
Although the embodiments of the present disclosure have been described above, it goes without saying that the present disclosure is not limited to the above embodiments and can take various forms.

(3a)上記実施形態では、熱流制御部11が円形状の構成を例示したが、熱流制御部の形状はこれに限定されるものではない。例えば、図8に示す熱流制御部11aのように、四角形状であってもよい。熱流制御部11aは、円形状の領域である内側領域Bと、四角形状のシートにおける内側領域B以外の領域、すなわち内側領域Bを囲う外側の領域である外側領域A2と、を有する。熱流制御部11aの内側領域Bには、円形状の複数の貫通孔113が設けられている。 (3a) In the above embodiment, the heat flow control section 11 has a circular configuration, but the shape of the heat flow control section is not limited to this. For example, the heat flow control section 11a shown in FIG. 8 may have a rectangular shape. The heat flow control unit 11a has an inner region B that is a circular region, and an outer region A2 that is a region other than the inner region B in a rectangular sheet, that is, an outer region surrounding the inner region B. A plurality of circular through holes 113 are provided in the inner region B of the heat flow control section 11a.

(3b)上記実施形態では、熱流制御部11の内側領域Bが円形状の領域である構成を例示したが、熱流制御部の内側領域の形状はこれに限定されるものではない。例えば、図9に示す熱流制御部11bのように、内側領域B3は、四角形状の領域であってもよい。熱流制御部11bは、四角形状の領域である内側領域B3と、四角形状のシートにおける内側領域B3以外の領域、すなわち内側領域B3を囲う外側の領域である外側領域A3と、を有する。熱流制御部11bの内側領域B3には、円形状の複数の貫通孔113が設けられている。 (3b) In the above embodiment, the inner region B of the heat flow control section 11 is a circular region, but the shape of the inner region of the heat flow control section is not limited to this. For example, as in the heat flow control section 11b shown in FIG. 9, the inner region B3 may be a rectangular region. The heat flow control unit 11b has an inner region B3 which is a rectangular region, and an outer region A3 which is a region other than the inner region B3 in the rectangular sheet, that is, an outer region surrounding the inner region B3. A plurality of circular through holes 113 are provided in the inner region B3 of the heat flow control section 11b.

(3c)上記実施形態では、複数の貫通孔113が円形状の構成を例示したが、複数の貫通孔の形状はこれに限定されるものではない。例えば、複数の貫通孔は、三角形、ひし形及び四角形等を含む多角形又はしずく形の形状であってもよい。このような構成によれば、複数の貫通孔が様々な形状を取り得るため、目標値を満たす温度分布の制御に合わせてより好ましい形状を設けることが可能である。なお、円形、多角形及びしずく形の何れの形状を採用した場合にも、内側領域B,B3に伝わる熱流量を外側領域A~A3よりも十分に下げることが可能である。CFDシミュレーションによる検証結果によれば、複数の貫通孔が形成される領域では、厚さ方向における熱伝導率を低くすることができるが、面方向における熱伝導率も少なからず低くなり得る。ここで、複数の貫通孔がしずく形やダイヤの形状を有する場合、厚さ方向における熱伝導率を低くでき、かつ、面方向における熱伝導率を他の形状と比較して低くなりにくくすることができる。その結果、複数の貫通孔がしずく形やダイヤの形状を有する場合、ワーク200面の温度分布の均一性を向上させやすくすることができる。 (3c) In the above embodiment, the configuration in which the plurality of through holes 113 are circular is illustrated, but the shape of the plurality of through holes is not limited to this. For example, the plurality of through holes may have a polygonal shape including a triangle, a rhombus, a quadrangle, or the like, or a droplet shape. According to such a configuration, since the plurality of through holes can take various shapes, it is possible to provide a more preferable shape in accordance with the control of the temperature distribution that satisfies the target value. Note that even when a circular shape, a polygonal shape, or a droplet shape is adopted, the amount of heat transmitted to the inner regions B and B3 can be sufficiently lowered than that to the outer regions A to A3. According to the verification results by CFD simulation, in a region where a plurality of through holes are formed, the thermal conductivity in the thickness direction can be lowered, but the thermal conductivity in the planar direction can also be lowered to a considerable extent. Here, when the plurality of through holes have a drop shape or a diamond shape, the thermal conductivity in the thickness direction can be lowered, and the thermal conductivity in the planar direction can be made less likely to decrease compared to other shapes. I can do it. As a result, when the plurality of through holes have a drop shape or a diamond shape, it is possible to easily improve the uniformity of the temperature distribution on the surface of the workpiece 200.

