JP2023157136A - Rubber composition for tires - Google Patents

Rubber composition for tires Download PDF

Info

Publication number
JP2023157136A
JP2023157136A JP2022066840A JP2022066840A JP2023157136A JP 2023157136 A JP2023157136 A JP 2023157136A JP 2022066840 A JP2022066840 A JP 2022066840A JP 2022066840 A JP2022066840 A JP 2022066840A JP 2023157136 A JP2023157136 A JP 2023157136A
Authority
JP
Japan
Prior art keywords
rubber
conjugated diene
mass
aromatic vinyl
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022066840A
Other languages
Japanese (ja)
Inventor
臣将 北村
Omimasa Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2022066840A priority Critical patent/JP2023157136A/en
Publication of JP2023157136A publication Critical patent/JP2023157136A/en
Pending legal-status Critical Current

Links

Abstract

To provide a rubber composition for tires which improves fatigue resistance, ozone resistance and thermal aging resistance while achieving both of rubber hardness and low heat generation.SOLUTION: In a rubber composition for tires, 100 pts.mass of a diene rubber containing 20-70 mass% of isoprene rubber and hydrogenated aromatic vinyl-conjugated diene copolymers, is blended with 20-80 pts.mass of carbon black with a nitrogen adsorption specific surface area of 30-100 m2/g, wherein the hydrogenated aromatic vinyl-conjugated diene copolymers have a weight average molecular weight of 200,000 or more, a glass transition temperature of -40°C or lower, a hydrogenation rate of 60% or more, and a fatigue index of more than 100 as represented by the formula (1). Fatigue index=-4.66×St+2.01×Vn-3.15×H+305 (1) (where, St denotes a styrene level (%), Vn denotes a vinyl level (mass%), and H denotes a hydrogenation rate to a conjugated diene moiety (%)).SELECTED DRAWING: None

Description

本発明は、ゴム硬度および低発熱性を両立し、耐疲労性、耐オゾン性および耐熱老化性を優れたタイヤ用ゴム組成物に関する。 The present invention relates to a rubber composition for tires that has both rubber hardness and low heat build-up, and has excellent fatigue resistance, ozone resistance, and heat aging resistance.

環境負荷低減のために、タイヤの軽量化、低発熱性化が特に求められている。例えば、ガラス転移温度(Tg)が低いゴム成分を配合してゴムの損失正接(tanδ)の挙動を変化させる手法が知られている(例えば特許文献1,2を参照)。Tgが低いゴム成分としてブタジエンゴムが挙げられる。ブタジエンゴムには、Tgが低いことに加え、疲労特性を高くするという特徴があるが、ブタジエンゴムを含有するゴム組成物による改良手法では、ゴム硬度および低発熱性をバランスさせながら、耐オゾン性および耐熱老化性をより優れたものにするのに限界があった。 In order to reduce the environmental burden, there is a particular need for tires to be lighter and generate less heat. For example, a method is known in which a rubber component having a low glass transition temperature (Tg) is blended to change the behavior of the loss tangent (tan δ) of the rubber (see, for example, Patent Documents 1 and 2). Butadiene rubber is an example of a rubber component having a low Tg. In addition to having a low Tg, butadiene rubber has the characteristics of high fatigue properties. However, in an improvement method using a rubber composition containing butadiene rubber, it is possible to balance rubber hardness and low heat build-up while improving ozone resistance. Also, there were limitations in improving heat aging resistance.

しかし、近年、ゴム硬度および低発熱性を両立させてタイヤの軽量化を実現すると共に、耐疲労性、耐オゾン性および耐熱老化性をより優れたものにする要求がより高くなっており、低Tgのブタジエンゴムに頼る配合手法以外で上述した課題を解決するタイヤ用ゴム組成物を開発することが求められていた。 However, in recent years, there has been an increasing demand for tires to be lightweight by achieving both rubber hardness and low heat build-up, as well as better fatigue resistance, ozone resistance, and heat aging resistance. There has been a need to develop a rubber composition for tires that solves the above-mentioned problems using a compounding method other than relying on butadiene rubber of Tg.

特開2021-035801号公報Japanese Patent Application Publication No. 2021-035801 特開2021-066371号公報JP2021-066371A

本発明の目的は、ゴム硬度および低発熱性を両立しながら、耐疲労性、耐オゾン性および耐熱老化性を従来レベル以上に優れたものにするタイヤ用ゴム組成物を提供することにある。 An object of the present invention is to provide a rubber composition for tires that has both rubber hardness and low heat build-up, and has fatigue resistance, ozone resistance, and heat aging resistance that are superior to conventional levels.

上記目的を達成する本発明のタイヤ用ゴム組成物は、イソプレン系ゴムを20~70質量%および水添芳香族ビニル-共役ジエン共重合体を含むジエン系ゴム100質量部に、窒素吸着比表面積が30~100m/gであるカーボンブラックを20~80質量部配合したタイヤ用ゴム組成物であって、前記水添芳香族ビニル-共役ジエン共重合体の重量平均分子量が20万以上、ガラス転移温度が-40℃以下、水添率が60%以上、下記式(1)で表される疲労指数が100超であることを特徴とする。
疲労指数=-4.66×St+2.01×Vn-3.15×H+305 (1)
(式(1)中、Stは水添芳香族ビニル-共役ジエン共重合体のスチレン量(%)、Vnは水素添加前の共役ジエン部分におけるビニル量(質量%)、Hは共役ジエン部分への水添率(%)を表す。)
The tire rubber composition of the present invention, which achieves the above object, has a nitrogen adsorption specific surface area of A rubber composition for tires containing 20 to 80 parts by mass of carbon black having a molecular weight of 30 to 100 m 2 /g, wherein the hydrogenated aromatic vinyl-conjugated diene copolymer has a weight average molecular weight of 200,000 or more, and glass It is characterized by having a transition temperature of −40° C. or less, a hydrogenation rate of 60% or more, and a fatigue index expressed by the following formula (1) of more than 100.
Fatigue index = -4.66 x St + 2.01 x Vn - 3.15 x H + 305 (1)
(In formula (1), St is the amount of styrene in the hydrogenated aromatic vinyl-conjugated diene copolymer (%), Vn is the amount of vinyl in the conjugated diene part before hydrogenation (mass%), and H is the amount of styrene in the conjugated diene part before hydrogenation. represents the hydrogenation rate (%).)

本発明のタイヤ用ゴム組成物は、特定の水添芳香族ビニル-共役ジエン共重合体を含有するようにしたので、ゴム硬度および低発熱性を両立しながら、耐疲労性、耐オゾン性および耐熱老化性を従来レベル以上に優れたものにすることができる。 Since the tire rubber composition of the present invention contains a specific hydrogenated aromatic vinyl-conjugated diene copolymer, it has good fatigue resistance, ozone resistance and The heat aging resistance can be made superior to the conventional level.

タイヤ用ゴム組成物は、前記ジエン系ゴム100質量%中、前記水添芳香族ビニル-共役ジエン共重合体を30質量%以上含むとよい。 The tire rubber composition preferably contains 30% by mass or more of the hydrogenated aromatic vinyl-conjugated diene copolymer based on 100% by mass of the diene rubber.

