JP2023153485A - Power control device and power control method for self-consumption solar power generation system - Google Patents

Power control device and power control method for self-consumption solar power generation system Download PDF

Info

Publication number
JP2023153485A
JP2023153485A JP2022062792A JP2022062792A JP2023153485A JP 2023153485 A JP2023153485 A JP 2023153485A JP 2022062792 A JP2022062792 A JP 2022062792A JP 2022062792 A JP2022062792 A JP 2022062792A JP 2023153485 A JP2023153485 A JP 2023153485A
Authority
JP
Japan
Prior art keywords
power
value
formula
generated
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022062792A
Other languages
Japanese (ja)
Inventor
一徳 内海
Kazunori Uchiumi
弘 松本
Hiroshi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onamba Co Ltd
Original Assignee
Onamba Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onamba Co Ltd filed Critical Onamba Co Ltd
Priority to JP2022062792A priority Critical patent/JP2023153485A/en
Publication of JP2023153485A publication Critical patent/JP2023153485A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a power control device and a power control method for a self-consumption solar power generation system that covers the power consumption by a load with power generated from solar power generation equipment and power received from a power company.SOLUTION: In a solar power generation system, a power control device includes a data acquisition unit that can acquire a received power value at a cycle of 3 seconds or less, and a control unit that can change the generated power on the basis of the acquired received power value data result. On the basis of the data acquired by the data acquisition unit, the control unit determines whether the formula of (a previous received power value (kW) minus a latest received power value (kW))≥threshold A is satisfied (where the threshold A is preferably greater than 0 and 5 to 30% of the previous received power value (kW)), and if satisfied, the generated power is reduced.SELECTED DRAWING: Figure 3

Description

本発明は、太陽光発電設備からの発電電力と電力会社からの受電電力とによって負荷による消費電力を賄う自家消費型太陽光発電システムの電力制御装置及び電力制御方法に関するものである。特に、本発明は、発電電力量を常時あまり抑制せずに消費電力値が急激に低下する場合も逆潮流を迅速に防止することができる自家消費型太陽光発電システムの電力制御装置及び電力制御方法に関する。 The present invention relates to a power control device and a power control method for a self-consumption solar power generation system in which power consumption by a load is covered by power generated from a solar power generation facility and power received from an electric power company. In particular, the present invention provides a power control device and a power control system for a self-consumption solar power generation system that can quickly prevent reverse power flow even when the power consumption value suddenly decreases without significantly suppressing the amount of generated power at all times. Regarding the method.

従来の太陽光発電は、国による固定価格買取制度(FIT)により20年間固定の高い単価で電気を売ることができるため、FIT施行以降非常に高い人気が続いていた。 Conventional solar power generation has remained extremely popular since the government's Feed-in Tariff (FIT) system, which allows electricity to be sold at a high, fixed price for 20 years.

しかしながら、電力会社の買取価格の低下により、新規設置では買取価格は電気料金とほぼ同額、あるいはそれより低下するため、太陽光発電設備に対する投資妙味がなくなりつつある。また、電力会社の出力制御要請により発電した設備からの売電を抑制せざるをえない環境も生じている。 However, due to the decline in electricity companies' purchase prices, the purchase price for new installations is almost the same as, or even lower than, the electricity bill, making it less attractive to invest in solar power generation equipment. Furthermore, an environment has arisen in which electricity sales from power generating equipment have to be suppressed due to output control requests from electric power companies.

かかる環境の下、太陽光発電設備は、発電した電力を電力会社に売るより自家消費することを目的とした設計が増えつつある。このような自家消費型の設計では、太陽光発電システムから電力会社への電力の逆潮流を防止するように制御することが必要である。 Under such circumstances, solar power generation equipment is increasingly being designed for self-consumption of the generated power rather than selling it to an electric power company. Such self-consumption designs require controls to prevent reverse flow of power from the solar power generation system to the utility company.