また、例えば、図10に示す熱流制御部11cのように、複数の貫通孔113cは、三角形、ひし形及び四角形等を含む多角形及びしずく形などの様々な形状を組み合わせて有してもよい。熱流制御部11cは、円形状の領域である内側領域B4と、四角形状のシートにおける内側領域B4以外の領域、すなわち内側領域B4を囲う外側の領域である外側領域A4と、を有する。熱流制御部11cの内側領域B4には、様々な形状の複数の貫通孔113cが、貫通孔113c同士の間の隙間が極力少なくなるような配置で設けられている。このような構成によれば、様々な形状の貫通孔113cを隙間を埋めるように配置することで、内側領域B4における高熱伝導材が存在しない部分を多く設けることができ、その結果、内側領域B4の熱伝導率が低くなりやすい。 Further, for example, as in the heat flow control unit 11c shown in FIG. 10, the plurality of through holes 113c may have a combination of various shapes such as a polygon including a triangle, a rhombus, a quadrangle, etc., and a drop shape. The heat flow control unit 11c has an inner region B4 that is a circular region, and an outer region A4 that is a region other than the inner region B4 in a rectangular sheet, that is, an outer region surrounding the inner region B4. In the inner region B4 of the heat flow control section 11c, a plurality of through holes 113c of various shapes are provided in an arrangement such that gaps between the through holes 113c are minimized. According to such a configuration, by arranging the through holes 113c of various shapes so as to fill the gaps, it is possible to provide many portions in the inner region B4 where no high thermal conductive material exists, and as a result, the inner region B4 tends to have low thermal conductivity.

(3d)上記実施形態では、外側領域A及び内側領域Bの厚さ方向における熱伝導率が異なるように、熱流制御部11の内側領域Bに複数の貫通孔113を設けることで、内側領域に熱流低減構造を持たせる構成を例示した。しかし、熱流制御部の内側領域に熱流低減構造を持たせる構成はこれに限定されるものではない。 (3d) In the above embodiment, a plurality of through holes 113 are provided in the inner region B of the heat flow control section 11 so that the outer region A and the inner region B have different thermal conductivities in the thickness direction. An example of a configuration with a heat flow reduction structure is illustrated. However, the configuration in which the heat flow reducing structure is provided in the inner region of the heat flow control section is not limited to this.