上述したタイヤ用ゴム組成物からなるサイドウォールおよび/またはリムクッションを有するタイヤは、軽量化および低燃費性能を両立しながら、耐疲労性、耐オゾン性および耐熱老化性に優れる。 A tire having a sidewall and/or rim cushion made of the tire rubber composition described above has excellent fatigue resistance, ozone resistance, and heat aging resistance while achieving both weight reduction and fuel efficiency.

本発明のタイヤ用ゴム組成物は、ジエン系ゴムとして、イソプレン系ゴムおよび水添芳香族ビニル-共役ジエン共重合体を含む。イソプレン系ゴムを含むことにより、未加硫ゴムの加工性および物性のバランスに優れたゴム組成物にすることができる。イソプレン系ゴムとして、天然ゴム、イソプレンゴムが挙げられる。イソプレン系ゴムの含有量は、ジエン系ゴム100質量%中、20~70質量%、好ましくは25~65質量%、より好ましくは30~60質量%である。イソプレン系ゴムが20質量%未満であると、加工性の改善効果が十分に得られない。また、70質量%を超えると、水添芳香族ビニル-共役ジエン共重合体の効果が十分に得られない。 The tire rubber composition of the present invention contains an isoprene rubber and a hydrogenated aromatic vinyl-conjugated diene copolymer as the diene rubber. By including the isoprene rubber, it is possible to obtain a rubber composition with excellent balance between unvulcanized rubber processability and physical properties. Examples of isoprene rubber include natural rubber and isoprene rubber. The content of isoprene rubber is 20 to 70% by weight, preferably 25 to 65% by weight, and more preferably 30 to 60% by weight based on 100% by weight of diene rubber. If the isoprene rubber content is less than 20% by mass, the effect of improving processability cannot be sufficiently obtained. Moreover, if it exceeds 70% by mass, the effect of the hydrogenated aromatic vinyl-conjugated diene copolymer cannot be sufficiently obtained.

タイヤ用ゴム組成物は、特定の水添芳香族ビニル-共役ジエン共重合体を含むことにより、ブタジエンゴムと同等の耐疲労性を確保しながら、ゴム硬度および低発熱性を両立し、かつ耐オゾン性および耐熱老化性を従来レベル以上に優れたものにすることができる。水添芳香族ビニル-共役ジエン共重合体は、重量平均分子量が20万以上、ガラス転移温度が-40℃以下、水添率が60%以上、下記式(1)で表される疲労指数が100超であることを特徴とする。
疲労指数=-4.66×St+2.01×Vn-3.15×H+305 (1)
(式(1)中、Stは水添芳香族ビニル-共役ジエン共重合体のスチレン量(%)、Vnは水素添加前の共役ジエン部分におけるビニル量(質量%)、Hは共役ジエン部分への水添率(%)を表す。)
By containing a specific hydrogenated aromatic vinyl-conjugated diene copolymer, the tire rubber composition achieves both rubber hardness and low heat build-up while ensuring fatigue resistance equivalent to that of butadiene rubber. Ozone resistance and heat aging resistance can be made superior to conventional levels. The hydrogenated aromatic vinyl-conjugated diene copolymer has a weight average molecular weight of 200,000 or more, a glass transition temperature of -40°C or less, a hydrogenation rate of 60% or more, and a fatigue index expressed by the following formula (1). It is characterized by being over 100.
Fatigue index = -4.66 x St + 2.01 x Vn - 3.15 x H + 305 (1)
(In formula (1), St is the amount of styrene in the hydrogenated aromatic vinyl-conjugated diene copolymer (%), Vn is the amount of vinyl in the conjugated diene part before hydrogenation (mass%), and H is the amount of styrene in the conjugated diene part before hydrogenation. represents the hydrogenation rate (%).)

水添芳香族ビニル-共役ジエン共重合体は、芳香族ビニル-共役ジエン共重合体を水素添加したゴム成分である。芳香族ビニル-共役ジエン共重合体は、芳香族ビニルおよび共役ジエンの共重合体であり、好ましくはランダム共重合体である。芳香族ビニル-共役ジエン共重合体を構成する芳香族ビニル化合物として、スチレン、メチルスチレン、エチルスチレン、t-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン、クロルスチレン、ブロモスチレン、メトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ジエチルアミノメチルスチレン、ジエチルアミノエチルスチレン、シアノエチルスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、スチレンが好ましい。また、芳香族ビニル-共役ジエン共重合体を構成する共役ジエン化合物として、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。芳香族ビニル-共役ジエン共重合体として、スチレン-ブタジエン共重合体ゴム(SBR)、スチレン-イソプレン共重合体ゴムなどが挙げられる。芳香族ビニル-共役ジエン共重合体は、芳香族ビニル化合物および共役ジエン化合物以外に、任意に他の共重合性モノマーを用いてもよい。芳香族ビニル-共役ジエン共重合体の重合法は、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。 The hydrogenated aromatic vinyl-conjugated diene copolymer is a rubber component obtained by hydrogenating an aromatic vinyl-conjugated diene copolymer. The aromatic vinyl-conjugated diene copolymer is a copolymer of aromatic vinyl and a conjugated diene, and is preferably a random copolymer. Aromatic vinyl compounds constituting the aromatic vinyl-conjugated diene copolymer include styrene, methylstyrene, ethylstyrene, t-butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene, chlorstyrene, and bromostyrene. , methoxystyrene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, diethylaminomethylstyrene, diethylaminoethylstyrene, cyanoethylstyrene, vinylnaphthalene, and the like. Among these, styrene is preferred. In addition, the conjugated diene compounds constituting the aromatic vinyl-conjugated diene copolymer include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, Examples include 2-chloro-1,3-butadiene and 1,3-pentadiene. Examples of the aromatic vinyl-conjugated diene copolymer include styrene-butadiene copolymer rubber (SBR) and styrene-isoprene copolymer rubber. The aromatic vinyl-conjugated diene copolymer may optionally contain other copolymerizable monomers in addition to the aromatic vinyl compound and the conjugated diene compound. The aromatic vinyl-conjugated diene copolymer may be polymerized by any of solution polymerization, gas phase polymerization, and bulk polymerization, but solution polymerization is preferred. Further, as the polymerization method, either a batch method or a continuous method may be used.

芳香族ビニル-共役ジエン重合体を水素添加(水添)する反応の方法及び条件は、所望の水添率が得られるのであれば、特に制限されるものではない。芳香族ビニル-共役ジエン重合体の水添方法の例としては、チタンの有機金属化合物を主成分とする触媒を水添触媒として使用する方法、鉄、ニッケル、コバルトの有機化合物とアルキルアルミニウム等の有機金属化合物からなる触媒を使用する方法、ルテニウム、ロジウム等の有機金属化合物の有機錯体を使用する方法、パラジウム、白金、ルテニウム、コバルト、ニッケル等の金属を、カーボン、シリカ、アルミナ等の担体に担持した触媒を使用する方法などがある。 The reaction method and conditions for hydrogenating the aromatic vinyl-conjugated diene polymer are not particularly limited as long as a desired hydrogenation rate can be obtained. Examples of hydrogenation methods for aromatic vinyl-conjugated diene polymers include a method using a catalyst containing an organometallic compound of titanium as the main component, a method using an organic compound of iron, nickel, or cobalt and a method using alkyl aluminum, etc. A method using a catalyst made of an organometallic compound, a method using an organic complex of an organometallic compound such as ruthenium or rhodium, or a method using a metal such as palladium, platinum, ruthenium, cobalt, or nickel on a carrier such as carbon, silica, or alumina. There are methods that use supported catalysts.