逆潮流を防止した太陽光発電システムとしては、例えば特許文献1~3が挙げられる。特許文献1では、消費電力量と発電電力量の差(つまり、受電電力値)が設定閾値以下となった場合に太陽光発電装置から供給される電力量を所定値まで低減することが開示され、特許文献2では、負荷による消費電力量に対する発電電力量の不足分が閾値以下になった場合に太陽光発電装置から供給される電力量を抑制することが開示されている。また、特許文献3では、発電電力の上限値を、発電電力の上限値と消費電力との差が消費電力の一次関数となるように設定して、発電電力がこの上限値以下となるように制御することが開示されている。 Examples of solar power generation systems that prevent reverse power flow include Patent Documents 1 to 3. Patent Document 1 discloses that the amount of power supplied from the solar power generation device is reduced to a predetermined value when the difference between the amount of power consumed and the amount of power generated (that is, the received power value) becomes less than or equal to a set threshold. , Patent Document 2 discloses that the amount of power supplied from a solar power generation device is suppressed when the shortage of the amount of generated power with respect to the amount of power consumed by the load becomes less than a threshold value. Furthermore, in Patent Document 3, the upper limit value of the generated power is set so that the difference between the upper limit value of the generated power and the power consumption becomes a linear function of the power consumption, so that the generated power is less than or equal to this upper limit value. It is disclosed to control.

これらの太陽光発電システムでは、いずれも、一定の時間間隔で発電電力量や消費電力量の計測を行ない、得られた発電電力量や消費電力量のデータから各時点での消費電力量と発電電力量の差(つまり、受電電力値)を計算し、この各時点での受電電力値に基づいて、発電電力の制御を行なっている。 In all of these solar power generation systems, the amount of power generated and consumed is measured at regular time intervals, and the amount of power consumed and power generated at each point in time is calculated from the data on the amount of power generated and consumed. The difference in power amount (that is, the received power value) is calculated, and the generated power is controlled based on the received power value at each point in time.

消費電力値の経時変化が緩慢である場合は、このような各時点での受電電力値に基づく電力制御で十分対応することができる。しかしながら、消費電力値の経時変化が急速である場合、例えば工場などで昼休みの開始時に一斉に稼働を停止することにより消費電力が短時間で急速に低下する場合などには、各時点での受電電力値に基づく電力制御では迅速に対応することができず、その結果、消費電力が低下したにもかかわらず発電電力が大きいままで発電電力が消費電力を上回ってしまい、電力会社への電力の逆潮流が発生してしまう問題があった。 If the power consumption value changes slowly over time, power control based on the received power value at each point in time can be sufficient. However, if the power consumption value changes rapidly over time, for example, if a factory suddenly stops operating at the start of a lunch break and power consumption drops rapidly in a short period of time, Power control based on power values cannot respond quickly, and as a result, even though power consumption has decreased, the generated power remains large and exceeds the power consumption, resulting in a loss of power to the power company. There was a problem that reverse power flow occurred.

このような逆潮流の発生の問題を未然に防止するために、従来は、発電電力量の上限値を太陽光発電設備の定格発電量よりも敢えて大幅に低くすること、つまり安全のためのマージン量を大きくとることが一般的に行なわれている。この場合、逆潮流の発生は防止することができるが、大幅なマージン量のために発電電力量を常時低く抑制することになり、太陽光発電システムの発電能力を有効に活用できない問題があった。 In order to prevent the problem of such reverse power flow from occurring, conventional methods have been to purposely set the upper limit of the amount of power generated to be significantly lower than the rated power generation amount of the solar power generation equipment, that is, to provide a margin for safety. It is common practice to increase the amount. In this case, it is possible to prevent the occurrence of reverse power flow, but due to the large amount of margin, the amount of generated power is constantly suppressed to a low level, which poses the problem of not being able to effectively utilize the power generation capacity of the solar power generation system. .