例えば、図11に示す温度制御装置100dのように、内側領域B5に、外側領域A5よりも熱伝導率が低い材料を含む熱流制御部11dを備えてもよい。熱流制御部11dは、外側領域A5が面方向への熱伝導率に優れたシート形状の高熱伝導材により構成され、内側領域B5が高熱伝導材よりも熱伝導率が低い材料により構成される。すなわち、熱流制御部11dは、高熱伝導材のくり抜かれた中央部分に高熱伝導材よりも熱伝導率が低い材料により構成されるシート形状の低熱伝導部15が嵌め込まれて形成される。高熱伝導材よりも熱伝導率が低い材料として、例えば、樹脂シート、ポリイミドシート、ゴムシート及びシリコンシート等が用いられる。このような構成では、内側領域B5に外側領域A5よりも熱伝導率が低い材料が含まれるため、内側領域B5の熱伝導率が外側領域A5の熱伝導率よりも下がる。したがって、例えば、ワーク200の端面から熱が逃げやすいために、ワーク200面の中央部分の温度が高く、ワーク200面の端面の温度が低くなりやすい場合でも、内側領域B5に伝わる熱量を減らし外側領域A5に伝わる熱量を増やすように制御することで、面方向における均一な温度分布を得やすい。 For example, like the temperature control device 100d shown in FIG. 11, the inner region B5 may include a heat flow control section 11d containing a material having a lower thermal conductivity than the outer region A5. In the heat flow control section 11d, the outer region A5 is made of a sheet-shaped high heat conductive material having excellent in-plane thermal conductivity, and the inner region B5 is made of a material having a lower thermal conductivity than the high heat conductive material. That is, the heat flow control section 11d is formed by fitting a sheet-shaped low thermal conductivity section 15 made of a material with a lower thermal conductivity than the high thermal conductivity material into a hollowed-out central portion of the high thermal conductivity material. For example, a resin sheet, a polyimide sheet, a rubber sheet, a silicone sheet, etc. are used as the material having a lower thermal conductivity than the high thermal conductive material. In such a configuration, since the inner region B5 includes a material whose thermal conductivity is lower than that of the outer region A5, the thermal conductivity of the inner region B5 is lower than that of the outer region A5. Therefore, for example, even if the temperature of the central part of the workpiece 200 surface is high and the temperature of the end surface of the workpiece 200 is likely to be low because heat easily escapes from the end surface of the workpiece 200, the amount of heat transmitted to the inner region B5 is reduced and By controlling to increase the amount of heat transmitted to the area A5, it is easy to obtain a uniform temperature distribution in the surface direction.

また、例えば、図12に示す温度制御装置100eのように、高熱伝導材111eと、高熱伝導材111eの中央部の領域のみに積層される低熱伝導材112eと、により構成される熱流制御部11eを備えてもよい。このように、中央部のみに低熱伝導材112eを置くと、高熱伝導材111eの中央部が沈み込み、図12に示す熱流制御部11eのように、低熱伝導材112eが高熱伝導材111eにより囲われた状態となり得る。なお、熱流制御部11d,11eは、上記実施形態の熱流制御部11と同様の効果を奏する。 Further, for example, as in a temperature control device 100e shown in FIG. 12, a heat flow control section 11e configured of a high thermal conductivity material 111e and a low thermal conductivity material 112e laminated only in the central region of the high thermal conductivity material 111e. may be provided. In this way, if the low thermal conductive material 112e is placed only in the center, the central portion of the high thermal conductive material 111e will sink, and the low thermal conductive material 112e will be surrounded by the high thermal conductive material 111e, as in the heat flow control section 11e shown in FIG. It can become a state of being exposed. Note that the heat flow control units 11d and 11e have the same effects as the heat flow control unit 11 of the above embodiment.

