JP2023157076A - Production method of broth - Google Patents

Production method of broth Download PDF

Info

Publication number
JP2023157076A
JP2023157076A JP2022066744A JP2022066744A JP2023157076A JP 2023157076 A JP2023157076 A JP 2023157076A JP 2022066744 A JP2022066744 A JP 2022066744A JP 2022066744 A JP2022066744 A JP 2022066744A JP 2023157076 A JP2023157076 A JP 2023157076A
Authority
JP
Japan
Prior art keywords
stock
liquid
immersion liquid
microwave
soup stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022066744A
Other languages
Japanese (ja)
Inventor
勝之 國井
Katsuyuki Kunii
名都 野村
Natsu Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Instrumentation Co Ltd
Original Assignee
Shikoku Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Instrumentation Co Ltd filed Critical Shikoku Instrumentation Co Ltd
Priority to JP2022066744A priority Critical patent/JP2023157076A/en
Publication of JP2023157076A publication Critical patent/JP2023157076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Seasonings (AREA)

Abstract

To provide a production method of broth, capable of shortening an extraction time even in the case of extracting at a low-temperature, and producing broth in which flavor component is more extracted without increasing miscellaneous taste.SOLUTION: A production method of broth includes extracting flavor component by immersing a broth raw material in a liquid at 40°C or less. In the production method of broth, an immersion liquid obtained by immersing a broth raw material in a liquid is irradiated with microwaves for a fixed time so as to extract flavor component in a short time at a high efficiency compared to the case of no irradiation of microwaves.SELECTED DRAWING: Figure 1

Description

特許法第30条第2項適用申請有り 令和3年12月7日に http://agingbooster.com/lab/02/index.htmlにて公開Application for application of Article 30, Paragraph 2 of the Patent Act filed on December 7, 2021 at http://agingbooster. com/lab/02/index. Published in html

本発明は、出汁原料にマイクロ波を照射して出汁を製造する、出汁の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing soup stock, which comprises producing soup stock by irradiating a stock raw material with microwaves.

従来、雑味を抑えた出汁の製造方法が開示されている。たとえば、出汁原料を60℃以上の熱水で抽出した抽出液を1.1倍以上に濃縮し、濃縮した抽出液を20℃以下に急冷することで、渋味が増すことなく後味の旨味に優れる出汁の製造方法が開示されている(特許文献1参照)。さらに、0~20℃の溶媒に昆布を浸漬し、10~30時間抽出することで、昆布だしを冷水で抽出する方法が開示されている(特許文献2参照)。
また、出願人は、食品にマイクロ波を照射して熟成させることで、食品の熟成感を向上させることができるとともに、熟成期間を短縮することができるマイクロ波熟成方法を開示している(特許文献3参照)。
BACKGROUND ART Conventionally, methods for producing soup stock with reduced taste have been disclosed. For example, by extracting the soup stock raw material with hot water of 60°C or higher and concentrating the extract to 1.1 times or more, and quickly cooling the concentrated extract to 20°C or lower, the aftertaste becomes more delicious without increasing the astringency. An excellent method for producing soup stock has been disclosed (see Patent Document 1). Furthermore, a method has been disclosed in which kelp stock is extracted with cold water by immersing kelp in a solvent at 0 to 20°C and extracting for 10 to 30 hours (see Patent Document 2).
In addition, the applicant has disclosed a microwave ripening method that can improve the ripeness of food and shorten the ripening period by irradiating the food with microwaves to age the food (patented). (See Reference 3).

特開2019-208394号公報JP2019-208394A 特許第6570193号公報Patent No. 6570193 特開2020-182456号公報Japanese Patent Application Publication No. 2020-182456

特許文献1のように、出汁原料を60℃以上の熱水で加熱する場合、雑味や苦みなどの旨味成分以外の成分も溶出してしまうという問題があった。また、特許文献2のように、水などの低温で旨味成分を抽出する場合、抽出に長い時間がかかってしまい、さらに、微生物により出汁が傷んでしまうという問題があった。
また、従来より、出汁原料から旨味成分をより効率的に抽出することができる抽出方法が希求されている。
このような状況において、発明者は、特許文献3に示すようなマイクロ波熟成技術を応用することで、今までにはない出汁の製造方法を検討し、鋭意研究の末、本発明を創作した。
As in Patent Document 1, when the stock raw material is heated with hot water of 60° C. or higher, there is a problem that components other than umami components such as miscellaneous taste and bitterness are also eluted. Further, when extracting flavor components using water or the like at a low temperature as in Patent Document 2, there are problems in that extraction takes a long time and the soup stock is spoiled by microorganisms.
Furthermore, there has been a desire for an extraction method that can more efficiently extract flavor components from stock raw materials.
Under these circumstances, the inventor considered an unprecedented method of producing soup stock by applying microwave aging technology as shown in Patent Document 3, and after intensive research, created the present invention. .

本発明は、低温で出汁原料から旨味成分を抽出する場合でも、抽出時間を短くすることができ、かつ、雑味を増すことなく旨味成分がより抽出された出汁を製造することができる、出汁の製造方法を提供することを目的とする。 The present invention provides a soup stock that can shorten the extraction time even when extracting umami components from stock raw materials at low temperatures, and can produce a soup with more umami components extracted without increasing unpleasant taste. The purpose is to provide a manufacturing method for.

本発明は、以下の(1)ないし(9)に記載の出汁の製造方法を要旨とする。
(1)出汁原料を40℃以下の液体に浸漬させて旨味成分を抽出する出汁の製造方法において、前記出汁原料を前記液体に浸漬させた浸漬液にマイクロ波を一定時間照射することにより前記マイクロ波を照射しない場合と比べ短時間かつ高効率に旨み成分を抽出することを特徴とする、出汁の製造方法。
(2)前記浸漬液の内部温度よりも前記浸漬液の外部温度が低くなるように、前記マイクロ波を照射すると同時に、前記浸漬液の冷却も行う、上記(1)に記載の出汁の製造方法。
(3)前記浸漬液の内部温度が、0℃より高く、かつ、25℃よりも低い範囲となるように、前記マイクロ波を照射する、上記(1)または(2)に記載の出汁の製造方法。
(4)前記浸漬液の外部温度が、-5℃以上、かつ、20℃よりも低い範囲となるように、前記マイクロ波照射を行う、上記(1)または(2)に記載の出汁の製造方法。
(5)前記浸漬液の内部温度と外部温度との差が、5℃より高く、かつ、20℃よりも低い範囲となるように、前記マイクロ波を照射すると同時に、前記浸漬液の冷却も行う、上記(2)に記載の出汁の製造方法。
(6)前記マイクロ波の照射を30分以上、かつ、4時間以下で行う、上記(1)または(2)に記載の出汁の製造方法。
(7)前記出汁原料が、昆布類、および、節類または煮干しを合わせた出汁原料である、上記(1)または(2)に記載の出汁の製造方法。
(8)前記出汁原料における前記節類または煮干しと昆布類との割合(前記節類または煮干しの重量/昆布類の重量)が2未満である、上記(7)に記載の出汁の製造方法。
(9)昆布類に旨味調味料を添加した前記出汁原料を前記液体に浸漬させた浸漬液にマイクロ波を一定時間照射する、上記(1)または(2)に記載の出汁の製造方法。
The gist of the present invention is the method for producing soup stock described in (1) to (9) below.
(1) In a method for producing dashi stock in which the flavor components are extracted by immersing the dashi raw material in a liquid at 40°C or lower, the dipping liquid in which the dashi raw material is immersed in the liquid is irradiated with microwaves for a certain period of time. A method for producing dashi stock that is characterized by extracting flavor components in a shorter time and with higher efficiency than when irradiating waves is not used.
(2) The method for producing soup stock according to (1) above, wherein the immersion liquid is cooled at the same time as the microwave irradiation is performed so that the external temperature of the immersion liquid is lower than the internal temperature of the immersion liquid. .
(3) Production of the soup stock according to (1) or (2) above, wherein the microwave is irradiated so that the internal temperature of the immersion liquid is higher than 0°C and lower than 25°C. Method.
(4) Production of the soup stock according to (1) or (2) above, wherein the microwave irradiation is performed such that the external temperature of the dipping liquid is in a range of -5°C or higher and lower than 20°C. Method.
(5) At the same time as irradiating the microwave, the immersion liquid is cooled so that the difference between the internal temperature and the external temperature of the immersion liquid is higher than 5°C and lower than 20°C. , the method for producing soup stock according to (2) above.
(6) The method for producing soup stock according to (1) or (2) above, wherein the microwave irradiation is performed for 30 minutes or more and 4 hours or less.
(7) The method for producing dashi soup according to (1) or (2) above, wherein the soup stock raw material is a combination of kelp, knotweed, or dried sardines.
(8) Production of the soup stock according to (7) above, wherein the ratio of the knots or dried sardines to kelp in the stock raw materials (weight of the knots or dried sardines/weight of kelp) is less than 2. Method.
(9) The method for producing dashi soup according to (1) or (2) above, wherein microwaves are irradiated for a certain period of time to an immersion liquid in which the soup stock raw material prepared by adding an umami seasoning to kelp is immersed in the liquid.

本発明によれば、出汁原料を浸漬させた浸漬液にマイクロ波を一定時間照射することで、低温で出汁原料から旨味成分を抽出する場合でも、抽出時間を短くすることができ、かつ、雑味が増すことなく旨味成分がより抽出された出汁を製造することができる。 According to the present invention, by irradiating microwaves for a certain period of time to the dipping liquid in which the dashi raw material is immersed, even when extracting flavor components from the dashi raw material at low temperatures, the extraction time can be shortened, and the extraction time can be reduced. It is possible to produce soup stock with more umami components extracted without increasing the taste.

実施形態に係るマイクロ波熟成装置の構成図である。FIG. 1 is a configuration diagram of a microwave aging device according to an embodiment. 本実施例における出汁の抽出条件と、イノシン酸およびグルタミン酸の濃度との関係を示す表である。It is a table showing the relationship between the extraction conditions of soup stock and the concentrations of inosinic acid and glutamic acid in this example. 実施例1において測定した光吸収スペクトルを示すグラフである。3 is a graph showing a light absorption spectrum measured in Example 1. 実施例2において測定した光吸収スペクトルを示すグラフである。3 is a graph showing a light absorption spectrum measured in Example 2. 実施例3において測定した光吸収スペクトルを示すグラフである。3 is a graph showing a light absorption spectrum measured in Example 3. 実施例4において測定した光吸収スペクトルを示すグラフである。3 is a graph showing a light absorption spectrum measured in Example 4. 実施例5において測定した光吸収スペクトルを示すグラフである。3 is a graph showing a light absorption spectrum measured in Example 5. 実施例7,9において測定した光吸収スペクトルを示すグラフである。7 is a graph showing light absorption spectra measured in Examples 7 and 9. 実施例10において測定した光吸収スペクトルを示すグラフである。3 is a graph showing a light absorption spectrum measured in Example 10.

(熟成の対象となる食品)
本発明は、出汁原料を水などの液体に浸漬させて出汁原料から旨味成分を抽出する際に、出汁原料を浸漬させた浸漬液にマイクロ波を一定時間照射することで、出汁原料から旨味成分を低温かつ短時間でより効率的に抽出することを可能とする出汁の製造方法である。出汁原料としては、一般的に用いられている材料であれば特に限定されないが、昆布類などグルタミン酸を豊富に含む食材、節類や煮干しなどイノシン酸を豊富に含む食材、または、椎茸などグアニル酸を豊富に含む食材などが挙げられる。出汁原料として、昆布類、または、節類もしくは煮干しをそれぞれ単独で用いる構成としてもよいが、この構成に限定されず、昆布類、並びに、節類および/または煮干しを合わせて用いる構成としてもよい。同様に、椎茸についても、単独で用いる構成としてもよいが、この構成に限定されず、椎茸を、昆布類、並びに/または、節類および/若しくは煮干しと合わせて用いる構成としてもよい。
(Foods subject to ripening)
In the present invention, when extracting the flavor components from the dashi raw materials by immersing them in a liquid such as water, the umami components are extracted from the dashi raw materials by irradiating the dipping liquid in which the dashi raw materials are immersed with microwaves for a certain period of time. This is a method for producing dashi that allows for more efficient extraction at low temperatures and in a short time. Dashi ingredients are not particularly limited as long as they are commonly used ingredients, but include ingredients rich in glutamic acid such as kelp, ingredients rich in inosinic acid such as dried dried dried fish, dried sardines, or guanyl such as shiitake mushrooms. Examples include foods rich in acid. As a stock ingredient, kelp, knots, or dried sardines may be used alone, but the structure is not limited to this, and kelp, knots, and/or dried sardines may be used in combination. Good too. Similarly, shiitake mushrooms may be used alone, but the structure is not limited to this, and shiitake mushrooms may be used in combination with kelp, and/or joints and/or dried sardines.