水添芳香族ビニル-共役ジエン共重合体は、重量平均分子量が20万以上、好ましくは20万~70万、より好ましくは30万~60万である。水添芳香族ビニル-共役ジエン共重合体の重量平均分子量が20万以上であると、ゴム組成物のゴム硬度や引張破断強度を高くすることができる。また、重量平均分子量を70万以下にすると、タイヤ用ゴム組成物の粘度上昇が抑えられ加工性と強度を両立できるので好ましい。本明細書において、水添芳香族ビニル-共役ジエン共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定されるポリスチレン換算の値とすることができる。 The hydrogenated aromatic vinyl-conjugated diene copolymer has a weight average molecular weight of 200,000 or more, preferably 200,000 to 700,000, more preferably 300,000 to 600,000. When the weight average molecular weight of the hydrogenated aromatic vinyl-conjugated diene copolymer is 200,000 or more, the rubber hardness and tensile strength at break of the rubber composition can be increased. Furthermore, it is preferable that the weight average molecular weight is 700,000 or less, since this suppresses the increase in viscosity of the rubber composition for tires and achieves both processability and strength. In this specification, the weight average molecular weight of the hydrogenated aromatic vinyl-conjugated diene copolymer can be a polystyrene equivalent value measured by gel permeation chromatography (GPC).

水添芳香族ビニル-共役ジエン共重合体は、ガラス転移温度が-40℃以下、好ましくは-80℃~-40℃、より好ましくは-75℃~-50℃である。水添芳香族ビニル-共役ジエン共重合体のガラス転移温度が-40℃以下であると、寒冷地での使用においても柔軟性を十分に確保することができる。また、ガラス転移温度を-80℃以上にすると、硬度と柔軟性のバランスに優れたゴム組成物にすることができる。本明細書において、ガラス転移温度は、示差走査熱量測定(DSC)により20℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度とすることができる。 The hydrogenated aromatic vinyl-conjugated diene copolymer has a glass transition temperature of -40°C or lower, preferably -80°C to -40°C, more preferably -75°C to -50°C. When the glass transition temperature of the hydrogenated aromatic vinyl-conjugated diene copolymer is −40° C. or lower, sufficient flexibility can be ensured even when used in cold regions. Furthermore, when the glass transition temperature is set to -80°C or higher, a rubber composition with an excellent balance between hardness and flexibility can be obtained. In this specification, the glass transition temperature can be determined by measuring a thermogram using differential scanning calorimetry (DSC) at a heating rate of 20° C./min, and can be defined as the temperature at the midpoint of the transition region.

水添芳香族ビニル-共役ジエン共重合体は、水素添加率(水添率)が60%以上、好ましくは60~90%、より好ましくは60~80%である。水添率が60%未満であると、耐オゾン性が悪化する。また、ゴム硬度および低発熱性を両立しながら、耐疲労性および耐熱老化を改良することができない。さらに、引張破断強度も十分には得られない。水添率を100%未満にすることにより、水添芳香族ビニル-共役ジエン共重合体に架橋性を付与することができる。本明細書において、水添率は、芳香族ビニル-共役ジエン共重合体が有する共役ジエン部分において、水素添加する前の炭素-炭素二重結合部の合計100%に対する、水素添加された炭素-炭素結合部の百分率(%)をいう。水添率が100%であるとき、共役ジエン部分の炭素-炭素二重結合が完全に水素添加されたことを意味する。なお、水添率は、H-NMRを測定して得られたスペクトルの共役ジエン部分における不飽和結合部のスペクトル減少率から計算することができる。 The hydrogenated aromatic vinyl-conjugated diene copolymer has a hydrogenation rate (hydrogenation rate) of 60% or more, preferably 60 to 90%, more preferably 60 to 80%. If the hydrogenation rate is less than 60%, ozone resistance will deteriorate. Further, it is not possible to improve fatigue resistance and heat aging resistance while achieving both rubber hardness and low heat build-up. Furthermore, sufficient tensile strength at break cannot be obtained. By setting the hydrogenation rate to less than 100%, crosslinking properties can be imparted to the hydrogenated aromatic vinyl-conjugated diene copolymer. In the present specification, the hydrogenation rate refers to the hydrogenated carbon- It refers to the percentage (%) of carbon bonding parts. When the hydrogenation rate is 100%, it means that the carbon-carbon double bonds of the conjugated diene moiety are completely hydrogenated. Note that the hydrogenation rate can be calculated from the spectral reduction rate of the unsaturated bond in the conjugated diene portion of the spectrum obtained by measuring 1 H-NMR.

水添芳香族ビニル-共役ジエン共重合体は、下記式(1)で表される疲労指数が100超であるものとする。
疲労指数=-4.66×St+2.01×Vn-3.15×H+305 (1)
(式(1)中、Stは水添芳香族ビニル-共役ジエン共重合体のスチレン量(%)、Vnは水素添加前の共役ジエン部分におけるビニル量(質量%)、Hは共役ジエン部分における水添率(%)を表す。)
The hydrogenated aromatic vinyl-conjugated diene copolymer shall have a fatigue index expressed by the following formula (1) of more than 100.
Fatigue index = -4.66 x St + 2.01 x Vn - 3.15 x H + 305 (1)
(In formula (1), St is the amount of styrene in the hydrogenated aromatic vinyl-conjugated diene copolymer (%), Vn is the amount of vinyl in the conjugated diene portion before hydrogenation (% by mass), and H is the amount of vinyl in the conjugated diene portion Represents hydrogenation rate (%).)

前記式(1)中、Stは水添芳香族ビニル-共役ジエン共重合体のスチレン量(%)を表す。なお、芳香族ビニル化合物がスチレン以外のときは、その芳香族ビニル化合物の含有率(%)を表す。スチレン量(%)は、H-NMRにより測定することができる。 In the formula (1), St represents the amount of styrene (%) in the hydrogenated aromatic vinyl-conjugated diene copolymer. In addition, when the aromatic vinyl compound is other than styrene, the content (%) of the aromatic vinyl compound is expressed. The amount of styrene (%) can be measured by 1 H-NMR.