(3e)上記実施形態では、熱流制御部11は、内側領域Bに熱流低減構造を有する構成を例示したが、熱流制御部に設けられる熱流低減構造の領域は、内側領域に限定されるものではない。例えば、熱流制御部は、内側領域に熱流低減構造を有さず、外側領域に熱流低減構造を有する構成であってもよい。具体的には、例えば、熱流制御部は、外側領域に、熱流制御部を厚さ方向に貫通する複数の貫通孔を有してもよい。また、例えば、熱流制御部は、外側領域に、内側領域よりも熱伝導率が低い材料を含んでもよい。このような構成においても、内側領域及び外側領域は、少なくとも厚さ方向における熱伝導率が異なるように構成される。この場合、外側領域の厚さ方向の熱伝導率が内側領域の厚さ方向の熱伝導率よりも下がる。このため、外側領域に伝わる熱流量が減り、内側領域に伝わる熱流量が増える。したがって、例えば、ワーク200の端面から熱が逃げにくいために、ワーク200面の中央部分の温度よりも、ワーク200面の端面側の温度が高くなりやすい場合でも、熱が逃げにくい部分である外側領域に伝わる熱流量が減るため、ワーク200面における中央部分と端面側との温度差を小さくすることができる。その結果、ワーク200面の温度分布の均一性が向上する。 (3e) In the above embodiment, the heat flow control section 11 has the heat flow reduction structure in the inner region B, but the region of the heat flow reduction structure provided in the heat flow control section is not limited to the inner region. do not have. For example, the heat flow control section may have a structure in which the inner region does not have a heat flow reduction structure, and the outer region has a heat flow reduction structure. Specifically, for example, the heat flow control section may have a plurality of through holes in the outer region that penetrate the heat flow control section in the thickness direction. Also, for example, the heat flow control section may include a material in the outer region that has a lower thermal conductivity than the inner region. Even in such a configuration, the inner region and the outer region are configured to have different thermal conductivities at least in the thickness direction. In this case, the thermal conductivity in the thickness direction of the outer region is lower than the thermal conductivity in the thickness direction of the inner region. Therefore, the amount of heat transferred to the outer region is reduced and the amount of heat transferred to the inner region is increased. Therefore, for example, even if the temperature on the end surface side of the workpiece 200 is likely to be higher than the temperature at the center portion of the workpiece 200 surface because heat is difficult to escape from the end surface of the workpiece 200, the outside part where heat is difficult to escape is Since the heat flow transmitted to the region is reduced, the temperature difference between the center portion and the end surface side of the workpiece 200 surface can be reduced. As a result, the uniformity of temperature distribution on the surface of the workpiece 200 is improved.

(3f)上記実施形態では、温度制御装置100は、熱流制御部11に補助伝導部12が積層された構成を例示したが、温度制御装置の構成はこれに限定されるものではない。
例えば、図13に示す温度制御装置100fのように、補助伝導部12を有しない構成であってもよい。温度制御装置100fは、熱流制御部11と、その両面に接着部13を介して接着される保護部14と、を備える。
(3f) In the above embodiment, the temperature control device 100 has a configuration in which the auxiliary conduction portion 12 is laminated on the heat flow control portion 11, but the configuration of the temperature control device is not limited to this.
For example, the temperature control device 100f shown in FIG. 13 may have a configuration that does not include the auxiliary conduction section 12. The temperature control device 100f includes a heat flow control section 11 and a protection section 14 bonded to both surfaces of the heat flow control section 11 via an adhesive section 13.

(3g)上記実施形態では、熱源300の両側の面のそれぞれに、熱流制御部11の破損を抑制するための保護部14を有する温度制御装置100が積層した構成の加熱装置400を例示したが、加熱装置の構成はこれに限定されるものではない。例えば、図14に示す加熱装置400aのように、熱源300の両側の面のそれぞれに、ワーク当接部16を有する温度制御装置100gが積層されていてもよい。ワーク当接部16は、ワーク200面の温度分布に悪影響を及ぼすような、温度制御装置100gとワーク200との接触熱抵抗を低減可能である。温度制御装置100gは、熱流制御部11と、補助伝導部12と、接着部13と、ワーク当接部16と、を備える。ワーク当接部16は、温度制御装置100gにおける最表面に位置するように、熱流制御部11の第2の面112に接着部13を介して接着される。ワーク当接部16は、TIMにより構成される部材である。TIMは、Thermal Interface Materialの略である。TIMは、例えばシリコン樹脂、グラファイト等により構成される。ワーク当接部16が最表面に配置されることによって、ワーク200と当接した際に、ワーク当接部16が沈み込むことで、ワーク200面の加工の影響を吸収可能である結果、ワーク200面との接触熱抵抗が低減する。ワーク200面との接触熱抵抗が低減されることによって、ワーク200面の温度分布をより均一にしやすくなる。 (3g) In the above embodiment, the heating device 400 has a structure in which the temperature control device 100 having the protection portion 14 for suppressing damage to the heat flow control portion 11 is laminated on each of both sides of the heat source 300. However, the configuration of the heating device is not limited to this. For example, like a heating device 400a shown in FIG. 14, a temperature control device 100g having a workpiece contact portion 16 may be stacked on each of both sides of the heat source 300. The workpiece contact portion 16 can reduce the contact thermal resistance between the temperature control device 100g and the workpiece 200, which may adversely affect the temperature distribution on the surface of the workpiece 200. The temperature control device 100g includes a heat flow control section 11, an auxiliary conduction section 12, an adhesive section 13, and a workpiece contact section 16. The work contact portion 16 is bonded to the second surface 112 of the heat flow control portion 11 via the bonding portion 13 so as to be located on the outermost surface of the temperature control device 100g. The workpiece contact portion 16 is a member made of TIM. TIM is an abbreviation for Thermal Interface Material. The TIM is made of silicone resin, graphite, etc., for example. Since the workpiece contacting part 16 is arranged on the outermost surface, when it comes into contact with the workpiece 200, the workpiece contacting part 16 sinks and can absorb the influence of machining on the surface of the workpiece 200. As a result, the workpiece The contact thermal resistance with the 200 surface is reduced. By reducing the contact thermal resistance with the surface of the workpiece 200, it becomes easier to make the temperature distribution on the surface of the workpiece 200 more uniform.