(出汁の製造方法)
従来、出汁原料から旨味成分を抽出し出汁を取る場合、熱湯で出汁原料を煮て旨味成分を煮出す方法と、比較的低温の水(常温の水や常温よりも低い冷水)に出汁原料を長時間浸漬させて旨味成分を抽出する方法とがある。熱湯で出汁原料を煮て旨味成分を煮出す方法では、旨味成分に加えて、苦味や渋味などの雑味も抽出されてしまうという問題があった。また、比較的低温の水に出汁原料を浸漬させて旨味成分を抽出する方法では、出汁の抽出に長時間かかってしまい、また微生物の繁殖により出汁が傷みやすいという問題もあった。
(Dashi soup manufacturing method)
Conventionally, when extracting flavor components from dashi ingredients to make dashi, there are two methods: boiling the dashi ingredients in boiling water to boil out the flavor components, and adding the dashi ingredients to relatively low-temperature water (room temperature water or cold water below room temperature). There is a method of soaking for a long time to extract the flavor components. The method of boiling stock ingredients in boiling water to extract umami components has the problem that in addition to the umami components, miscellaneous tastes such as bitterness and astringency are also extracted. Furthermore, the method of extracting flavor components by immersing stock ingredients in relatively low-temperature water has the problem that it takes a long time to extract the stock, and that the stock is easily spoiled by the growth of microorganisms.

本発明は、発明者が、出汁原料を浸漬させた浸漬液にマイクロ波を一定時間照射することで、比較的低温ながらも、短時間で効率的に出汁を抽出することができることを発見し、完成させたものである。また、発明者は、浸漬液にマイクロ波を照射して旨味成分を抽出することで、マイクロ波を照射しないで旨味成分を抽出する場合と比べて、雑味が増すことなく旨味成分をより多く抽出できることも発見した。以下、本発明の出汁の製造方法の実施形態を説明する。 The present invention is based on the inventor's discovery that by irradiating microwaves for a certain period of time to the immersion liquid in which the stock ingredients are soaked, it is possible to efficiently extract the stock in a short time even at a relatively low temperature. It has been completed. In addition, by irradiating the dipping liquid with microwaves to extract the umami components, the inventors have discovered that by extracting the umami components without irradiating the dipping liquid with microwaves, more umami components can be extracted without increasing the unpleasant flavor, compared to the case where the umami components are extracted without irradiating the soaking liquid with microwaves. I also discovered that it can be extracted. Hereinafter, embodiments of the method for producing soup stock of the present invention will be described.

本実施形態に係るマイクロ波照射では、後述するマイクロ波熟成装置1を用いて、容器に入れた浸漬液にマイクロ波を比較的長時間(30分以上)照射し、出汁原料から旨味成分を抽出し出汁を取る。照射するマイクロ波の波長は、浸漬液の水分子を誘電加熱することができる波長であればよく、たとえば、2.4~2.5GHzなどとすることができる。また、本実施形態では、比較的低温で出汁原料から旨味成分を抽出するため、浸漬液の内部温度(浸漬液を構成する液体および出汁原料の温度)が0℃より高くかつ25℃よりも低い範囲内、より好ましくは5℃以上かつ20℃以下の範囲内となるように、マイクロ波照射の強度が制御される。また、後述するように、本実施形態に係るマイクロ波熟成装置1では、浸漬液を静置する庫内が冷却可能となっており、マイクロ波照射時の浸漬液の外部温度(庫内温度)が浸漬液の内部温度よりも低い温度となるように、好ましくは浸漬液の外部温度が-5℃以上かつ20℃よりも低い範囲内となるように、より好ましくは浸漬液の外部温度が0℃以上かつ10℃以下の範囲内となるように、庫内の冷却が行われ、この環境下で旨味成分の抽出が行われる。特に、本実施形態では、浸漬液の内部温度と外部温度との温度差が5℃より高くかつ20℃よりも低くなるように、より好ましくは10℃以上かつ15℃以下となるように、マイクロ波照射による浸漬液の加熱と庫内の冷却が行われる。また、本実施形態では、マイクロ波の照射が、通常の熱水抽出よりも長時間かつ通常の冷水抽出よりも短時間で行われる。具体的には、マイクロ波の照射を、30分以上かつ4時間以下で、より好ましくは1時間以上かつ2時間以下で行い、旨味成分を抽出する。なお、使用する出汁原料の量は、特に限定されないが、イリコと昆布との割合(イリコの重量/昆布の重量)を2未満、より好ましくは1.7未満とすることが望ましい。 In the microwave irradiation according to this embodiment, microwaves are irradiated for a relatively long time (30 minutes or more) to the soaking liquid placed in a container using a microwave ripening device 1 to be described later to extract flavor components from the soup stock raw material. Take the dashi stock. The wavelength of the microwave to be irradiated may be any wavelength that can dielectrically heat water molecules in the immersion liquid, and may be, for example, 2.4 to 2.5 GHz. Furthermore, in this embodiment, since the flavor components are extracted from the stock raw material at a relatively low temperature, the internal temperature of the dipping liquid (temperature of the liquid making up the dipping liquid and the stock raw material) is higher than 0°C and lower than 25°C. The intensity of the microwave irradiation is controlled within a range, more preferably within a range of 5°C or higher and 20°C or lower. In addition, as will be described later, in the microwave aging apparatus 1 according to the present embodiment, the interior of the refrigerator in which the immersion liquid is left can be cooled, and the external temperature (inside temperature) of the immersion liquid during microwave irradiation is controlled. is lower than the internal temperature of the immersion liquid, preferably the external temperature of the immersion liquid is within a range of -5°C or higher and lower than 20°C, more preferably the external temperature of the immersion liquid is 0. The inside of the refrigerator is cooled to a temperature of 10° C. or higher and 10° C. or lower, and the flavor components are extracted in this environment. Particularly, in this embodiment, the temperature difference between the internal temperature and the external temperature of the immersion liquid is higher than 5°C and lower than 20°C, more preferably 10°C or higher and 15°C or lower. The immersion liquid is heated by wave irradiation and the inside of the refrigerator is cooled. Moreover, in this embodiment, microwave irradiation is performed for a longer time than normal hot water extraction and for a shorter time than normal cold water extraction. Specifically, microwave irradiation is performed for 30 minutes or more and 4 hours or less, more preferably 1 hour or more and 2 hours or less, to extract the flavor components. The amount of the stock raw material to be used is not particularly limited, but it is desirable that the ratio of sardine to kelp (weight of sardine/weight of kelp) is less than 2, more preferably less than 1.7.

(マイクロ波熟成装置)
図1は、本実施形態に係るマイクロ波熟成装置1の構成図である。本実施形態に係るマイクロ波熟成装置1は、図1に示すように、冷却部10、マイクロ波発振部20、マイクロ波熟成部30、制御部50、およびUVランプ60を備える。マイクロ波熟成装置1は、冷却部10の内部にマイクロ波熟成部30を内蔵している。本実施形態に係るマイクロ波熟成装置1においては、出汁の製造のみならず、牛肉などの肉類(ハムなどの加工肉食品を含む)、魚介類、チーズなどの乳製品、枝豆(大豆)、コーヒー豆などの豆類、野菜類、果物類、麺類、パン類、ワインなどの酒類、発酵食品(味噌や醤油などの発酵調味料を含む)などの熟成も行うことができる。
(Microwave ripening device)
FIG. 1 is a configuration diagram of a microwave aging apparatus 1 according to this embodiment. The microwave aging device 1 according to this embodiment includes a cooling section 10, a microwave oscillation section 20, a microwave aging section 30, a control section 50, and a UV lamp 60, as shown in FIG. The microwave aging device 1 includes a microwave aging section 30 inside the cooling section 10. The microwave aging device 1 according to the present embodiment not only produces soup stock, but also produces meat such as beef (including processed meat products such as ham), seafood, dairy products such as cheese, edamame (soybeans), and coffee. It is also possible to age legumes such as beans, vegetables, fruits, noodles, breads, alcoholic beverages such as wine, fermented foods (including fermented seasonings such as miso and soy sauce), etc.

冷却部10は、冷却部10の内部空間を冷却する装置である。冷却部10は、図1に示すように、冷却器11、第1ファン12、冷却室13、および不図示の冷却室扉14を有している。本実施形態では、冷却器11が外部との熱交換を行うことで冷気を発生させ、発生した冷気を第1ファン12により冷却部10の内部の冷却室13内に送風する。これにより、冷却室13内を低温とすることがきできる。なお、後述するように、本実施形態では、出汁原料を浸漬した浸漬液の内部温度よりも、浸漬液の外部温度(庫内温度)が低くなるように、制御部50により、マイクロ波発振部20の動作や冷却室13内の温度が適宜制御されている。また、ユーザは、冷却室扉14を開くことで、冷却室13内に設置されているマイクロ波熟成部30に、容器に入れた浸漬液を出し入れすることができる。 The cooling unit 10 is a device that cools the internal space of the cooling unit 10. As shown in FIG. 1, the cooling unit 10 includes a cooler 11, a first fan 12, a cooling chamber 13, and a cooling chamber door 14 (not shown). In this embodiment, the cooler 11 generates cold air by exchanging heat with the outside, and the first fan 12 blows the generated cold air into the cooling chamber 13 inside the cooling unit 10 . Thereby, the inside of the cooling chamber 13 can be kept at a low temperature. As will be described later, in this embodiment, the control unit 50 controls the microwave oscillation unit so that the external temperature (temperature inside the refrigerator) of the dipping liquid is lower than the internal temperature of the dipping liquid in which the stock ingredients are immersed. The operation of the cooling chamber 20 and the temperature inside the cooling chamber 13 are appropriately controlled. Furthermore, by opening the cooling chamber door 14, the user can take the immersion liquid contained in the container into and out of the microwave aging section 30 installed in the cooling chamber 13.

マイクロ波発振部20は、容器に入れた浸漬液に照射するためのマイクロ波を発振する。マイクロ波発振部20として、マグネトロンを使用した発振器を用いることもできるが、本実施形態では、マグネトロンと比べて高い周波数および出力安定度が得られる、半導体素子を用いたソリッドステート方式の発振器を用いる。マイクロ波発振部20は、周波数を2.4~2.5GHzの間で連続的に変化させて、マイクロ波を発振する。マイクロ波発振部20で発振されたマイクロ波は、ケーブル21を介して、マイクロ波熟成部30の照射口31から照射される。なお、マイクロ波の周波数を2.4~2.5GHzの間で連続的に変化させることでマイクロ波熟成部30での電磁界の分布が均一化されるため、浸漬液にも均一な分布でマイクロ波が照射され、浸漬液の均一加熱による旨味成分の抽出を促進することができる。 The microwave oscillator 20 oscillates microwaves to irradiate the immersion liquid placed in the container. Although an oscillator using a magnetron can be used as the microwave oscillator 20, in this embodiment, a solid-state oscillator using a semiconductor element is used, which can obtain higher frequency and output stability than a magnetron. . The microwave oscillation unit 20 oscillates microwaves by continuously changing the frequency between 2.4 and 2.5 GHz. The microwave oscillated by the microwave oscillation section 20 is irradiated from the irradiation port 31 of the microwave aging section 30 via the cable 21. Note that by continuously changing the frequency of the microwave between 2.4 and 2.5 GHz, the distribution of the electromagnetic field in the microwave aging section 30 is made uniform, so the immersion liquid also has a uniform distribution. Microwave irradiation can promote the extraction of flavor components by uniformly heating the dipping liquid.

マイクロ波熟成部30は、図1に示すように、照射口31、第2ファン32、熟成室33、および不図示の熟成室扉34を備える。ユーザは、熟成室扉34を開けることで、容器に入れた浸漬液を熟成室33に出し入れすることができる。 As shown in FIG. 1, the microwave ripening section 30 includes an irradiation port 31, a second fan 32, a ripening chamber 33, and a ripening chamber door 34 (not shown). By opening the ripening chamber door 34, the user can take the immersion liquid contained in the container into and out of the ripening chamber 33.

熟成室33は、内面(内壁)の全ての面にマイクロ波を反射するための反射板が設置されたキャビティである。熟成室33の内面には、マイクロ波発振部20により発振されたマイクロ波を、熟成室33内に照射する照射口31が設置されている。本実施形態においては、照射口31に、小型で利得が高いパッチアンテナ(平面アンテナ)が取り付けられ、これによりマイクロ波発振部20により発振されたマイクロ波が熟成室33内に照射される。熟成室33には、テフロン(登録商標)やポリプロピレンなどのマイクロ波透過性材により構成された任意の形状の棚を設置してもよい。またステンレスなどの金属材料を使用する場合は、間隔が20mm以上の格子状の棚や、直径20mm以上の開口部を持つパンチングメタル形状の棚を設置しても良い。 The ripening chamber 33 is a cavity in which reflective plates for reflecting microwaves are installed on all inner surfaces (inner walls). An irradiation port 31 is installed on the inner surface of the ripening chamber 33 to irradiate the inside of the ripening chamber 33 with microwaves oscillated by the microwave oscillator 20 . In this embodiment, a small, high-gain patch antenna (planar antenna) is attached to the irradiation port 31, and thereby the microwave oscillated by the microwave oscillation unit 20 is irradiated into the ripening chamber 33. The aging chamber 33 may be provided with shelves of any shape made of a microwave transparent material such as Teflon (registered trademark) or polypropylene. Further, when using a metal material such as stainless steel, a grid-like shelf with an interval of 20 mm or more or a punched metal-shaped shelf with an opening with a diameter of 20 mm or more may be installed.

