JP2023154459A - Target material for production of molybdenum-99 and method for producing the same - Google Patents

Target material for production of molybdenum-99 and method for producing the same Download PDF

Info

Publication number
JP2023154459A
JP2023154459A JP2022063746A JP2022063746A JP2023154459A JP 2023154459 A JP2023154459 A JP 2023154459A JP 2022063746 A JP2022063746 A JP 2022063746A JP 2022063746 A JP2022063746 A JP 2022063746A JP 2023154459 A JP2023154459 A JP 2023154459A
Authority
JP
Japan
Prior art keywords
moo
target
solution
water
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022063746A
Other languages
Japanese (ja)
Inventor
久幸 末松
Hisayuki Suematsu
忠親 中山
Tadachika Nakayama
ティ マイ ズン ドゥ
Thi Mai Dung Do
達也 鈴木
Tatsuya Suzuki
ミン チュウ ゴー
Minh Chu Ngo
善貴 藤田
Yoshitaka Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2022063746A priority Critical patent/JP2023154459A/en
Publication of JP2023154459A publication Critical patent/JP2023154459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To develop a shape-controlled target material, by paying attention to the demand for a method that enables filtering of a water-dispersed and neutron-irradiated target and extracting of high-concentration Mo-99 in a solution.SOLUTION: An elongated MoO3 whisker material with a large difference between its long and short diameters is used as a target, which is irradiated with neutrons and then dispersed in water. The target is separated from the solution through a filter, extracting Mo-99 in the solution at a high concentration.SELECTED DRAWING: Figure 3

Description

本発明は、医療用放射性同位元素であるMo-99(モリブデン-99)の製造用原料に関するものである。 The present invention relates to a raw material for producing Mo-99 (molybdenum-99), which is a medical radioactive isotope.

Mo-99は、Moの同位体であり、これが崩壊して医療用放射性同位体Tc-99m(テクネチウム-99m)が生成する。これまで、Mo-99の生産は、高濃縮U-235を使った原子炉の使用済み核燃料中の核分裂生成物から抽出する核分裂法で行われてきたが、核セキュリティーの観点から日本では実施できなかった。これに代わって、Mo-98同位体を研究用原子炉で中性子照射することによりMo-99を生産する核反応法が研究されてきた。 Mo-99 is an isotope of Mo, which decays to produce the medical radioactive isotope Tc-99m (technetium-99m). Until now, Mo-99 has been produced using the nuclear fission method, which extracts fission products from spent nuclear fuel in nuclear reactors using highly enriched U-235, but this method cannot be implemented in Japan due to nuclear security concerns. There wasn't. As an alternative, nuclear reaction methods have been investigated in which Mo-99 is produced by neutron irradiation of the Mo-98 isotope in a research nuclear reactor.

特開2020-051916(特願2018-182149)JP2020-051916 (Patent application 2018-182149)

初川、科学研究費基盤研究(C)、25420913Hatsukawa, Grant-in-Aid for Scientific Research (C), 25420913 Ilyin et al., Physics Proc., 72 (2015) 548Ilyin et al. , Physics Proc. , 72 (2015) 548 Chu et al., Inter. J. Appl. Ceram. Technol., 18 (2021) 889Chu et al. , Inter. J. Appl. Ceram. Technol. , 18 (2021) 889 Chu et al., Jpn. J. Appl. Phys., 61 (2022) SB1018Chu et al. , Jpn. J. Appl. Phys. , 61 (2022) SB1018