(3h)上記実施形態では、内側領域Bが熱流制御部11の中心点Cを中心とする円形状の領域である構成を例示したが、熱流制御部における内側領域が配置される位置はこれに限定されるものではない。例えば、内側領域は、熱流制御部の中心点からズレた位置に配置されてもよい。また、上記実施形態では、熱流制御部11が外側領域A及び内側領域Bの2つの領域に区分けされる構成を例示したが、熱流制御部の構成はこれに限定されるものではない。例えば、熱流制御部は、複数の第1領域と、第2領域と、を有するような、3つ以上の領域に区分けされるように構成されてもよい。第1領域は、当該熱流制御部の表面における所定の範囲を占める領域である。第2領域は、第1領域の周囲を囲むように設けられる領域である。そして、熱流制御部は、例えば、複数の第1領域が第2領域に囲まれる範囲において任意の位置に配置されていてもよい。このような構成の場合においても、第1領域及び第2領域の何れか一方に、複数の貫通孔を有してもよい。また、第1領域に第2領域よりも熱伝導率が低い材料を含んでもよいし、第2領域に第1領域よりも熱伝導率が低い材料を含んでもよい。また、例えば、第1領域は、内側から外側又は外側から内側に向かって温度勾配を有するように、第1領域の範囲内においても熱伝導率に差を有するように構成されていてもよい。また、例えば、熱流制御部は、第1領域及び第2領域に加え、例えば、第3領域及び第3領域の周囲を囲む第4領域を備えるように構成されていてもよい。そして、第3領域及第4領域が第1領域及び第2領域とは異なるような熱伝導率差を有するように、熱流制御部において、複数の異なる熱流制御を実現できるように構成されていてもよい。 (3h) In the above embodiment, the inner region B is a circular region centered on the center point C of the heat flow control section 11, but the position where the inner region in the heat flow control section is arranged is as follows. It is not limited. For example, the inner region may be located offset from the center point of the heat flow control section. Further, in the above embodiment, the heat flow control section 11 is divided into two regions, the outer region A and the inner region B, but the structure of the heat flow control section is not limited to this. For example, the heat flow control unit may be configured to be divided into three or more regions, such as having a plurality of first regions and a plurality of second regions. The first region is a region occupying a predetermined range on the surface of the heat flow control section. The second area is an area provided to surround the first area. The heat flow control unit may be placed at any position within the range where the plurality of first regions are surrounded by the second regions, for example. Even in the case of such a configuration, either one of the first region and the second region may have a plurality of through holes. Further, the first region may include a material having a lower thermal conductivity than the second region, and the second region may include a material having a lower thermal conductivity than the first region. Further, for example, the first region may be configured to have a temperature gradient from the inside to the outside or from the outside to the inside, or to have a difference in thermal conductivity even within the range of the first region. Further, for example, the heat flow control unit may be configured to include, in addition to the first region and the second region, a third region and a fourth region surrounding the third region. The heat flow control unit is configured to realize a plurality of different heat flow controls so that the third region and the fourth region have a different thermal conductivity difference from the first region and the second region. Good too.