第2ファン32は、冷却室13内の冷気を熟成室33に送風する。本実施形態では、図1に示すように、第2ファン32が熟成室33の外側に取り付けられており、第2ファン32が取り付けられた熟成室33の側壁には、第1微小開口35が設けられている。第1微小開口35は、マイクロ波の波長よりも短い大きさで開口されており、たとえば本実施形態では、第1微小開口35の大きさを直径10mm以下としている。第1微小開口35により、熟成室33内に照射されたマイクロ波は遮断され、第2ファン32により送風された冷気のみが通過される。また、第1微小開口35と対向する熟成室33の側壁には、第1微小開口35と同様の径の、第2微小開口36が設けられている。第2微小開口36により、熟成室33に照射されたマイクロ波は遮断されるが、浸漬液との熱交換により温められた熟成室33内の空気が、第2微小開口36を通過して、冷却室13内へと排出される。第1微小開口35および第2微小開口36を、1または複数の側壁の大部分を占める面積に設け、通気性を高めてもよい。また、熟成室33を第1微小開口35および第2微小開口36が予め形成されたパンチングメタルを用いて構成することもでき、このようなパンチングメタルとして、φ10mmのステンレス板を用いることもできる。 The second fan 32 blows cold air in the cooling chamber 13 to the ripening chamber 33. In this embodiment, as shown in FIG. 1, the second fan 32 is attached to the outside of the ripening chamber 33, and the side wall of the ripening chamber 33 to which the second fan 32 is attached has a first minute opening 35. It is provided. The first minute aperture 35 has a size shorter than the wavelength of the microwave. For example, in this embodiment, the first minute aperture 35 has a diameter of 10 mm or less. The microwave irradiated into the ripening chamber 33 is blocked by the first minute opening 35, and only the cold air blown by the second fan 32 passes through. Further, a second micro-aperture 36 having the same diameter as the first micro-aperture 35 is provided on the side wall of the ripening chamber 33 facing the first micro-aperture 35 . Although the microwave irradiated to the ripening chamber 33 is blocked by the second minute opening 36, the air inside the ripening chamber 33, which has been warmed by heat exchange with the immersion liquid, passes through the second minute opening 36. It is discharged into the cooling chamber 13. The first micro-aperture 35 and the second micro-aperture 36 may be provided in an area that occupies most of one or more side walls to improve ventilation. Furthermore, the ripening chamber 33 can be constructed using punched metal in which the first minute opening 35 and the second minute opening 36 are formed in advance, and a stainless steel plate with a diameter of 10 mm can also be used as such punched metal.

制御部50には、浸漬液の外部温度および内部温度がそれぞれ所定の温度となるように温度制御を行うプログラムが組み込まれている。具体的には、制御部50は、マイクロ波発振部20、冷却器11、第1ファン12、第2ファン32の動作を制御することで、マイクロ波発振部20によるマイクロ波の出力、冷却器11による冷気の温度、第1ファン12および第2ファン32の風量を制御して温度制御を行う。たとえば、制御部50は、マイクロ波発振部20のマイクロ波の出力を高くすることで浸漬液の内部温度を高くすることができ、また、冷却器11による冷気の温度を低くし、あるいは、第1ファン12および第2ファン32の風量を高くすることで浸漬液の外部温度を低くすることができる。 The control unit 50 has a built-in program that performs temperature control so that the external temperature and internal temperature of the immersion liquid become respective predetermined temperatures. Specifically, the control unit 50 controls the operation of the microwave oscillation unit 20, the cooler 11, the first fan 12, and the second fan 32, thereby controlling the microwave output by the microwave oscillation unit 20 and the cooler. Temperature control is performed by controlling the temperature of the cold air generated by the fan 11 and the air volume of the first fan 12 and the second fan 32. For example, the control unit 50 can increase the internal temperature of the immersion liquid by increasing the microwave output of the microwave oscillation unit 20, and can also decrease the temperature of the cold air from the cooler 11, or By increasing the air volume of the first fan 12 and the second fan 32, the external temperature of the immersion liquid can be lowered.

また、制御部50は、マイクロ波発振部20によるマイクロ波の発振を制御することができる。たとえば、制御部50は、マイクロ波発振部20を一定の出力値および一定の周波数に固定して発振させる固定照射に加えて、短い周期(たとえば数ミリ秒周期)でマイクロ波発振部20に発振と停止とを繰り返させる間欠照射や、マイクロ波発振部20の周波数を経時的に変化させる掃引照射や、マイクロ波発振部20の出力値を経時的に変化させる連続照射を行わせることができる。また、制御部50は、浸漬液で旨味成分を抽出している間、マイクロ波を連続して照射する必要もなく、少なくとも30分以上マイクロ波の照射が行なわれる構成とすることができる。さらに、制御部50は、マイクロ波の照射のON-OFFを一定時間(たとえば数時間)ごとに切り替えるように(間欠照射の場合は、間欠照射を行う期間と間欠照射を行わない期間とを一定時間ごとに切り替えるように)、マイクロ波発振部20を制御する構成とすることもできる。 Further, the control unit 50 can control microwave oscillation by the microwave oscillation unit 20. For example, in addition to fixed irradiation that causes the microwave oscillation unit 20 to oscillate at a fixed output value and a constant frequency, the control unit 50 causes the microwave oscillation unit 20 to oscillate at a short period (for example, a period of several milliseconds). It is possible to perform intermittent irradiation in which irradiation and stopping are repeated, sweep irradiation in which the frequency of the microwave oscillation unit 20 is changed over time, and continuous irradiation in which the output value of the microwave oscillation unit 20 is changed over time. Further, the control unit 50 may be configured to perform microwave irradiation for at least 30 minutes or longer without needing to continuously irradiate microwaves while extracting flavor components with the immersion liquid. Furthermore, the control unit 50 switches the microwave irradiation ON and OFF at regular intervals (for example, several hours) (in the case of intermittent irradiation, the period of intermittent irradiation and the period of no intermittent irradiation are set constant). It is also possible to adopt a configuration in which the microwave oscillation unit 20 is controlled so as to switch at different times.

また、制御部50は、浸漬液の内部温度や外部温度を測定する温度センサ(例えば、マイクロ波環境下においても接触式で温度計測が可能な蛍光式光ファイバー温度計(安立計器株式会社製)や、非接触により赤外線や可視光線の強度を測定する放射型温度センサ)と接続し、温度センサの計測結果に基づいて、適宜温度制御を行う構成とすることもできる。 The control unit 50 also includes a temperature sensor that measures the internal temperature and external temperature of the immersion liquid (for example, a fluorescent optical fiber thermometer (manufactured by Anritsu Keiki Co., Ltd.) that can contact temperature measurement even in a microwave environment). , a radiation type temperature sensor that measures the intensity of infrared rays and visible light in a non-contact manner), and the temperature can be appropriately controlled based on the measurement results of the temperature sensor.

さらに、制御部50は、熟成室33内に設置した非接触式の分光光度計から得た、浸漬液の特定の波長(たとえば旨味成分であるイノシン酸やグアニル酸などの核酸に対応する250nmあるいは260nmの波長)での吸光度に応じて、マイクロ波発振部20のマイクロ波の出力、冷却器11による冷気の温度、第1ファン12および第2ファン32の風量を制御する構成とすることもできる。また、ユーザが操作ボタンやタッチパネル等の入力装置である操作部40を操作して、出汁原料の種類(たとえば、昆布類、節類、煮干しなど)や大きさなどの出汁原料の情報を入力することで、制御部50は、浸漬液の内部温度および外部温度の調整を自動で行う構成とすることもできる。 Further, the control unit 50 controls the immersion liquid at a specific wavelength (for example, 250 nm or 250 nm corresponding to nucleic acids such as inosinic acid and guanylic acid, which are flavor components) of the immersion liquid, which is obtained from a non-contact spectrophotometer installed in the ripening chamber 33. It is also possible to adopt a configuration in which the output of the microwave from the microwave oscillation unit 20, the temperature of the cold air from the cooler 11, and the air volume of the first fan 12 and the second fan 32 are controlled according to the absorbance at a wavelength of 260 nm). . In addition, the user operates the operation unit 40, which is an input device such as an operation button or a touch panel, to input information about the soup stock raw materials, such as the type (for example, kelp, knotweed, dried sardines, etc.) and size of the stock raw materials. By doing so, the control unit 50 can be configured to automatically adjust the internal temperature and external temperature of the immersion liquid.

このように、本実施形態に係るマイクロ波熟成装置1では、加熱機構(マイクロ波発振部20およびマイクロ波熟成部30)による浸漬液の加熱と、冷却機構(冷却部10および第2ファン32)による浸漬液の表面の冷却とを同時に行うことで、浸漬液の外部温度を低くしながらも、浸漬液の内部温度を高くすることができる。具体的には、浸漬液の外部温度よりも、浸漬液の内部温度を高くすることができる。特に、マイクロ波照射により浸漬液を誘電加熱することで、浸漬液の内部まで均一に加熱することができ、旨味成分の抽出を促進することができる。また、冷却部10および第2ファン32の動作により浸漬液を表面から冷却することで、浸漬液の表面における菌の増殖を抑制することもできる。 As described above, in the microwave aging device 1 according to the present embodiment, the heating mechanism (the microwave oscillation unit 20 and the microwave aging unit 30) heats the immersion liquid, and the cooling mechanism (the cooling unit 10 and the second fan 32) By cooling the surface of the immersion liquid at the same time, it is possible to raise the internal temperature of the immersion liquid while lowering the external temperature of the immersion liquid. Specifically, the internal temperature of the immersion liquid can be higher than the external temperature of the immersion liquid. In particular, by dielectrically heating the dipping liquid using microwave irradiation, it is possible to uniformly heat the inside of the dipping liquid, thereby promoting the extraction of flavor components. Furthermore, by cooling the immersion liquid from the surface through the operation of the cooling unit 10 and the second fan 32, it is also possible to suppress the growth of bacteria on the surface of the immersion liquid.

なお、本実施形態に係るマイクロ波熟成装置1は、ユーザが操作するための操作部40を備えており、ユーザは操作部40を操作することで、上述した出汁の抽出温度よりも高い温度で出汁を抽出させる高温抽出モードを指示することもできる。ユーザにより高温抽出モードが指示された場合、制御部50は、浸漬液の内部温度を、たとえば25℃を超えた温度とすることもできる。 The microwave aging device 1 according to the present embodiment includes an operating section 40 for the user to operate, and by operating the operating section 40, the user can adjust the temperature at a temperature higher than the above-mentioned soup stock extraction temperature. You can also instruct a high-temperature extraction mode to extract soup stock. When the high temperature extraction mode is instructed by the user, the control unit 50 can also set the internal temperature of the immersion liquid to a temperature exceeding 25° C., for example.

UVランプ60は、紫外線を発生させる装置である。本実施形態では、冷却室13や熟成室33を循環する冷気に紫外線を照射することで、冷気中に浮遊する菌を殺菌することができ、浸漬液の表面や冷却室13や熟成室33に存在する菌の増殖をより抑制することができる。また、熟成室33の一部(少なくともUVランプ60側の一部)の壁部において紫外線が通過する構成としたり、UVランプを熟成室33に直接設置したりすることもでき、その場合は、出汁の抽出中に、UVランプ60で発生させた紫外線を、熟成室33内に置かれた浸漬液の表面に直接照射することができる。このように、出汁の抽出中に、紫外線を浸漬液の表面に照射することで、浸漬液の表面に存在する菌の増殖をより抑制することができる。なお、制御部50は、UVランプ60の動作も制御することができる。たとえば、制御部50は、熟成を開始したタイミングまたは熟成室扉34を(開けた後に)閉じたタイミングから、一定時間(たとえば数時間)、UVランプ60に紫外線を照射させるように制御を行うことができる。 The UV lamp 60 is a device that generates ultraviolet light. In this embodiment, by irradiating the cool air circulating in the cooling chamber 13 and the ripening chamber 33 with ultraviolet rays, bacteria floating in the cold air can be sterilized, and the surface of the immersion liquid and the cooling chamber 13 and the ripening chamber 33 can be sterilized. The growth of existing bacteria can be further suppressed. Further, it is also possible to configure a part of the wall of the ripening chamber 33 (at least a part on the UV lamp 60 side) to allow ultraviolet rays to pass through, or to install the UV lamp directly in the ripening chamber 33. In that case, During extraction of the soup stock, the surface of the dipping liquid placed in the ripening chamber 33 can be directly irradiated with ultraviolet light generated by the UV lamp 60. In this way, by irradiating the surface of the dipping liquid with ultraviolet rays during extraction of the soup stock, it is possible to further suppress the growth of bacteria present on the surface of the dipping liquid. Note that the control unit 50 can also control the operation of the UV lamp 60. For example, the control unit 50 may control the UV lamp 60 to irradiate ultraviolet rays for a certain period of time (for example, several hours) from the timing when ripening is started or from the timing when the ripening chamber door 34 is closed (after opening). I can do it.