特開2017-93127号公報JP2017-93127A 特開2012-175858号公報Japanese Patent Application Publication No. 2012-175858 特許第6364567号公報Patent No. 6364567

本発明は、上記の従来技術の問題を解消するために創案されたものであり、その目的は、逆潮流防止のための発電電力の抑制量を最小限にしながら、消費電力の急激な低下時であっても逆潮流を迅速に防止することができる自家消費型太陽光発電システムの電力制御装置及び電力制御方法を提供することにある。 The present invention was devised to solve the above-mentioned problems of the prior art, and its purpose is to minimize the amount of suppression of generated power to prevent reverse power flow while minimizing the amount of power generated when power consumption suddenly decreases. It is an object of the present invention to provide a power control device and a power control method for a self-consumption type solar power generation system that can quickly prevent reverse power flow even if

本発明者は、上記目的を達成するために鋭意検討した結果、最新の受電電力値とその直前の受電電力値とを3秒以下の短い周期で取得し、両受電電力値の間で急激な低下の問題があるかどうかを特定の式で判定し、その式により問題があると認められる場合には発電電力を低下させて逆潮流を防止すること、さらに必要により上記の判定で問題が認められなくても最新の受電電力値が特定の値より低い場合には逆潮流の発生の傾向が認められるとして同じく発電電力を低下させて逆潮流を防止することにより、逆潮流防止のための発電電力の抑制のマージン量を最小限にしながら、逆潮流が急激に発生しうる場合に逆潮流を迅速に防止することができ、また逆潮流の傾向を少しでも示した場合にも逆潮流を確実に防止することができることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the present inventor acquired the latest received power value and the immediately preceding received power value in a short cycle of 3 seconds or less, and discovered that there is no sudden difference between the two received power values. A specific formula is used to determine whether or not there is a problem with power reduction, and if the formula determines that there is a problem, the generated power is reduced to prevent reverse power flow, and if necessary, the above determination determines that there is a problem. Even if the latest received power value is lower than a certain value, it is recognized that there is a tendency for reverse power flow to occur, and the generated power is similarly reduced to prevent reverse power flow. While minimizing the amount of power curtailment margin, it is possible to quickly prevent reverse power flow when it could occur suddenly, and also ensure that reverse power flow is prevented even if there is even a slight tendency for reverse power flow. The present invention has been completed based on the discovery that this can be prevented.