前記式(1)中、Vnは水素添加前の芳香族ビニル-共役ジエン共重合体において、共役ジエン部分中のビニル量(質量%)を表す。すなわち、水素添加前の共役ジエン部分は、シス-1,4結合、トランス-1,4結合および1,2-結合等の繰り返し単位からなり、ビニル量(質量%)は、これらの合計100質量%中の1,2-結合の百分率(質量%)をいう。共役ジエン部分のビニル量(質量%)はH-NMRにより測定することができる。 In the formula (1), Vn represents the amount of vinyl in the conjugated diene moiety (% by mass) in the aromatic vinyl-conjugated diene copolymer before hydrogenation. That is, the conjugated diene moiety before hydrogenation consists of repeating units such as cis-1,4 bonds, trans-1,4 bonds, and 1,2-bonds, and the vinyl content (mass%) is 100% by mass in total. It refers to the percentage (mass%) of 1,2-bonds in %. The amount of vinyl in the conjugated diene moiety (% by mass) can be measured by 1 H-NMR.

前記式(1)中、Hは共役ジエン部分における水添率(%)を表す。水添率(%)については、上述したとおりである。 In the formula (1), H represents the hydrogenation rate (%) in the conjugated diene moiety. The hydrogenation rate (%) is as described above.

前記式(1)は、水添芳香族ビニル-共役ジエン共重合体の疲労特性試験の結果と、水添芳香族ビニル-共役ジエン共重合体のスチレン量St、ビニル量Vn、および水添率Hの関係について、重回帰分析を行って得られた関係式である。本発明において、前記式(1)で表される疲労指数は100超、好ましくは150超、より好ましくは200超である。疲労指数が100以下であると、疲労特性が十分に得られない。 The above formula (1) is based on the results of the fatigue property test of the hydrogenated aromatic vinyl-conjugated diene copolymer, the amount of styrene St, the amount of vinyl Vn, and the hydrogenation rate of the hydrogenated aromatic vinyl-conjugated diene copolymer. This is a relational expression obtained by performing multiple regression analysis regarding the relationship of H. In the present invention, the fatigue index represented by the above formula (1) is over 100, preferably over 150, and more preferably over 200. If the fatigue index is less than 100, sufficient fatigue properties cannot be obtained.

水添芳香族ビニル-共役ジエン共重合体は、ジエン系ゴム100質量%中、好ましくは30質量%以上、より好ましくは30~80質量%、さらに好ましくは35~75質量%含有するとよい。水添芳香族ビニル-共役ジエン共重合体を30質量%以上含有することにより、ゴム硬度および低発熱性を両立し、かつ耐疲労性、耐オゾン性および耐熱老化性を優れたものにする確からしさが高くなる。また、引張破断強度が大きくなり、タイヤにしたとき耐摩耗性を改良することができ好ましい。 The hydrogenated aromatic vinyl-conjugated diene copolymer is preferably contained in an amount of 30% by mass or more, more preferably 30 to 80% by mass, and still more preferably 35 to 75% by mass based on 100% by mass of the diene rubber. By containing 30% by mass or more of a hydrogenated aromatic vinyl-conjugated diene copolymer, it is sure to achieve both rubber hardness and low heat build-up, as well as excellent fatigue resistance, ozone resistance, and heat aging resistance. It becomes more unique. It is also preferable because the tensile strength at break becomes large, and when it is made into a tire, the wear resistance can be improved.

タイヤ用ゴム組成物は、イソプレン系ゴムおよび水添芳香族ビニル-共役ジエン共重合体以外の他のジエン系ゴムを含むことができる。他のジエン系ゴムとして、例えば水素添加していない芳香族ビニル-共役ジエン共重合体(スチレンブタジエンゴム)、ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリル-ブタジエンゴム、等を例示することができる。これら他のジエン系ゴムは、官能基を有する変性ジエン系ゴムであってもよく、単独又は任意のブレンドとして使用することができる。他のジエン系ゴムの含有量は、ジエン系ゴム100質量%中、好ましくは0~40質量%、より好ましくは0~30質量%であるとよい。 The rubber composition for tires can contain diene rubber other than isoprene rubber and hydrogenated aromatic vinyl-conjugated diene copolymer. Examples of other diene rubbers include non-hydrogenated aromatic vinyl-conjugated diene copolymers (styrene-butadiene rubber), butadiene rubber, butyl rubber, halogenated butyl rubber, acrylonitrile-butadiene rubber, and the like. These other diene rubbers may be modified diene rubbers having functional groups, and can be used alone or as an arbitrary blend. The content of the other diene rubber is preferably 0 to 40% by mass, more preferably 0 to 30% by mass based on 100% by mass of the diene rubber.

タイヤ用ゴム組成物は、ジエン系ゴムに、カーボンブラックを配合することにより、ゴム組成物のゴム強度やゴム硬度を高くすることができる。カーボンブラックは、ジエン系ゴム100質量部に、20~80質量部、好ましくは25~75質量部、より好ましくは
30~70質量部配合する。カーボンブラックが20質量部未満であると、ゴム組成物のゴム強度やゴム硬度が不足し、タイヤにしたときの操縦安定性や耐摩耗性が十分に得られない。また、カーボンブラックが80質量部を超えると、発熱性を十分に抑制することができない。
A rubber composition for a tire can have high rubber strength and hardness by blending carbon black with a diene rubber. Carbon black is blended in an amount of 20 to 80 parts by weight, preferably 25 to 75 parts by weight, more preferably 30 to 70 parts by weight, to 100 parts by weight of the diene rubber. If the amount of carbon black is less than 20 parts by mass, the rubber composition will have insufficient rubber strength and rubber hardness, and when made into a tire, sufficient steering stability and wear resistance will not be obtained. Moreover, if carbon black exceeds 80 parts by mass, heat generation cannot be sufficiently suppressed.

カーボンブラックの窒素吸着比表面積は、30~100m/g、好ましくは30~80m/g、より好ましくは30~75m/gである。窒素吸着比表面積が30m/g未満であると、ゴム組成物のゴム強度やゴム硬度が不足する。100m/gを超えると、発熱性を十分に抑制することができない。本明細書において、カーボンブラックの窒素吸着比表面積は、JIS K6217-2に準拠して、測定することができる。 The nitrogen adsorption specific surface area of carbon black is 30 to 100 m 2 /g, preferably 30 to 80 m 2 /g, more preferably 30 to 75 m 2 /g. If the nitrogen adsorption specific surface area is less than 30 m 2 /g, the rubber strength and hardness of the rubber composition will be insufficient. If it exceeds 100 m 2 /g, heat generation cannot be sufficiently suppressed. In this specification, the nitrogen adsorption specific surface area of carbon black can be measured in accordance with JIS K6217-2.

カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどのカーボンブラックを配合してもよい。これらの中でも、ファーネスブラックが好ましい。カーボンブラックは、単独あるいは2種以上を組み合わせて用いることができる。また、カーボンブラックを種々の酸化合物等で化学修飾を施した表面処理カーボンブラックも用いることができる。 As the carbon black, carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite may be blended. Among these, furnace black is preferred. Carbon black can be used alone or in combination of two or more types. Furthermore, surface-treated carbon black obtained by chemically modifying carbon black with various acid compounds can also be used.