(実施例)
次に、本発明に係る出汁の製造方法の実施例について説明する。
本実施例(実施例1~13)では、出汁原料として、イリコ(伊吹産煮干イリコ(特)大羽、頭とワタは除く)、および/または、昆布(日高昆布、北海道産、ヒロコンフーズ株式会社)を用い、出汁原料を水道水に浸漬させた浸漬液に、上述したマイクロ波熟成装置1を用いてマイクロ波の照射を行うことで旨味成分の抽出を行った。
そして、旨味成分が抽出された浸漬液(出汁)を攪拌し、フィルタ濾過した後に希釈し、希釈した出汁について、旨味成分であるグルタミン酸やイノシン酸の濃度を測定した。なお、グルタミン酸濃度の測定は、L-グルタミン酸測定キット「ヤマサ」NEO(ヤマサ醤油株式会社製)を用いて行い、また、イノシン酸濃度の測定は、UV検出器を備えたHPLCを用いて行った。
また、本実施例では、イノシン酸の濃度を推定するために、マイクロ波を照射して旨味成分を抽出した実施例の出汁と、マイクロ波を照射しないで旨味成分を抽出した比較例の出汁を用い、イノシン酸が吸光する250nmの波長での吸光度を測定した。
さらに、本実施例では、実施例の出汁と比較例の出汁について、220~320nmの波長域での吸光度を測定した。なお、本実施例では、精度の高い光吸収スペクトルを作成するために、所定の希釈倍数で希釈した実施例および比較例の出汁を用いて220~320nmの波長域で吸光度を測定し、実施例および比較例の光吸収スペクトルを作成した。なお、220~320nmの吸光度を測定したのは、出汁原料から溶出した複数種類の核酸、アミノ酸、水溶性高分子などの大まかな濃度を把握するためである。
(Example)
Next, an example of the method for producing soup stock according to the present invention will be described.
In the present Examples (Examples 1 to 13), the stock ingredients were iriko (dried sardine iriko (special) large feathers from Ibuki, head and pith excluded) and/or kelp (Hidaka kelp, produced in Hokkaido, manufactured by Hirokon Foods Co., Ltd.). The umami components were extracted by irradiating the dipping liquid obtained by soaking the soup stock raw material in tap water with microwaves using the microwave aging device 1 described above.
Then, the soaking liquid (soup) from which the flavor components were extracted was stirred, filtered, and diluted, and the concentrations of glutamic acid and inosinic acid, which are flavor components, were measured in the diluted broth. The glutamic acid concentration was measured using the L-glutamic acid measurement kit "Yamasa" NEO (manufactured by Yamasa Soy Sauce Co., Ltd.), and the inosinic acid concentration was measured using HPLC equipped with a UV detector. .
In addition, in this example, in order to estimate the concentration of inosinic acid, we used the soup stock of the example in which the umami components were extracted by irradiating microwaves and the soup stock of the comparative example in which the umami components were extracted without irradiating microwaves. The absorbance was measured at a wavelength of 250 nm, which is the wavelength at which inosinic acid absorbs light.
Furthermore, in this example, the absorbance in the wavelength range of 220 to 320 nm was measured for the soup stock of the example and the soup stock of the comparative example. In addition, in this example, in order to create a highly accurate optical absorption spectrum, the absorbance was measured in the wavelength range of 220 to 320 nm using the soup stock of the example and comparative example diluted with a predetermined dilution factor. And a light absorption spectrum of a comparative example was created. The absorbance at 220 to 320 nm was measured in order to roughly determine the concentration of multiple types of nucleic acids, amino acids, water-soluble polymers, etc. eluted from the stock raw material.

図2に、本実施例(実施例1~13)での出汁の抽出条件と、抽出されたグルタミン酸およびイノシン酸の濃度を示す。なお、本実施例においては、標準抽出条件として、イリコ4gおよび昆布4gを合わせた出汁原料を400mlの水道水400mlに浸漬させた浸漬液を、内部温度が15℃、外部温度が5℃となるように、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行って、1時間、旨味成分の抽出を行った。以下の実施例では、特に言及する場合を除いて、標準抽出条件で旨味成分の抽出を行った。なお、図2においては、標準抽出条件と異なる条件をグレーで表示している。 FIG. 2 shows the conditions for extracting soup stock and the concentrations of extracted glutamic acid and inosinic acid in the present Examples (Examples 1 to 13). In this example, the standard extraction conditions are as follows: A soup stock material containing 4 g of irico and 4 g of kelp is soaked in 400 ml of tap water, and the internal temperature is 15°C and the external temperature is 5°C. The umami components were extracted for one hour by irradiating microwaves and cooling by the cooling unit 10 and second fan 32. In the following examples, umami components were extracted under standard extraction conditions unless otherwise specified. Note that in FIG. 2, conditions different from the standard extraction conditions are displayed in gray.

(実施例1)
実施例1では、出汁原料として昆布4gのみを水道水400mlに浸漬させ、この浸漬液に、浸漬液の内部温度が10℃、浸漬液の外部温度が0℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。また、比較例1として、出汁原料として昆布4gのみを水道水400mlに浸漬させ、この浸漬液を、マイクロ波を照射せずに外部温度10℃の環境で1時間静置した(この場合、浸漬液の内部温度も10℃となる)。
(Example 1)
In Example 1, only 4 g of kelp was soaked in 400 ml of tap water as a stock raw material, and the soaking liquid was soaked in a microtube for 1 hour so that the internal temperature of the soaking liquid was 10°C and the external temperature of the soaking liquid was 0°C. In addition to irradiating waves, cooling was performed using the cooling unit 10 and the second fan 32. In addition, as Comparative Example 1, only 4 g of kelp was immersed in 400 ml of tap water as a stock ingredient, and the immersion liquid was allowed to stand for 1 hour in an environment with an external temperature of 10°C without irradiating microwaves. The internal temperature of the liquid is also 10°C).

そして、抽出開始から1時間後に浸漬液を攪拌し、フィルタ濾過した後に8倍に希釈した浸漬液(出汁)について、昆布の旨味成分であるグルタミン酸の濃度を測定した。下記表1に、実施例1および比較例1におけるグルタミン酸濃度の測定結果を示す。
表1に示すように、マイクロ波照射を行って旨味成分を抽出した実施例1では、マイクロ波照射を行わずに旨味成分を抽出した比較例1と比べて、旨味成分であるグルタミン酸が44%増加した(1.44倍となった)。
Then, one hour after the start of extraction, the soaking liquid was stirred, filtered, and then diluted eight times (soup stock) to measure the concentration of glutamic acid, which is a flavor component of kelp. Table 1 below shows the measurement results of glutamic acid concentration in Example 1 and Comparative Example 1.
As shown in Table 1, in Example 1 in which umami components were extracted by microwave irradiation, glutamic acid, which is an umami component, was 44% higher than in Comparative Example 1, in which umami components were extracted without microwave irradiation. increased (1.44 times).

また、希釈した実施例1および比較例1の出汁について、220~320nmにおける吸光度を測定し光吸収スペクトルの作成も行った。図3は、実施例1および比較例1において測定した光吸収スペクトルを示すグラフである。また、図3に示す例では、参考例1として、グルタミン酸ナトリウムの濃度が125ppmとなるように、グルタミン酸ナトリウムのみを水道水に溶解させたグルタミン酸ナトリウム水溶液の光吸収スペクトルも例示している。図3に示すように、実施例1では、比較例1と比べて、220~260nmの波長域における吸光度が低くなっており、出汁原料からの核酸、アミノ酸、水溶性高分子などの溶出が抑制されているとの結果が得られた。なお、参考例1に示すように、グルタミン酸は220~320nmの波長域での光の吸収が少なく、グルタミン酸の量が光吸収スペクトルにほぼ影響しないため、図3における光吸収スペクトルは、雑味成分を含むグルタミン酸以外の成分に起因するものと考えられる。そのため、昆布のみを出汁原料として、マイクロ波を照射して旨味成分を抽出した場合には、マイクロ波を照射しない場合と比べて、グルタミン酸の抽出量を増加させることができるとともに、雑味などの成分の溶出を抑えられることがわかった。 In addition, the absorbance of the diluted soup stock of Example 1 and Comparative Example 1 was measured at 220 to 320 nm to create a light absorption spectrum. FIG. 3 is a graph showing light absorption spectra measured in Example 1 and Comparative Example 1. The example shown in FIG. 3 also illustrates the light absorption spectrum of a sodium glutamate aqueous solution in which only sodium glutamate is dissolved in tap water so that the concentration of sodium glutamate is 125 ppm as Reference Example 1. As shown in Figure 3, in Example 1, the absorbance in the wavelength range of 220 to 260 nm was lower than that in Comparative Example 1, and the elution of nucleic acids, amino acids, water-soluble polymers, etc. from the stock raw materials was suppressed. The results showed that As shown in Reference Example 1, glutamic acid has little light absorption in the wavelength range of 220 to 320 nm, and the amount of glutamic acid has almost no effect on the light absorption spectrum. This is thought to be due to components other than glutamic acid, including glutamic acid. Therefore, when kelp is used as a stock ingredient only and umami components are extracted by irradiating microwaves, it is possible to increase the amount of glutamic acid extracted compared to the case without irradiating microwaves, as well as to remove unpleasant tastes. It was found that the elution of components could be suppressed.

(実施例2)
実施例2では、出汁原料としてイリコ4gのみを水道水400mlに浸漬させ、この浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。また、比較例2として、出汁原料としてイリコ4gのみを水道水400mlに浸漬させて、この浸漬液にマイクロ波を照射せずに、外部温度15℃の環境で1時間静置した(この場合、浸漬液の内部温度も15℃となる)。
(Example 2)
In Example 2, only 4 g of irico was soaked in 400 ml of tap water as a stock raw material, and the soaking liquid was soaked in a microtube for 1 hour so that the internal temperature of the soaking liquid was 15°C and the external temperature of the soaking liquid was 5°C. In addition to irradiating waves, cooling was performed using the cooling unit 10 and the second fan 32. In addition, as Comparative Example 2, only 4 g of irico was soaked in 400 ml of tap water as a stock ingredient, and the soaking liquid was left standing for 1 hour in an environment with an external temperature of 15°C without irradiating microwaves (in this case, The internal temperature of the immersion liquid is also 15°C).

そして、抽出開始から1時間後に浸漬液を攪拌し、フィルタ濾過した後に8倍に希釈した浸漬液(出汁)について、イリコの旨味成分であるイノシン酸の濃度を測定した。下記表2に、実施例2および比較例2におけるイノシン酸濃度の測定結果を示す。
表2に示すように、マイクロ波照射を行って旨味成分を抽出した実施例2では、マイクロ波照射を行わずに旨味成分を抽出した比較例2と比べて、旨味成分であるイノシン酸が31%増加したことがわかった。
また、希釈した実施例2および比較例2の出汁について、イノシン酸が吸光する250nmにおける吸光度を測定した結果、比較例2では0.56、実施例2では0.65との結果が得られ、出汁原料がイリコだけの場合には、マイクロ波を照射することで、イノシン酸濃度が増加することが裏付けられた。
Then, one hour after the start of extraction, the soaking liquid was stirred, filtered, and then diluted 8 times (soup stock) to measure the concentration of inosinic acid, which is a flavor component of Iliko. Table 2 below shows the measurement results of inosinic acid concentration in Example 2 and Comparative Example 2.
As shown in Table 2, in Example 2 in which umami components were extracted by microwave irradiation, the umami component inosinic acid was 31% lower than in Comparative Example 2 in which umami components were extracted without microwave irradiation. % increase was found.
In addition, as a result of measuring the absorbance at 250 nm, where inosinic acid absorbs light, for the diluted soup stock of Example 2 and Comparative Example 2, the results were 0.56 for Comparative Example 2 and 0.65 for Example 2, It was confirmed that when the stock ingredient was only irico, irradiation with microwaves increased the concentration of inosinic acid.

