JP2023155130A - Method and dev for detecting abnormality of received signal - Google Patents
Method and dev for detecting abnormality of received signal Download PDFInfo
- Publication number
- JP2023155130A JP2023155130A JP2022188034A JP2022188034A JP2023155130A JP 2023155130 A JP2023155130 A JP 2023155130A JP 2022188034 A JP2022188034 A JP 2022188034A JP 2022188034 A JP2022188034 A JP 2022188034A JP 2023155130 A JP2023155130 A JP 2023155130A
- Authority
- JP
- Japan
- Prior art keywords
- gnss
- satellite
- abnormality
- transmission time
- satellites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 148
- 238000000034 method Methods 0.000 title claims description 71
- 230000005540 biological transmission Effects 0.000 claims description 106
- 230000002159 abnormal effect Effects 0.000 claims description 56
- 238000001514 detection method Methods 0.000 description 31
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
この発明は、GNSS(Global Navigation Satellite System の略;全球測位衛星システム)における受信信号の異常を検出する技術に関する。 The present invention relates to a technique for detecting abnormalities in received signals in GNSS (Global Navigation Satellite System).
従来、慣性航法装置とGNSS測位システムを用いて移動体の位置を計測する装置が知られている(特許文献1参照)。また、GNSSにおける受信信号の異常を検出する技術として、GPS(Global Positioning System,Global Positioning Satellite の略;全地球測位システム)衛星からの受信信号がマルチパスの影響を受けた信号であるか否かを判定する装置が知られている(特許文献2参照)。さらに、GNSSによる衛星測位が途切れた後にスプーフィングを検出する装置が知られている(特許文献3参照)。 BACKGROUND ART Devices that measure the position of a moving object using an inertial navigation device and a GNSS positioning system are conventionally known (see Patent Document 1). In addition, as a technology for detecting anomalies in received signals in GNSS, it is possible to detect whether or not received signals from GPS (Global Positioning System, Global Positioning Satellite) satellites are affected by multipath. There is a known device for determining (see Patent Document 2). Further, a device is known that detects spoofing after satellite positioning by GNSS is interrupted (see Patent Document 3).
特許文献2の装置は、各GPS衛星からの受信信号の位相差に基づいて各GPS衛星からの受信信号がマルチパスの影響を受けた信号であるか否かを各々判定している一方で、各GPS衛星からの受信信号の到来方向が異常であるか否かは判定していない。 The device of Patent Document 2 determines whether the received signal from each GPS satellite is a signal affected by multipath based on the phase difference of the received signal from each GPS satellite, It is not determined whether the direction of arrival of the received signal from each GPS satellite is abnormal.
そこでこの発明は、GNSSにおける受信信号の到来方向の異常を含む受信信号の異常を検出することが可能な、受信信号の異常の検出方法および検出装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method and apparatus for detecting an abnormality in a received signal, which can detect an abnormality in a received signal including an abnormality in the direction of arrival of a received signal in GNSS.
上記課題を解決するために、この発明に係る受信信号の異常の検出方法は、複数の衛星から送信されるGNSS信号を複数のアンテナを介して受信して、前記GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との比較に基づいて前記GNSS信号の前記送信時刻が正常であるか否かを判定するとともに、前記GNSS信号を送信した前記衛星から前記複数のアンテナ各々までの行路の差を表す行路差指標に基づいて前記GNSS信号の到来方向が正常であるか否かを判定する、ことを特徴とする。 In order to solve the above problems, a method for detecting an abnormality in a received signal according to the present invention receives GNSS signals transmitted from a plurality of satellites via a plurality of antennas, and detects the abnormality contained in the GNSS signal. It is determined whether the transmission time of the GNSS signal is normal based on a comparison between the transmission time of the GNSS signal and a predetermined reference transmission time, and each of the plurality of antennas is determined from the satellite that transmitted the GNSS signal. It is characterized in that it is determined whether or not the direction of arrival of the GNSS signal is normal based on a path difference index representing a difference in path up to.
この発明に係る受信信号の異常の検出方法は、前記GNSS信号を送信した前記衛星の擬似距離と所定の基準衛星の擬似距離との比較に基づいて前記衛星の前記擬似距離が正常であるか否かをさらに判定する、ようにしてもよい。 The method for detecting an abnormality in a received signal according to the present invention includes determining whether the pseudorange of the satellite is normal based on a comparison between the pseudorange of the satellite that transmitted the GNSS signal and the pseudorange of a predetermined reference satellite. It may also be possible to further determine whether the
この発明に係る受信信号の異常の検出方法は、前記GNSS信号を送信した前記衛星についての前記基準送信時刻が、過去に前記衛星から送信されたGNSS信号に含まれていた送信時刻である、ようにしてもよい。 The method for detecting an abnormality in a received signal according to the present invention is such that the reference transmission time for the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from the satellite in the past. You can also do this.
この発明に係る受信信号の異常の検出方法は、前記GNSS信号を送信した前記衛星についての前記基準送信時刻が、他の衛星から送信されるGNSS信号に含まれている送信時刻である、ようにしてもよい。 The method for detecting an abnormality in a received signal according to the present invention is such that the reference transmission time of the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from another satellite. It's okay.
この発明に係る受信信号の異常の検出方法は、正常でないと判定された衛星についての正常でない状態を所定の時間だけ維持する、ようにしてもよい。 The method for detecting an abnormality in a received signal according to the present invention may be such that the abnormal state of a satellite determined to be abnormal is maintained for a predetermined period of time.
この発明に係る受信信号の異常の検出方法は、正常でないと判定された衛星の数に応じて、前記正常でないと判定された前記衛星と周波数帯が異なる衛星の受信チャネル割り当て数を変化させる、ようにしてもよい。 The method for detecting an abnormality in a received signal according to the present invention includes changing the number of reception channels allocated to satellites having a different frequency band from the satellites determined to be abnormal, depending on the number of satellites determined to be abnormal. You can do it like this.
この発明に係る受信信号の異常の検出方法は、前記衛星の種類ごとの前記行路差指標に基づいて前記GNSS信号の到来方向が正常であるか否かを判定する、ようにしてもよい。 The method for detecting an abnormality in a received signal according to the present invention may include determining whether the direction of arrival of the GNSS signal is normal based on the path difference index for each type of satellite.
また、この発明に係る受信信号の異常の検出装置は、複数の衛星から送信されるGNSS信号を複数のアンテナを介して受信する受信部と、前記GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との比較に基づいて前記GNSS信号の前記送信時刻が正常であるか否かを判定する送信時刻判定部と、前記GNSS信号を送信した前記衛星から前記複数のアンテナ各々までの行路の差を表す行路差指標に基づいて前記GNSS信号の到来方向が正常であるか否かを判定する行路差判定部と、測位情報を計算する測位部と、を有し、前記GNSS信号の前記送信時刻が正常であるか否かの判定結果と前記GNSS信号の前記到来方向が正常であるか否かの判定結果とに基づいて前記測位部による前記測位情報の計算処理で使用する衛星を決定する、ことを特徴とする。 Further, the receiving signal abnormality detection device according to the present invention includes a receiving unit that receives GNSS signals transmitted from a plurality of satellites via a plurality of antennas; a transmission time determination unit that determines whether the transmission time of the GNSS signal is normal based on a comparison between the time and a predetermined reference transmission time; and each of the plurality of antennas from the satellite that transmitted the GNSS signal. a path difference determination unit that determines whether the direction of arrival of the GNSS signal is normal based on a path difference index representing a difference in path to the GNSS signal; and a positioning unit that calculates positioning information; Used in calculation processing of the positioning information by the positioning unit based on the determination result of whether the transmission time of the signal is normal and the determination result of whether the direction of arrival of the GNSS signal is normal. It is characterized by determining the satellite.
この発明に係る受信信号の異常の検出装置は、前記GNSS信号を送信した前記衛星の擬似距離と所定の基準衛星の擬似距離との比較に基づいて前記衛星の前記擬似距離が正常であるか否かを判定する擬似距離判定部をさらに有し、前記GNSS信号の前記送信時刻が正常であるか否かの判定結果と前記GNSS信号の前記到来方向が正常であるか否かの判定結果と前記衛星の前記擬似距離が正常であるか否かの判定結果とに基づいて前記測位部による前記測位情報の計算処理で使用する衛星を決定する、ようにしてもよい。 The reception signal abnormality detection device according to the present invention determines whether the pseudorange of the satellite is normal based on a comparison between the pseudorange of the satellite that transmitted the GNSS signal and the pseudorange of a predetermined reference satellite. further comprising a pseudorange determination unit that determines whether the transmission time of the GNSS signal is normal, the determination result of whether the direction of arrival of the GNSS signal is normal, and the The satellite to be used in the calculation process of the positioning information by the positioning unit may be determined based on a determination result of whether the pseudorange of the satellite is normal.
この発明に係る受信信号の異常の検出装置は、前記GNSS信号を送信した前記衛星についての前記基準送信時刻が、過去に前記衛星から送信されたGNSS信号に含まれていた送信時刻である、ようにしてもよい。 The reception signal abnormality detection device according to the present invention is such that the reference transmission time for the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from the satellite in the past. You can also do this.
この発明に係る受信信号の異常の検出装置は、前記GNSS信号を送信した前記衛星についての前記基準送信時刻が、他の衛星から送信されるGNSS信号に含まれている送信時刻である、ようにしてもよい。 The reception signal abnormality detection device according to the present invention is configured such that the reference transmission time of the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from another satellite. It's okay.
この発明に係る受信信号の異常の検出装置は、正常でないと判定された衛星についての正常でない状態が所定の時間だけ維持される、ようにしてもよい。 The reception signal abnormality detection device according to the present invention may be configured such that the abnormal state of a satellite determined to be abnormal is maintained for a predetermined period of time.
この発明に係る受信信号の異常の検出装置は、正常でないと判定された衛星の数に応じて、前記正常でないと判定された前記衛星と周波数帯が異なる衛星の受信チャネル割り当て数が変化する、ようにしてもよい。 In the reception signal abnormality detection device according to the present invention, the number of reception channels allocated to satellites having a different frequency band from the satellites determined to be abnormal changes depending on the number of satellites determined to be abnormal. You can do it like this.
この発明に係る受信信号の異常の検出装置は、前記衛星の種類ごとの前記行路差指標に基づいて前記GNSS信号の到来方向が正常であるか否かを判定する、ようにしてもよい。 The reception signal abnormality detection device according to the present invention may determine whether the direction of arrival of the GNSS signal is normal based on the path difference index for each type of satellite.
この発明に係る受信信号の異常の検出方法や受信信号の異常の検出装置によれば、GNSS信号の送信時刻の異常を検出するとともに衛星から複数のアンテナ各々までの行路差(GNSS信号の到来方向)の異常を検出するようにしているので、行路差の異常は一層確実にGNSS信号の異常を検出することができるものの複数の衛星から送信されるGNSS信号を対象として処理を行うので検知が遅れることも考えられる一方で送信時刻の異常は衛星ごとに独立に処理を行うので検知を即時的に行うことができ、送信時刻の判定処理と行路差の判定処理とを組み合わせることでGNSSにおける受信信号の異常を相互補完的に検出してGNSSにおける受信信号の異常の検出処理の信頼性を向上させることが可能となる。 According to the method for detecting an abnormality in a received signal and the apparatus for detecting an abnormality in a received signal according to the present invention, an abnormality in the transmission time of a GNSS signal can be detected, and the path difference (direction of arrival of the GNSS signal) from a satellite to each of a plurality of antennas can be detected. ), it is possible to more reliably detect abnormalities in the GNSS signal, but the detection is delayed because the processing is performed on GNSS signals transmitted from multiple satellites. On the other hand, abnormalities in transmission time can be detected immediately because they are processed independently for each satellite, and by combining the transmission time determination process and the path difference determination process, it is possible to detect abnormalities in the received signal in GNSS. It becomes possible to improve the reliability of the abnormality detection process of the received signal in GNSS by detecting abnormalities in a mutually complementary manner.
この発明に係る受信信号の異常の検出方法や受信信号の異常の検出装置によれば、衛星の擬似距離の異常をさらに検出するようにした場合には、擬似距離の判定処理をさらに組み合わせることでGNSSにおける受信信号の異常を一層確実に検出してGNSSにおける受信信号の異常の検出処理の信頼性を一層向上させることが可能となる。 According to the method for detecting an abnormality in a received signal and the apparatus for detecting an abnormality in a received signal according to the present invention, when an abnormality in a pseudorange of a satellite is further detected, a pseudorange determination process is further combined. It becomes possible to more reliably detect an abnormality in a received signal in GNSS and further improve the reliability of the abnormality detection process in a received signal in GNSS.