タイヤ用ゴム組成物は、カーボンブラック以外の他の補強性充填剤を配合することができる。他の補強性充填剤として、例えばシリカ、クレイ、水酸化アルミニウム、炭酸カルシウム、マイカ、タルク、水酸化アルミニウム、酸化アルミニウム、酸化チタン、硫酸バリウム等の無機フィラーや、セルロース、レシチン、リグニン、デンドリマー等の有機フィラーを例示することができる。 The rubber composition for tires may contain reinforcing fillers other than carbon black. Other reinforcing fillers include inorganic fillers such as silica, clay, aluminum hydroxide, calcium carbonate, mica, talc, aluminum hydroxide, aluminum oxide, titanium oxide, barium sulfate, cellulose, lecithin, lignin, dendrimers, etc. The following organic fillers can be exemplified.

タイヤ用ゴム組成物には、上記成分以外に、常法に従って、加硫又は架橋剤、加硫促進剤、老化防止剤、加工助剤、可塑剤、液状ポリマー、熱硬化性樹脂、熱可塑性樹脂などのタイヤ用ゴム組成物に一般的に使用される各種配合剤を配合することができる。このような配合剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。タイヤ用ゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって調製することができる。 In addition to the above ingredients, the tire rubber composition may contain a vulcanizing or crosslinking agent, a vulcanization accelerator, an anti-aging agent, a processing aid, a plasticizer, a liquid polymer, a thermosetting resin, a thermoplastic resin, in accordance with a conventional method. Various compounding agents commonly used in rubber compositions for tires such as the following can be blended. Such compounding agents can be kneaded in a conventional manner to form a rubber composition, which can be used for vulcanization or crosslinking. The amounts of these compounding agents can be any conventional and common amounts as long as they do not contradict the purpose of the present invention. The rubber composition for tires can be prepared by mixing the above-mentioned components using a known rubber kneading machine such as a Banbury mixer, kneader, roll, etc.

タイヤ用ゴム組成物は、タイヤのサイドウォールおよび/またはリムクッションを形成するのに好適であり、とりわけサイドウォールを形成するのに好適である。サイドウォールおよび/またはリムクッションを、上述したゴム組成物で形成したタイヤは、軽量化および低燃費性能を両立しながら、耐疲労性、耐オゾン性および耐熱老化性を従来レベル以上に優れたものにすることができる。 The rubber composition for tires is suitable for forming the sidewall and/or rim cushion of a tire, and is particularly suitable for forming the sidewall. Tires whose sidewalls and/or rim cushions are made of the above-mentioned rubber composition are lightweight and have low fuel consumption, while also having fatigue resistance, ozone resistance, and heat aging resistance that are better than conventional levels. It can be done.

以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 The present invention will be further explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.

以下の実施例において、表1に記載したスチレンブタジエンゴム(SBR)および水添芳香族ビニル-共役ジエン共重合体(水添SBR1~水添SBR8)を使用した。また、SBRおよび水添SBR1~水添SBR8は、以下の重合方法により調整した。 In the following examples, styrene butadiene rubber (SBR) and hydrogenated aromatic vinyl-conjugated diene copolymers (hydrogenated SBR1 to hydrogenated SBR8) listed in Table 1 were used. Further, SBR and hydrogenated SBR1 to hydrogenated SBR8 were prepared by the following polymerization method.

Figure 2023157136000001
Figure 2023157136000001

表1に記載のSBRの重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(90g,0.86mol)、ブタジエン(510g,9.46mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.057g,0.31mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、未水添SBRを得た。そのスチレン量は15質量%、ビニル量はブタジエン中で30質量%、重量平均分子量は410,000であった。
Polymerization method for SBR listed in Table 1 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (90 g, 0.86 mol), butadiene (510 g, 9.46 mol) and tetrahydrofuran (0.433 g, 6 .0 mmol) and 2,2-di(2-tetrahydrofuryl)propane (0.057 g, 0.31 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain unhydrogenated SBR. The amount of styrene was 15% by weight, the amount of vinyl was 30% by weight in butadiene, and the weight average molecular weight was 410,000.

水添SBR1の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(180g,1.73mol)、ブタジエン(420g,7.79mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.378g,2.05mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(80.1mg,2.5mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は30質量%、ビニル量はブタジエン中で50質量%、重量平均分子量は390,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR1を得た。その水添率は60%であった。
Polymerization method for hydrogenated SBR1: Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (180 g, 1.73 mol), butadiene (420 g, 7.79 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were placed. and 2,2-di(2-tetrahydrofuryl)propane (0.378 g, 2.05 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (80.1 mg, 2.5 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 30% by weight, the amount of vinyl was 50% by weight in butadiene, and the weight average molecular weight was 390,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR1. The hydrogenation rate was 60%.

水添SBR2の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(120g,1.15mol)、ブタジエン(480g,8.91mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.378g,2.05mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.57ml、n-ブチルリチウムが3.98mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(67.3mg,2.1mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は20質量%、ビニル量はブタジエン中で50質量%、重量平均分子量は470,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR2を得た。その水添率は80%であった。
Polymerization method for hydrogenated SBR2 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (120 g, 1.15 mol), butadiene (480 g, 8.91 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were placed. and 2,2-di(2-tetrahydrofuryl)propane (0.378 g, 2.05 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.57 ml at a concentration of 1.55 mol/L, 3.98 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (67.3 mg, 2.1 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 20% by weight, the amount of vinyl was 50% by weight in butadiene, and the weight average molecular weight was 470,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR2. The hydrogenation rate was 80%.

水添SBR3の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(90g,0.86mol)、ブタジエン(510g,9.46mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.057g,0.31mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(80.1mg,2.5mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は15質量%、ビニル量はブタジエン中で30質量%、重量平均分子量は400,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR3を得た。その水添率は60%であった。
Polymerization method for hydrogenated SBR3 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (90 g, 0.86 mol), butadiene (510 g, 9.46 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were placed. and 2,2-di(2-tetrahydrofuryl)propane (0.057 g, 0.31 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (80.1 mg, 2.5 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 15% by weight, the amount of vinyl was 30% by weight in butadiene, and the weight average molecular weight was 400,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR3. The hydrogenation rate was 60%.

水添SBR4の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(90g,0.86mol)、ブタジエン(510g,9.46mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.604g,3.28mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(80.1mg,2.5mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は15質量%、ビニル量はブタジエン中で55質量%、重量平均分子量は390,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR4を得た。その水添率は60%であった。
Polymerization method for hydrogenated SBR4 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (90 g, 0.86 mol), butadiene (510 g, 9.46 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were placed. and 2,2-di(2-tetrahydrofuryl)propane (0.604 g, 3.28 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (80.1 mg, 2.5 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 15% by weight, the amount of vinyl was 55% by weight in butadiene, and the weight average molecular weight was 390,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR4. The hydrogenation rate was 60%.

水添SBR5の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(150g,1.44mol)、ブタジエン(450g,8.35mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.604g,3.28mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(80.1mg,2.5mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は25質量%、ビニル量はブタジエン中で55質量%、重量平均分子量は400,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR5を得た。その水添率は60%であった。
Polymerization method for hydrogenated SBR5 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (150 g, 1.44 mol), butadiene (450 g, 8.35 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were added. and 2,2-di(2-tetrahydrofuryl)propane (0.604 g, 3.28 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (80.1 mg, 2.5 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 25% by weight, the amount of vinyl was 55% by weight in butadiene, and the weight average molecular weight was 400,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR5. The hydrogenation rate was 60%.