さらに、希釈した実施例2および比較例2の出汁について、220~320nmにおける吸光度を測定し光吸収スペクトルの作成も行った。図4は、希釈した実施例2および比較例2において測定した光吸収スペクトルを示すグラフである。また、図4に示す例では、参考例2として、イノシン酸ナトリウムの濃度が100ppmとなるように、イノシン酸ナトリウムのみを水道水に溶解させたイノシン酸ナトリウム水溶液の光吸収スペクトルも例示している。図4に示すように、実施例2では、比較例2と比べて、220~280nmの波長域における吸光度が高くなっており、出汁原料から核酸、アミノ酸、水溶性高分子が多く溶出したとの結果が得られた。ただ、参考例2に示すように、イノシン酸は核酸の一種であり250nm付近の光を吸収する性質があるため、図4に示す光吸光スペクトルでは、イリコから溶出したイノシン酸の量が光吸収スペクトルに現れたと考えられる。すなわち、図4に示す光吸収スペクトルの測定結果は上記表2のイノシン酸濃度の測定結果と相関しており、イリコにおいては、マイクロ波の照射を行うことでイノシン酸の抽出量を増加させる効果があることがわかったが、雑味などの成分の溶出を抑制する効果までは確認できなかった。 Furthermore, the absorbance of the diluted soup stock of Example 2 and Comparative Example 2 was measured at 220 to 320 nm to create a light absorption spectrum. FIG. 4 is a graph showing light absorption spectra measured in diluted Example 2 and Comparative Example 2. In addition, the example shown in FIG. 4 also illustrates, as Reference Example 2, the light absorption spectrum of a sodium inosinate aqueous solution in which only sodium inosinate is dissolved in tap water so that the concentration of sodium inosinate is 100 ppm. . As shown in Figure 4, in Example 2, the absorbance in the wavelength range of 220 to 280 nm was higher than that in Comparative Example 2, indicating that many nucleic acids, amino acids, and water-soluble polymers were eluted from the soup stock raw material. The results were obtained. However, as shown in Reference Example 2, inosinic acid is a type of nucleic acid and has the property of absorbing light in the vicinity of 250 nm. It is thought that it appeared in the spectrum. In other words, the measurement results of the optical absorption spectrum shown in Figure 4 are correlated with the measurement results of inosinic acid concentration in Table 2 above, and in Irico, microwave irradiation has the effect of increasing the amount of inosinic acid extracted. However, the effect of suppressing the elution of components such as off-flavors could not be confirmed.

(実施例3)
実施例3では、標準抽出条件で出汁の製造を行った。具体的には、出汁原料としてイリコ4gおよび昆布4gを水道水400mlに浸漬させて、この浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。また、比較例3として、出汁原料としてイリコ4gおよび昆布4gを水道水400mlに浸漬させて、この浸漬液を外部温度15℃の環境で1時間静置した(この場合、浸漬液の内部温度も15℃となる)。
(Example 3)
In Example 3, soup stock was produced under standard extraction conditions. Specifically, 4 g of iriko and 4 g of kelp as dashi raw materials are soaked in 400 ml of tap water, and the soaking liquid is soaked with 1 ounce of water so that the internal temperature of the soaking liquid is 15°C and the external temperature of the soaking liquid is 5°C. Microwave irradiation was performed for a certain period of time, and cooling was performed using the cooling unit 10 and the second fan 32. In addition, as Comparative Example 3, 4 g of iriko and 4 g of kelp as stock ingredients were soaked in 400 ml of tap water, and the soaking liquid was allowed to stand for 1 hour in an environment with an external temperature of 15°C (in this case, the internal temperature of the soaking liquid was also 15℃).

そして、抽出開始から1時間後に浸漬液を攪拌し、フィルタ濾過した後に9倍に希釈した浸漬液(出汁)についてイノシン酸濃度およびグルタミン酸濃度を測定した。下記表3に、実施例3および比較例3におけるイノシン酸濃度およびグルタミン酸濃度の測定結果を示す。
表3に示すように、マイクロ波を照射した実施例3では、マイクロ波の照射を行わなかった比較例3に対して、イリコに多く含まれる旨味成分であるイノシン酸は19%増加し、また、昆布に多く含まれる旨味成分であるグルタミン酸は231%増加した(3.31倍となった)。特に、昆布だけで出汁を取った実施例1と比べた場合、昆布とイリコで合わせ出汁を取った実施例3では、グルタミン酸の抽出効率が大きく向上(1.44倍から3.31倍への向上)した。
なお、希釈した実施例3および比較例3の出汁について、イノシン酸が吸光する250nmにおける吸光度を測定した結果、比較例3では0.33、実施例3では0.39との結果が得られ、吸光度の面からも、昆布とイリコとの合わせ出汁の場合に、マイクロ波を照射することで、イノシン酸が増加することが確認された。
Then, one hour after the start of extraction, the immersion liquid was stirred and filtered, and the inosinic acid concentration and glutamic acid concentration were measured for the immersion liquid (stock) diluted 9 times. Table 3 below shows the measurement results of inosinic acid concentration and glutamic acid concentration in Example 3 and Comparative Example 3.
As shown in Table 3, in Example 3 in which microwave irradiation was performed, inosinic acid, which is a flavor component abundant in iriko, increased by 19% compared to Comparative Example 3 in which microwave irradiation was not performed. , glutamic acid, which is a flavor component that is abundant in kelp, increased by 231% (3.31 times). In particular, when compared to Example 1 in which the dashi stock was prepared using only kelp, in Example 3 in which the dashi stock was prepared by combining kelp and irico, the extraction efficiency of glutamic acid was greatly improved (from 1.44 times to 3.31 times). improved).
In addition, as a result of measuring the absorbance at 250 nm, where inosinic acid absorbs light, for the diluted soup stock of Example 3 and Comparative Example 3, the results were 0.33 for Comparative Example 3 and 0.39 for Example 3. In terms of absorbance, it was confirmed that inosinic acid increases when irradiated with microwaves in the case of a soup stock made from kelp and iriko.

また、希釈した実施例3および比較例3の出汁について、220~320nmにおける吸光度を測定し光吸収スペクトルの作成も行った。図5は、実施例3および比較例3において測定した光吸収スペクトルを示すグラフである。図5に示すように、実施例3では、比較例3と比べて、イノシン酸の溶解量が増えているにもかかわらず、240nm以下の波長域での吸光度が低くなっており、出汁原料からの雑味などの旨味成分以外の成分の溶出が抑制されていることがわかった。 In addition, the absorbance of the diluted soup stock of Example 3 and Comparative Example 3 was measured at 220 to 320 nm to create a light absorption spectrum. FIG. 5 is a graph showing light absorption spectra measured in Example 3 and Comparative Example 3. As shown in Figure 5, in Example 3, even though the amount of dissolved inosinic acid is increased compared to Comparative Example 3, the absorbance in the wavelength range of 240 nm or less is lower, and the It was found that the elution of components other than umami components, such as off-flavors, was suppressed.

これらグルタミン酸濃度の測定結果および光吸収スペクトルの結果から、出汁原料としてイリコと昆布とを合わせた出汁原料を用いた場合、マイクロ波を照射することで、イノシン酸およびグルタミン酸の抽出が促進され、特に、グルタミン酸の抽出量が倍増する一方、雑味などを含む成分の溶出を抑制することができることがわかった。 From these measurement results of glutamic acid concentration and optical absorption spectra, we found that when using a soup stock material made from a combination of irico and kelp, irradiation with microwaves promotes the extraction of inosinic acid and glutamic acid. It was found that while the amount of glutamic acid extracted was doubled, the elution of components including unpleasant tastes could be suppressed.

(実施例4~6)
上述した実施例3では、浸漬液の内部温度が15℃、外部温度が5℃となるようにマイクロ波照射を行った。これに対して、実施例4では、浸漬液の内部温度が20℃、外部温度が5℃となるようにマイクロ波照射を行ったこと以外は、実施例3と同じ条件で出汁の製造を行った。また、実施例5では、浸漬液の内部温度が20℃、浸漬液の外部温度が10℃となるようにマイクロ波照射を行ったこと以外は、実施例3と同じ条件(浸漬液の内部温度と外部温度の差も10℃と実施例3と同じ)で出汁の製造を行った。さらに、実施例6では、浸漬液の内部温度が5℃、浸漬液の外部温度が-5℃となるようにマイクロ波照射を行ったこと以外は、実施例3と同じ条件(浸漬液の内部温度と外部温度の差も10℃と実施例3と同じ)で出汁の製造を行った。なお、比較例4,5として、マイクロ波を照射せずに、浸漬液を外部温度20℃の環境で1時間静置し(この場合、浸漬液の内部温度も20℃となる)、比較例6として、マイクロ波を照射せずに、浸漬液を外部温度5℃の環境で1時間静置した(この場合、浸漬液の内部温度も5℃となる)。
(Examples 4 to 6)
In Example 3 described above, microwave irradiation was performed so that the internal temperature of the immersion liquid was 15°C and the external temperature was 5°C. On the other hand, in Example 4, soup stock was produced under the same conditions as Example 3, except that microwave irradiation was performed so that the internal temperature of the soaking liquid was 20°C and the external temperature was 5°C. Ta. Furthermore, in Example 5, the conditions were the same as in Example 3 (the internal temperature of the immersion liquid The difference between the temperature and the external temperature was also 10°C, the same as in Example 3). Furthermore, in Example 6, the conditions were the same as in Example 3, except that microwave irradiation was performed so that the internal temperature of the immersion liquid was 5°C and the external temperature of the immersion liquid was -5°C. The soup stock was produced at the same temperature as in Example 3 (the difference between the temperature and the external temperature was 10°C). In addition, as Comparative Examples 4 and 5, the immersion liquid was left standing in an environment with an external temperature of 20°C for 1 hour without irradiating microwaves (in this case, the internal temperature of the immersion liquid was also 20°C), and the comparison example As No. 6, the immersion liquid was allowed to stand for 1 hour in an environment with an external temperature of 5° C. without irradiating microwaves (in this case, the internal temperature of the immersion liquid was also 5° C.).

そして、実施例4~6および比較例4~6の浸漬液を、抽出開始から1時間後に攪拌し、フィルタ濾過した後に9倍に希釈した浸漬液(出汁)について、グルタミン酸およびイノシン酸の濃度を測定した。下記表4に、実施例4~6および比較例4~6におけるグルタミン酸およびイノシン酸の濃度の測定結果を示す。なお、下記表4においては、抽出条件として、抽出時の浸漬液の内部温度および外部温度についても併せて記載する。
表4に示すように、マイクロ波を照射して旨味成分を抽出した実施例4~6では、マイクロ波の照射を行わず旨味成分を抽出した比較例4~6と比べて、グルタミン酸がそれぞれ70%、285%、43%上昇し、また、旨味成分であるイノシン酸もそれぞれ13%、13%、4%上昇した。
また、希釈した実施例4および比較例4の出汁について250nmにおける吸光度を測定した結果、比較例4では0.32、実施例4では0.37との結果が得られた。同様に、希釈した実施例5および比較例5の出汁について250nmにおける吸光度を測定した結果、比較例5では0.33、実施例5では0.39との結果が得られた。このように、実施例4,5では、イリコと昆布とを合わせた出汁原料を用い、マイクロ波を照射した場合でも、イノシン酸の抽出量が増加することが吸光度の点からも確認できた。
The immersion liquids of Examples 4 to 6 and Comparative Examples 4 to 6 were stirred 1 hour after the start of extraction, filtered, and then diluted 9 times (stock) to determine the concentration of glutamic acid and inosinic acid. It was measured. Table 4 below shows the measurement results of the concentrations of glutamic acid and inosinic acid in Examples 4 to 6 and Comparative Examples 4 to 6. In addition, in Table 4 below, the internal temperature and external temperature of the immersion liquid at the time of extraction are also described as extraction conditions.
As shown in Table 4, in Examples 4 to 6 in which umami components were extracted by irradiating microwaves, glutamic acid was 70% lower than in Comparative Examples 4 to 6 in which umami components were extracted without irradiating microwaves. %, 285%, and 43%, and inosinic acid, which is a flavor component, also increased by 13%, 13%, and 4%, respectively.
Further, as a result of measuring the absorbance at 250 nm of the diluted broths of Example 4 and Comparative Example 4, the results were 0.32 for Comparative Example 4 and 0.37 for Example 4. Similarly, as a result of measuring the absorbance at 250 nm of the diluted broths of Example 5 and Comparative Example 5, the results were 0.33 for Comparative Example 5 and 0.39 for Example 5. Thus, in Examples 4 and 5, it was confirmed from the absorbance that the amount of inosinic acid extracted increased even when a soup stock material containing irico and kelp was used and irradiated with microwaves.