(3i)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (3i) The function of one component in the above embodiment may be distributed as multiple components, or the functions of multiple components may be integrated into one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added to, replaced with, etc. in the configuration of other embodiments. Note that all aspects included in the technical idea specified from the words in the claims are embodiments of the present disclosure.

[本明細書が開示する技術思想]
[項目1]
熱源とワークとの間に配置して用いられ、前記ワークに伝わる温度を制御可能な温度制御装置であって、
面方向への熱伝導率に優れたシート形状の高熱伝導材を含む熱流制御部を備え、
前記熱流制御部は、当該熱流制御部の表面における所定の範囲を占める第1領域と、前記第1領域の周囲を囲むように設けられる第2領域と、を有し、
前記第1領域及び前記第2領域は、少なくとも前記面方向に垂直な厚さ方向における熱伝導率が異なるように構成されている、温度制御装置。
[Technical idea disclosed in this specification]
[Item 1]
A temperature control device that is used by being placed between a heat source and a workpiece, and is capable of controlling the temperature transmitted to the workpiece,
Equipped with a heat flow control section containing a sheet-shaped high thermal conductive material with excellent thermal conductivity in the plane direction,
The heat flow control section has a first region occupying a predetermined range on the surface of the heat flow control section, and a second region provided so as to surround the first region,
The first region and the second region are configured to have different thermal conductivities at least in a thickness direction perpendicular to the surface direction.

[項目2]
項目1に記載の温度制御装置であって、
前記熱流制御部は、前記第1領域に、前記熱流制御部を前記厚さ方向に貫通する複数の貫通孔を有する、温度制御装置。
[Item 2]
The temperature control device according to item 1,
The heat flow control section is a temperature control device, wherein the heat flow control section has a plurality of through holes in the first region that penetrate the heat flow control section in the thickness direction.

[項目3]
項目1に記載の温度制御装置であって、
前記熱流制御部は、前記第2領域に、前記熱流制御部を前記厚さ方向に貫通する複数の貫通孔を有する、温度制御装置。
[Item 3]
The temperature control device according to item 1,
The heat flow control section is a temperature control device, wherein the heat flow control section has a plurality of through holes in the second region that penetrate the heat flow control section in the thickness direction.

[項目4]
項目2又は項目3に記載の温度制御装置であって、
前記複数の貫通孔は、円形、多角形及びしずく形の少なくとも何れかの形状を有する、温度制御装置。
[Item 4]
The temperature control device according to item 2 or item 3,
In the temperature control device, the plurality of through holes have at least one of a circular shape, a polygonal shape, and a droplet shape.

[項目5]
項目1に記載の温度制御装置であって、
前記熱流制御部は、前記第1領域に、前記第2領域よりも熱伝導率が低い材料を含む、温度制御装置。
[Item 5]
The temperature control device according to item 1,
The heat flow control unit is a temperature control device, wherein the first region includes a material whose thermal conductivity is lower than that of the second region.

[項目6]
項目1に記載の温度制御装置であって、
前記熱流制御部は、前記第2領域に、前記第1領域よりも熱伝導率が低い材料を含む、温度制御装置。
[Item 6]
The temperature control device according to item 1,
The heat flow control unit is a temperature control device, wherein the second region includes a material having a lower thermal conductivity than the first region.