以下、この発明を図示の実施の形態に基づいて説明する。この実施の形態では、この発明に係る受信信号の異常の検出装置がGNSSコンパスに組み込まれる場合を例に挙げて説明する。 The present invention will be described below based on the illustrated embodiments. In this embodiment, an example will be described in which a received signal abnormality detection device according to the present invention is incorporated into a GNSS compass.
(GNSSコンパスの全体構成)
図1は、この発明に係る受信信号の異常の検出装置を含む、実施の形態に係るGNSSコンパス1の概略構成を示す機能ブロック図である。GNSSコンパス1は、例えば、船舶,車両,および飛行体などの移動体に搭載されて使用される。
(Overall configuration of GNSS compass)
FIG. 1 is a functional block diagram showing a schematic configuration of a GNSS compass 1 according to an embodiment, including a receiving signal abnormality detection device according to the present invention. The GNSS compass 1 is used, for example, by being mounted on a moving body such as a ship, a vehicle, or an aircraft.
実施の形態に係るGNSSコンパス1は、GNSS(Global Navigation Satellite System の略;全球測位衛星システム)で用いられる複数の衛星(「GNSS衛星」と呼ぶ)それぞれから送信される衛星信号/測位信号(「GNSS信号」と呼ぶ)を受信してGNSSにおける受信信号であるGNSS信号の異常を検出する機能と自機の位置などを計算する機能とを備え、主に、制御ユニット2と、GNSSアンテナ3と、GNSS受信部4と、異常検出部5と、測位部6と、を有する。GNSSコンパス1を構成する各部は、バスを介して信号の送受を行って相互に情報伝達可能であるように接続される。 The GNSS compass 1 according to the embodiment uses satellite signals/positioning signals (" The control unit 2, the GNSS antenna 3 and the , a GNSS receiving section 4, an anomaly detecting section 5, and a positioning section 6. The respective parts constituting the GNSS compass 1 are connected to each other so that they can send and receive signals and transmit information to each other via a bus.
GNSSとしてはGPS(Global Positioning System,Global Positioning Satellite の略;全地球測位システム),GLONASS(GLObal NAvigation Satellite System の略),およびBDS(BeiDou navigation satellite System の略;北斗衛星導航系統)などが挙げられる。 Examples of GNSS include GPS (abbreviation for Global Positioning System, Global Positioning Satellite; Global Positioning System), GLONASS (abbreviation for GLObal Navigation Satellite System), and BDS (abbreviation for BeiDou Navigation Satellite System). .
複数のGNSS衛星それぞれは、当該のGNSS衛星自身の現在位置を示すデータであるエフェメリスを含むGNSS信号を電波として送信する。複数のGNSS衛星それぞれから送信されるGNSS信号には、そのGNSS衛星が当該GNSS信号を電波として送信した時刻を示す情報も含まれる。 Each of the plurality of GNSS satellites transmits a GNSS signal including ephemeris, which is data indicating the current position of the GNSS satellite, as a radio wave. The GNSS signal transmitted from each of the plurality of GNSS satellites also includes information indicating the time when the GNSS satellite transmitted the GNSS signal as a radio wave.
制御ユニット2は、GNSSコンパス1を構成する各部の動作を制御する機能を備え、例えば、GNSS信号の異常の検出やGNSSコンパス1の位置などの計算などに纏わる演算処理を行う中央処理装置(CPU:Central Processing Unit の略)を有する機序として構成される。 The control unit 2 has a function of controlling the operation of each part constituting the GNSS compass 1, and includes, for example, a central processing unit (CPU) that performs arithmetic processing related to detecting abnormalities in GNSS signals and calculating the position of the GNSS compass 1. : Abbreviation for Central Processing Unit).
制御ユニット2は、また、中央処理装置(CPU)がGNSS信号の異常の検出やGNSSコンパス1の位置などの計算などに纏わる演算処理を行う際に利用するプログラム,各種の情報,およびデータなどを記憶して格納などするための記憶領域となったり中央処理装置(CPU)が前記演算処理を行う際に生成されるデータや情報などを一時的に記憶などするための作業領域となったりする機能を備え、例えば、読み取り専用の記憶装置であるROM(Read Only Memory の略)、読み出しおよび書き込み可能な記憶装置であるRAM(Random Access Memory の略)、ならびにハードディスクのうちの少なくとも1つを有する機序として構成される。 The control unit 2 also stores programs, various information, and data used by the central processing unit (CPU) to perform calculations related to detecting abnormalities in GNSS signals and calculating the position of the GNSS compass 1. A function that serves as a storage area for storing data or as a work area for temporarily storing data and information generated when the central processing unit (CPU) performs the arithmetic processing. For example, a device having at least one of ROM (abbreviation for Read Only Memory), which is a read-only storage device, RAM (abbreviation), which is a readable and writable storage device, and a hard disk. It is structured as an introduction.
制御ユニット2は、GNSSコンパス1の動作を制御するためのプログラム(「制御プログラム」と呼ぶ)を中央処理装置(CPU)が実行することにより、制御プログラムに従ってGNSSコンパス1を構成する各部の処理の開始,内容,および終了を統制して制御する。 The control unit 2 controls the processing of each part of the GNSS compass 1 according to the control program by having a central processing unit (CPU) execute a program (referred to as a "control program") for controlling the operation of the GNSS compass 1. Discipline and control the beginning, content, and ending.
GNSS受信部4は、複数のGNSS衛星S_i(但し、i:複数のGNSS衛星を相互に区別して各々を識別するための各衛星に固有の番号)それぞれから送信されるGNSS信号を受信するための機序であり、各々がGNSSアンテナ3を備える少なくとも2個のGNSS受信器から構成される。この実施の形態では、GNSS受信部4が3個のGNSS受信器4A,4B,4Cから構成され、GNSS受信器4AがGNSSアンテナ3Aを備え、GNSS受信器4BがGNSSアンテナ3Bを備え、GNSS受信器4CがGNSSアンテナ3Cを備える。 The GNSS receiving unit 4 is configured to receive GNSS signals transmitted from each of a plurality of GNSS satellites S_i (where, i: a number unique to each satellite for distinguishing and identifying a plurality of GNSS satellites). A mechanism consisting of at least two GNSS receivers, each with a GNSS antenna 3. In this embodiment, the GNSS receiver 4 includes three GNSS receivers 4A, 4B, and 4C, the GNSS receiver 4A is equipped with a GNSS antenna 3A, the GNSS receiver 4B is equipped with a GNSS antenna 3B, and the GNSS receiver 4A is equipped with a GNSS antenna 3B. The device 4C is equipped with a GNSS antenna 3C.
3個のGNSSアンテナ3A,3B,3Cは、GNSSコンパス1が搭載される移動体上に、所定の間隔で相互に離間して配置されて固定される。この実施の形態では、3個のGNSSアンテナ3A,3B,3Cが正三角形の頂点の位置それぞれに配置される(図2参照)。 The three GNSS antennas 3A, 3B, and 3C are spaced apart from each other at predetermined intervals and fixed on the moving body on which the GNSS compass 1 is mounted. In this embodiment, three GNSS antennas 3A, 3B, and 3C are arranged at the vertices of an equilateral triangle (see FIG. 2).
GNSSアンテナ3A,3B,3Cどうしを結ぶ線分を「基線」と呼ぶ。GNSSアンテナ3A,3B,3Cどうしの間の距離である基線の寸法は、GNSSアンテナ3A,3B,3Cの配置の設計値として既知である。この実施の形態では、GNSSアンテナ3AとGNSSアンテナ3Bとの間の基線ABの寸法,GNSSアンテナ3BとGNSSアンテナ3Cとの間の基線BCの寸法,およびGNSSアンテナ3AとGNSSアンテナ3Cとの間の基線ACの寸法はいずれも既知である。GNSSアンテナ3A,3B,3Cどうしの間の距離である基線の寸法は、GNSSアンテナ3A,3B,3C間の干渉を避けるため、1波長以上(通常は、数波長程度)に設定される。 The line segment connecting the GNSS antennas 3A, 3B, and 3C is called a "baseline." The baseline dimension, which is the distance between the GNSS antennas 3A, 3B, and 3C, is known as a design value for the arrangement of the GNSS antennas 3A, 3B, and 3C. In this embodiment, the dimensions of the base line AB between GNSS antenna 3A and GNSS antenna 3B, the dimension of base line BC between GNSS antenna 3B and GNSS antenna 3C, and the dimension between GNSS antenna 3A and GNSS antenna 3C are explained. The dimensions of the baseline AC are all known. The dimension of the baseline, which is the distance between the GNSS antennas 3A, 3B, and 3C, is set to one wavelength or more (usually about several wavelengths) in order to avoid interference between the GNSS antennas 3A, 3B, and 3C.
各GNSS受信器4A,4B,4Cは、GNSS衛星S_iそれぞれから送信されるGNSS信号をGNSSアンテナ3A,3B,3Cを介して受信して電気信号(特に、デジタル信号)に変換して出力する。 Each GNSS receiver 4A, 4B, 4C receives the GNSS signal transmitted from each GNSS satellite S_i via the GNSS antenna 3A, 3B, 3C, converts it into an electrical signal (in particular, a digital signal), and outputs the signal.
GNSS信号は、搬送波に重畳されて電波(「GNSS電波」と呼ぶ)としてGNSS衛星S_iから逐次送信される。各GNSS受信器4A,4B,4Cは、GNSS電波を受信し、前記GNSS電波を復調してGNSS信号を取り出す。そして、前記GNSS信号がGNSS受信部4から出力される。 The GNSS signal is superimposed on a carrier wave and is sequentially transmitted as radio waves (referred to as "GNSS radio waves") from the GNSS satellite S_i. Each GNSS receiver 4A, 4B, 4C receives a GNSS radio wave, demodulates the GNSS radio wave, and extracts a GNSS signal. Then, the GNSS signal is output from the GNSS receiving section 4.
制御プログラムを制御ユニット2の中央処理装置(CPU)が実行することにより、制御ユニット2内に異常検出部5および測位部6が構成される。 By executing the control program by the central processing unit (CPU) of the control unit 2, an abnormality detection section 5 and a positioning section 6 are configured within the control unit 2.
異常検出部5は、GNSS受信部4から出力されるGNSS信号の異常を検出して検出結果を出力するための機序である。 The abnormality detection unit 5 is a mechanism for detecting an abnormality in the GNSS signal output from the GNSS receiving unit 4 and outputting a detection result.
測位部6は、GNSS受信部4から出力されるGNSS信号を用いて測位情報を計算して出力するための機序である。 The positioning unit 6 is a mechanism for calculating and outputting positioning information using the GNSS signal output from the GNSS receiving unit 4.
測位部6によって計算される測位情報は、特定の項目には限定されないものの、例えば、自機の位置,方位,および姿勢(例えば、ローリング,ピッチング,旋回率(ROT))などのうちの少なくとも1つが挙げられる。測位部6による測位情報の計算処理は、周知の技術が適用され得るとともにこの発明では特定の項目や手法などには限定されないので、詳細な説明を省略する。 Although the positioning information calculated by the positioning unit 6 is not limited to specific items, for example, at least one of the position, direction, and attitude (e.g., rolling, pitching, rate of turn (ROT)) of the own aircraft, etc. These include: The calculation process of the positioning information by the positioning unit 6 can be performed using well-known techniques, and the present invention is not limited to specific items or methods, so a detailed explanation will be omitted.
測位部6は、異常検出部5から出力されるGNSS信号の異常の検出結果に基づいて、測位情報の計算処理で使用する衛星群から排除するGNSS衛星S_iを決定する(言い換えると、測位情報の計算処理で使用するGNSS衛星S_iを決定する)。 The positioning unit 6 determines the GNSS satellite S_i to be excluded from the satellite group used in the positioning information calculation process based on the detection result of the abnormality in the GNSS signal output from the anomaly detection unit 5 (in other words, the positioning information (Determine the GNSS satellite S_i to be used in calculation processing).