水添SBR6の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(90g,0.86mol)、ブタジエン(510g,9.46mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.966g,5.24mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(80.1mg,2.5mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は15質量%、ビニル量はブタジエン中で60質量%、重量平均分子量は420,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR6を得た。その水添率は80%であった。
Polymerization method for hydrogenated SBR6 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (90 g, 0.86 mol), butadiene (510 g, 9.46 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were placed. and 2,2-di(2-tetrahydrofuryl)propane (0.966 g, 5.24 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (80.1 mg, 2.5 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 15% by weight, the amount of vinyl was 60% by weight in butadiene, and the weight average molecular weight was 420,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR6. The hydrogenation rate was 80%.

水添SBR7の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(30g,0.29mol)、ブタジエン(570g,10.58mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.604g,3.28mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.95ml、n-ブチルリチウムが4.58mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(80.1mg,2.5mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は5質量%、ビニル量はブタジエン中で55質量%、重量平均分子量は400,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR7を得た。その水添率は90%であった。
Polymerization method for hydrogenated SBR7 Into a 10 L autoclave reactor purged with nitrogen, 4200 g of cyclohexane, styrene (30 g, 0.29 mol), butadiene (570 g, 10.58 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) were added. and 2,2-di(2-tetrahydrofuryl)propane (0.604 g, 3.28 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.95 ml at a concentration of 1.55 mol/L, 4.58 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (80.1 mg, 2.5 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 5% by weight, the amount of vinyl was 55% by weight in butadiene, and the weight average molecular weight was 400,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR7. The hydrogenation rate was 90%.

水添SBR8の重合方法
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4200g、スチレン(30g,0.29mol)、ブタジエン(570g,10.58mol)およびテトラヒドロフラン(0.433g,6.0mmol)と2,2-ジ(2-テトラヒドロフリル)プロパン(0.604g,3.28mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウムのヘキサン溶液(1.55mol/L濃度で2.75ml、n-ブチルリチウムが4.26mmol)を添加した。重合転化率がほぼ100%に到達した後、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(0.254g,0.82mmol)を添加し、30分間反応させた。反応後メタノール(92.9mg,2.9mmol)を添加し反応を停止させ、一部を抜き出し乾燥させた後分析を行った。そのスチレン量は5質量%、ビニル量はブタジエン中で60質量%、重量平均分子量は340,000であった。反応液を80℃以上にして系内に水素を導入した。次いで、チタノセンジクロライドを主体とする触媒0.70g、ジエチルアルミニウムクロライド1.2gおよびn-ブチルリチウム0.30gを加え、水素圧1.0MPaを保つように反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合溶液を得た。中和後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、水添SBR8を得た。その水添率は95%であった。
Polymerization method of hydrogenated SBR8 In a nitrogen-purged autoclave reactor with an internal capacity of 10 L, 4200 g of cyclohexane, styrene (30 g, 0.29 mol), butadiene (570 g, 10.58 mol), and tetrahydrofuran (0.433 g, 6.0 mmol) and 2,2-di(2-tetrahydrofuryl)propane (0.604 g, 3.28 mmol) were charged, and stirring was started. After the temperature of the contents in the reaction vessel was brought to 50° C., a hexane solution of n-butyllithium (2.75 ml at a concentration of 1.55 mol/L, 4.26 mmol of n-butyl lithium) was added. After the polymerization conversion rate reached approximately 100%, 2,2-dimethoxy-1-(3-dimethoxysilylpropyl)-1-aza-2-silacyclopentane (0.254 g, 0.82 mmol) was added. and allowed to react for 30 minutes. After the reaction, methanol (92.9 mg, 2.9 mmol) was added to stop the reaction, and a portion was extracted and dried for analysis. The amount of styrene was 5% by weight, the amount of vinyl was 60% by weight in butadiene, and the weight average molecular weight was 340,000. The reaction solution was heated to 80°C or higher and hydrogen was introduced into the system. Next, 0.70 g of a catalyst mainly composed of titanocene dichloride, 1.2 g of diethylaluminum chloride, and 0.30 g of n-butyllithium were added, and the mixture was reacted while maintaining a hydrogen pressure of 1.0 MPa. After reaching a predetermined cumulative hydrogen flow rate, the reaction solution was returned to normal temperature and pressure and extracted from the reaction vessel to obtain a polymerization solution. After neutralization, solid rubber was recovered by steam stripping. The obtained solid rubber was dehydrated using a roll and dried in a drier to obtain hydrogenated SBR8. The hydrogenation rate was 95%.

表4に示す共通の配合剤処方を有し、表2,3に示す配合からなる14種類のタイヤ用ゴム組成物(実施例1~10、比較例1~4)を調製するに当たり、それぞれ硫黄および加硫促進剤を除く成分を秤量し、1.7リットルの密閉式バンバリーミキサーで5分間混練した後、そのマスターバッチをミキサー外に放出し室温冷却した。このマスターバッチを同バンバリーミキサーに供し、硫黄および加硫促進剤を加えて混合し、タイヤ用ゴム組成物を得た。なお、表4の配合剤処方は、表2,3に記載したジエン系ゴム100質量部に対する質量部で記載している。 In preparing 14 types of tire rubber compositions (Examples 1 to 10, Comparative Examples 1 to 4) having the common compounding agent formulation shown in Table 4 and having the formulations shown in Tables 2 and 3, each sulfur The components except the vulcanization accelerator were weighed and kneaded for 5 minutes in a 1.7 liter internal Banbury mixer, and then the masterbatch was discharged from the mixer and cooled at room temperature. This masterbatch was subjected to the same Banbury mixer, and sulfur and a vulcanization accelerator were added and mixed to obtain a tire rubber composition. The compounding agent formulations in Table 4 are expressed in parts by mass based on 100 parts by mass of the diene rubber described in Tables 2 and 3.

上記で得られたタイヤ用ゴム組成物を、それぞれ所定形状の金型中で、160℃、20分間加硫して評価用試料を作製した。得られた評価用試料を使用し、23℃のゴム硬度、動的粘弾性(損失正接tanδ)、耐疲労性、耐オゾン性、老化硬度を以下の方法で測定した。 The tire rubber compositions obtained above were each vulcanized in a mold of a predetermined shape at 160° C. for 20 minutes to prepare evaluation samples. Using the obtained evaluation sample, rubber hardness at 23°C, dynamic viscoelasticity (loss tangent tan δ), fatigue resistance, ozone resistance, and aging hardness were measured by the following methods.