この際、Mo-98同位体を濃縮したMo酸化物焼結体やMo金属微粒子ターゲットに中性子照射した後、NaOH水溶液で全量溶解後Mo-99を抽出し、未反応のMo-98を再利用する方法が検討されている。一方、この溶解・再利用の過程をホットセルとマニピュレーターを使用して行わなければならず、作業性と安全性に問題を抱えていた。さらに、NaOH水溶液中には未反応のMo-98が大量に含まれており、この中からMo-99のみを同位体分離すことは非常に困難であった。現在開発されている方法の一つは、強酸溶液を抽出媒としてイオン交換樹脂に吸着させる手法であるが、酸が人体に有害で、製剤化のまえに中和や沈殿で除去する必要があった。 At this time, after neutron irradiation to Mo oxide sintered body or Mo metal fine particle target enriched with Mo-98 isotope, Mo-99 is extracted after dissolving the entire amount with NaOH aqueous solution, and unreacted Mo-98 is reused. A method to do so is being considered. On the other hand, this melting and reuse process had to be carried out using a hot cell and a manipulator, which posed problems in workability and safety. Furthermore, the NaOH aqueous solution contains a large amount of unreacted Mo-98, and it is extremely difficult to isotopically separate only Mo-99 from this. One method currently being developed is to use a strong acid solution as an extraction medium and adsorb it onto an ion exchange resin, but the acid is harmful to the human body and must be removed by neutralization or precipitation before formulation. Ta.

これに対し、MoOの多孔体ターゲットに原子炉で中性子照射し、ホットアトム効果を利用して通水により価数が変わったMo-99イオンを抽出する技法が着想され、部分的に実現可能であることが実験結果により判明した(特許文献1)。この結果から、中性子照射後のMoOターゲットに水を接するだけでMo-99を抽出できる可能性が生まれた。 In response to this, a technique was conceived in which a porous MoO3 target is irradiated with neutrons in a nuclear reactor, and the hot atom effect is used to extract Mo-99 ions whose valence has changed due to water flow, and this technique is partially realized. It has been found from experimental results that this is the case (Patent Document 1). This result created the possibility of extracting Mo-99 simply by contacting water with the MoO 3 target after neutron irradiation.

ホットアトムは、核反応後に発生するγ線の反跳により、生成した核種が高い運動エネルギーを有し、異なる価数のイオンになる現象である。これにより、生成した核種がターゲットから飛び出したり、ターゲットに対して不溶な溶液、特に水に選択的に溶解したりするため、同位体の抽出に好適である。一方、Mo-98(n,γ)Mo-99の核反応の場合、Mo-99が得る運動エネルギーは190eVしかなく、価数は変化する可能性があるもののMo-O固体中を3nmしか透過できない。このため、単にMoを含むターゲットを中性子照射しただけでは、生成したMo-99のほとんどはターゲットから脱出・溶液中に抽出できないことが予想された。固体中をMo-99ホットアトムに拡散させて抽出のためにターゲット表面に出すためには、高いγ線エネルギーを発生するMo-100(n,2n)Mo-99を利用する加速器由来の中性子照射(非特許文献1)や、拡散しなければならないターゲット直径を小さく、表面積を大きくした金属Moナノ粒子(非特許文献2)を用いる必要があった。前者は照射施設が限られ、後者はMo-99抽出のための金属Moナノ粒子を遠心分離する必要があった。このため、ホットアトムを利用した水抽出法の実用化のためには、単なるMoを含んだナノ粒子ターゲットでは、実用上必要な高いスループットでMo-99を抽出する事が出来ない問題があった。 Hot atoms are a phenomenon in which nuclides produced by recoil of gamma rays generated after a nuclear reaction have high kinetic energy and become ions of different valences. This is suitable for isotope extraction because the generated nuclide flies out of the target or is selectively dissolved in a solution insoluble in the target, especially water. On the other hand, in the case of the nuclear reaction of Mo-98(n,γ)Mo-99, the kinetic energy obtained by Mo-99 is only 190 eV, and although the valence may change, it can only penetrate 3 nm through the Mo-O solid. Can not. Therefore, it was predicted that by simply irradiating a target containing Mo with neutrons, most of the generated Mo-99 would not be able to escape from the target and be extracted into the solution. Neutron irradiation from an accelerator using Mo-100 (n, 2n) Mo-99, which generates high γ-ray energy, is used to diffuse Mo-99 hot atoms in a solid and bring it to the target surface for extraction. (Non-Patent Document 1) or metal Mo nanoparticles (Non-Patent Document 2) that have a smaller target diameter and a larger surface area for diffusion. The former had limited irradiation facilities, and the latter required centrifugation of metallic Mo nanoparticles for Mo-99 extraction. Therefore, in order to put the water extraction method using hot atoms into practical use, there was a problem that it was not possible to extract Mo-99 with the high throughput required for practical use with a simple Mo-containing nanoparticle target. .