(異常検出部の処理内容)
実施の形態に係る受信信号の異常の検出方法は、複数のGNSS衛星S_iから送信されるGNSS信号を複数のGNSSアンテナ3A,3B,3Cを介して受信して、GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との比較に基づいてGNSS信号の送信時刻が正常であるか否かを判定し、GNSS信号を送信したGNSS衛星S_iの擬似距離ρ_iと所定の基準衛星Srの擬似距離ρrとの比較に基づいてGNSS衛星S_iの擬似距離ρ_iが正常であるか否かを判定するとともに、GNSS信号を送信したGNSS衛星S_iから複数のGNSSアンテナ3A,3B,3C各々までの行路の差を表す指標に基づいてGNSS信号の到来方向が正常であるか否かを判定する、ようにしている。
(Processing content of the abnormality detection unit)
The method for detecting an abnormality in a received signal according to the embodiment includes receiving GNSS signals transmitted from a plurality of GNSS satellites S_i via a plurality of GNSS antennas 3A, 3B, and 3C, and detecting the abnormality contained in the GNSS signals. It is determined whether the transmission time of the GNSS signal is normal based on a comparison between the transmission time of the GNSS signal and a predetermined reference transmission time, and the pseudorange ρ_i of the GNSS satellite S_i that transmitted the GNSS signal and the predetermined reference satellite are determined. Based on the comparison with the pseudorange ρr of Sr, it is determined whether the pseudorange ρ_i of the GNSS satellite S_i is normal or not. It is determined whether the arrival direction of the GNSS signal is normal based on an index representing the difference in the routes of the GNSS signals.
また、上記の受信信号の異常の検出方法を実施する機器としての受信信号の異常の検出装置を含む、実施の形態に係るGNSSコンパス1は、複数のGNSS衛星S_iから送信されるGNSS信号を複数のGNSSアンテナ3A,3B,3Cを介して受信するGNSS受信部4と、GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との比較に基づいてGNSS信号の送信時刻が正常であるか否かを判定する送信時刻判定部51と、GNSS信号を送信したGNSS衛星S_iの擬似距離ρ_iと所定の基準衛星Srの擬似距離ρrとの比較に基づいてGNSS衛星S_iの擬似距離ρ_iが正常であるか否かを判定する擬似距離判定部52と、GNSS信号を送信したGNSS衛星S_iから複数のGNSSアンテナ3A,3B,3C各々までの行路の差を表す指標に基づいてGNSS信号の到来方向が正常であるか否かを判定する行路差判定部54と、測位情報を計算する測位部6と、を有し、GNSS信号の送信時刻が正常であるか否かの判定結果とGNSS信号の到来方向が正常であるか否かの判定結果とGNSS衛星S_iの擬似距離ρ_iが正常であるか否かの判定結果とに基づいて測位部6による測位情報の計算処理で使用するGNSS衛星S_iを決定する、ようにしている。 Further, the GNSS compass 1 according to the embodiment, which includes a receiving signal abnormality detection device as a device that implements the above-described method for detecting a received signal abnormality, detects a plurality of GNSS signals transmitted from a plurality of GNSS satellites S_i. The transmission time of the GNSS signal is determined based on the comparison between the transmission time of the GNSS signal included in the GNSS signal and a predetermined reference transmission time. A transmission time determination unit 51 determines whether or not the GNSS signal is normal, and the pseudorange of the GNSS satellite S_i is determined based on a comparison between the pseudorange ρ_i of the GNSS satellite S_i that transmitted the GNSS signal and the pseudorange ρr of a predetermined reference satellite Sr. A pseudorange determination unit 52 determines whether ρ_i is normal or not, and a GNSS signal is determined based on an index representing the difference in path from the GNSS satellite S_i that transmitted the GNSS signal to each of the plurality of GNSS antennas 3A, 3B, and 3C. It has a path difference determination unit 54 that determines whether the arrival direction of the GNSS signal is normal, and a positioning unit 6 that calculates positioning information. GNSS used in the calculation process of positioning information by the positioning unit 6 based on the determination result of whether the direction of arrival of the GNSS signal is normal and the determination result of whether the pseudorange ρ_i of the GNSS satellite S_i is normal. The satellite S_i is determined as follows.
異常検出部5は、GNSS信号の異常を検出するための機序であり、GNSS受信部4(尚、各々がGNSSアンテナ3(具体的には、3A,3B,3Cのうちのいずれか)を備える3個のGNSS受信器4A,4B,4Cから構成される)から所定の周期で出力されるGNSS衛星S_iごとのGNSS信号の入力を受け、前記GNSS信号に基づいてGNSSにおける受信信号であるGNSS信号の異常を検出するための演算処理(「異常検出演算処理」と呼ぶ)を実行する。異常検出演算処理は、GNSS受信部4からGNSS信号が出力される所定の周期に合わせて前記所定の周期で実行されるようにしてもよく、或いは、前記所定の周期とは異なる周期で実行されるようにしてもよい。 The abnormality detection unit 5 is a mechanism for detecting an abnormality in the GNSS signal, and each of the GNSS reception units 4 (in addition, each of the GNSS antennas 3 (specifically, one of 3A, 3B, and 3C)) A GNSS signal which is a received signal in GNSS is received based on the GNSS signal and is outputted at a predetermined period from a GNSS receiver (consisting of three GNSS receivers 4A, 4B, 4C). A calculation process (referred to as "abnormality detection calculation process") for detecting an abnormality in the signal is executed. The abnormality detection calculation process may be executed at the predetermined cycle in accordance with the predetermined cycle at which the GNSS signal is output from the GNSS receiver 4, or may be executed at a cycle different from the predetermined cycle. You may also do so.
異常検出部5は、送信時刻判定部51,擬似距離判定部52,行路差計算部53,および行路差判定部54を備える。 The abnormality detection section 5 includes a transmission time determination section 51, a pseudo distance determination section 52, a route difference calculation section 53, and a route difference determination section 54.
送信時刻判定部51は、GNSS受信部4から出力されるGNSS衛星S_iごとのGNSS信号の入力を受け、前記GNSS信号の送信時刻が正常であるか否かを判定する。送信時刻判定部51によって行われる処理のことを「送信時刻の判定処理」と呼ぶ。 The transmission time determination unit 51 receives input of the GNSS signal for each GNSS satellite S_i output from the GNSS reception unit 4, and determines whether the transmission time of the GNSS signal is normal. The process performed by the transmission time determination unit 51 is referred to as "transmission time determination process."
送信時刻判定部51は、GNSS衛星S_iごとに、GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との差の絶対値が所定の時刻差閾値以上であるか否かを判断する。 The transmission time determination unit 51 determines, for each GNSS satellite S_i, whether the absolute value of the difference between the transmission time of the GNSS signal included in the GNSS signal and a predetermined reference transmission time is greater than or equal to a predetermined time difference threshold. to judge.
基準送信時刻は、GNSS衛星S_iごとに設定されるようにしてもよく、或いは、すべてのGNSS衛星S_iに共通のものとして設定されるようにしてもよい。 The reference transmission time may be set for each GNSS satellite S_i, or may be set as a common time for all GNSS satellites S_i.
基準送信時刻がGNSS衛星S_iごとに設定される場合、GNSS衛星S_iについての基準送信時刻として、過去に当該GNSS衛星S_iから送信されたGNSS信号に含まれていて取得されて記憶された送信時刻に前記GNSS信号を受信した時点からの経過時間が加えられた時刻が用いられるようにしてもよい。 When the reference transmission time is set for each GNSS satellite S_i, the reference transmission time for the GNSS satellite S_i is set to the transmission time that was acquired and stored in the GNSS signal transmitted from the GNSS satellite S_i in the past. A time obtained by adding the elapsed time from the time when the GNSS signal was received may be used.
経過時間は、例えば、経過時間の計測機器としてGNSS受信部4に温度補償水晶発振器(TCXO:Temperature Compensated Crystal Oscillators の略)が搭載され、前記温度補償水晶発振器が用いられて計測される。この場合、時間経過とともに変化する経過時間の計測機器(例えば、温度補償水晶発振器)の誤差やGNSS衛星S_iのドップラーシフトのずれが考慮されて経過時間が補正されるようにしてもよい。なお、ドップラーシフトは、ドップラー効果によって生じる、GNSS衛星S_iから送信されるGNSS電波の搬送波周波数とGNSS受信部4(具体的には、GNSS受信器4A,4B,4C)における受信周波数との周波数差として求められる。 The elapsed time is measured using, for example, a temperature-compensated crystal oscillator (TCXO) mounted on the GNSS receiver 4 as a measuring device for elapsed time. In this case, the elapsed time may be corrected by taking into account an error in an elapsed time measurement device (for example, a temperature-compensated crystal oscillator) that changes over time or a Doppler shift deviation of the GNSS satellite S_i. Note that the Doppler shift is the frequency difference between the carrier frequency of the GNSS radio wave transmitted from the GNSS satellite S_i and the reception frequency at the GNSS receiver 4 (specifically, the GNSS receivers 4A, 4B, and 4C), which is caused by the Doppler effect. It is required as.
GNSS信号の送信時刻が正常であるか否かを判定する際には(即ち、送信時刻の判定処理では)、GNSS信号の送信時刻の小数部のみが使用されるようにしてもよい When determining whether the transmission time of the GNSS signal is normal (that is, in the transmission time determination process), only the decimal part of the transmission time of the GNSS signal may be used.
時刻差閾値は、特定の値に限定されるものではなく、例えば機械誤差などに起因して生じると想定される誤差が考慮されるなどしたうえで、適当な値に適宜設定される。時刻差閾値は、GNSS衛星S_iについての基準送信時刻として当該GNSS衛星S_iについて過去に取得された送信時刻に経過時間が加えられた時刻が用いられる場合は、例えば1~3ミリ秒程度の範囲のうちのいずれかの値に設定されることが考えられる。 The time difference threshold is not limited to a specific value, but is appropriately set to an appropriate value, taking into account errors that are assumed to occur due to, for example, mechanical errors. If the reference transmission time for the GNSS satellite S_i is the transmission time obtained in the past for the GNSS satellite S_i plus the elapsed time, the time difference threshold is, for example, in the range of about 1 to 3 milliseconds. It is conceivable that it is set to one of these values.
送信時刻判定部51は、GNSS信号に含まれている当該GNSS信号の送信時刻と基準送信時刻との差の絶対値が時刻差閾値以上であるとき、前記GNSS信号は送信時刻が異常であるとして、前記GNSS信号を送信したGNSS衛星S_iを送信時刻異常に分類する。 When the absolute value of the difference between the transmission time of the GNSS signal and the reference transmission time included in the GNSS signal is equal to or greater than the time difference threshold, the transmission time determination unit 51 determines that the transmission time of the GNSS signal is abnormal. , the GNSS satellite S_i that transmitted the GNSS signal is classified as having an abnormal transmission time.
一方、基準送信時刻がすべてのGNSS衛星S_iに共通のものとして設定される場合、GNSS衛星S_iについての基準送信時刻として、他のGNSS衛星S_j(但し、j:複数のGNSS衛星を相互に区別して各々を識別するための各衛星に固有の番号であり、i≠j;以下同じ)から送信されるGNSS信号に含まれている当該GNSS信号の送信時刻が用いられるようにしてもよい。他のGNSS衛星S_jとしては、例えば、当該の(若しくは、直近の)異常検出演算処理の実行時点においてGNSS受信部4によってGNSS信号が受信されている複数のGNSS衛星S_iの中から、衛星の仰角が最も大きい衛星が選択される。 On the other hand, when the reference transmission time is set as common to all GNSS satellites S_i, the reference transmission time for GNSS satellite S_i is set as the reference transmission time for other GNSS satellites S_j (where j: multiple GNSS satellites are distinguished from each other). It is a number unique to each satellite for identifying each satellite, and the transmission time of the GNSS signal included in the GNSS signal transmitted from i≠j; the same applies hereinafter) may be used. As the other GNSS satellite S_j, for example, the elevation angle of the satellite is selected from among the plurality of GNSS satellites S_i whose GNSS signals are being received by the GNSS receiver 4 at the time of execution of the relevant (or most recent) abnormality detection calculation process. The satellite with the largest is selected.