23℃のゴム硬度(タイヤ軽量化)
得られたタイヤ用ゴム組成物の評価用試料を用いて、JIS K6253に準拠して、デュロメータのタイプAにより温度23℃のゴム硬度を測定した。得られた結果は比較例1の値を100にする指数として「ゴム硬度」の欄に記載した。この指数が大きいほど耐外傷性に優れるため、サイドゲージを薄くすることができタイヤを軽量化することが可能であることを意味する。
Rubber hardness at 23℃ (tire weight reduction)
Using the obtained evaluation sample of the tire rubber composition, the rubber hardness at a temperature of 23° C. was measured using a durometer type A in accordance with JIS K6253. The obtained results are listed in the column of "Rubber Hardness" as an index that takes the value of Comparative Example 1 to 100. The larger the index, the better the resistance to external damage, which means that the side gauge can be made thinner and the tire can be made lighter.

動的粘弾性(損失正接tanδ)
得られたタイヤ用ゴム組成物の評価用試料の動的粘弾性を、岩本製作所(株)製の粘弾性スペクトロメーターを用い、伸張変形歪率10±2%、振動数20Hz、温度60℃、の条件にて測定し、tanδ(60℃)を求めた。得られたtanδ(60℃)の値は、比較例1の値を100にする指数として「tanδ(60℃)」の欄に記載した。この指数が小さいほど発熱性が小さく、低転がり抵抗であることを意味する。
Dynamic viscoelasticity (loss tangent tanδ)
The dynamic viscoelasticity of the obtained evaluation sample of the rubber composition for tires was measured using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho Co., Ltd. at an extensional deformation strain rate of 10 ± 2%, a frequency of 20 Hz, a temperature of 60 ° C. The tan δ (60° C.) was determined under the following conditions. The obtained value of tan δ (60° C.) was written in the “tan δ (60° C.)” column as an index that makes the value of Comparative Example 1 100. The smaller the index, the lower the heat generation and the lower the rolling resistance.

耐疲労性
得られたタイヤ用ゴム組成物の評価用試料を用いて、3号ダンベル型試験片を切り出した。JIS K6270に準拠して、3号ダンベル型試験片に100%に歪みを繰り返し与え、破断するまでの繰り返し回数を測定した。得られた破断するまでの回数は、比較例1の値を100にする指数として「耐疲労性」の欄に記載した。この指数が大きいほど耐疲労性が優れることを意味する。
Fatigue Resistance Using the obtained evaluation sample of the tire rubber composition, a No. 3 dumbbell-shaped test piece was cut out. In accordance with JIS K6270, a No. 3 dumbbell-shaped test piece was repeatedly strained to 100%, and the number of repetitions until it broke was measured. The obtained number of times until breakage was described in the column of "fatigue resistance" as an index with the value of Comparative Example 1 set to 100. It means that the larger this index is, the better the fatigue resistance is.

耐オゾン性
得られたタイヤ用ゴム組成物の評価用試料を用いて、JIS K6251に準拠した3号ダンベル型試験片を切り出した。この試験片を40%伸長、オゾン濃度50pphm、40℃、48時間という条 件で、JIS K6259に準拠してオゾン劣化させた。その後、試験片表面の亀裂(オゾンクラック)の有無を目視(肉眼および10倍の拡大鏡)で観察し、亀裂の状態を以下の判定基準に基づき5段階で評価した。得られた結果を「耐オゾン性」の欄に示した。この評点が大きいほど耐オゾン性が優れることを意味する。
5:肉眼および10倍の拡大鏡で亀裂が確認されない。
4:肉眼では見えないが10倍の拡大鏡で亀裂があると認められる。
3:亀裂が肉眼で観察され、深くて比較的大きい(長さ1mm未満)。
2:深くて大きい亀裂(長さ1mm以上3mm未満)が確認された。
1:長さ3mm以上の亀裂が確認されるか、または試験片が切断された。
Ozone Resistance A No. 3 dumbbell-shaped test piece conforming to JIS K6251 was cut out using the obtained evaluation sample of the tire rubber composition. This test piece was subjected to ozone deterioration in accordance with JIS K6259 under the conditions of 40% elongation, 50 pphm ozone concentration, 40°C, and 48 hours. Thereafter, the presence or absence of cracks (ozone cracks) on the surface of the test piece was visually observed (with the naked eye and with a 10x magnifying glass), and the state of the cracks was evaluated on a 5-grade scale based on the following criteria. The obtained results are shown in the "Ozone resistance" column. The higher the score, the better the ozone resistance.
5: No cracks are observed with the naked eye or with a 10x magnifying glass.
4: Cracks are not visible to the naked eye, but can be seen with a 10x magnification.
3: Cracks are visible to the naked eye and are deep and relatively large (less than 1 mm in length).
2: Deep and large cracks (length of 1 mm or more and less than 3 mm) were confirmed.
1: A crack with a length of 3 mm or more was confirmed, or the test piece was cut.

老化硬度
前記23℃のゴム硬度の値を、各実施例のゴム硬度の初期値とする。
タイヤ用ゴム組成物の評価用試料を70℃で168時間熱老化処理を行い、処理した評価用試料の23℃のゴム硬度を上記と同様に測定し、熱老化後のゴム硬度とした。
各実施例において、(熱老化後のゴム硬度)/(ゴム硬度の初期値)×100の値を算出し、「老化硬度(%)」の欄に記載した。この値が小さいほど、熱老化によるゴムの硬化が抑制され優れていることを意味する。
Aging Hardness The value of the rubber hardness at 23° C. is the initial value of the rubber hardness of each example.
An evaluation sample of a tire rubber composition was subjected to heat aging treatment at 70° C. for 168 hours, and the rubber hardness of the treated evaluation sample at 23° C. was measured in the same manner as above, and was taken as the rubber hardness after heat aging.
In each example, the value of (rubber hardness after heat aging)/(initial value of rubber hardness) x 100 was calculated and recorded in the column of "aging hardness (%)". The smaller this value is, the better the rubber hardening caused by heat aging is suppressed.

Figure 2023157136000002
Figure 2023157136000002

Figure 2023157136000003
Figure 2023157136000003

表2,3において使用した原材料の種類を下記に示す。
・NR:天然ゴム、TSR20
・BR:ブタジエンゴム、日本ゼオン社製 Nipol BR1220
・SBR、水添SBR1~水添SBR8:表1に記載したスチレンブタジエンゴムおよび水添芳香族ビニル-共役ジエン共重合体
・CB:カーボンブラック、東海カーボン社製シーストF、窒素吸着比表面積が41m/g
The types of raw materials used in Tables 2 and 3 are shown below.
・NR: Natural rubber, TSR20
・BR: Butadiene rubber, Nipol BR1220 manufactured by Nippon Zeon Co., Ltd.
・SBR, hydrogenated SBR1 to hydrogenated SBR8: styrene butadiene rubber and hydrogenated aromatic vinyl-conjugated diene copolymer listed in Table 1
・CB: Carbon black, Seast F manufactured by Tokai Carbon Co., Ltd., nitrogen adsorption specific surface area 41 m 2 /g

Figure 2023157136000004
Figure 2023157136000004

表4において使用した原材料の種類を下記に示す。
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:NOF CORPORATION社製ビーズステアリン酸
・老化防止剤:LANXESS社製VULKANOX4020
・ワックス:日本精鑞社製オゾエース0015
・アロマオイル:昭和シェル石油社製エキストラクト4号S
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤:大内新興化学社製ノクセラーNS-P
The types of raw materials used in Table 4 are shown below.
・Zinc oxide: 3 types of zinc oxide manufactured by Seido Kagaku Kogyo Co., Ltd. ・Stearic acid: Bead stearic acid manufactured by NOF CORPORATION ・Antioxidant: VULKANOX4020 manufactured by LANXESS
・Wax: Ozoace 0015 manufactured by Nippon Seirinsha
・Aroma oil: Showa Shell Sekiyu Extract No. 4 S
・Sulfur: Fine powder sulfur with Kinkain oil manufactured by Tsurumi Chemical Industry Co., Ltd. ・Vulcanization accelerator: Noxela NS-P manufactured by Ouchi Shinko Chemical Co., Ltd.