このナノ粒子に代わり、多孔質MoOターゲットを使う方法が考案された(特許文献1)。一方、多孔質MoO3の場合、水が通すために穴を大きくすると、ターゲット質量が減少し、Mo-99製造量が減る相反性があった。さらに、水の浸透圧による破壊が問題であった。ここで、一方向の粒径が小さく、他方の粒径が大きなウイスカーは、Mo-99ホットアトムのターゲット外への拡散長が短くできるうえ、ナノ粒子より大きいためにフィルターによる濾過で水と分離が可能である。 よって、酸化モリブデンのウイスカーができれば、Mo-99ホットアトム水抽出法に適した上、上記のナノ粒子、多孔体MoOの問題点を解決するターゲット材料と考えられた。 Instead of these nanoparticles, a method using a porous MoO 3 target was devised (Patent Document 1). On the other hand, in the case of porous MoO3, there was a reciprocity in that if the holes were made larger to allow water to pass through, the target mass would decrease and the amount of Mo-99 produced would decrease. Furthermore, destruction caused by water osmotic pressure was a problem. Here, the whiskers, which have a small particle size in one direction and a large particle size in the other direction, can shorten the diffusion length of Mo-99 hot atoms out of the target, and because they are larger than nanoparticles, they can be separated from water by filtration. is possible. Therefore, if molybdenum oxide whiskers could be produced, they would be suitable for the Mo-99 hot atom water extraction method and would be a target material that would solve the problems of the nanoparticles and porous MoO 3 described above.

ターゲットとして用いられる酸化モリブデンのうち、高温で安定なα-MoOや、低温で合成可能なβ-MoOウイスカーの合成例は知られている(非特許文献3)ものの、これが水によりMo-99を抽出出来るかどうかについては報告されていなかった。特に、ウイスカーは特定の結晶面に沿って成長し、これの結晶面が抽出に適当かどうかは分からなかった。さらに、長径が短径より長くなると、同じ短径の超微粒子より表面積は小さくなるため、等方的粒子に比べてウイスカーでMo-99の水による抽出が可能かどうかは自明ではなかった。 Among molybdenum oxides used as targets, synthesis examples of α-MoO 3 , which is stable at high temperatures, and β-MoO 3 whiskers, which can be synthesized at low temperatures, are known (Non-Patent Document 3); There was no report on whether 99 could be extracted. In particular, whiskers grow along specific crystal planes, and it was unclear whether these crystal planes were suitable for extraction. Furthermore, when the major axis is longer than the minor axis, the surface area becomes smaller than that of ultrafine particles with the same minor axis, so it was not obvious whether Mo-99 could be extracted with water using whiskers compared to isotropic particles.