[項目7]
項目1から項目6までのいずれか1項に記載の温度制御装置であって、
前記面方向への熱伝導率に優れたシート形状の高熱伝導材を含み、前記熱流制御部に積層される補助伝導部と、
前記熱流制御部及び前記補助伝導部に積層され、前記熱流制御部及び前記補助伝導部を保護する保護部と、
を更に備える、温度制御装置。
[Item 7]
The temperature control device according to any one of items 1 to 6,
an auxiliary conductive part laminated on the heat flow control part, the auxiliary conductive part including a sheet-shaped high thermal conductive material having excellent thermal conductivity in the in-plane direction;
a protection part that is laminated on the heat flow control part and the auxiliary conduction part and protects the heat flow control part and the auxiliary conduction part;
A temperature control device further comprising:

[項目8]
加熱装置であって、
熱源と、
前記熱源に重ね合わせて配置される項目1から項目7までのいずれか1項に記載の温度制御装置と、
を備える、加熱装置。
[Item 8]
A heating device,
heat source and
The temperature control device according to any one of items 1 to 7, which is arranged to overlap the heat source;
A heating device comprising:

11,11a~11e…熱流制御部、12…補助伝導部、13…接着部、14…保護部、15…低熱伝導部、16…ワーク当接部、100,100d~100g…温度制御装置、110…熱流検証部、111…第1の面、112…第2の面、113,113c…貫通孔、200…ワーク、300…熱源、400,400a…加熱装置、A,A2~A5…外側領域、B,B3~B5…内側領域、C…中心点、T1,T3…検証条件、T2,T4…比較条件。 11, 11a to 11e... Heat flow control part, 12... Auxiliary conduction part, 13... Adhesive part, 14... Protection part, 15... Low thermal conduction part, 16... Work contact part, 100, 100d to 100g... Temperature control device, 110 ...Heat flow verification section, 111...First surface, 112...Second surface, 113, 113c...Through hole, 200...Workpiece, 300...Heat source, 400, 400a...Heating device, A, A2 to A5...Outer area, B, B3 to B5...Inner region, C...Center point, T1, T3...Verification conditions, T2, T4...Comparison conditions.

Claims (8)

熱源とワークとの間に配置して用いられ、前記ワークに伝わる温度を制御可能な温度制御装置であって、
面方向への熱伝導率に優れたシート形状の高熱伝導材を含む熱流制御部を備え、
前記熱流制御部は、当該熱流制御部の表面における所定の範囲を占める第1領域と、前記第1領域の周囲を囲むように設けられる第2領域と、を有し、
前記第1領域及び前記第2領域は、少なくとも前記面方向に垂直な厚さ方向における熱伝導率が異なるように構成されている、温度制御装置。
A temperature control device that is used by being placed between a heat source and a workpiece, and is capable of controlling the temperature transmitted to the workpiece,
Equipped with a heat flow control section containing a sheet-shaped high thermal conductive material with excellent thermal conductivity in the plane direction,
The heat flow control section has a first region occupying a predetermined range on the surface of the heat flow control section, and a second region provided so as to surround the first region,
The first region and the second region are configured to have different thermal conductivities at least in a thickness direction perpendicular to the surface direction.
請求項1に記載の温度制御装置であって、
前記熱流制御部は、前記第1領域に、前記熱流制御部を前記厚さ方向に貫通する複数の貫通孔を有する、温度制御装置。
The temperature control device according to claim 1,
The heat flow control section is a temperature control device, wherein the heat flow control section has a plurality of through holes in the first region that penetrate the heat flow control section in the thickness direction.
請求項1に記載の温度制御装置であって、
前記熱流制御部は、前記第2領域に、前記熱流制御部を前記厚さ方向に貫通する複数の貫通孔を有する、温度制御装置。
The temperature control device according to claim 1,
The heat flow control section is a temperature control device, wherein the heat flow control section has a plurality of through holes in the second region that penetrate the heat flow control section in the thickness direction.
請求項2又は請求項3に記載の温度制御装置であって、
前記複数の貫通孔は、円形、多角形及びしずく形の少なくとも何れかの形状を有する、温度制御装置。
The temperature control device according to claim 2 or 3,
In the temperature control device, the plurality of through holes have at least one of a circular shape, a polygonal shape, and a droplet shape.
請求項1に記載の温度制御装置であって、
前記熱流制御部は、前記第1領域に、前記第2領域よりも熱伝導率が低い材料を含む、温度制御装置。
The temperature control device according to claim 1,
The heat flow control unit is a temperature control device, wherein the first region includes a material whose thermal conductivity is lower than that of the second region.
請求項1に記載の温度制御装置であって、
前記熱流制御部は、前記第2領域に、前記第1領域よりも熱伝導率が低い材料を含む、温度制御装置。
The temperature control device according to claim 1,
The heat flow control unit is a temperature control device, wherein the second region includes a material having a lower thermal conductivity than the first region.
請求項1、請求項2、請求項3、請求項5及び請求項6のいずれか1項に記載の温度制御装置であって、
前記面方向への熱伝導率に優れたシート形状の高熱伝導材を含み、前記熱流制御部に積層される補助伝導部と、
前記熱流制御部及び前記補助伝導部に積層され、前記熱流制御部及び前記補助伝導部を保護する保護部と、
を更に備える、温度制御装置。
The temperature control device according to any one of claims 1, 2, 3, 5 and 6,
an auxiliary conductive part laminated on the heat flow control part, the auxiliary conductive part including a sheet-shaped high thermal conductive material having excellent thermal conductivity in the in-plane direction;
a protection part that is laminated on the heat flow control part and the auxiliary conduction part and protects the heat flow control part and the auxiliary conduction part;
A temperature control device further comprising:
加熱装置であって、
熱源と、
前記熱源に重ね合わせて配置される請求項1、請求項2、請求項3、請求項5及び請求項6のいずれか1項に記載の温度制御装置と、
を備える、加熱装置。
A heating device,
heat source and
The temperature control device according to any one of claims 1, 2, 3, 5, and 6, which is arranged to overlap the heat source;
A heating device comprising:
JP2022069484A 2022-04-20 2022-04-20 Temperature control device and heating apparatus Pending JP2023159652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022069484A JP2023159652A (en) 2022-04-20 2022-04-20 Temperature control device and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022069484A JP2023159652A (en) 2022-04-20 2022-04-20 Temperature control device and heating apparatus