表2,3から明らかなように実施例1~10のタイヤ用ゴム組成物は、23℃のゴム硬度、動的粘弾性(損失正接tanδ)、耐疲労性、耐オゾン性、老化硬度に優れることが確認された。
比較例2のタイヤ用ゴム組成物は、ガラス転移温度が-40℃より高く、疲労指数が100以下なので、tanδ(60℃)が大きく、耐疲労性が劣る。
比較例3のタイヤ用ゴム組成物は、疲労指数が100以下なので、tanδ(60℃)が大きく、耐疲労性が劣る。
比較例4のタイヤ用ゴム組成物は、イソプレン系ゴムを含まないので、tanδ(60℃)が大きく、耐疲労性が劣る。
As is clear from Tables 2 and 3, the tire rubber compositions of Examples 1 to 10 are excellent in rubber hardness at 23°C, dynamic viscoelasticity (loss tangent tan δ), fatigue resistance, ozone resistance, and aging hardness. This was confirmed.
The tire rubber composition of Comparative Example 2 has a glass transition temperature higher than -40°C and a fatigue index of 100 or less, so tan δ (60°C) is large and fatigue resistance is poor.
Since the tire rubber composition of Comparative Example 3 has a fatigue index of 100 or less, tan δ (60° C.) is large and fatigue resistance is poor.
Since the tire rubber composition of Comparative Example 4 does not contain isoprene rubber, it has a large tan δ (60° C.) and poor fatigue resistance.

Claims (3)

イソプレン系ゴムを20~70質量%および水添芳香族ビニル-共役ジエン共重合体を含むジエン系ゴム100質量部に、窒素吸着比表面積が30~100m/gであるカーボンブラックを20~80質量部配合したタイヤ用ゴム組成物であって、前記水添芳香族ビニル-共役ジエン共重合体の重量平均分子量が20万以上、ガラス転移温度が-40℃以下、水添率が60%以上、下記式(1)で表される疲労指数が100超であることを特徴とするタイヤ用ゴム組成物。
疲労指数=-4.66×St+2.01×Vn-3.15×H+305 (1)
(式(1)中、Stは水添芳香族ビニル-共役ジエン共重合体のスチレン量(%)、Vnは水素添加前の共役ジエン部分におけるビニル量(質量%)、Hは共役ジエン部分への水添率(%)を表す。)
20 to 80 parts of carbon black having a nitrogen adsorption specific surface area of 30 to 100 m 2 /g is added to 100 parts by mass of diene rubber containing 20 to 70 mass % of isoprene rubber and a hydrogenated aromatic vinyl-conjugated diene copolymer. A rubber composition for tires containing parts by mass, wherein the hydrogenated aromatic vinyl-conjugated diene copolymer has a weight average molecular weight of 200,000 or more, a glass transition temperature of -40°C or less, and a hydrogenation rate of 60% or more. A rubber composition for a tire, characterized in that the fatigue index represented by the following formula (1) is more than 100.
Fatigue index = -4.66 x St + 2.01 x Vn - 3.15 x H + 305 (1)
(In formula (1), St is the amount of styrene in the hydrogenated aromatic vinyl-conjugated diene copolymer (%), Vn is the amount of vinyl in the conjugated diene part before hydrogenation (mass%), and H is the amount of styrene in the conjugated diene part before hydrogenation. represents the hydrogenation rate (%).)
前記ジエン系ゴム100質量%中、前記水添芳香族ビニル-共役ジエン共重合体を30質量%以上含むことを特徴とする請求項1に記載のタイヤ用ゴム組成物。 The rubber composition for a tire according to claim 1, characterized in that the hydrogenated aromatic vinyl-conjugated diene copolymer is contained in an amount of 30% by mass or more in 100% by mass of the diene rubber. 請求項1または2に記載のタイヤ用ゴム組成物からなるサイドウォールおよび/またはリムクッションを有するタイヤ。 A tire having a sidewall and/or a rim cushion made of the tire rubber composition according to claim 1 or 2.
JP2022066840A 2022-04-14 2022-04-14 Rubber composition for tires Pending JP2023157136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022066840A JP2023157136A (en) 2022-04-14 2022-04-14 Rubber composition for tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022066840A JP2023157136A (en) 2022-04-14 2022-04-14 Rubber composition for tires

Publications (1)

Publication Number Publication Date
JP2023157136A true JP2023157136A (en) 2023-10-26

Family

ID=88469204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022066840A Pending JP2023157136A (en) 2022-04-14 2022-04-14 Rubber composition for tires

Country Status (1)

Country Link
JP (1) JP2023157136A (en)

Similar Documents

Publication Publication Date Title
JP5342439B2 (en) Method for producing modified conjugated diene polymer, composition containing the polymer, and tire containing the composition
JP6885091B2 (en) Rubber composition for tires
JP5411447B2 (en) Modified conjugated diene polymer composition and vulcanized rubber composition using the same
JP4881563B2 (en) Rubber composition and pneumatic tire using the same
JP5265202B2 (en) Rubber composition and pneumatic tire using the same
JP4881562B2 (en) Rubber composition and pneumatic tire using the same
JPWO2005021637A1 (en) Conjugated diene rubber composition, method for producing the same, and rubber cross-linked product
JP5515206B2 (en) Method for producing polybutadiene rubber, rubber composition for tire, and tire
JPWO2019044889A1 (en) Rubber composition for tires
JP2005263905A (en) Conjugated diene-based composition and crosslinked rubber
JP2016014122A (en) Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, modified conjugated diene-based polymer composition, and tire
JP2005225946A (en) Rubber composition and tire using the same
JP2019026685A (en) Tire rubber composition
JP5285335B2 (en) Rubber composition for crawler
JP5283397B2 (en) Oil-extended modified conjugated diene polymer composition
JP2010265379A (en) Rubber composition and pneumatic tire using the same
JP2023157136A (en) Rubber composition for tires
JP2009298542A (en) Rubber composition for conveyor belt
JP7104318B2 (en) Vulcanized rubber
JP2008120936A (en) Rubber composition and tire using it
JP2023157850A (en) Rubber composition for tires
WO2021039408A1 (en) Vulcanized rubber composition, production method for vulcanized rubber composition, and tire
JP7452431B2 (en) Rubber composition and pneumatic tire using the same
JPH0686550B2 (en) Rubber composition for tires
JP7380121B2 (en) rubber composition