また、水抽出法では、水分子が結晶内に侵入する水和が起これば、ホットアトムであるMo-99が水和分子の拡散を介してターゲット外に抽出される速度が速くなることが予想される。MoOのなかで広く用いられているα-MoOは水和しないが、低温安定のβ-MoOは水和することが知られており(非特許文献4)、結晶内に侵入した水分子がMo-99ホットアトムをターゲット外に拡散させやすいと考えた。このため、β-MoOのウイスカーは、Mo-99ホットアトムを用いた水抽出法により適したターゲットと考えた。一方、水和により、β-MoOは異なる結晶構造に変化して安定化するため、水抽出を行う室温で水和した水分子が十分な拡散能力を有しているかどうかは分からなかった。また、Mo-99ホットアトムは、水により抽出される前に、水やまわりから電子を授受して異なる価数のイオンとなり、水に不溶となる可能性があり、β-MoOウイスカーがMo-99製造用ターゲットとして使用できるかどうかは自明ではなかった。 In addition, in the water extraction method, if hydration occurs in which water molecules enter the crystal, the rate at which Mo-99, which is a hot atom, is extracted out of the target through the diffusion of hydrated molecules will increase. is expected. α-MoO 3 , which is widely used among MoO 3 , is not hydrated, but β-MoO 3 , which is stable at low temperatures, is known to be hydrated (Non-patent Document 4), and water that has entered the crystal is known to hydrate. We thought that the molecules would easily diffuse Mo-99 hot atoms out of the target. Therefore, β-MoO 3 whiskers were considered to be a more suitable target for the water extraction method using Mo-99 hot atoms. On the other hand, due to hydration, β-MoO 3 changes into a different crystal structure and stabilizes, so it was unclear whether water molecules hydrated at room temperature, where water extraction is performed, have sufficient diffusion ability. In addition, before Mo-99 hot atoms are extracted with water, they give and receive electrons from water and the surroundings, becoming ions with different valences, and may become insoluble in water, causing β-MoO 3 whiskers to become Mo It was not obvious whether it could be used as a target for -99 production.

本発明は、Mo-99の製造のため、中性子照射ターゲットを水に分散し、分離を容易にした上で、放射性同位元素を溶液中に抽出を可能にする材料に関するものである。水に分散させた中性子照射したターゲットに関し、フィルターで濾過可能で、溶液中に高濃度のMo-99を抽出する方法が求められていることに着目し、形状および相を制御したターゲット材料を開発することが技術的課題である。 The present invention relates to a material in which a neutron irradiation target is dispersed in water to facilitate separation, and then a radioactive isotope can be extracted into the solution for the production of Mo-99. Focusing on the need for a method to extract high-concentration Mo-99 from a solution that can be filtered with a filter for neutron-irradiated targets dispersed in water, we developed a target material with controlled shape and phase. It is a technical challenge to do so.

より具体的には、本発明の第1の観点に係るターゲット材料は、中性子照射によりMo-99とTc-99mを製造するターゲット材料であって、結晶質酸化モリブデン相からなり、楕円近似の短径が2-400nm、長径が70-2,000,000nmである中実粒子からなることを特徴としている。 More specifically, the target material according to the first aspect of the present invention is a target material for producing Mo-99 and Tc-99m by neutron irradiation, is composed of a crystalline molybdenum oxide phase, and has a short elliptical shape. It is characterized by consisting of solid particles with a diameter of 2-400 nm and a major axis of 70-2,000,000 nm.

本発明の第2の観点に係るターゲット材料の製造方法は、長径と短径が大きく異なる細長いMoOウイスカー材料をターゲット材料とし、中性子照射後水に分散させ、フィルターで溶液と分離し、Mo-99を高い濃度で溶液に抽出させることを特徴としている。 The method for producing a target material according to the second aspect of the present invention uses an elongated MoO 3 whisker material whose major axis and minor axis are significantly different as a target material, disperses it in water after neutron irradiation, separates it from the solution with a filter, and Mo- 99 is extracted into a solution at a high concentration.

本発明によれば、水に分散させた中性子照射したターゲットに関し、フィルターで濾過可能であり、溶液中に高濃度のMo-99を容易に抽出することができる。 According to the present invention, a neutron-irradiated target dispersed in water can be filtered with a filter, and a high concentration of Mo-99 can be easily extracted from the solution.

PWD法で作製したβ-MoOウイスカーのX線回折図形。X-ray diffraction pattern of β-MoO 3 whiskers prepared by PWD method. PWD法により合成したβ-MoOウイスカーの格子像。A lattice image of β-MoO 3 whiskers synthesized by the PWD method. (a)はガス中蒸発法で作製したβ-MoOウイスカーの透過型電子顕微鏡の明視野像で、(b)はガス中蒸発法で作製したβ-MoOウイスカーの透過型電子顕微鏡の格子像。(a) is a transmission electron microscope bright field image of β-MoO 3 whiskers prepared by in-gas evaporation method, and (b) is a transmission electron microscope lattice of β-MoO 3 whiskers prepared by in-gas evaporation method. image. 中性子照射したβ-MoOターゲットを分散・分離した水からのγ線スペクトル。γ-ray spectrum from water in which a β- MoO3 target irradiated with neutrons is dispersed and separated.