この場合は、送信時刻判定部51は、GNSS衛星S_iごとに、GNSS衛星S_iから送信されるGNSS信号に含まれている当該GNSS信号の送信時刻と前記GNSS信号の受信時刻との差と、他のGNSS衛星S_jから送信されるGNSS信号に含まれている当該GNSS信号の送信時刻と前記GNSS信号の受信時刻との差と、の差の絶対値が所定の時刻差閾値以上であるか否かを判断する。GNSS信号の受信時刻は、GNSS受信部4が保有する時計機能/時刻情報によって特定される。GNSS受信部4が保有する時計機能/時刻情報は、複数のGNSS受信器4A,4B,4Cに共通の機器としてGNSS受信部4に搭載される例えば温度補償水晶発振器(TCXO)から供給される。 In this case, the transmission time determination unit 51 determines, for each GNSS satellite S_i, the difference between the transmission time of the GNSS signal and the reception time of the GNSS signal included in the GNSS signal transmitted from the GNSS satellite S_i, and other Whether the absolute value of the difference between the transmission time of the GNSS signal included in the GNSS signal transmitted from the GNSS satellite S_j and the reception time of the GNSS signal is equal to or greater than a predetermined time difference threshold. to judge. The reception time of the GNSS signal is specified by the clock function/time information held by the GNSS receiving unit 4. The clock function/time information held by the GNSS receiver 4 is supplied from, for example, a temperature compensated crystal oscillator (TCXO) installed in the GNSS receiver 4 as a device common to the plurality of GNSS receivers 4A, 4B, and 4C.
時刻差閾値は、GNSS衛星S_iについての基準送信時刻として他のGNSS衛星S_jから送信されるGNSS信号に含まれている当該GNSS信号の送信時刻が用いられる場合は、前記GNSS衛星S_iのGNSSの種類(例えば、GPS,GLONASS,BDS)と前記他のGNSS衛星S_jのGNSSの種類との組み合わせに応じて異なる値に設定されるようにしてもよい。例えば、GPSどうしの組み合わせの場合は時刻差閾値が20~30ミリ秒程度の範囲のうちのいずれかの値に設定され、GPSとBDSとの組み合わせの場合は時刻差閾値が90~110ミリ秒程度の範囲のうちのいずれかの値に設定されることが考えられる。 When the transmission time of the GNSS signal included in the GNSS signal transmitted from another GNSS satellite S_j is used as the reference transmission time for the GNSS satellite S_i, the time difference threshold value is determined based on the GNSS type of the GNSS satellite S_i. (For example, GPS, GLONASS, BDS) and the GNSS type of the other GNSS satellite S_j may be set to different values depending on the combination. For example, in the case of a combination of GPS, the time difference threshold is set to a value in the range of about 20 to 30 milliseconds, and in the case of a combination of GPS and BDS, the time difference threshold is set to a value of 90 to 110 milliseconds. It is conceivable that the value may be set to any value within a range of degrees.
送信時刻判定部51は、GNSS衛星S_iから送信されるGNSS信号に含まれている当該GNSS信号の送信時刻と前記GNSS信号の受信時刻との差と、他のGNSS衛星S_jから送信されるGNSS信号に含まれている当該GNSS信号の送信時刻と前記GNSS信号の受信時刻との差と、の差の絶対値が時刻差閾値以上であるとき、GNSS衛星S_iから送信されるGNSS信号は送信時刻が異常であるとして、前記GNSS信号を送信したGNSS衛星S_iを送信時刻異常に分類する。 The transmission time determination unit 51 determines the difference between the transmission time of the GNSS signal included in the GNSS signal transmitted from the GNSS satellite S_i and the reception time of the GNSS signal, and the GNSS signal transmitted from the other GNSS satellite S_j. When the absolute value of the difference between the transmission time of the GNSS signal and the reception time of the GNSS signal included in is equal to or greater than the time difference threshold, the GNSS signal transmitted from the GNSS satellite S_i is The GNSS satellite S_i that transmitted the GNSS signal is classified as having an abnormal transmission time.
そして、送信時刻判定部51は、送信時刻異常に分類したGNSS衛星S_iに関する情報を送信時刻異常の衛星情報として測位部6へと出力する。 Then, the transmission time determination unit 51 outputs information regarding the GNSS satellite S_i classified as having an abnormal transmission time to the positioning unit 6 as satellite information with an abnormal transmission time.
次に、擬似距離判定部52は、GNSS受信部4から出力されるGNSS衛星S_iごとのGNSS信号の入力を受け、前記GNSS信号を送信したGNSS衛星S_iの擬似距離が正常であるか否かを判定する。擬似距離判定部52によって行われる処理のことを「擬似距離の判定処理」と呼ぶ。 Next, the pseudorange determining unit 52 receives the GNSS signal for each GNSS satellite S_i output from the GNSS receiving unit 4, and determines whether the pseudorange of the GNSS satellite S_i that transmitted the GNSS signal is normal. judge. The process performed by the pseudorange determination unit 52 is referred to as "pseudorange determination process."
擬似距離は、GNSS衛星S_iから送信されてGNSSアンテナ3を介して受信されるGNSS信号の伝搬距離であり、受信したGNSS信号(別言すると、GNSS電波)がGNSS衛星S_iから送信された時刻とGNSSアンテナ3を介して受信された時刻との差(謂わば、GNSS信号の伝搬時間)から定まる距離である。 The pseudorange is the propagation distance of the GNSS signal transmitted from the GNSS satellite S_i and received via the GNSS antenna 3, and is the time when the received GNSS signal (in other words, GNSS radio wave) was transmitted from the GNSS satellite S_i. This distance is determined from the difference from the time received via the GNSS antenna 3 (so-called propagation time of the GNSS signal).
GNSS衛星S_iの擬似距離ρ_iは、GNSS衛星S_iからGNSS信号(GNSS電波)が送信された時刻と、GNSSアンテナ3を介して前記GNSS信号(GNSS電波)が受信された時刻との差に、電波の伝搬速度(具体的には、光速)を乗じることで算出される。 The pseudorange ρ_i of the GNSS satellite S_i is determined by the difference between the time when the GNSS signal (GNSS radio wave) is transmitted from the GNSS satellite S_i and the time when the GNSS signal (GNSS radio wave) is received via the GNSS antenna 3. It is calculated by multiplying by the propagation speed (specifically, the speed of light).
GNSS衛星S_iからGNSS信号が送信された時刻は当該GNSS信号に含まれている。また、GNSSアンテナ3を介してGNSS信号が受信された時刻は、GNSS受信部4が保有する時計機能/時刻情報によって特定される。GNSS受信部4が保有する時計機能/時刻情報は、複数のGNSS受信器4A,4B,4Cに共通の機器としてGNSS受信部4に搭載される例えば温度補償水晶発振器(TCXO)から供給される。なお、GNSS信号が送信された時刻と受信された時刻との差に相当するGNSS信号の伝搬時間は、C/Aコードの位相のずれ量に基づいて特定されるようにしてもよい。なお、C/Aコードは、GNSS衛星S_iごとに固有のコードであり、送信元を示す情報として機能する。 The time when the GNSS signal was transmitted from the GNSS satellite S_i is included in the GNSS signal. Further, the time when the GNSS signal is received via the GNSS antenna 3 is specified by the clock function/time information held by the GNSS receiving unit 4. The clock function/time information held by the GNSS receiver 4 is supplied from, for example, a temperature compensated crystal oscillator (TCXO) installed in the GNSS receiver 4 as a device common to the plurality of GNSS receivers 4A, 4B, and 4C. Note that the propagation time of the GNSS signal, which corresponds to the difference between the time when the GNSS signal was transmitted and the time when the GNSS signal was received, may be specified based on the amount of phase shift of the C/A code. Note that the C/A code is a code unique to each GNSS satellite S_i, and functions as information indicating the transmission source.
擬似距離判定部52は、GNSS衛星S_iごとに、当該GNSS衛星S_iの擬似距離ρ_iと所定の基準衛星Srの擬似距離ρrとの差の絶対値が所定の擬似距離差閾値よりも大きいか否かを判断する。基準衛星Srとしては、例えば、当該の(若しくは、直近の)異常検出演算処理の実行時点においてGNSS受信部4によってGNSS信号が受信されている複数のGNSS衛星S_iの中から、衛星の仰角が最も大きい衛星が選択される。 The pseudorange determination unit 52 determines, for each GNSS satellite S_i, whether the absolute value of the difference between the pseudorange ρ_i of the GNSS satellite S_i and the pseudorange ρr of a predetermined reference satellite Sr is larger than a predetermined pseudorange difference threshold. to judge. The reference satellite Sr is, for example, the one whose elevation angle is the highest among the plurality of GNSS satellites S_i whose GNSS signals are being received by the GNSS receiver 4 at the time of execution of the relevant (or most recent) abnormality detection calculation process. Larger satellites are selected.
擬似距離差閾値は、特定の値に限定されるものではなく、例えばGNSS衛星の軌道を前提としたときにGNSS衛星どうしの擬似距離の差として想定される最大値が考慮されるなどしたうえで、適当な値に適宜設定される。擬似距離差閾値は、例えば1~2km程度の範囲のうちのいずれかの値に設定されることが考えられる。 The pseudorange difference threshold is not limited to a specific value; for example, the maximum value assumed as the difference in pseudoranges between GNSS satellites is taken into account when assuming the orbits of GNSS satellites. , is appropriately set to an appropriate value. It is conceivable that the pseudo distance difference threshold is set to any value within a range of, for example, about 1 to 2 km.
擬似距離判定部52は、GNSS衛星S_iの擬似距離ρ_iと基準衛星Srの擬似距離ρrとの差の絶対値が擬似距離差閾値よりも大きいとき、前記GNSS衛星S_iは擬似距離が異常であるとして、前記GNSS衛星S_iを擬似距離異常に分類する。 When the absolute value of the difference between the pseudorange ρ_i of the GNSS satellite S_i and the pseudorange ρr of the reference satellite Sr is larger than a pseudorange difference threshold, the pseudorange determination unit 52 determines that the pseudorange of the GNSS satellite S_i is abnormal. , classify the GNSS satellite S_i as a pseudorange anomaly.
擬似距離判定部52は、GNSS衛星S_iの擬似距離ρ_iと基準衛星Srの擬似距離ρrとの差の絶対値が擬似距離差閾値よりも大きいことに加えて、前記GNSS衛星S_iから送信されるGNSS信号の信号強度/受信強度が所定の閾値よりも高いときに、前記GNSS衛星S_iは擬似距離が異常であるとして、前記GNSS衛星S_iを擬似距離異常に分類するようにしてもよい。 The pseudorange determination unit 52 determines that the absolute value of the difference between the pseudorange ρ_i of the GNSS satellite S_i and the pseudorange ρr of the reference satellite Sr is larger than the pseudorange difference threshold, and that the GNSS transmitted from the GNSS satellite S_i When the signal strength/reception strength of the signal is higher than a predetermined threshold value, the GNSS satellite S_i may be determined to have an abnormal pseudorange, and the GNSS satellite S_i may be classified as having an abnormal pseudorange.
そして、擬似距離判定部52は、擬似距離異常に分類したGNSS衛星S_iに関する情報を擬似距離異常の衛星情報として測位部6へと出力する。 Then, the pseudorange determining unit 52 outputs information regarding the GNSS satellite S_i classified as pseudorange abnormal to the positioning unit 6 as pseudorange abnormal satellite information.
次に、行路差計算部53は、GNSS受信部4から出力されるGNSS衛星S_iごとのGNSS信号の入力を受け、前記GNSS信号の情報を用いてGNSS衛星S_iから各GNSSアンテナ3A,3B,3Cまでの行路の差を計算する。行路差計算部53および行路差判定部54によって行われる処理のことを「行路差の判定処理」と呼ぶ。 Next, the path difference calculating section 53 receives the input of the GNSS signal for each GNSS satellite S_i output from the GNSS receiving section 4, and uses the information of the GNSS signal to calculate the distance from the GNSS antenna 3A, 3B, 3C Calculate the difference in travel distance. The process performed by the route difference calculation unit 53 and the route difference determination unit 54 is referred to as “path difference determination processing”.
行路差計算部53は、GNSS衛星S_iごとに、複数のGNSSアンテナ3A,3B,3Cが所定の間隔で相互に離間して配置されていることに起因して生じる、GNSS衛星S_iから各GNSSアンテナ3A,3B,3Cまでの行路の差(絶対値)を、GNSSアンテナ3A,3B,3Cどうしの間ごとに、つまり2個のGNSSアンテナ3の組み合わせごとに、計算する。 The path difference calculation unit 53 calculates the distance between each GNSS antenna from the GNSS satellite S_i, which is caused by the fact that the plurality of GNSS antennas 3A, 3B, and 3C are spaced apart from each other at a predetermined interval for each GNSS satellite S_i. The difference (absolute value) between the routes to GNSS antennas 3A, 3B, and 3C is calculated for each interval between the GNSS antennas 3A, 3B, and 3C, that is, for each combination of two GNSS antennas 3.