さらに、浸漬液の外部温度と内部温度との温度差が同じ10℃である実施例5と実施例6とを比べると、浸漬液の内部温度が20℃と高い実施例5のほうが、マイクロ波を照射することで抽出されたグルタミン酸の増加率が高くなった。このことから、浸漬液の内部温度を20℃まで高くしても、マイクロ波照射によるグルタミン酸の抽出効率の向上は維持されることがわかった。なお、図示していないが、浸漬液の内部温度を25℃を超える温度とした場合、雑味などが多く抽出されてしまうため、浸漬液の内部温度は20℃以下とすることが好ましい。また、浸漬液の内部温度を0℃を下回る温度とした場合、旨味成分の抽出に長時間かかってしまうため、浸漬液の内部温度は0℃以上とすることが好ましい。 Furthermore, when comparing Example 5 and Example 6, in which the temperature difference between the external temperature and internal temperature of the immersion liquid is the same, 10°C, Example 5, in which the internal temperature of the immersion liquid is 20°C, is more The increase rate of extracted glutamic acid was increased by irradiation. From this, it was found that even if the internal temperature of the immersion liquid was raised to 20° C., the improvement in the extraction efficiency of glutamic acid by microwave irradiation was maintained. Although not shown, if the internal temperature of the immersion liquid exceeds 25°C, many unpleasant tastes will be extracted, so it is preferable that the internal temperature of the immersion liquid be 20°C or lower. Furthermore, if the internal temperature of the dipping liquid is set to below 0°C, it will take a long time to extract the flavor components, so it is preferable that the internal temperature of the dipping liquid is 0°C or higher.

さらに、浸漬液の内部温度を同じ20℃とした実施例5と実施例4とを比べると、浸漬液の内部温度と外部温度との温度差が10℃と小さい実施例5のほうが、マイクロ波を照射することで抽出されたグルタミン酸の増加率が高くなった。このことから、浸漬液の内部温度と外部温度との温度差を15℃を超える範囲まで大きくしてしまうと、マイクロ波照射によるグルタミン酸の抽出効率が低くなってしまうことがわかった。なお、図示していないが、浸漬液の内部温度と外部温度との温度差を5℃を下回る温度とした場合も、マイクロ波照射によるグルタミン酸の抽出効率が低くなることがわかった。
加えて、マイクロ波を照射して旨味成分を抽出した実施例4~6では、マイクロ波の照射を行わず旨味成分を抽出した比較例4~6と比べて、外気と接する面の温度が低いため、出汁が微生物により傷んでしまうことを抑制することもできる。
Furthermore, when comparing Example 5 and Example 4 in which the internal temperature of the immersion liquid was the same at 20°C, it was found that Example 5 had a smaller temperature difference of 10°C between the internal temperature of the immersion liquid and the external temperature. The increase rate of extracted glutamic acid was increased by irradiation. From this, it was found that if the temperature difference between the internal temperature and external temperature of the immersion liquid was increased to a range exceeding 15° C., the extraction efficiency of glutamic acid by microwave irradiation would be reduced. Although not shown, it was found that the extraction efficiency of glutamic acid by microwave irradiation was also lowered when the temperature difference between the internal temperature and external temperature of the immersion liquid was less than 5°C.
In addition, in Examples 4 to 6, in which umami components were extracted by irradiating microwaves, the temperature of the surface in contact with the outside air was lower than in Comparative Examples 4 to 6, in which umami components were extracted without irradiating microwaves. Therefore, it is possible to prevent the soup stock from being spoiled by microorganisms.

また、希釈した実施例4,5および比較例4,5の出汁について、220~320nmにおける吸光度を測定し光吸収スペクトルの作成も行った。図6は、実施例4および比較例4において測定した光吸収スペクトルを示すグラフであり、図7は、実施例5および比較例5において測定した光吸収スペクトルを示すグラフである。図6に示すように、実施例4では、比較例4と比べて、240~280nmの波長域における吸光度が高く、出汁原料からの核酸、アミノ酸、水溶性高分子などの溶出が多くなったとの結果が得られた。同様に、図7に示すように、実施例5でも、比較例5と比べて、240~280nmの波長域における吸光度が高く、出汁原料からの核酸、アミノ酸、水溶性高分子などの溶出が多くなったとの結果が得られた。 In addition, the absorbance of the diluted soup stock of Examples 4 and 5 and Comparative Examples 4 and 5 was measured at 220 to 320 nm to create a light absorption spectrum. FIG. 6 is a graph showing the light absorption spectra measured in Example 4 and Comparative Example 4, and FIG. 7 is a graph showing the light absorption spectra measured in Example 5 and Comparative Example 5. As shown in Figure 6, in Example 4, the absorbance in the wavelength range of 240 to 280 nm was higher than in Comparative Example 4, indicating that more nucleic acids, amino acids, water-soluble polymers, etc. were eluted from the stock raw material. The results were obtained. Similarly, as shown in FIG. 7, in Example 5, the absorbance in the wavelength range of 240 to 280 nm was higher than in Comparative Example 5, and more nucleic acids, amino acids, water-soluble polymers, etc. were eluted from the soup stock raw material. The result was obtained.

さらに、標準抽出条件で出汁を抽出した実施例3と比べると、内部温度が20℃と高い実施例5ではグルタミン酸濃度の上昇率が281%増と実施例3と同様に高くなったのに対して、内部温度と外部温度との温度差を15℃と大きくした実施例4では、グルタミン酸濃度の上昇率が70%増と低くなっており、このことから、内部温度と外部温度との温度差を10℃以下とすることでグルタミン酸の抽出がより促進されることがわかった。また、実施例3と比べて、実施例5では、外部温度および内部温度がそれぞれ5℃ずつ高いため、グルタミン酸の抽出効率は上昇したが、光吸収スペクトルを見ると240nm以下の吸光度も高くなっており、雑味などの成分の溶出も促進されたものと考えられる。このような結果から、実施例3の標準抽出条件のほうが、実施例4,5の抽出条件よりも、雑味を増やさないで旨味成分を抽出できることがわかった。 Furthermore, compared to Example 3, in which the stock was extracted under standard extraction conditions, in Example 5, where the internal temperature was as high as 20°C, the rate of increase in glutamic acid concentration increased by 281%, which was as high as in Example 3. In Example 4, in which the temperature difference between the internal temperature and the external temperature was as large as 15°C, the rate of increase in the glutamic acid concentration was as low as 70%. It was found that the extraction of glutamic acid was further promoted by keeping the temperature below 10°C. Furthermore, compared to Example 3, in Example 5, the external temperature and internal temperature were each 5°C higher, so the extraction efficiency of glutamic acid increased, but looking at the light absorption spectrum, the absorbance at 240 nm or less also increased. It is thought that the elution of components such as off-flavors was also promoted. From these results, it was found that the standard extraction conditions of Example 3 were better able to extract flavor components without increasing the undesirable taste than the extraction conditions of Examples 4 and 5.

(実施例7~9)
実施例7~9では、抽出時間を変えてマイクロ波照射を行ったこと以外は、実施例3と同じ抽出条件で出汁の製造を行った。具体的には、実施例7~9では、出汁原料としてイリコ4gおよび昆布4gを水道水400mlに浸漬させ、この浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、30分(実施例7)、2時間(実施例8)または4時間(実施例9)、マイクロ波を照射するとともに、冷却部10および第2ファン32による冷却を行った。また、比較例7~9として、出汁原料としてイリコ4gおよび昆布4gを水道水400mlに浸漬させ、この浸漬液にマイクロ波を照射せずに、外部温度15℃の環境で30分(比較例7)、2時間(比較例8)、または4時間(比較例9)静置した。さらに、参考例3として、出汁原料としてイリコ4gおよび昆布4gを水道水400mlに浸漬させて、この浸漬液を沸騰後5分間保持し旨味成分を抽出した(以下、熱水抽出ともいう。)。
(Examples 7 to 9)
In Examples 7 to 9, soup stock was produced under the same extraction conditions as in Example 3, except that the extraction time was changed and microwave irradiation was performed. Specifically, in Examples 7 to 9, 4 g of iriko and 4 g of kelp as stock ingredients were soaked in 400 ml of tap water, and the internal temperature of the soaking liquid was 15°C, and the external temperature of the soaking liquid was 5°C. Microwave irradiation was performed for 30 minutes (Example 7), 2 hours (Example 8), or 4 hours (Example 9), and cooling was performed using the cooling unit 10 and the second fan 32 so that In addition, as Comparative Examples 7 to 9, 4 g of iriko and 4 g of kelp as stock ingredients were soaked in 400 ml of tap water, and the soaking liquid was not irradiated with microwaves for 30 minutes in an environment with an external temperature of 15°C (Comparative Example 7 ), 2 hours (Comparative Example 8), or 4 hours (Comparative Example 9). Further, as Reference Example 3, 4 g of iris and 4 g of kelp as stock ingredients were soaked in 400 ml of tap water, and the soaked liquid was boiled and held for 5 minutes to extract the flavor components (hereinafter also referred to as hot water extraction).

そして、抽出開始から30分後、2時間後または4時間後に浸漬液を攪拌し、フィルタ濾過した後に9倍に希釈した浸漬液(出汁)について、グルタミン酸およびイノシン酸の濃度を測定した。下記表5に、抽出時間を30分とした実施例7および比較例7、抽出時間を2時間とした実施例8および比較例8、抽出時間を4時間とした実施例9および比較例9、および熱水抽出した参考例3における測定結果を示す。なお、下記表5においては、抽出条件として、抽出時間についても併せて記載している。
表5に示すように、マイクロ波照射を行って旨味成分を30分抽出した実施例7では、マイクロ波の照射を行わずに旨味成分を30分抽出した比較例7と比べて、旨味成分であるグルタミン酸の抽出量が73%上昇したことがわかった。また、マイクロ波の照射を行って旨味成分を2時間抽出した実施例8では、マイクロ波の照射を行わずに旨味成分を2時間抽出した比較例8と比べて、旨味成分であるグルタミン酸の抽出量が53%上昇したことがわかった。さらに、マイクロ波の照射を行って旨味成分を4時間抽出した実施例9では、マイクロ波の照射を行わずに旨味成分を4時間抽出した比較例9と比べて、旨味成分であるグルタミン酸の抽出量が258%上昇したことがわかった。
また、希釈した実施例7および比較例7の出汁について、イノシン酸が吸光する250nmにおける吸光度を測定した結果、比較例7では0.26、実施例7では0.25との結果が得られた。同様に、希釈した実施例9および比較例9の出汁について、イノシン酸が吸光する250nmにおける吸光度を測定した結果、比較例9では0.48、実施例9では0.52との結果が得られた。
これらのことから、マイクロ波照射によるグルタミン酸の抽出では、少なくとも抽出時間が4時間まで抽出効率の向上が認められることがわかった。なお、実施例7~9および比較例7~9において、イノシン酸は、マイクロ波を照射したほうが、マイクロ波を照射しない場合よりも多く抽出されたが、その差は小さいものであった。
Then, 30 minutes, 2 hours, or 4 hours after the start of extraction, the immersion liquid was stirred, filtered, and then diluted 9 times (stock). The concentrations of glutamic acid and inosinic acid were measured. Table 5 below shows Example 7 and Comparative Example 7 where the extraction time was 30 minutes, Example 8 and Comparative Example 8 where the extraction time was 2 hours, Example 9 and Comparative Example 9 where the extraction time was 4 hours, The measurement results for Reference Example 3, which was extracted with hot water, are shown. In Table 5 below, extraction time is also listed as an extraction condition.
As shown in Table 5, in Example 7, in which the umami components were extracted for 30 minutes with microwave irradiation, compared to Comparative Example 7, in which the umami components were extracted for 30 minutes without microwave irradiation, the umami components were It was found that the amount of glutamic acid extracted increased by 73%. In addition, in Example 8, in which the umami flavor components were extracted for 2 hours by microwave irradiation, the extraction of glutamic acid, which is a umami flavor component, was more effective than in Comparative Example 8, in which the umami flavor components were extracted for 2 hours without microwave irradiation. It was found that the volume increased by 53%. Furthermore, in Example 9, in which umami components were extracted for 4 hours by microwave irradiation, the extraction of glutamic acid, which is an umami component, was more effective than in Comparative Example 9, in which umami components were extracted for 4 hours without microwave irradiation. It was found that the volume increased by 258%.
In addition, as a result of measuring the absorbance at 250 nm, where inosinic acid absorbs light, for the diluted soup stock of Example 7 and Comparative Example 7, the results were 0.26 for Comparative Example 7 and 0.25 for Example 7. . Similarly, as a result of measuring the absorbance at 250 nm, where inosinic acid absorbs light, for the diluted soup stock of Example 9 and Comparative Example 9, the results were 0.48 for Comparative Example 9 and 0.52 for Example 9. Ta.
From these results, it was found that in extraction of glutamic acid by microwave irradiation, improvement in extraction efficiency was observed up to at least 4 hours of extraction time. In Examples 7 to 9 and Comparative Examples 7 to 9, more inosinic acid was extracted with microwave irradiation than with no microwave irradiation, but the difference was small.