長径と短径が大きく異なる細長い酸化モリブデンウイスカーを作製し、これらをターゲットとして中性子照射し、その後水と接触させることによりMo-99を抽出した。以下、本発明の実施例について図面と表に基づいて説明する。 Mo-99 was extracted by preparing elongated molybdenum oxide whiskers with greatly different major and minor axes, irradiating them with neutrons as targets, and then bringing them into contact with water. Hereinafter, embodiments of the present invention will be described based on the drawings and tables.

直径0.5mm、長さ25mmのMo金属細線を、大気中550℃10時間、600℃5時間加熱して、Mo/α-MoOコアシェル構造を持つ細線を作製した。これを、パルス細線放電(PWD)装置で蒸発させた。雰囲気ガスとして酸素分圧25kPa固定とし、これにアルゴンを加えて全圧を25、50、100kPaとし、チャンバーに充填した。この中に、電極を通して上記コアシェル細線を接続した。電極には6kVで充電した30μFのコンデンサーを接続し、大電流パルスでコアシェル細線を通電加熱して蒸発させた。気相中に成長させたウイスカーをフィルターで回収して、X線回折で相を、透過型電子顕微鏡で粒径を観察した。 A thin Mo metal wire with a diameter of 0.5 mm and a length of 25 mm was heated in the atmosphere at 550° C. for 10 hours and at 600° C. for 5 hours to produce a thin wire having a Mo/α-MoO 3 core-shell structure. This was evaporated using a pulsed fine wire discharge (PWD) device. The oxygen partial pressure was fixed at 25 kPa as the atmospheric gas, and argon was added to this to make the total pressure 25, 50, and 100 kPa, and the chamber was filled. The core-shell thin wire was connected to this through an electrode. A 30 μF capacitor charged at 6 kV was connected to the electrode, and the core-shell thin wire was heated and evaporated with a large current pulse. The whiskers grown in the gas phase were collected using a filter, and the phase was observed using X-ray diffraction and the particle size was observed using a transmission electron microscope.

図1に試料のX線回折図形を示す。図1は、本実施例1におけるPWD法(パルス細線放電法)で作製したβ-MoOウイスカーのX線回折図形である。25kPa酸素中、50kPa酸素+アルゴン、100kPa酸素+アルゴン中で作製した試料について示した。すべての試料で、主相はβ-MoOであったが、不純物としてα-MoOとMoもみられた。 Figure 1 shows the X-ray diffraction pattern of the sample. FIG. 1 is an X-ray diffraction pattern of β-MoO 3 whiskers produced by the PWD method (pulsed thin wire discharge method) in Example 1. The samples prepared in 25 kPa oxygen, 50 kPa oxygen + argon, and 100 kPa oxygen + argon are shown. In all samples, the main phase was β-MoO 3 , but α-MoO 3 and Mo were also found as impurities.

この透過型電子顕微鏡観察結果を図2に示す。図2は、本実施例1におけるPWD法により合成したβ-MoO3ウイスカーの格子像である。この面間隔とそれらの角度から、これはβ-MoO3であると結論された。また、300個のウイスカーの形状測定の結果、長径と短径の平均、最小、最大値を表1に示す。100kPaでの作製ではほとんどウイスカーは見当たらなかったが、圧力を上げることにより蒸気の密度と衝突頻度が上がるため、長径も短径も増加することが分かった。これにより、長径216-427nm、短径23-47nmのβ-MoOウイスカーを作製出来た。
(表1)
The results of this transmission electron microscope observation are shown in FIG. FIG. 2 is a lattice image of β-MoO3 whiskers synthesized by the PWD method in Example 1. From this spacing and their angles, it was concluded that this was β-MoO3. Furthermore, as a result of shape measurement of 300 whiskers, the average, minimum, and maximum values of the major axis and minor axis are shown in Table 1. Although almost no whiskers were found when fabricated at 100 kPa, it was found that increasing the pressure increases the density of vapor and the frequency of collisions, resulting in an increase in both the major and minor axes. As a result, β-MoO 3 whiskers with a major axis of 216-427 nm and a minor axis of 23-47 nm were produced.
(Table 1)