図3は行路の差を説明する図である。行路の差は実際には3次元で求められるが、行路の差の原理の説明として図3では2次元で説明する。図3に示す例では、GNSS衛星S_1とGNSS衛星S_2とのそれぞれについてGNSSアンテナ3Aまでの行路とGNSSアンテナ3Bまでの行路との差(即ち、GNSSアンテナ3AとGNSSアンテナ3Bとの間における行路差)を取り上げて説明する。 FIG. 3 is a diagram illustrating the difference in routes. Although the path difference is actually determined in three dimensions, the principle of the path difference will be explained in two dimensions in FIG. 3. In the example shown in FIG. 3, the difference between the route to GNSS antenna 3A and the route to GNSS antenna 3B for each of GNSS satellite S_1 and GNSS satellite S_2 (i.e., the difference in route between GNSS antenna 3A and GNSS antenna 3B) ) and explain it.
GNSS衛星S_1からGNSSアンテナ3Aまでの行路とGNSSアンテナ3Bまでの行路との差C_1ABは下記の数式1のように表され、GNSS衛星S_2からGNSSアンテナ3Aまでの行路とGNSSアンテナ3Bまでの行路との差C_2ABは下記の数式2のように表される(図3(A)参照)。
(数1) C_1AB = L_AB×cos(θ_1)
(数2) C_2AB = L_AB×cos(θ_2)
ここに、
L_AB:GNSSアンテナ3AとGNSSアンテナ3Bとの間の基線ABの寸法
θ_1:GNSS衛星S_1の仰角
θ_2:GNSS衛星S_2の仰角
The difference C_1AB between the path from GNSS satellite S_1 to GNSS antenna 3A and the path to GNSS antenna 3B is expressed as in the following formula 1, and is the difference between the path from GNSS satellite S_2 to GNSS antenna 3A and the path to GNSS antenna 3B. The difference C_2AB is expressed as in Equation 2 below (see FIG. 3(A)).
(Math. 1) C_1AB = L_AB×cos(θ_1)
(Math. 2) C_2AB = L_AB×cos(θ_2)
Here,
L_AB: Dimension of base line AB between GNSS antenna 3A and GNSS antenna 3B θ_1: Elevation angle of GNSS satellite S_1 θ_2: Elevation angle of GNSS satellite S_2
上記の数式1のように表されるGNSS衛星S_1からGNSSアンテナ3Aまでの行路とGNSSアンテナ3Bまでの行路との差C_1ABは下記の数式3に従って計算される。また、上記の数式2のように表されるGNSS衛星S_2からGNSSアンテナ3Aまでの行路とGNSSアンテナ3Bまでの行路との差C_2ABは下記の数式4に従って計算される。
(数3) C_1AB = λ_1×(N_1+P_1AB)
(数4) C_2AB = λ_2×(N_2+P_2AB)
ここに、
λ_1:GNSS衛星S_1のGNSS電波の搬送波の波長
λ_2:GNSS衛星S_2のGNSS電波の搬送波の波長
N_1:GNSS衛星S_1のGNSS電波の整数値バイアス(サイクル以上)
N_2:GNSS衛星S_2のGNSS電波の整数値バイアス(サイクル以上)
P_1AB:GNSS衛星S_1のGNSS電波のアンテナ間一重差(サイクル未満)
P_2AB:GNSS衛星S_2のGNSS電波のアンテナ間一重差(サイクル未満)
The difference C_1AB between the path from the GNSS satellite S_1 to the GNSS antenna 3A and the path to the GNSS antenna 3B, expressed as in Equation 1 above, is calculated according to Equation 3 below. Further, the difference C_2AB between the path from the GNSS satellite S_2 to the GNSS antenna 3A and the path to the GNSS antenna 3B, expressed as in Equation 2 above, is calculated according to Equation 4 below.
(Math. 3) C_1AB = λ_1×(N_1+P_1AB)
(Math. 4) C_2AB = λ_2×(N_2+P_2AB)
Here,
λ_1: Wavelength of carrier wave of GNSS radio wave of GNSS satellite S_1 λ_2: Wavelength of carrier wave of GNSS radio wave of GNSS satellite S_2 N_1: Integer bias of GNSS radio wave of GNSS satellite S_1 (cycle or more)
N_2: Integer bias of GNSS radio waves of GNSS satellite S_2 (more than one cycle)
P_1AB: Single difference between antennas of GNSS radio waves of GNSS satellite S_1 (less than a cycle)
P_2AB: Single difference between antennas of GNSS radio waves of GNSS satellite S_2 (less than a cycle)
GNSS衛星S_iについてのアンテナ間一重差P_iXYは(但し、X,Y:複数のGNSSアンテナ3を相互に区別して各々を識別するためのアンテナ記号であり、X≠Y;以下同じ)、2つのGNSSアンテナ3(図3に示す例では、GNSSアンテナ3AとGNSSアンテナ3B)に対する1つのGNSS衛星S_iの搬送波位相積算値の差である。 The inter-antenna single difference P_iXY for the GNSS satellite S_i (where X, Y: antenna symbols for distinguishing and identifying each of the multiple GNSS antennas 3; X≠Y; the same applies hereinafter) is the difference between the two GNSS satellites This is the difference in carrier phase integrated value of one GNSS satellite S_i with respect to antenna 3 (in the example shown in FIG. 3, GNSS antenna 3A and GNSS antenna 3B).
行路差計算部53は、GNSS衛星S_iごとに、2個のGNSSアンテナ3の組み合わせごとに、GNSS衛星S_iからGNSSアンテナXまでの行路とGNSSアンテナYまでの行路との差C_iXYを計算する。 The path difference calculation unit 53 calculates the difference C_iXY between the path from the GNSS satellite S_i to the GNSS antenna X and the path to the GNSS antenna Y for each combination of two GNSS antennas 3 for each GNSS satellite S_i.
次に、行路差判定部54は、行路差計算部53によって計算されるGNSS衛星S_iごと且つ2個のGNSSアンテナ3の組み合わせごとの行路の差C_iXYが正常であるか否かを判定する。 Next, the path difference determination unit 54 determines whether the path difference C_iXY calculated by the path difference calculation unit 53 for each GNSS satellite S_i and for each combination of two GNSS antennas 3 is normal.
ここで、図3に示す例において、GNSS衛星S_1とGNSS衛星S_2とは通常は相互に異なる空間位置に存在するのでGNSSコンパス1(具体的には、GNSSアンテナ3)からみた衛星各々の仰角θ_1と仰角θ_2とが相互に異なる。そして、GNSS衛星S_1の仰角θ_1とGNSS衛星S_2の仰角θ_2とが相互に異なるので、GNSS衛星S_1についての行路の差C_1ABとGNSS衛星S_2についての行路の差C_2ABとは相互に異なる(図3(A)ならびに上記の数式1,数式2参照)。 Here, in the example shown in FIG. 3, since the GNSS satellite S_1 and the GNSS satellite S_2 are usually located at different spatial positions, the elevation angle θ_1 of each satellite as seen from the GNSS compass 1 (specifically, the GNSS antenna 3) and the elevation angle θ_2 are different from each other. Since the elevation angle θ_1 of the GNSS satellite S_1 and the elevation angle θ_2 of the GNSS satellite S_2 are different from each other, the path difference C_1AB for the GNSS satellite S_1 and the path difference C_2AB for the GNSS satellite S_2 are different from each other (see Fig. 3). A) and see Equations 1 and 2 above).
これに対し、GNSS衛星S_1とGNSS衛星S_2とがどちらも同じ空間位置に存在する場合にはGNSSコンパス1(具体的には、GNSSアンテナ3)からみた衛星各々の仰角θ_1と仰角θ_2とが同じになる(図3(B)参照)。そして、GNSS衛星S_1の仰角θ_1とGNSS衛星S_2の仰角θ_2とが同じ場合は、GNSS衛星S_1についての行路の差C_1ABとGNSS衛星S_2についての行路の差C_2ABとは同じになる(上記の数式1,数式2参照)。 On the other hand, if GNSS satellite S_1 and GNSS satellite S_2 are both located at the same spatial position, the elevation angle θ_1 and elevation angle θ_2 of each satellite as seen from GNSS compass 1 (specifically, GNSS antenna 3) are the same. (See Figure 3(B)). If the elevation angle θ_1 of the GNSS satellite S_1 and the elevation angle θ_2 of the GNSS satellite S_2 are the same, the difference C_1AB in the path for the GNSS satellite S_1 and the difference C_2AB in the path for the GNSS satellite S_2 will be the same (formula 1 above). , see Equation 2).
GNSS衛星S_1の仰角θ_1とGNSS衛星S_2の仰角θ_2とが同じになる場合として、例えば、複数のGNSS衛星の測位情報および軌道情報を含んだ信号が単一の送信アンテナから発信されている場合が考えられ、言い換えると、複数のGNSS衛星からGNSS信号(別言すると、GNSS電波)が送信されているように見せかけたうえで単一の送信アンテナ(言い換えると、同一の地点;尚、地上に設置されているアンテナ局を含む)から複数のGNSS信号が発信されている場合が考えられ、つまり単一の送信アンテナ/同一の地点から複数の偽のGNSS信号が送信されている場合が挙げられる。この点において、この発明における「複数のGNSS衛星S_iから送信されるGNSS信号」は、複数のGNSS衛星S_iからGNSS信号が送信されているように見せかけたうえで単一の送信アンテナ/同一の地点から発信される信号を含む。 An example of a case where the elevation angle θ_1 of GNSS satellite S_1 and the elevation angle θ_2 of GNSS satellite S_2 are the same is when, for example, a signal containing positioning information and orbit information of multiple GNSS satellites is transmitted from a single transmitting antenna. In other words, it is possible to pretend that GNSS signals (in other words, GNSS radio waves) are being transmitted from multiple GNSS satellites, and then use a single transmitting antenna (in other words, at the same location; however, it is installed on the ground). A case may be considered in which multiple GNSS signals are transmitted from a single transmitting antenna/same point (including a single transmitting antenna station). In this respect, "GNSS signals transmitted from multiple GNSS satellites S_i" in this invention are transmitted from a single transmitting antenna/same point after making it appear that GNSS signals are being transmitted from multiple GNSS satellites S_i. Contains signals emitted from.
そこで、行路差判定部54は、複数のGNSS衛星S_iについての行路の差(絶対値)C_iXYどうしの差が所定の行路差閾値以下であるとき、前記複数のGNSS衛星S_iはGNSS信号の到来方向が異常であるとして、前記複数のGNSS衛星S_iを行路差異常に分類する。 Therefore, the route difference determination unit 54 determines that when the difference between the route differences (absolute values) C_i The plurality of GNSS satellites S_i are always classified as having an abnormal course.
具体的には例えば、GNSSアンテナ3どうしの間ごとに、つまり2個のGNSSアンテナ3の組み合わせごとに、複数のGNSS衛星S_iについての行路の差(絶対値)C_iXYのうちの最大値と最小値との差が所定の行路差閾値以下であるとき、前記複数のGNSS衛星S_iはGNSS信号の到来方向が異常であるとして、前記複数のGNSS衛星S_iは行路差異常に分類される。 Specifically, for example, for each GNSS antenna 3, that is, for each combination of two GNSS antennas 3, the maximum value and minimum value of the path difference (absolute value) C_iXY for a plurality of GNSS satellites S_i are calculated. When the difference is less than a predetermined path difference threshold, it is determined that the direction of arrival of the GNSS signal in the plurality of GNSS satellites S_i is abnormal, and the plurality of GNSS satellites S_i are classified as always having a path difference.
行路差閾値は、特定の値に限定されるものではなく、例えば実際には単一の送信アンテナ/同一の地点から複数のGNSS信号が送信されているとしても機械誤差などに起因して生じると想定される誤差が考慮されるなどしたうえで、適当な値に適宜設定される。 The path difference threshold is not limited to a specific value; for example, even if multiple GNSS signals are actually transmitted from a single transmitting antenna/same point, it may occur due to mechanical errors, etc. It is set to an appropriate value after taking into account the expected errors.