即ち、本発明は、以下の[1]~[17]の構成を有するものである。
[1]太陽光発電設備からの発電電力と電力会社からの受電電力とによって負荷による消費電力を賄う自家消費型太陽光発電システムの電力制御装置であって、前記電力制御装置が、受電電力値を3秒以下の周期で取得することができるデータ取得部と、取得した受電電力値のデータ結果に基づいて発電電力を変更することができる制御部とを含み、前記制御部は、前記データ取得部が取得したデータに基づいて、(直前の受電電力値(kW)-最新の受電電力値(kW))≧閾値A(但し、閾値Aは0より大きい)の式(i)を満たすかどうかを判定し、式(i)を満たす場合には、発電電力を低下させるように構成したことを特徴とする電力制御装置。
[2]データ取得部が、発電電力値を受電電力値と同じ周期で取得することができるように構成されており、式(i)を満たす場合には、最新の発電電力値(kW)と0~0.90の範囲の値から選択される制御率αとの積の値まで発電電力を低下させるように構成したことを特徴とする[1]に記載の電力制御装置。
[3]閾値Aが、直前の受電電力値(kW)の5~30%の範囲から選択される値であることを特徴とする[1]又は[2]に記載の電力制御装置。
[4]式(i)を満たさない場合には、制御部が、データ取得部が取得したデータに基づいて、最新の受電電力値(kW)≧閾値B(但し、閾値Bは0より大きい)の式(ii)を満たすかどうかを判定し、式(ii)を満たさない場合には、最新の発電電力値(kW)と制御率αより大きいが1.0未満の値の制御率βとの積の値まで発電電力を低下させるように構成したことを特徴とする[2]又は[3]に記載の電力制御装置。
[5]閾値Bが、太陽光発電設備の定格発電量(kW)の5~30%の範囲から選択される値であることを特徴とする[4]に記載の電力制御装置。
[6]制御率βが、データ取得部が取得したデータに基づいて、以下の式(iii)に従って計算された値であることを特徴とする[4]又は[5]に記載の電力制御装置。
制御率β=[(最新の発電電力値(kW)+最新の受電電力値(kW))-マージン量(kW)]/定格発電量(kW)…式(iii)
[7]マージン量が、最新の発電電力値(kW)の5~40%の範囲から選択される値であることを特徴とする[6]に記載の電力制御装置。
[8]式(ii)を満たす場合は、データ取得部の次のデータ取得後に、式(i)を満たすかどうかの判定を再び繰り返すように構成したことを特徴とする[4]~[7]のいずれかに記載の電力制御装置。
[9][1]~[8]のいずれかに記載の電力制御装置を含むことを特徴とする自家消費型太陽光発電システム。
[10]太陽光発電設備からの発電電力と電力会社からの受電電力とによって負荷による消費電力を賄う自家消費型太陽光発電システムにおいて電力制御装置によって発電電力を制御する方法であって、前記電力制御装置が、受電電力値を3秒以下の周期で取得することができるデータ取得部と、取得した受電電力値のデータ結果に基づいて発電電力を変更することができる制御部とを含み、前記制御部によって、前記データ取得部が取得したデータに基づいて、(直前の受電電力値(kW)-最新の受電電力値(kW))≧閾値A(但し、閾値Aは0より大きい)の式(i)を満たすかどうかを判定し、式(i)を満たす場合には、発電電力を低下させることを特徴とする方法。
[11]データ取得部が、発電電力値を受電電力値と同じ周期で取得することができるように構成されており、式(i)を満たす場合には、最新の発電電力値(kW)と0~0.90の範囲の値から選択される制御率αとの積の値まで発電電力を低下させることを特徴とする[10]に記載の方法。
[12]閾値Aが、直前の受電電力値(kW)の5~30%の範囲から選択される値であることを特徴とする[10]又は[11]に記載の方法。
[13]式(i)を満たさない場合には、制御部が、データ取得部が取得したデータに基づいて、最新の受電電力値(kW)≧閾値B(但し、閾値Bは0より大きい)の式(ii)を満たすかどうかを判定し、式(ii)を満たさない場合には、最新の発電電力値(kW)と制御率αより大きいが1.0未満の値の制御率βとの積の値まで発電電力を低下させることを特徴とする[11]又は[12]に記載の電力制御装置。
[14]閾値Bが、太陽光発電設備の定格発電量(kW)の5~30%の範囲から選択される値であることを特徴とする[13]に記載の方法。
[15]制御率βが、データ取得部が取得したデータに基づいて、以下の式(iii)に従って計算された値であることを特徴とする[13]又は[14]に記載の方法。
制御率β=[(最新の発電電力値(kW)+最新の受電電力値(kW))-マージン量(kW)]/定格発電量(kW)…式(iii)
[16]マージン量が、最新の発電電力値(kW)の5~40%の範囲から選択される値であることを特徴とする[15]に記載の方法。
[17]式(ii)を満たす場合は、データ取得部の次のデータ取得後に、式(i)を満たすかどうかの判定を再び繰り返すことを特徴とする[13]~[16]のいずれかに記載の方法。
That is, the present invention has the following configurations [1] to [17].
[1] A power control device for a self-consumption solar power generation system that covers power consumption by a load with power generated from a solar power generation facility and power received from an electric power company, wherein the power control device is configured to adjust the received power value. a data acquisition unit that can acquire the data at a cycle of 3 seconds or less, and a control unit that can change the generated power based on the acquired data result of the received power value, the control unit Based on the data acquired by the unit, whether the following equation (i) is satisfied: (Previous received power value (kW) - Latest received power value (kW)) ≧ Threshold A (However, Threshold A is greater than 0) 1. A power control device characterized in that the power control device is configured to reduce generated power when the equation (i) is satisfied.
[2] The data acquisition unit is configured to be able to acquire the generated power value at the same cycle as the received power value, and when formula (i) is satisfied, the latest generated power value (kW) and The power control device according to [1], characterized in that the power control device is configured to reduce the generated power to a value multiplied by a control rate α selected from a value in the range of 0 to 0.90.
[3] The power control device according to [1] or [2], wherein the threshold value A is a value selected from a range of 5 to 30% of the immediately preceding received power value (kW).
[4] If formula (i) is not satisfied, the control unit determines, based on the data acquired by the data acquisition unit, the latest received power value (kW)≧threshold B (however, threshold B is greater than 0) It is determined whether formula (ii) is satisfied, and if formula (ii) is not satisfied, the latest generated power value (kW) and the control rate β, which is greater than the control rate α but less than 1.0, are determined. The power control device according to [2] or [3], characterized in that the power control device is configured to reduce the generated power to a value of the product of .
[5] The power control device according to [4], wherein the threshold value B is a value selected from a range of 5 to 30% of the rated power generation amount (kW) of the solar power generation equipment.
[6] The power control device according to [4] or [5], wherein the control rate β is a value calculated according to the following formula (iii) based on the data acquired by the data acquisition unit. .
Control rate β = [(Latest generated power value (kW) + latest received power value (kW)) - Margin amount (kW)]/Rated power generation amount (kW)...Formula (iii)
[7] The power control device according to [6], wherein the margin amount is a value selected from a range of 5 to 40% of the latest generated power value (kW).
[8] If formula (ii) is satisfied, the determination as to whether formula (i) is satisfied is repeated after the data acquisition unit acquires the next data [4] to [7] ] The power control device according to any one of.
[9] A self-consumption solar power generation system comprising the power control device according to any one of [1] to [8].
[10] A method for controlling generated power by a power control device in a self-consumption solar power generation system in which power consumption by a load is covered by power generated from a solar power generation facility and power received from an electric power company, the method comprising: The control device includes a data acquisition unit that can acquire the received power value at a cycle of 3 seconds or less, and a control unit that can change the generated power based on the acquired data result of the received power value, Based on the data acquired by the data acquisition unit, the control unit calculates the formula (previous received power value (kW) - latest received power value (kW))≧threshold value A (however, threshold value A is greater than 0). A method characterized by determining whether formula (i) is satisfied, and reducing generated power if formula (i) is satisfied.
[11] The data acquisition unit is configured to be able to acquire the generated power value at the same cycle as the received power value, and when formula (i) is satisfied, the latest generated power value (kW) and The method according to [10], characterized in that the generated power is reduced to a value multiplied by a control rate α selected from a value in the range of 0 to 0.90.
[12] The method according to [10] or [11], wherein the threshold value A is a value selected from a range of 5 to 30% of the immediately preceding received power value (kW).
[13] If formula (i) is not satisfied, the control unit determines, based on the data acquired by the data acquisition unit, the latest received power value (kW)≧threshold B (however, threshold B is greater than 0) It is determined whether formula (ii) is satisfied, and if formula (ii) is not satisfied, the latest generated power value (kW) and the control rate β, which is greater than the control rate α but less than 1.0, are determined. The power control device according to [11] or [12], characterized in that the generated power is reduced to a value equal to the product of [11] or [12].
[14] The method according to [13], wherein the threshold value B is a value selected from a range of 5 to 30% of the rated power generation amount (kW) of the solar power generation equipment.
[15] The method according to [13] or [14], wherein the control rate β is a value calculated according to the following formula (iii) based on the data acquired by the data acquisition unit.
Control rate β = [(Latest generated power value (kW) + latest received power value (kW)) - Margin amount (kW)]/Rated power generation amount (kW)...Formula (iii)
[16] The method according to [15], wherein the margin amount is a value selected from a range of 5 to 40% of the latest generated power value (kW).
[17] Any one of [13] to [16], characterized in that when formula (ii) is satisfied, the determination as to whether formula (i) is satisfied is repeated again after the data acquisition unit acquires the next data. The method described in.