表1

Figure 2023154459000002

Table 1
Figure 2023154459000002

ガス中蒸発法により、β-MoOウイスカーの作製を行った。管状炉中に酸素ガスを流した中で、800,850,900,1000℃に保持したボート中にα-MoO粒子を置いて、MoO蒸気を発生させた。これを酸素ガスにより低温部まで輸送して急冷後、気相中でウイスカーを成長させた。これをフィルターで回収した。X線回折で相同定を行ったところ、実施例1と同様ほぼ単一相のβ-MoOであった。800と850℃で蒸発させた場合、ウイスカーが少なかったが、900、1000℃で蒸発させた場合にはウイスカーの量が増加した。 β-MoO 3 whiskers were prepared by the in-gas evaporation method. α-MoO 3 particles were placed in a boat maintained at 800, 850, 900, and 1000° C. while oxygen gas was flowing in a tube furnace to generate MoO 3 vapor. This was transported to a low-temperature part using oxygen gas and after quenching, whiskers were grown in the gas phase. This was collected using a filter. The phase was identified by X-ray diffraction, and as in Example 1, it was found to be almost single-phase β-MoO 3 . There were fewer whiskers when evaporated at 800 and 850°C, but the amount of whiskers increased when evaporated at 900 and 1000°C.

図3に1000℃で蒸発させて作製したβ-MoOウイスカーの透過型電子顕微鏡写真を示す。図3は、本実施例2におけるガス中蒸発法で作製したβ-MoOウイスカーの透過型電子顕微鏡像で、(a)は明視野像、(b)は格子像を示している。(a)の明視野像から、長径が約300nm、短径が10nmの多数のウイスカーが見えた。表2にこの長径と短径の幾何平均径を示す。また、(b)の格子像の面間隔と角度から、これがβ-MoOウイスカーであることが判明した。
(表2)
FIG. 3 shows a transmission electron micrograph of β-MoO 3 whiskers produced by evaporation at 1000°C. FIG. 3 is a transmission electron microscope image of β-MoO 3 whiskers produced by the in-gas evaporation method in Example 2, in which (a) shows a bright field image and (b) shows a lattice image. From the bright field image in (a), many whiskers with a major axis of approximately 300 nm and a minor axis of 10 nm were visible. Table 2 shows the geometric mean diameters of the major and minor axes. Furthermore, from the interplanar spacing and angle of the lattice image in (b), it was found that this was a β-MoO 3 whisker.
(Table 2)

表2

Figure 2023154459000003

Table 2
Figure 2023154459000003

実施例2で作製したβ-MoOウイスカーを中性子照射し、これを水に分散したあと遠心分離して得た溶液の放射能測定を行った。おのおの約0.33gのβ-MoOウイスカー2種類(ウイスカー1、2)を3x1013n/cm2sの熱中性子中性子束で20分照射した。4日後、これを1g/50mlの割合で水に分散させて室温で20時間静置した。これを遠心分離機で分離したあと、ろ紙で濾過して溶液を得た。ウイスカーと溶液からのγ線をゲルマニウム検出器で分析し、標準試料と比較することにより放射能を測定した。ウイスカーと溶液の測定間の時間によるMo-99の崩壊を補正するため、溶液の放射能から崩壊定数を使ってウイスカー測定時の放射能を算出し、どれだけの比率のMo-99がウイスカーから溶液に抽出したかの指標とした。 The β-MoO 3 whiskers produced in Example 2 were irradiated with neutrons, dispersed in water, and then centrifuged, and the resulting solution was measured for radioactivity. Two types of β-MoO 3 whiskers (whiskers 1 and 2), each weighing approximately 0.33 g, were irradiated for 20 minutes with a thermal neutron flux of 3×10 13 n/cm 2 s. After 4 days, this was dispersed in water at a ratio of 1 g/50 ml and allowed to stand at room temperature for 20 hours. This was separated using a centrifuge and then filtered through filter paper to obtain a solution. Radioactivity was measured by analyzing gamma rays from the whiskers and solution using a germanium detector and comparing them with standard samples. In order to correct the decay of Mo-99 due to the time between whisker and solution measurements, we calculated the radioactivity at the time of whisker measurement using the decay constant from the radioactivity of the solution, and calculated the proportion of Mo-99 from the whisker. This was used as an indicator of whether it was extracted into the solution.