複数のGNSS衛星S_iについてGNSS信号の到来方向が異常であると判定する際の、衛星数の下限が設定されるようにしてもよい。例えば、2個のGNSS衛星S_iについての行路の差C_iXYのうちの最大値と最小値との差が行路差閾値以下であるときは前記2個のGNSS衛星S_iは行路差異常に分類されない一方で、3個以上のGNSS衛星S_iについての行路の差C_iXYのうちの最大値と最小値との差が行路差閾値以下であるときは前記3個以上のGNSS衛星S_iは行路差異常に分類されるようにしてもよい。この場合の衛星数の下限は、特定の値には限定されないものの、例えば3~5程度の範囲のうちのいずれかの値に設定されることが考えられる。 A lower limit for the number of satellites may be set when determining that the direction of arrival of a GNSS signal is abnormal for a plurality of GNSS satellites S_i. For example, when the difference between the maximum value and the minimum value of the path difference C_iXY for the two GNSS satellites S_i is less than or equal to the path difference threshold, the two GNSS satellites S_i are not always classified as path differences; When the difference between the maximum value and the minimum value of the path difference C_iXY for three or more GNSS satellites S_i is less than the path difference threshold, the three or more GNSS satellites S_i are always classified as path differences. It's okay. Although the lower limit of the number of satellites in this case is not limited to a specific value, it may be set to any value in the range of, for example, about 3 to 5.
行路差異常を判定する際の複数のGNSS衛星S_iを全て同じ種類の衛星とし、衛星の種類ごと、つまり、GPS、GLONASS、BDSなどごとに行路差異常を判定してもよい。例えば、2個のGPS衛星についての行路の差のうちの最大値と最小値との差が行路差閾値以下であるときは前記2個のGPS衛星は行路差異常に分類されない一方で、3個以上のGPS衛星についての行路の差のうちの最大値と最小値との差が行路差閾値以下であるときは前記3個以上のGPS衛星は行路差異常に分類されるようにしてもよい。この場合の衛星数の下限は、特定の値には限定されないものの、例えば3~5程度の範囲のうちのいずれかの値に設定されることが考えられる。 The plurality of GNSS satellites S_i for determining a path difference abnormality may all be of the same type, and the path difference abnormality may be determined for each type of satellite, such as GPS, GLONASS, BDS, etc. For example, when the difference between the maximum value and the minimum value of the path differences for two GPS satellites is less than or equal to the path difference threshold, the two GPS satellites are not always classified as path differences; When the difference between the maximum value and the minimum value of the route differences for the GPS satellites is less than or equal to a route difference threshold value, the three or more GPS satellites may be always classified as having a route difference. Although the lower limit of the number of satellites in this case is not limited to a specific value, it may be set to any value in the range of, for example, about 3 to 5.
行路差判定部54は、行路差の判定処理ごとに複数のGNSS衛星S_iについての行路の差C_iXYのうちの最大値と最小値との差が行路差閾値以下であるときに前記複数のGNSS衛星S_iを行路差異常に分類するようにしてもよく、或いは、複数のGNSS衛星S_iについての行路の差C_iXYのうちの最大値と最小値との差が行路差閾値以下である状態が所定の時間にわたって継続するときに前記複数のGNSS衛星S_iを行路差異常に分類するようにしてもよい。 The course difference determination unit 54 determines whether the plurality of GNSS satellites S_i is equal to or less than the route difference threshold value when the difference between the maximum value and the minimum value of the route difference C_i S_i may be always classified as a route difference, or a state in which the difference between the maximum value and the minimum value of route differences C_i When continuing, the plurality of GNSS satellites S_i may be always classified according to their route differences.
ここで、複数のGNSS衛星S_iが相互に異なる空間位置に存在する場合には前記複数のGNSS衛星S_iについてのアンテナ間一重差P_iXYは通常は相互に異なるのに対して、単一の送信アンテナ/同一の地点から複数のGNSS信号が送信されている場合には複数のGNSS衛星S_iについてのアンテナ間一重差P_iXYは同じになる。そこで、GNSS衛星S_iごとの行路差の判定処理において、複数のGNSS衛星S_iについてのアンテナ間一重差P_iXYが検証されるようにしてもよい(上記の数式3,数式4参照)。 Here, when a plurality of GNSS satellites S_i exist in mutually different spatial positions, the inter-antenna singlet differences P_iXY for the plurality of GNSS satellites S_i are usually different from each other, whereas a single transmitting antenna/ When a plurality of GNSS signals are transmitted from the same point, the inter-antenna singlet difference P_iXY for the plurality of GNSS satellites S_i becomes the same. Therefore, in the process of determining the path difference for each GNSS satellite S_i, the inter-antenna single difference P_iXY for a plurality of GNSS satellites S_i may be verified (see Equations 3 and 4 above).
なお、GNSS衛星S_1とGNSS衛星S_2とが相互に異なる空間位置に存在してGNSS衛星S_1についての行路の差C_1ABとGNSS衛星S_2についての行路の差C_2ABとが実際には異なるにもかかわらず前記2つのGNSS衛星S_1,S_2についてのアンテナ間一重差P_1AB,P_2ABがたまたま同じになることも考えられる。しかしながら、GNSS衛星S_1,S_2は移動しているので、前記の状態が長く(例えば、数秒以上)続くことはない。また、GNSSアンテナ3どうしの間ごとに基線の方向が異なるので、例えば、GNSSアンテナ3AとGNSSアンテナ3Bとの組み合わせにおいて2つのGNSS衛星S_1,S_2についてのアンテナ間一重差P_1AB,P_2ABがたまたま同じになったとしても、GNSSアンテナ3AとGNSSアンテナ3Cとの組み合わせにおいて前記2つのGNSS衛星S_1,S_2についてのアンテナ間一重差P_1AB,P_2ACは同じにはならない。 Note that even though the GNSS satellite S_1 and the GNSS satellite S_2 exist in mutually different spatial positions and the difference in path C_1AB for the GNSS satellite S_1 and the difference in path C_2AB for the GNSS satellite S_2 are actually different, It is also conceivable that the inter-antenna singlet differences P_1AB and P_2AB for the two GNSS satellites S_1 and S_2 happen to be the same. However, since the GNSS satellites S_1 and S_2 are moving, the above state does not last for a long time (for example, more than a few seconds). Furthermore, since the direction of the baseline differs between each GNSS antenna 3, for example, in a combination of GNSS antenna 3A and GNSS antenna 3B, inter-antenna singlet differences P_1AB and P_2AB for two GNSS satellites S_1 and S_2 happen to be the same. Even if this happens, the inter-antenna singlet differences P_1AB and P_2AC for the two GNSS satellites S_1 and S_2 will not be the same in the combination of the GNSS antenna 3A and the GNSS antenna 3C.
複数のGNSS衛星S_iについてのアンテナ間一重差P_iXYを検証する場合は、行路差判定部54は、複数のGNSS衛星S_iについてのアンテナ間一重差(絶対値)P_iXYどうしの差が所定の行路差閾値以下であるとき、前記複数のGNSS衛星S_iはGNSS信号の到来方向が異常であるとして、前記複数のGNSS衛星S_iを行路差異常に分類する。 When verifying the inter-antenna single difference P_iXY for the plurality of GNSS satellites S_i, the path difference determining unit 54 determines whether the difference between the antenna-to-antenna single differences (absolute value) P_iXY for the plurality of GNSS satellites S_i is a predetermined path difference threshold. When the following is true, the plurality of GNSS satellites S_i are considered to have an abnormal arrival direction of the GNSS signal, and the plurality of GNSS satellites S_i are always classified as having different routes.
具体的には例えば、GNSSアンテナ3どうしの間ごとに、つまり2個のGNSSアンテナ3の組み合わせごとに、複数のGNSS衛星S_iについてのアンテナ間一重差(絶対値)P_iXYのうちの最大値と最小値との差が所定の行路差閾値以下であるとき、前記複数のGNSS衛星S_iはGNSS信号の到来方向が異常であるとして、前記複数のGNSS衛星S_iは行路差異常に分類される。 Specifically, for example, for each GNSS antenna 3, that is, for each combination of two GNSS antennas 3, the maximum value and minimum value of the inter-antenna single difference (absolute value) P_iXY for a plurality of GNSS satellites S_i are calculated. When the difference with the value is less than or equal to a predetermined path difference threshold, it is determined that the direction of arrival of the GNSS signal in the plurality of GNSS satellites S_i is abnormal, and the plurality of GNSS satellites S_i are always classified as having a path difference.
この場合の行路差閾値も、特定の値に限定されるものではなく、例えば実際には単一の送信アンテナ/同一の地点から複数のGNSS信号が送信されているとしても機械誤差などに起因して生じると想定される誤差が考慮されるなどしたうえで、適当な値に適宜設定される。 The path difference threshold in this case is also not limited to a specific value; for example, even if multiple GNSS signals are actually transmitted from a single transmitting antenna/same point, it may be due to mechanical errors, etc. It is set to an appropriate value after taking into account the errors that are expected to occur.
GNSS衛星S_iごとの行路差の判定処理に用いられる、GNSS衛星S_iから各GNSSアンテナ3A,3B,3Cまでの行路の差を表す、GNSS衛星S_iについての行路の差C_iXYやアンテナ間一重差P_iXYのことを「行路差指標」と呼ぶ。 The path difference C_iXY for the GNSS satellite S_i and the single difference between antennas P_iXY, which represent the path difference from the GNSS satellite S_i to each GNSS antenna 3A, 3B, and 3C, are used in the process of determining the path difference for each GNSS satellite S_i. This is called the "path difference index."
そして、行路差判定部54は、行路差異常(言い換えると、GNSS信号の到来方向異常)に分類したGNSS衛星S_iに関する情報を行路差異常の衛星情報として測位部6へと出力する。 Then, the path difference determining unit 54 outputs information regarding the GNSS satellite S_i classified as a path difference abnormality (in other words, an abnormality in the arrival direction of the GNSS signal) to the positioning unit 6 as satellite information of the path difference abnormality.
上記の各判定処理において送信時刻異常に分類されるGNSS衛星S_i,擬似距離異常に分類されるGNSS衛星S_i,および行路差異常に分類されるGNSS衛星S_iは測位部6による測位情報の計算処理で使用する衛星群から排除され、排除された前記GNSS衛星S_iから送信されるGNSS信号は測位部6による測位情報の計算処理には使用されない。 In each of the above determination processes, the GNSS satellite S_i that is classified as transmission time abnormality, the GNSS satellite S_i that is classified as pseudorange abnormality, and the GNSS satellite S_i that is always classified as route difference are used in the positioning information calculation process by the positioning unit 6. The GNSS signal transmitted from the excluded GNSS satellite S_i is not used for calculation processing of positioning information by the positioning unit 6.
測位部6が計算する測位情報の項目(具体的には、自機の位置,方位,および姿勢など)ごとに、送信時刻異常,擬似距離異常,および行路差異常のうちのいずれの異常に分類されるGNSS衛星S_iを排除するかが設定されるようにしてもよい。例えば、あくまで説明のための一例として挙げると、自機の位置を計算する際には送信時刻異常に分類されるGNSS衛星S_iは排除される一方で擬似距離異常に分類されるGNSS衛星S_iおよび行路差異常に分類されるGNSS衛星S_iは排除されないようにするとともに、自機の方位や姿勢を計算する際には送信時刻異常に分類されるGNSS衛星S_i,擬似距離異常に分類されるGNSS衛星S_i,および行路差異常に分類されるGNSS衛星S_iのすべてが排除されるようにしてもよい。 Each item of positioning information calculated by the positioning unit 6 (specifically, the position, direction, and attitude of the own aircraft) is classified into one of transmission time abnormalities, pseudorange abnormalities, and course difference abnormalities. The setting may be made to determine whether to exclude the GNSS satellite S_i. For example, to give an example for illustrative purposes only, when calculating the position of the own aircraft, a GNSS satellite S_i that is classified as a transmission time anomaly is excluded, while a GNSS satellite S_i that is classified as a pseudorange anomaly and its route. Differences: GNSS satellites S_i that are always classified are not excluded, and when calculating the orientation and attitude of the own aircraft, GNSS satellites S_i that are classified as transmission time abnormalities, GNSS satellites S_i that are classified as pseudorange abnormalities, All of the GNSS satellites S_i that are always classified as route differences and route differences may be excluded.