本発明によれば、最新の受電電力値とその直前の受電電力値とを3秒以下の短い周期で取得し、両受電電力値の間で急激な低下の問題があるかどうかを特定の式で判定し、その式により問題があると認められる場合には発電電力を低下させているので、逆潮流防止のための発電電力の抑制のマージン量を最小限にしながら、逆潮流が急激に発生しうる場合に逆潮流を迅速に防止することができる。また、さらに必要により上記の判定で問題が認められなくても最新の受電電力値が特定の値より低い場合には逆潮流の発生の傾向が認められるとして同じく発電電力を低下させているので、逆潮流の傾向を少しでも示した場合にも逆潮流を確実に防止することができる。 According to the present invention, the latest received power value and the immediately preceding received power value are acquired in a short cycle of 3 seconds or less, and a specific formula is used to determine whether there is a problem with a sudden drop between the two received power values. If it is determined that there is a problem based on the formula, the generated power is reduced, so while minimizing the amount of margin for suppressing the generated power to prevent reverse power flow, it is possible to prevent reverse power flow from occurring rapidly. Reverse power flow can be quickly prevented if possible. Furthermore, if necessary, even if no problem is found in the above judgment, if the latest received power value is lower than a specific value, it is recognized that there is a tendency for reverse power flow to occur, and the generated power is similarly reduced. Reverse power flow can be reliably prevented even if there is even a slight tendency for reverse power flow.