図4にウイスカー1を分散後遠心分離した溶液のγ線スペクトルを示す。すなわち、図4は、本実施例3における中性子照射したβ-MoOターゲットを分散・分離した水からのγ線スペクトルである。Mo-99のピーク強度から放射能を算出した。表3に中性子照射したウイスカーとこれを水に分散後遠心分離した溶液の放射能を示す。ウイスカー1,2で61.5と71.4%のMo-99が溶液に抽出した。この結果より、ウイスカーをターゲットとして用いれば、加熱することなく、水中に分散して遠心分離とフィルターのみで、溶液としてかなりのMo-99を抽出出来ることが判明した。これはβ-MoOでなくてもα-MoOでもMoOの水和物でも高い抽出率が得られる。
(表3)
FIG. 4 shows the γ-ray spectrum of a solution obtained by centrifugation after dispersing whisker 1. That is, FIG. 4 is a γ-ray spectrum from water in which the neutron-irradiated β-MoO 3 target was dispersed and separated in Example 3. Radioactivity was calculated from the peak intensity of Mo-99. Table 3 shows the radioactivity of the neutron-irradiated whiskers and the solution obtained by dispersing them in water and centrifuging them. For whiskers 1 and 2, 61.5 and 71.4% of Mo-99 were extracted into the solution. These results revealed that by using whiskers as targets, it was possible to extract a considerable amount of Mo-99 as a solution without heating, just by dispersing it in water, centrifuging it, and filtering it. A high extraction rate can be obtained not only with β-MoO 3 but also with α-MoO 3 and MoO 3 hydrate.
(Table 3)

表3

Figure 2023154459000004


(比較例1) Table 3
Figure 2023154459000004


(Comparative example 1)

ウイスカーではない市販の等方的α-MoO粒子をターゲットして用い、中性子照射後水に分散・分離した結果が、文献(関美沙紀、長岡技術科学大学修士論文、平成30年)に記載されている。これによると、ピークエネルギー0.025eV、2x1013n/cmsの中性子束で7時間照射した粒径700nmの等方的α-MoO粒子は177.1MBqのMo-99放射能を示す一方、溶液からは29.84MBqの放射能が検出されたことから、16.6%のMo-99しかターゲットから溶液に抽出できなかった。これに比べ、実施例4での表1には抽出した比率として61.5や71.4%が得られており、比較例よりも大幅な抽出率の増加が得られた。 The results of using commercially available isotropic α-MoO 3 particles, which are not whiskers, as a target and dispersing and separating them in water after irradiation with neutrons are described in the literature (Misaki Seki, Nagaoka University of Technology master's thesis, 2018). ing. According to this, isotropic α-MoO 3 particles with a particle size of 700 nm irradiated for 7 hours with a peak energy of 0.025 eV and a neutron flux of 2 x 10 13 n/cm 2 s exhibit Mo-99 radioactivity of 177.1 MBq. Since 29.84 MBq of radioactivity was detected from the solution, only 16.6% of Mo-99 could be extracted from the target into the solution. In comparison, in Table 1 for Example 4, the extracted ratios were 61.5 and 71.4%, which was a significant increase in the extraction ratio than in the comparative example.

なし。 none.