送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されたGNSS衛星S_i(言い換えると、正常でないと判定されたGNSS衛星S_i)は前記の異常に分類される状態(言い換えると、前記正常でない状態)が所定の異常保持時間だけ維持される(そして、前記の異常に分類される状態が維持される間は前記の判定処理は行われない)ようにしてもよい。 A GNSS satellite S_i classified as a transmission time abnormality, a pseudorange abnormality, or a course difference abnormality (in other words, a GNSS satellite S_i determined to be abnormal) is in a state classified as the above abnormality ( In other words, the above-mentioned abnormal state) may be maintained for a predetermined abnormality holding time (and the above-mentioned determination process may not be performed while the above-mentioned abnormal state is maintained).
異常保持時間は、特定の時間長さに限定されるものではなく、例えば正常な(言い換えると、測位部6による測位情報の計算処理に使用される)GNSS衛星S_iの数が極端に減る事態を回避することやGNSSコンパス1が搭載される移動体の移動に伴う正常なGNSS衛星S_iの捕捉の可能性を確保することが考慮されるなどしたうえで、適当な時間長さに適宜設定される。異常保持時間は、ゼロに設定されるようにしてもよい。この場合はすなわち、GNSS衛星S_iごとの、送信時刻の判定処理,擬似距離の判定処理,および行路差の判定処理は、異常検出演算処理を実行するたびに毎回行われる。 The abnormality retention time is not limited to a specific length of time, and may be used, for example, to prevent a situation in which the number of normal GNSS satellites S_i (in other words, used for calculation processing of positioning information by the positioning unit 6) is extremely reduced. An appropriate time length is set as appropriate, taking into consideration the possibility of capturing the GNSS satellite S_i normally due to the movement of the mobile object on which the GNSS Compass 1 is mounted. . The abnormal hold time may be set to zero. In this case, the transmission time determination process, pseudorange determination process, and course difference determination process for each GNSS satellite S_i are performed every time the abnormality detection calculation process is executed.
異常保持時間は、異常の種類ごとに設定されるようにしてもよい。すなわち、送信時刻異常に分類される場合と、擬似距離異常に分類される場合と、行路差異常に分類される場合とで、異常保持時間が、すべて同じ時間長さに設定されるようにしてもよく、或いは、相互に異なる時間長さに設定されるようにしてもよい。 The abnormality retention time may be set for each type of abnormality. In other words, even if the abnormality holding time is set to the same length for cases where the transmission time is classified as an abnormality, cases where it is classified as a pseudorange abnormality, and cases where the route difference is always classified, Alternatively, the time lengths may be set to be different from each other.
異常に分類される状態が異常保持時間だけ維持される場合は、送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されたGNSS衛星S_iが、前記異常保持時間の経過後に直ちに異常の分類から外されてGNSS信号の受信対象の衛星(そして、上記の各判定処理の対象の衛星)とされるようにしてもよく、或いは、前記異常保持時間の経過後に異常に分類されない状態が所定の正常継続時間だけ維持されたときに異常の分類から外されてGNSS信号の受信対象の衛星(そして、上記の各判定処理の対象の衛星)とされるようにしてもよい。 If a state classified as an abnormality is maintained for the abnormality retention time, the GNSS satellite S_i classified as a transmission time abnormality, pseudorange abnormality, or course difference abnormality (any one of them) is maintained for the abnormality retention time. The satellite may be immediately removed from the abnormality classification after the elapse of the abnormality classification and become a satellite to receive GNSS signals (and the satellite to be subjected to each of the above determination processes), or the abnormality may become abnormal after the abnormality retention time has elapsed. When the unclassified state is maintained for a predetermined normal duration, the satellite may be removed from the abnormal classification and become a satellite to receive GNSS signals (and a satellite to be subjected to each of the above determination processes). .
正常継続時間は、特定の時間長さに限定されるものではなく、例えば正常な(言い換えると、測位部6による測位情報の計算処理に使用される)GNSS衛星S_iの数が極端に減る事態を回避することが考慮されるなどしたうえで、適当な時間長さに適宜設定される。 The normal duration time is not limited to a specific length of time; for example, the normal duration time is not limited to a specific length of time; An appropriate length of time is set as appropriate, taking into account avoidance.
正常継続時間は、異常の種類ごとに設定されるようにしてもよい。すなわち、送信時刻異常に分類される場合と、擬似距離異常に分類される場合と、行路差異常に分類される場合とで、正常継続時間が、すべて同じ時間長さに設定されるようにしてもよく、或いは、相互に異なる時間長さに設定されるようにしてもよい。 The normal duration time may be set for each type of abnormality. In other words, even if the normal duration is set to the same length for cases where the transmission time is classified as an abnormality, cases where it is classified as a pseudorange abnormality, and cases where the route difference is always classified, the normal duration is set to the same length. Alternatively, the time lengths may be set to be different from each other.
GNSS衛星S_iが送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されている状態で、前記GNSS衛星S_iから送信されるGNSS信号に含まれている当該GNSS信号の送信時刻と基準送信時刻との差の絶対値が時刻差閾値未満になった場合に、前記GNSS衛星S_iについての異常は解消されたと判断して、前記GNSS衛星S_iが異常の分類から外される(言い換えると、前記GNSS衛星S_iの異常の状態が解除される)ようにしてもよい。また、複数のGNSS衛星S_iが行路差異常に分類されている状態で、前記複数のGNSS衛星S_iについての行路の差(絶対値)C_iXYどうしの差が行路差閾値より大きくなった場合に、前記複数のGNSS衛星S_iについての行路差異常は解消されたと判断して、前記複数のGNSS衛星S_iが行路差異常の分類から外される(言い換えると、前記複数のGNSS衛星S_iの異常の状態が解除される)ようにしてもよい。 When the GNSS satellite S_i is classified as transmission time abnormality, pseudorange abnormality, or course difference abnormality (any one of them), the GNSS signal contained in the GNSS signal transmitted from the GNSS satellite S_i. When the absolute value of the difference between the transmission time and the reference transmission time becomes less than a time difference threshold, it is determined that the abnormality regarding the GNSS satellite S_i has been resolved, and the GNSS satellite S_i is removed from the abnormality classification. (In other words, the abnormal state of the GNSS satellite S_i may be canceled). Further, in a state where the route differences of the plurality of GNSS satellites S_i are always classified, if the difference between the route differences (absolute values) C_iXY for the plurality of GNSS satellites S_i becomes larger than the route difference threshold, It is determined that the path difference abnormality for the plurality of GNSS satellites S_i has been resolved, and the plurality of GNSS satellites S_i are removed from the classification of path difference abnormality (in other words, the abnormality state of the plurality of GNSS satellites S_i is removed. ).
GNSSコンパス1に付随する、例えばモニタやスピーカを備える出力装置(図示していない)が設けられて、送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)が発生したことが、出力装置のモニタに警報画面が表示されたり出力装置のスピーカから警報が発出されたりして、ユーザへと通知されるようにしてもよい。また、GNSS信号を利用する他の機器(例えば、レーダ,慣性航法装置)に対して送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)が発生したことが通知されるようにしてもよい。 An output device (not shown), which is attached to the GNSS compass 1 and includes, for example, a monitor and a speaker, is provided to detect when a transmission time abnormality, pseudorange abnormality, or course difference abnormality (any one of them) has occurred. The user may be notified by displaying an alarm screen on the monitor of the output device or emitting an alarm from the speaker of the output device. In addition, other devices that use GNSS signals (e.g. radar, inertial navigation device) will be notified of the occurrence of transmission time abnormalities, pseudorange abnormalities, and course difference abnormalities. You may also do so.
送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されるGNSS衛星S_iの数が多くて測位部6による測位情報の計算処理で使用するGNSS衛星S_iの数が少なくなった場合に、前記の異常に分類されるGNSS衛星S_iとGNSSの種類が異なる(即ち、周波数帯が異なる)衛星の受信チャネル割り当て数が増やされるようにしてもよい。つまり、異常に分類されるGNSS衛星S_iの数に応じて、前記異常に分類される前記GNSS衛星S_iと周波数帯が異なる衛星の受信チャネル割り当て数が変化するようにしてもよい。 The number of GNSS satellites S_i classified as transmission time abnormality, pseudorange abnormality, or course difference abnormality is large, and the number of GNSS satellites S_i used in the calculation process of positioning information by the positioning unit 6 is small. In this case, the number of reception channels allocated to the GNSS satellite S_i that is classified as abnormal and a satellite whose GNSS type is different (that is, whose frequency band is different) may be increased. That is, depending on the number of GNSS satellites S_i that are classified as abnormal, the number of reception channels allocated to satellites having a different frequency band from the GNSS satellite S_i that is classified as abnormal may be changed.
例えば、GNSS受信部4の仕様として複数のGNSSの種類(例えば、GPS,GLONASS,BDS)が同一の受信チャネルに共有して割り当てられ且つ割り当てられる衛星数に制限がある場合に、送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されるGNSS衛星S_iがないときは測位部6による測位情報の計算の精度を優先したGNSS衛星S_iが多く割り当てられ、一方、送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されるGNSS衛星S_iが多いときは測位部6による測位情報の計算の継続を優先できるGNSS衛星S_iが多く割り当てられるようにしてもよい。 For example, if multiple GNSS types (e.g. GPS, GLONASS, BDS) are shared and assigned to the same reception channel and there is a limit on the number of satellites that can be assigned, the specifications of the GNSS receiving unit 4 may be such that transmission time abnormalities, When there is no GNSS satellite S_i that is classified as a pseudorange anomaly or a path difference anomaly (any of them), a large number of GNSS satellites S_i are allocated with priority given to the accuracy of calculation of positioning information by the positioning unit 6, and on the other hand, the transmission When there are many GNSS satellites S_i that are classified as time anomalies, pseudorange anomalies, and course difference anomalies (any of them), many GNSS satellites S_i that can prioritize the continuation of calculation of positioning information by the positioning unit 6 are allocated. You may also do so.
送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されるGNSS衛星S_iの数が多くて測位部6による測位情報の計算処理で使用するGNSS衛星S_iの数が少ないために測位部6による測位情報の計算処理ができない状態が所定の時間以上継続した場合に、フェールセーフのため、前記の異常に分類されたGNSS衛星S_iが、前記の異常の分類から外されてGNSS信号の受信対象の衛星(そして、上記の各判定処理の対象の衛星)とされるようにしてもよい。この場合、GNSS受信部4から出力されるGNSS信号に、送信時刻異常,擬似距離異常,および行路差異常(のうちのいずれか)に分類されているGNSS衛星S_iであることを示す情報(例えば、フラグ)が付加されるようにしてもよい。 There are many GNSS satellites S_i that are classified as transmission time abnormalities, pseudorange abnormalities, and course difference abnormalities (any of them), and the number of GNSS satellites S_i used in the calculation process of positioning information by the positioning unit 6 is small. If the situation in which the positioning unit 6 is unable to calculate the positioning information continues for a predetermined period of time due to the above reasons, the GNSS satellite S_i that has been classified as abnormal will be removed from the abnormal classification as a failsafe. The satellite may be a target satellite for receiving a GNSS signal (and a target satellite for each of the above-mentioned determination processes). In this case, the GNSS signal output from the GNSS receiver 4 includes information (e.g. , flag) may be added.
実施の形態に係る受信信号の異常の検出方法やGNSSコンパス1によれば、送信時刻異常および擬似距離異常を検出するとともに行路差異常(言い換えると、GNSS信号の到来方向の異常)を検出するようにしているので、行路差異常は一層確実にGNSS信号の異常を検出することができるものの複数のGNSS衛星S_iから送信されるGNSS信号を対象として処理を行うので検知が遅れることも考えられる一方で送信時刻異常や擬似距離異常はGNSS衛星S_iごとに独立に処理を行うので検知を即時的に行うことができ、送信時刻や擬似距離の判定処理と行路差の判定処理とを組み合わせることでGNSSにおける受信信号の異常を相互補完的に検出してGNSSにおける受信信号の異常の検出処理の信頼性を向上させることが可能となる。 According to the method for detecting an abnormality in a received signal and the GNSS compass 1 according to the embodiment, it is possible to detect a transmission time abnormality and a pseudorange abnormality, and also to detect a path difference abnormality (in other words, an abnormality in the direction of arrival of a GNSS signal). Although it is possible to more reliably detect anomalies in GNSS signals for path difference anomalies using Transmission time anomalies and pseudorange anomalies are processed independently for each GNSS satellite S_i, so they can be detected immediately, and by combining the transmission time and pseudorange determination processing with the path difference determination processing, It becomes possible to detect abnormalities in received signals in a mutually complementary manner and improve the reliability of the abnormality detection process in received signals in GNSS.