Publications (1)

Publication Number Publication Date
JP2023159652A true JP2023159652A (en) 2023-11-01

Family

ID=88514827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022069484A Pending JP2023159652A (en) 2022-04-20 2022-04-20 Temperature control device and heating apparatus

Country Status (1)

Country Link
JP (1) JP2023159652A (en)

Similar Documents

Publication Publication Date Title
JP5784261B2 (en) Cooling device and power module with cooling device using the same
US11133201B2 (en) High definition heater system having a fluid medium
US9337067B2 (en) High temperature electrostatic chuck with radial thermal chokes
TWI416658B (en) Adjustable thermal contact between an electrostatic chuck and a hot edge ring by providing a rotationally-selectable relative positioning of a coupling ring
US8897011B2 (en) Heat dissipation system for power module
JP6239894B2 (en) Electrostatic chuck
JP4504401B2 (en) Semiconductor package
JP2008227473A (en) Semiconductor package
JP6342769B2 (en) Electrostatic chuck
JP6392961B2 (en) Electrostatic chuck
US20160014848A1 (en) High power-density plane-surface heating element
JP2023159652A (en) Temperature control device and heating apparatus
JP6392612B2 (en) Electrostatic chuck
JP7162499B2 (en) Temperature controller
KR20230030050A (en) Holding device
JP2017212154A (en) Heater unit
JP6741255B2 (en) Heat dissipation structure
WO2016093297A1 (en) Electrostatic chuck and wafer processing device
KR20180112832A (en) Distributed thermoelectric devices with non-uniform heat transfer characteristics
JP2019125635A (en) Retainer
JP6943774B2 (en) Holding device
JP2008124326A (en) Thermal conductive route plate, electronic part substrate, and electronic part housing
AU2015203558B2 (en) High definition heater and method of operation
KR20160065329A (en) thermoelectric MODULE
JP6258630B2 (en) Wiring board and semiconductor module