Claims (3)

中性子照射によりMo-99とTc-99mを製造するターゲット材料であって、結晶質酸化モリブデン相からなり、楕円近似の短径が2-400nm、長径が70-2,000,000nmである中実粒子からなるターゲット材料。 A solid target material for producing Mo-99 and Tc-99m by neutron irradiation, consisting of a crystalline molybdenum oxide phase, with a short axis of ellipse approximation of 2-400 nm and a long axis of 70-2,000,000 nm. Target material consisting of particles. 請求項1において、前記結晶質酸化モリブデン相がβ-MoOであることを特徴とするターゲット材料。 Target material according to claim 1, characterized in that the crystalline molybdenum oxide phase is β-MoO 3 . 長径と短径が大きく異なる細長いMoOウイスカー材料をターゲット材料とし、中性子照射後水に分散させ、フィルターで溶液と分離し、Mo-99を高い濃度で溶液に抽出させるターゲット材料の製造方法。 A method for producing a target material, in which a long and narrow MoO 3 whisker material with greatly different major and minor axes is used as a target material, and after neutron irradiation, it is dispersed in water, separated from the solution by a filter, and Mo-99 is extracted into the solution at a high concentration.
JP2022063746A 2022-04-07 2022-04-07 Target material for production of molybdenum-99 and method for producing the same Pending JP2023154459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022063746A JP2023154459A (en) 2022-04-07 2022-04-07 Target material for production of molybdenum-99 and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022063746A JP2023154459A (en) 2022-04-07 2022-04-07 Target material for production of molybdenum-99 and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023154459A true JP2023154459A (en) 2023-10-20

Family

ID=88373645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022063746A Pending JP2023154459A (en) 2022-04-07 2022-04-07 Target material for production of molybdenum-99 and method for producing the same

Country Status (1)

Country Link
JP (1) JP2023154459A (en)

Similar Documents

Publication Publication Date Title
JP5816983B2 (en) Method for producing molybdenum compound
Gavrin et al. Reactor target from metal chromium for “pure” high-intensive artificial neutrino source
Penionzhkevich Reactions involving loosely bound cluster nuclei: Heavy ions and new technologies
JP2023154459A (en) Target material for production of molybdenum-99 and method for producing the same
RU2588594C1 (en) Method of producing nanostructured target for producing molybdenum-99 radioisotopes
KR101460690B1 (en) Extracting method of radioactive 99Mo from low enriched uranium target
RU2666552C1 (en) Method of producing nanostructured target for production of molybdenum-99
RU2578039C1 (en) Method of producing nanostructured target for production of molybdenum-99 radioisotope
Goosman Production of 10BeO targets via the 13C (n, α) 10Be reaction
JP7187750B2 (en) Production method and target material for radioactive isotope Mo-99
Chatfield Some studies of the aerosols produced by the combustion or vaporization of plutonium-alkali metal mixtures, II
He et al. Hydrothermal synthesis of silicon oxide clad uranium oxide nanowires
Fedorovich et al. Рeculiarities of interaction of low-energy protons with tungsten surface
Causey et al. The effects of neutron irradiation on the trapping of tritium in graphite
Carstens et al. Fabrication of LiD0. 5T0. 5 microspheres for use as laser fusion targets
Didyk et al. Changes observed in the elemental composition of palladium and rhenium specimens irradiated in dense deuterium by γ-quanta with boundary of energy 23 MeV
WO2020139104A1 (en) Method for producing the radioisotope molybdenum-99
Gavrin et al. Reactor target from metal chromium for “pure” high-intensive artificial neutrino source
Yuferov et al. Physical principles of the multicomponent media’separation at thermoheating
Chen et al. The Release of C-14 of HTR Graphite Spheres during High Temperature Oxidation
US5875220A (en) Process for production of radiostrontium
Allen et al. characterization of LMFBR fuel-sodium aerosols
Haas Tailor-made thin radionuclide layers for targets and recoil ion sources in nuclear applications
NGO Development of β-MoO3 targets for 99Mo/99mTc isotope preparation utilizing hot atoms
Bievelez et al. Preparation of carrier-free 123 I with a high radionuclidic purity