以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。 Although the embodiments of this invention have been described above, the specific configuration is not limited to the above embodiments, and even if there are changes in the design within the scope of the gist of this invention, Included in invention.
例えば、上記の実施の形態では図1に概略構成を示すGNSSコンパス1においてこの発明に係る受信信号の異常の検出方法が実施される(言い換えると、この発明に係る受信信号の異常の検出装置がGNSSコンパス1に組み込まれる)ようにしているが、この発明に係る受信信号の異常の検出方法が適用されたりこの発明に係る受信信号の異常の検出装置が組み込まれたりする機器/装置は図1に概略構成を示すGNSSコンパス1に限定されるものではなく、他の構成を備えるGNSSコンパスにこの発明に係る受信信号の異常の検出方法が適用されたりこの発明に係る受信信号の異常の検出装置が組み込まれたりするようにしてもよく、また、この発明に係る受信信号の異常の検出方法が、GNSSを利用する他の種類の機器や装置に適用されたり、この発明に係る受信信号の異常の検出装置が、GNSSを利用する他の種類の機器や装置に組み込まれたりするようにしてもよい。 For example, in the above embodiment, the method for detecting an abnormality in a received signal according to the present invention is implemented in the GNSS compass 1 whose schematic configuration is shown in FIG. The device/device to which the method for detecting an abnormality in a received signal according to the present invention is applied or the device for detecting an abnormality in a received signal according to the present invention is incorporated is shown in Fig. 1. The method for detecting an abnormality in a received signal according to the present invention is not limited to the GNSS compass 1 whose schematic configuration is shown in FIG. In addition, the method for detecting an abnormality in a received signal according to the present invention may be applied to other types of equipment or devices that utilize GNSS, or the method for detecting an abnormality in a received signal according to the present invention may be incorporated. The detection device may be incorporated into other types of equipment or devices that utilize GNSS.
また、上記の実施の形態では擬似距離判定部52を備えて擬似距離の判定処理を行うようにしているが、この発明において擬似距離の判定処理は必須の処理ではない。この場合も、送信時刻判定部51による送信時刻の判定処理が行われることにより、GNSS衛星S_iごとに独立に処理を行うので検知を即時的に行うことができ、送信時刻の判定処理と行路差の判定処理とを組み合わせることでGNSSにおける受信信号の異常を相互補完的に検出してGNSSにおける受信信号の異常の検出処理の信頼性を向上させることが可能となる。 Further, in the embodiment described above, the pseudo distance determination unit 52 is provided to perform the pseudo distance determination process, but the pseudo distance determination process is not an essential process in the present invention. In this case as well, by performing the transmission time determination process by the transmission time determination unit 51, the process is performed independently for each GNSS satellite S_i, so detection can be performed immediately. By combining the above determination processing with the determination processing, it is possible to detect abnormalities in received signals in GNSS in a mutually complementary manner and improve the reliability of the abnormality detection processing in received signals in GNSS.
1 GNSSコンパス
2 制御ユニット
3 GNSSアンテナ
3A,3B,3C GNSSアンテナ
4 GNSS受信部
4A,4B,4C GNSS受信器
5 異常検出部
51 送信時刻判定部
52 擬似距離判定部
53 行路差計算部
54 行路差判定部
6 測位部
1 GNSS compass 2 Control unit 3 GNSS antenna 3A, 3B, 3C GNSS antenna 4 GNSS receiver 4A, 4B, 4C GNSS receiver 5 Abnormality detection unit 51 Transmission time determination unit 52 Pseudo-range determination unit 53 Route difference calculation unit 54 Route difference Judgment unit 6 Positioning unit
Claims (18)
前記GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との比較に基づいて前記GNSS信号の前記送信時刻が正常であるか否かを判定するとともに、
前記GNSS信号を送信した前記衛星から前記複数のアンテナ各々までの行路の差を表す行路差指標に基づいて前記GNSS信号の到来方向が正常であるか否かを判定する、
ことを特徴とする受信信号の異常の検出方法。 Receive GNSS signals transmitted from multiple satellites via multiple antennas,
Determining whether or not the transmission time of the GNSS signal is normal based on a comparison between the transmission time of the GNSS signal included in the GNSS signal and a predetermined reference transmission time,
determining whether the direction of arrival of the GNSS signal is normal based on a path difference index representing a path difference from the satellite that transmitted the GNSS signal to each of the plurality of antennas;
A method for detecting an abnormality in a received signal, characterized in that:
ことを特徴とする請求項1に記載の受信信号の異常の検出方法。 further determining whether the pseudorange of the satellite is normal based on a comparison between the pseudorange of the satellite that transmitted the GNSS signal and the pseudorange of a predetermined reference satellite;
2. The method for detecting an abnormality in a received signal according to claim 1.
ことを特徴とする請求項1または2に記載の受信信号の異常の検出方法。 The reference transmission time for the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from the satellite in the past.
3. The method for detecting an abnormality in a received signal according to claim 1 or 2.
ことを特徴とする請求項1または2に記載の受信信号の異常の検出方法。 The reference transmission time for the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from another satellite,
3. The method for detecting an abnormality in a received signal according to claim 1 or 2.
ことを特徴とする請求項1または2に記載の受信信号の異常の検出方法。 Maintaining the abnormal state of a satellite determined to be abnormal for a predetermined period of time;
3. The method for detecting an abnormality in a received signal according to claim 1 or 2.
ことを特徴とする請求項1または2に記載の受信信号の異常の検出方法。 If the transmission time of the GNSS signal is determined to be normal while the abnormal state of the satellite determined to be abnormal is maintained, the normality of the satellite determined to be abnormal is maintained. release the state of not being
3. The method for detecting an abnormality in a received signal according to claim 1 or 2.
ことを特徴とする請求項1または2に記載の受信信号の異常の検出方法。 When the direction of arrival of the GNSS signal is determined to be abnormal for a plurality of satellites and the abnormal state is maintained, and the direction of arrival of the GNSS signal is determined to be normal for a plurality of satellites, canceling the abnormal state regarding the satellite;
3. The method for detecting an abnormality in a received signal according to claim 1 or 2.
ことを特徴とする請求項1または2に記載の受信信号の異常の検出方法。 changing the number of reception channels allocated to satellites having a different frequency band from the satellites determined to be abnormal, depending on the number of satellites determined to be abnormal;
3. The method for detecting an abnormality in a received signal according to claim 1 or 2.
ことを特徴とする請求項1に記載の受信信号の異常の検出方法。 determining whether the direction of arrival of the GNSS signal is normal based on the path difference index for each type of satellite;
2. The method for detecting an abnormality in a received signal according to claim 1.
前記GNSS信号に含まれている当該GNSS信号の送信時刻と所定の基準送信時刻との比較に基づいて前記GNSS信号の前記送信時刻が正常であるか否かを判定する送信時刻判定部と、
前記GNSS信号を送信した前記衛星から前記複数のアンテナ各々までの行路の差を表す行路差指標に基づいて前記GNSS信号の到来方向が正常であるか否かを判定する行路差判定部と、を有する、
ことを特徴とする受信信号の異常の検出装置。 a receiving unit that receives GNSS signals transmitted from multiple satellites via multiple antennas;
a transmission time determination unit that determines whether the transmission time of the GNSS signal is normal based on a comparison between the transmission time of the GNSS signal included in the GNSS signal and a predetermined reference transmission time;
a path difference determination unit that determines whether the direction of arrival of the GNSS signal is normal based on a path difference index representing a path difference from the satellite that transmitted the GNSS signal to each of the plurality of antennas; have,
A device for detecting an abnormality in a received signal, characterized in that:
ことを特徴とする請求項9に記載の受信信号の異常の検出装置。 further comprising a pseudorange determination unit that determines whether the pseudorange of the satellite is normal based on a comparison between the pseudorange of the satellite that transmitted the GNSS signal and the pseudorange of a predetermined reference satellite;
The apparatus for detecting an abnormality in a received signal according to claim 9.
ことを特徴とする請求項9または10に記載の受信信号の異常の検出装置。 The reference transmission time for the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from the satellite in the past.
The apparatus for detecting an abnormality in a received signal according to claim 9 or 10.
ことを特徴とする請求項9または10に記載の受信信号の異常の検出装置。 The reference transmission time for the satellite that transmitted the GNSS signal is a transmission time included in a GNSS signal transmitted from another satellite,
The apparatus for detecting an abnormality in a received signal according to claim 9 or 10.
ことを特徴とする請求項9または10に記載の受信信号の異常の検出装置。 The abnormal state of the satellite determined to be abnormal is maintained for a predetermined period of time.
The apparatus for detecting an abnormality in a received signal according to claim 9 or 10.
ことを特徴とする請求項9または10に記載の受信信号の異常の検出装置。 If the transmission time of the GNSS signal is determined to be normal while the abnormal state of the satellite determined to be abnormal is maintained, the normality of the satellite determined to be abnormal is maintained. release the state of not being
The apparatus for detecting an abnormality in a received signal according to claim 9 or 10.
ことを特徴とする請求項9または10に記載の受信信号の異常の検出装置。 When the direction of arrival of the GNSS signal is determined to be abnormal for a plurality of satellites and the abnormal state is maintained, and the direction of arrival of the GNSS signal is determined to be normal for a plurality of satellites, canceling the abnormal state regarding the satellite;
The apparatus for detecting an abnormality in a received signal according to claim 9 or 10.
ことを特徴とする請求項9または10に記載の受信信号の異常の検出装置。 Depending on the number of satellites determined to be abnormal, the number of reception channels allocated to satellites having a different frequency band from the satellite determined to be abnormal changes;
The apparatus for detecting an abnormality in a received signal according to claim 9 or 10.
ことを特徴とする請求項10に記載の受信信号の異常の検出装置。 determining whether the direction of arrival of the GNSS signal is normal based on the path difference index for each type of satellite;
The apparatus for detecting an abnormality in a received signal according to claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022063774 | 2022-04-07 | ||
JP2022063774 | 2022-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023155130A true JP2023155130A (en) | 2023-10-20 |
Family
ID=88373441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022188034A Pending JP2023155130A (en) | 2022-04-07 | 2022-11-25 | Method and dev for detecting abnormality of received signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023155130A (en) |
-
2022
- 2022-11-25 JP JP2022188034A patent/JP2023155130A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10761215B2 (en) | Positioning device and positioning method | |
JP4781313B2 (en) | Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program | |
US7623068B2 (en) | Detection of deception signal used to deceive geolocation receiver of a satellite navigation system | |
US6611228B2 (en) | Carrier phase-based relative positioning apparatus | |
US11215714B2 (en) | Deceiving signal detection system and deceiving signal detection method | |
JP5365593B2 (en) | A satellite navigation augmentation system using only highly reliable GPS positioning signals | |
EP3109672A1 (en) | Gnss receiver with a capability to resolve ambiguities using an uncombined formulation | |
JP6593879B2 (en) | Satellite positioning system, positioning terminal, positioning method, and program | |
US11525926B2 (en) | System and method for position fix estimation using two or more antennas | |
JP2010122069A (en) | Moving body position positioning device | |
JP2012208033A (en) | Navigation calculation system | |
JP2009139281A (en) | Positioning method | |
JP4803862B2 (en) | GNSS / Inertial Navigation System | |
JP7111298B2 (en) | Satellite selection device and program | |
JP2008139105A (en) | Apparatus for measuring moving body position | |
US20180259653A1 (en) | Method and device for calculating attitude angle | |
JP2023155130A (en) | Method and dev for detecting abnormality of received signal | |
WO2020110996A1 (en) | Positioning device, speed measuring device, and program | |
JP2023177275A (en) | Method for detection and detector for detecting abnormality of reception signal | |
JP4322829B2 (en) | Cycle slip detection device and cycle slip detection method | |
JP2023177276A (en) | positioning device | |
JP2023168271A (en) | Detection method and detection device of abnormality in reception signal | |
RU2389042C2 (en) | Method of determining protective limit around position of moving body calculated from satellite signals | |
GB2487061A (en) | Position determination of mobile device using GNSS and a radio positioning system | |
JP2024063732A (en) | Satellite abnormality determination device and abnormality determination method |