また、希釈した実施例7,9、比較例7,9および参考例3の出汁について、220~320nmにおける吸光度を測定し光吸収スペクトルの作成も行った。ここで、図8(A)は、抽出時間を30分とした実施例7および比較例7における光吸収スペクトルを示し、図8(B)は、抽出時間を4時間とした実施例9および比較例9における光吸収スペクトルを示し、図8(C)は、熱水抽出した参考例3における光吸収スペクトルを示す。図8(A)に示すように、抽出時間を30分とした場合、マイクロ波を照射した実施例7では、マイクロ波を照射していない比較例7と比べて、220~320nmの波長域全体における吸光度が低く、出汁原料からの核酸、アミノ酸、水溶性高分子などの溶出が抑制されていることがわかった。一方、図8(B)に示すように、抽出時間を4時間とした場合、マイクロ波を照射した実施例9では、マイクロ波を照射していない比較例9と比べて、220~260nmの波長域全体における吸光度が高く、出汁原料からの核酸、アミノ酸、水溶性高分子などの溶出が多くなったとの結果が得られた。 In addition, the absorbance of the diluted broths of Examples 7 and 9, Comparative Examples 7 and 9, and Reference Example 3 was measured at 220 to 320 nm to create a light absorption spectrum. Here, FIG. 8(A) shows the light absorption spectra in Example 7 and Comparative Example 7 with an extraction time of 30 minutes, and FIG. 8(B) shows the optical absorption spectra of Example 9 and Comparative Example with an extraction time of 4 hours. The light absorption spectrum in Example 9 is shown, and FIG. 8(C) shows the light absorption spectrum in Reference Example 3 extracted with hot water. As shown in FIG. 8(A), when the extraction time was set to 30 minutes, in Example 7 where microwave irradiation was performed, compared to Comparative Example 7 where microwave irradiation was not performed, the entire wavelength range from 220 to 320 nm It was found that the absorbance was low, and the elution of nucleic acids, amino acids, water-soluble polymers, etc. from the stock raw material was suppressed. On the other hand, as shown in FIG. 8(B), when the extraction time was set to 4 hours, in Example 9 in which microwave irradiation was performed, the wavelength of 220 to 260 nm was higher than in Comparative Example 9 in which microwave irradiation was not performed. The results showed that the absorbance in the entire region was high, and that more nucleic acids, amino acids, water-soluble polymers, etc. were eluted from the stock raw materials.

また、実施例7と実施例9とを比較すると、抽出時間が4時間の実施例9では、抽出時間が30分の実施例7と比べて、220~280nmの波長域において吸光度が高くなった。これらのことから、抽出時間を長くすることで、旨味成分であるグルタミン酸およびイノシン酸の抽出量は増加する一方、雑味などの旨味成分以外の成分の溶出も増大することがわかった。さらに、実施例9と参考例3とを比べると、マイクロ波照射を4時間行った実施例9と、熱水抽出を行った参考例3とで、光吸収スペクトルは類似した形となり、マイクロ波照射を4時間行うことで、出汁原料からの旨味成分の抽出はほぼ完了すると考えられる。 Furthermore, when comparing Example 7 and Example 9, in Example 9 where the extraction time was 4 hours, the absorbance was higher in the wavelength range of 220 to 280 nm compared to Example 7 where the extraction time was 30 minutes. . From these results, it was found that by lengthening the extraction time, the amount of umami components glutamic acid and inosinic acid extracted increases, while the elution of components other than umami components such as off-taste also increases. Furthermore, when comparing Example 9 and Reference Example 3, the light absorption spectra of Example 9, in which microwave irradiation was performed for 4 hours, and Reference Example 3, in which hot water extraction was performed, were similar; It is thought that the extraction of flavor components from the stock ingredients is almost completed by performing irradiation for 4 hours.

(実施例10)
実施例10では、イリコに代えて、旨味調味料であるイノシン酸ナトリウムを添加してマイクロ波の照射を行ったこと以外は、実施例3と同じ抽出条件で出汁の製造を行った。具体的には、実施例10では、イノシン酸ナトリウムを100ppmとなるように水道水に添加した水溶液400mlに、昆布4gを浸漬させ、この浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。また、比較例10として、イノシン酸ナトリウムを100ppmとなるように水道水に添加した水溶液400mlに昆布4gを浸漬させた浸漬液を、外部温度15℃で1時間静置した。
(Example 10)
In Example 10, soup stock was produced under the same extraction conditions as in Example 3, except that sodium inosinate, which is an umami seasoning, was added instead of irico and microwave irradiation was performed. Specifically, in Example 10, 4 g of kelp was immersed in 400 ml of an aqueous solution in which 100 ppm of sodium inosinate was added to tap water. Microwave irradiation was performed for 1 hour, and cooling was performed using the cooling unit 10 and the second fan 32 so that the external temperature was 5°C. Further, as Comparative Example 10, an immersion solution in which 4 g of kelp was immersed in 400 ml of an aqueous solution in which sodium inosinate was added to tap water at 100 ppm was left standing at an external temperature of 15° C. for 1 hour.

そして、抽出開始から1時間後に浸漬液を攪拌し、フィルタ濾過した後に9倍に希釈した浸漬液(出汁)のグルタミン酸の濃度を測定した。下記表6に、実施例10および比較例10におけるグルタミン酸の濃度の測定結果を示す。
上記表6に示すように、マイクロ波照射を行って旨味成分を抽出した実施例10では、マイクロ波照射を行わずに旨味成分を抽出した比較例10と比べて、旨味成分であるグルタミン酸の抽出量が28%上昇した。このように、イリコの代わりにイノシン酸ナトリウムを添加した場合も、グルタミン酸の抽出量を増加させることができることがわかった。
また、希釈した実施例10および比較例10の出汁について250nmにおける吸光度を測定した結果、実施例10および比較例10でともに0.33となり、イノシン酸の濃度がほぼ同じであることがわかった。
Then, one hour after the start of extraction, the immersion liquid was stirred, filtered, and the concentration of glutamic acid in the 9-fold diluted immersion liquid (stock) was measured. Table 6 below shows the measurement results of glutamic acid concentration in Example 10 and Comparative Example 10.
As shown in Table 6 above, in Example 10, in which umami components were extracted by microwave irradiation, glutamic acid, which is an umami component, was extracted, compared to Comparative Example 10, in which umami components were extracted without microwave irradiation. Volume increased by 28%. Thus, it was found that the amount of glutamic acid extracted can also be increased when sodium inosinate is added instead of irico.
In addition, as a result of measuring the absorbance at 250 nm of the diluted soup stock of Example 10 and Comparative Example 10, it was found to be 0.33 in both Example 10 and Comparative Example 10, indicating that the concentration of inosinic acid was almost the same.

さらに、希釈した実施例10および比較例10の出汁について、220~320nmにおける吸光度を測定し光吸収スペクトルの作成も行った。図9は、実施例10および比較例10において測定した光吸収スペクトルを示すグラフである。図9に示すように、マイクロ波照射を行って旨味成分を抽出した実施例10では、マイクロ波照射を行わずに旨味成分を抽出した比較例10と比べて、225nmよりも短波長域での吸光度が低くなった。イノシン酸の溶解量がほぼ変化していないことを加味すると、実施例10では、比較例10と比べて、出汁原料からの雑味などの旨味成分以外の成分の溶出が抑制されていることがわかった。 Furthermore, the absorbance of the diluted soup stock of Example 10 and Comparative Example 10 was measured at 220 to 320 nm to create a light absorption spectrum. FIG. 9 is a graph showing light absorption spectra measured in Example 10 and Comparative Example 10. As shown in FIG. 9, in Example 10, in which the umami components were extracted by microwave irradiation, compared to Comparative Example 10, in which the umami components were extracted without microwave irradiation, the Absorbance has decreased. Considering that the dissolved amount of inosinic acid remained almost unchanged, it can be seen that in Example 10, compared to Comparative Example 10, the elution of components other than umami components such as miscellaneous flavors from the stock raw materials was suppressed. Understood.

このように、グルタミン酸濃度の測定結果および光吸収スペクトルの結果から、イリコの代わりにイノシン酸を添加した場合も、イリコを添加した実施例3と同様に、マイクロ波照射を行うことで、グルタミン酸の抽出を促進することができるとともに、雑味などの成分の溶出を抑制することができる効果があるものと考えられる。 In this way, from the measurement results of glutamic acid concentration and the results of the optical absorption spectrum, even when inosinic acid is added instead of irico, glutamic acid can be reduced by microwave irradiation in the same way as in Example 3 in which irico was added. It is thought that this has the effect of not only promoting extraction but also suppressing the elution of components such as off-flavors.

(実施例11~13)
実施例11~13では、使用する出汁原料の量を変えたこと以外は、実施例3と同じ抽出条件で出汁の製造を行った。具体的には、上述した実施例3では、出汁原料としてイリコ4gおよび昆布4gを水道水400mlに浸漬させて出汁の製造を行った。これに対し、実施例11では、出汁原料としてイリコ5gおよび昆布3gを水道水400mlに浸漬させた浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。また、実施例12では、出汁原料としてイリコ3gおよび昆布5gを水道水400mlに浸漬させた浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。さらに、実施例13では、出汁原料としてイリコ2gおよび昆布6gを水道水400mlに浸漬させた浸漬液に、浸漬液の内部温度が15℃、浸漬液の外部温度が5℃となるように、1時間、マイクロ波を照射するとともに冷却部10および第2ファン32による冷却を行った。なお、比較例11としてイリコ5gおよび昆布3gを水道水400mlに浸漬させた浸漬液を、比較例12としてイリコ3gおよび昆布5gを水道水400mlに浸漬させた浸漬液を、比較例13として出汁原料としてイリコ2gおよび昆布6gを水道水400mlに浸漬させた浸漬液を、それぞれ外部温度15℃の環境で1時間静置した(この場合、浸漬液の内部温度も15℃となる)。
(Examples 11 to 13)
In Examples 11 to 13, soup stock was produced under the same extraction conditions as in Example 3, except that the amount of stock raw materials used was changed. Specifically, in the above-mentioned Example 3, 4 g of Iriko and 4 g of kelp were soaked in 400 ml of tap water to produce the soup stock. On the other hand, in Example 11, 5 g of iriko and 3 g of kelp as stock ingredients were soaked in 400 ml of tap water, and the internal temperature of the soaking liquid was 15°C, and the external temperature of the soaking liquid was 5°C. Microwave irradiation was performed for 1 hour, and cooling was performed using the cooling unit 10 and the second fan 32. In addition, in Example 12, 3 g of iriko and 5 g of kelp as stock ingredients were immersed in 400 ml of tap water, and 1 hour was added so that the internal temperature of the immersion liquid was 15°C and the external temperature of the immersion liquid was 5°C. Microwave irradiation was performed for a certain period of time, and cooling was performed using the cooling unit 10 and the second fan 32. Furthermore, in Example 13, 2 g of iriko and 6 g of kelp as stock ingredients were immersed in 400 ml of tap water. Microwave irradiation was performed for a certain period of time, and cooling was performed using the cooling unit 10 and the second fan 32. In addition, Comparative Example 11 is an immersion liquid in which 5 g of iris and 3 g of kelp are immersed in 400 ml of tap water, Comparative Example 12 is an immersion liquid in which 3 g of iris and 5 g of kelp are immersed in 400 ml of tap water, and Comparative Example 13 is a dipping liquid in which 3 g of iris and 5 g of kelp are immersed in 400 ml of tap water. An immersion solution in which 2 g of Iriko and 6 g of kelp were immersed in 400 ml of tap water was left standing for 1 hour in an environment with an external temperature of 15°C (in this case, the internal temperature of the immersion solution was also 15°C).

そして、抽出開始から1時間後に浸漬液を攪拌し、フィルタ濾過した後に9倍に希釈したグルタミン酸およびイノシン酸の濃度を測定した。下記表7に、実施例11~13および比較例11~13におけるグルタミン酸およびイノシン酸の濃度の測定結果を示す。
上記表7に示すように、マイクロ波照射を行って旨味成分を抽出した実施例11~13では、マイクロ波照射を行わずに旨味成分を抽出した比較例11~13と比べて、旨味成分であるグルタミン酸の抽出量がそれぞれ20%、16%、41%上昇した。また、イノシン酸の抽出量も、マイクロ波照射を行って旨味成分を抽出した実施例11~13では、マイクロ波照射を行わずに旨味成分を抽出した比較例11~13と比べて、それぞれ8%、0%、18%上昇した。このように、イリコと昆布の割合を、イリコの重量/昆布の重量で2未満としている場合には、マイクロ波照射を行うことで、グルタミン酸およびイノシン酸の抽出量を増加させることができることがわかった。
Then, one hour after the start of extraction, the immersion liquid was stirred, filtered, and then the concentrations of glutamic acid and inosinic acid diluted nine times were measured. Table 7 below shows the measurement results of the concentrations of glutamic acid and inosinic acid in Examples 11 to 13 and Comparative Examples 11 to 13.
As shown in Table 7 above, in Examples 11 to 13 in which umami components were extracted by microwave irradiation, compared to Comparative Examples 11 to 13 in which umami components were extracted without microwave irradiation, the umami components were The amount of glutamic acid extracted increased by 20%, 16%, and 41%, respectively. Furthermore, the amount of inosinic acid extracted was 8% in Examples 11 to 13, in which umami components were extracted by microwave irradiation, compared to Comparative Examples 11 to 13, in which umami components were extracted without microwave irradiation. %, 0%, 18% increase. In this way, it was found that when the ratio of irico to kelp is less than 2 (weight of irico/weight of kelp), the amount of glutamic acid and inosinic acid extracted can be increased by performing microwave irradiation. Ta.