図1は、本発明の電力制御装置を含む自家消費型太陽光発電システムの一例の概略説明図である。FIG. 1 is a schematic explanatory diagram of an example of a self-consumption type solar power generation system including a power control device of the present invention.

図2は、従来技術の電力制御装置を使用した場合の発電電力の制御方法のフローチャートの一例である。FIG. 2 is an example of a flowchart of a method for controlling generated power when using a conventional power control device.

図3は、本発明の電力制御装置を使用した場合の発電電力の制御方法のフローチャートの一例である。FIG. 3 is an example of a flowchart of a method for controlling generated power when using the power control device of the present invention.

図4は、従来技術の電力制御装置を使用した場合の逆潮流防止効果シミュレーションの一例を表わすグラフである。FIG. 4 is a graph showing an example of a reverse power flow prevention effect simulation when using a conventional power control device.

図5は、従来技術の電力制御装置を使用した場合の逆潮流防止効果シミュレーションの別の一例を表わすグラフである。FIG. 5 is a graph showing another example of a reverse power flow prevention effect simulation when using a conventional power control device.

図6は、本発明の電力制御装置を使用した場合の逆潮流防止効果シミュレーションの一例を表わすグラフである。FIG. 6 is a graph showing an example of a reverse power flow prevention effect simulation when using the power control device of the present invention.

以下、本発明の電力制御装置、電力制御方法、及びそれらを使用した太陽光発電システムの実施形態について図面を参照して説明するが、本発明は、これらに限定されるものではない。 EMBODIMENT OF THE INVENTION Hereinafter, embodiments of a power control device, a power control method, and a solar power generation system using the same according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

本発明の電力制御装置は、発電電力の抑制のマージン量を最小限にしながら、消費電力の急激な低下による逆潮流を迅速に防止することができる新規な制御方法を使用することに特徴があり、それ以外は従来公知のものと基本的に同じ装置を適宜採用することができる。また、本発明の電力制御装置を使用して制御される太陽光発電システム本体は、それ自体、基本的に従来公知のものを採用することができる。 The power control device of the present invention is characterized in that it uses a novel control method that can quickly prevent reverse power flow due to a sudden drop in power consumption while minimizing the amount of margin for suppressing generated power. Other than that, basically the same device as the conventionally known device can be appropriately adopted. Moreover, the solar power generation system itself controlled using the power control device of the present invention can basically adopt a conventionally known system.

本発明の自家消費型太陽光発電システムの電力制御装置は、太陽光発電設備からの発電電力と電力会社からの受電電力とによって負荷による消費電力を賄うものである。本発明の電力制御装置は、受電電力値を3秒以下の短い周期で取得することができるデータ取得部と、取得した受電電力値のデータ結果に基づいて発電電力を変更することができる制御部とを含み、制御部において、短い周期で特定の式(i)で急激な受電電力値の低下のおそれがあるかどうかを判定し、そのおそれが認められる場合に発電電力を低下させて逆潮流を迅速に防止することを特徴とするものである。 The power control device for the self-consumption solar power generation system of the present invention covers the power consumption by the load using the power generated from the solar power generation equipment and the power received from the power company. The power control device of the present invention includes a data acquisition unit that can acquire a received power value in a short cycle of 3 seconds or less, and a control unit that can change generated power based on the acquired data result of the received power value. The control unit determines whether there is a risk of a sudden drop in the received power value using a specific formula (i) in a short period, and if there is a risk of a sudden drop in the received power value, the generated power is reduced to prevent reverse power flow. It is characterized by rapidly preventing

図1は、本発明の電力制御装置を使用した自家消費型太陽光発電システムの一例を概略的に示したものである。図1に示されるように、本発明の太陽光発電システム1は、太陽光発電設備2からの発電電力2Aと、電力会社3からの受電電力3Aと、任意選択的に蓄電池からの供給電力(図示せず)とによって負荷4による消費電力4Aを賄う自家消費型太陽光発電システムである。本発明の太陽光発電システム1は、本発明の電力制御装置を使用して前述の各電力を制御することができるように構成されている。図1の太陽光発電システム1では、建造物の屋上に太陽光発電設備2が設置され、消費電力4Aを要求するものとして建造物内の空調設備5を含む負荷4が示されている。 FIG. 1 schematically shows an example of a self-consumption type solar power generation system using the power control device of the present invention. As shown in FIG. 1, the solar power generation system 1 of the present invention uses 2A of generated power from the solar power generation equipment 2, 3A of received power from the electric power company 3, and optionally the supplied power ( This is a self-consumption type solar power generation system that covers the power consumption of 4 A by the load 4 by using the power source (not shown). The solar power generation system 1 of the present invention is configured to be able to control each of the above-mentioned powers using the power control device of the present invention. In the solar power generation system 1 of FIG. 1, a solar power generation facility 2 is installed on the roof of a building, and a load 4 including an air conditioner 5 inside the building is shown as requiring power consumption of 4A.

太陽光発電システム1では、電力会社3の系統電力網から電力3Aが受電されて分電盤9に送られる。このときの受電電力3Aは、例えばスマートメーター8によって計測される。また、太陽光発電設備2で発電した電力は、直流電力で出力され、パワーコンディショナー(図示せず)によって交流電力に変換され、発電電力2Aとして分電盤9に送られる。分電盤9に集められた受電電力3A及び発電電力2Aは、合わせて負荷4に送られ、消費電力4Aとして使用される。 In the solar power generation system 1 , 3 A of electric power is received from the power grid of the electric power company 3 and sent to the distribution board 9 . The received power 3A at this time is measured by the smart meter 8, for example. Further, the power generated by the solar power generation equipment 2 is output as DC power, converted to AC power by a power conditioner (not shown), and sent to the distribution board 9 as generated power 2A. The received power 3A and the generated power 2A collected in the distribution board 9 are sent together to the load 4 and used as power consumption 4A.