以上のように、本実施形態に係る出汁の製造方法では、出汁原料を液体に浸漬させて旨味成分を抽出する場合に、出汁原料を浸漬させた浸漬液にマイクロ波を照射することで、比較的低温であっても、30分から4時間という短時間で、旨味成分をより高い抽出効率で抽出することが可能となる。特に、浸漬液の内部温度よりも浸漬液の外部温度が低くなるように、より好ましくは、浸漬液の内部温度を0℃より高く、かつ、25℃よりも低い範囲内とし、浸漬液の外部温度を-5℃以上、かつ、20℃よりも低い範囲内とし、浸漬液の内部温度と外部温度との差を5℃より高く、かつ、20℃よりも低い範囲となるようにして、マイクロ波の照射と同時に浸漬液の冷却も行うことで、旨味成分の抽出をより効率的に行うことが可能となる。また、上述した実施例1,3のように、本実施形態に係る出汁の製造方法では、昆布類を出汁原料として用いた場合、旨味成分であるグルタミン酸の抽出効率を高めることができるとともに、昆布類に含まれる雑味などの成分の溶出を抑制することができた。これは、昆布類に含まれる成分のうち、グルタミン酸についてはマイクロ波の吸収効率が相対的に高く、雑味などの成分(たとえば多糖など)ではマイクロ波の吸収効率が相対的に低いため、低温下においてもグルタミン酸の溶出が促進される一方、雑味などの旨味成分以外の成分は低温下であるため溶出が抑制されたためと考える。また、本実施形態では、節類または煮干しにマイクロ波を照射した場合に、グルタミン酸と比べると少ないが、イノシン酸の抽出効率の向上も確認できた。 As described above, in the method for producing dashi according to the present embodiment, when extracting flavor components by immersing the dashi raw material in a liquid, the immersion liquid in which the dashi raw material is immersed is irradiated with microwaves. Even at extremely low temperatures, it is possible to extract umami components with higher extraction efficiency in a short time of 30 minutes to 4 hours. More preferably, the internal temperature of the immersion liquid is higher than 0°C and lower than 25°C, so that the external temperature of the immersion liquid is lower than the internal temperature of the immersion liquid. The temperature is set within a range of -5°C or higher and lower than 20°C, and the difference between the internal temperature and external temperature of the immersion liquid is set within a range of higher than 5°C and lower than 20°C. By cooling the soaking liquid at the same time as the wave irradiation, it becomes possible to extract the flavor components more efficiently. Further, as in Examples 1 and 3 described above, in the method for producing dashi according to the present embodiment, when kelp is used as a stock raw material, the extraction efficiency of glutamic acid, which is a flavor component, can be increased, and the kelp It was possible to suppress the elution of components such as off-flavors contained in the products. This is because among the components contained in kelp, glutamic acid has a relatively high microwave absorption efficiency, while components such as off-flavors (such as polysaccharides) have a relatively low microwave absorption efficiency. This is thought to be because the elution of glutamic acid is promoted even at lower temperatures, while the elution of components other than umami components such as miscellaneous tastes is suppressed due to the low temperature. Furthermore, in the present embodiment, when the joints or dried sardines were irradiated with microwaves, it was also confirmed that the extraction efficiency of inosinic acid was improved, although it was less than that of glutamic acid.

また、本実施形態では、出汁原料を昆布類、および、節類または煮干しを合わせて出汁を取ることで、昆布類単体で出汁を取る場合と比べて、グルタミン酸の抽出効率をより高くすることができた。特に、節類または煮干しと昆布類との割合(節類または煮干しの重量/昆布類の重量)を2未満とすることで、旨味成分の抽出をより効率的に行うことができた。これらのことから、イノシン酸はマイクロ波照射によるグルタミン酸の抽出を高める効果、あるいは、昆布からのグルタミン酸以外の成分の溶出を抑制する効果があるものと考えられ、グルタミン酸を多く含む出汁原料と、イノシン酸を多く含む出汁原料とを合わせて出汁を取ることで、グルタミン酸の抽出効率や雑味などの抑制効果を相乗的に高めることができると考えられる。また、上述した実施例では、出汁原料として、昆布類、および、節類または煮干しを用いたが、椎茸が主に含む旨味成分であるグアニル酸は、節類または煮干しに多く含まれるイノシン酸と同じ核酸であり、マイクロ波の吸収効率が同程度であるため、イノシン酸と同様に、マイクロ波を照射した場合にグアニル酸の抽出効率の向上も得られるものと考えられる。 In addition, in this embodiment, by making dashi by combining kelp and knotweed or dried sardines as the dashi raw materials, the extraction efficiency of glutamic acid can be made higher than when making dashi from kelp alone. was completed. In particular, by setting the ratio of knots or dried sardines to kelp (weight of knots or dried sardines/weight of kelp) to be less than 2, the umami components could be extracted more efficiently. These results suggest that inosinic acid has the effect of increasing the extraction of glutamic acid by microwave irradiation or suppressing the elution of components other than glutamic acid from kelp. It is thought that by combining dashi stock with acid-rich stock ingredients, it is possible to synergistically increase the extraction efficiency of glutamic acid and the suppressing effect on off-flavors. In addition, in the above-mentioned examples, kelp and dried dried sardines or dried sardines were used as dashi raw materials, but guanylic acid, which is the umami component mainly contained in shiitake mushrooms, is derived from inosine, which is abundantly contained in dried sardines or dried sardines. Since it is the same nucleic acid as acid and has the same microwave absorption efficiency, it is thought that the extraction efficiency of guanylic acid can also be improved when irradiated with microwaves, similar to inosinic acid.

以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。 Although preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the description of the above embodiments. Various changes and improvements can be made to the embodiments described above, and forms with such changes and improvements are also included within the technical scope of the present invention.

1…マイクロ波熟成装置
10…冷却部
11…冷却器
12…第1ファン
13…冷却室
20…マイクロ波発振部
21…ケーブル
30…マイクロ波熟成部
31…照射口
32…第2ファン
33…熟成室
34…熟成室扉
35…第1微小開口
36…第2微小開口
37…網皿
38…チョーク構造
39…照明部
40…操作部
50…制御部
60…UVランプ

DESCRIPTION OF SYMBOLS 1... Microwave aging device 10... Cooling part 11... Cooler 12... First fan 13... Cooling chamber 20... Microwave oscillation part 21... Cable 30... Microwave aging part 31... Irradiation port 32... Second fan 33... Ripening Chamber 34... Aging chamber door 35... First minute opening 36... Second minute opening 37... Net plate 38... Chalk structure 39... Lighting section 40... Operation section 50... Control section 60... UV lamp

Claims (9)

出汁原料を40℃以下の液体に浸漬させて旨味成分を抽出する出汁の製造方法において、前記出汁原料を前記液体に浸漬させた浸漬液にマイクロ波を一定時間照射することにより前記マイクロ波を照射しない場合と比べ短時間かつ高効率に旨み成分を抽出することを特徴とする、出汁の製造方法。 In a method for producing soup stock in which the soup stock raw material is immersed in a liquid at 40°C or lower to extract flavor components, the microwave is irradiated by irradiating the dipping liquid in which the soup stock raw material is immersed in the liquid for a certain period of time. A method for producing dashi stock, which is characterized by extracting flavor components in a shorter time and with higher efficiency than when not using it. 前記浸漬液の内部温度よりも前記浸漬液の外部温度が低くなるように、前記マイクロ波の照射と同時に前記浸漬液の冷却も行う、請求項1に記載の出汁の製造方法。 The method for producing soup stock according to claim 1, wherein the immersion liquid is cooled at the same time as the microwave irradiation so that the external temperature of the immersion liquid is lower than the internal temperature of the immersion liquid. 前記浸漬液の内部温度が、0℃より高く、かつ、25℃よりも低い範囲となるように、前記マイクロ波照射を行う、請求項1または2に記載の出汁の製造方法。 The method for producing soup stock according to claim 1 or 2, wherein the microwave irradiation is performed so that the internal temperature of the immersion liquid is higher than 0°C and lower than 25°C. 前記浸漬液の外部温度が、-5℃以上、かつ、20℃よりも低い範囲となるように、前記マイクロ波照射を行う、請求項1または2に記載の出汁の製造方法。 The method for producing soup stock according to claim 1 or 2, wherein the microwave irradiation is performed so that the external temperature of the immersion liquid is in a range of -5°C or higher and lower than 20°C. 前記浸漬液の内部温度と外部温度との差が、5℃より高く、かつ、20℃よりも低い範囲となるように、前記マイクロ波の照射と同時に前記浸漬液の冷却も行う、請求項2に記載の出汁の製造方法。 2. The immersion liquid is cooled at the same time as the microwave irradiation so that the difference between the internal temperature and the external temperature of the immersion liquid is higher than 5°C and lower than 20°C. The method for producing soup stock described in . 前記マイクロ波の照射を30分以上、かつ、4時間以下で行う、請求項1または2に記載の出汁の製造方法。 The method for producing soup stock according to claim 1 or 2, wherein the microwave irradiation is performed for 30 minutes or more and 4 hours or less. 前記出汁原料が、昆布類、および、節類または煮干しを合わせた出汁原料である、請求項1または2に記載の出汁の製造方法。 The method for producing dashi according to claim 1 or 2, wherein the dashi stock raw material is a dashi stock raw material that is a combination of kelp, knotweed, or dried sardines. 前記出汁原料における前記節類または煮干しと昆布類との割合(前記節類または煮干しの重量/昆布類の重量)が2未満である、請求項7に記載の出汁の製造方法。 The method for producing soup stock according to claim 7, wherein the ratio of the knots or dried sardines to kelp (weight of the knots or dried sardines/weight of kelp) in the stock raw material is less than 2. 昆布類に旨味調味料を添加した前記出汁原料を前記液体に浸漬させた浸漬液にマイクロ波を一定時間照射する、請求項1または2に記載の出汁の製造方法。


The method for producing dashi soup according to claim 1 or 2, wherein a dipping liquid in which the dashi raw material prepared by adding a flavor seasoning to kelp is immersed in the liquid is irradiated with microwaves for a certain period of time.


JP2022066744A 2022-04-14 2022-04-14 Production method of broth Pending JP2023157076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022066744A JP2023157076A (en) 2022-04-14 2022-04-14 Production method of broth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022066744A JP2023157076A (en) 2022-04-14 2022-04-14 Production method of broth

Publications (1)

Publication Number Publication Date
JP2023157076A true JP2023157076A (en) 2023-10-26

Family

ID=88469541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022066744A Pending JP2023157076A (en) 2022-04-14 2022-04-14 Production method of broth

Country Status (1)

Country Link
JP (1) JP2023157076A (en)

Similar Documents

Publication Publication Date Title
JP7202310B2 (en) Microwave aging apparatus and microwave aging method
Lee et al. Conventional and emerging combination technologies for food processing
JP7029131B2 (en) Rapid uniform thawing method for frozen agricultural and marine products and processed foods
CN105660812B (en) A kind of hot air combined flexible sterilization method to instant surimi product of radio frequency-
JP2023157076A (en) Production method of broth
JP2002090052A (en) Method of low temperature cooking and apparatus thereof
JP2007215408A (en) Method for processing food
JP7489227B2 (en) Microwave Aging Equipment
RU2083140C1 (en) Method for treating thin layer of liquid by radiation
JP7431653B2 (en) Microwave ripening device and microwave ripening method
JP7219149B2 (en) Microwave aging equipment
JP7488100B2 (en) Microwave maturation device and microwave maturation method
KR101936020B1 (en) Sterilizing and packing method for cold and room temperature storage of rectums and abomasums products
Kardile et al. Electric and magnetic field based processing technologies for food
KR200313704Y1 (en) A cold defrosting apparatus of frozen food
SU1745190A1 (en) Method for pasteurization of liquid foods
JP2022070420A (en) Microwave aging method and microwave aging device
Vicente Novel technologies for the thermal processing of foods
Kour et al. Microwave and Radio frequency processing
RU2681128C1 (en) Method of heat treatment of food and device for implementation thereof
KR100835309B1 (en) Apparatus for food maturing using millimeter wave
JP2005058150A (en) Food thawing apparatus
Dubinski Quality analysis of ultrasonically dried strawberry and comparison to conventional drying methods
JP2002218905A (en) Frozen food and method for producing the same
KR20040088317A (en) Processing method of seasoned fried soy bean curd product and processed food dried by microwave.

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220415