本発明の電力制御装置は、電力会社3からの受電電力3Aの計測データ、つまり受電力値、及び必要により発電電力値をそれぞれ特定の周期で取得することができるデータ取得部6と、それらのデータ結果に基づいて発電電力2Aを変更することができる制御部7とを含む。データ取得部6は、それ自体、各電力を計測するものでなくてもよく、各電力の計測データを取得することができれば十分である。データ取得部6で取得されたデータは、例えばインターネット10を介してクラウドサーバー11に送ることができ、制御部7は、そこからデータを与えられることもできる。制御部7は、データ取得部6と一体的に設けられてもよいし、データ取得部6から離れて設けられてもよい。また、制御部7は、パワーコンディショナーの中に一体的に設けられてもよいし、パワーコンディショナーとは別に設けられてもよい。 The power control device of the present invention includes a data acquisition unit 6 that can acquire measurement data of the received power 3A from the electric power company 3, that is, the received power value and, if necessary, the generated power value, at specific cycles, and It also includes a control unit 7 that can change the generated power 2A based on the data results. The data acquisition unit 6 itself does not need to measure each power; it is sufficient that it can acquire measurement data of each power. The data acquired by the data acquisition unit 6 can be sent to the cloud server 11 via the Internet 10, for example, and the control unit 7 can also be provided with the data from there. The control unit 7 may be provided integrally with the data acquisition unit 6 or may be provided separately from the data acquisition unit 6. Further, the control unit 7 may be provided integrally within the power conditioner, or may be provided separately from the power conditioner.

次に、本発明の電力制御装置における発電電力の制御方法について説明する。理解の容易のため、まず従来技術の電力制御装置を使用した場合の発電電力の制御方法の一例として、図2のフローチャートを参照して説明し、次にその対比として、本発明の電力制御装置を使用した場合の発電電力の制御方法の一例として、図3のフローチャートを参照して説明する。 Next, a method for controlling generated power in the power control device of the present invention will be explained. For ease of understanding, an example of a method for controlling generated power using a conventional power control device will be explained with reference to the flowchart of FIG. 2, and then, as a comparison, the power control device of the present invention will be explained An example of a method for controlling generated power when using the following will be described with reference to the flowchart in FIG. 3.

図2は、従来技術の電力制御装置を使用した場合の発電電力の制御方法のフローチャートの一例である。上述の通り、従来技術の発電電力の制御方法は、図2に示すように各時点での受電電力値に基づくものであり、基本的に受電電力値の各時点での一時的な低下に基づく制御しか行なうことができないものである。 FIG. 2 is an example of a flowchart of a method for controlling generated power when using a conventional power control device. As mentioned above, the conventional method of controlling generated power is based on the received power value at each point in time as shown in FIG. 2, and is basically based on a temporary decrease in the received power value at each point in time. It can only be controlled.

図2の従来技術の発電電力の制御のフローチャートでは、制御が開始されると、データ取得部において、受電電力値が特定の周期(例えば、6秒間隔)で取得される。そして、制御部において、その取得した時点の受電電力値に基づいて受電電力値が低下して逆潮流のおそれがあるかどうかを判定する。具体的には、受電電力値≧閾値の式を満たすかどうかにより発電電力の低下の要否が判定される。この閾値は、0以上の値であり、大きいほど逆潮流の防止のマージン量が大きくなる。受電電力値がこの閾値以上である場合(図2中の「はい」)は、受電電力(消費電力)は低下していないか、又は低下していても逆潮流が発生するおそれのある危険域にはまだ到達していないとみなされ、発電電力の低下は行なわれない。一方、受電電力値がこの閾値よりも小さい場合(図2中の「いいえ」)は、逆潮流が発生するおそれのある危険域まで受電電力(消費電力)が低下しているとみなされ、制御部が発電電力を低下させるように制御する。このようなデータ取得、判定、及びそれに基づく発電電力の制御は、データ取得に合わせた特定の周期で繰り返される。 In the flowchart of conventional power generation control shown in FIG. 2, when the control is started, the data acquisition unit acquires the received power value at specific intervals (for example, every 6 seconds). Then, the control unit determines whether or not there is a risk of reverse power flow due to a decrease in the received power value based on the received power value at the time of acquisition. Specifically, whether or not the generated power needs to be lowered is determined based on whether the received power value≧threshold value is satisfied. This threshold value is a value of 0 or more, and the larger the threshold value, the larger the margin amount for preventing reverse power flow. If the received power value is above this threshold (“Yes” in Figure 2), the received power (power consumption) is not decreasing, or even if it is decreasing, it is in a dangerous area where reverse power flow may occur. is considered to have not yet been reached, and the generated power will not be reduced. On the other hand, if the received power value is smaller than this threshold ("No" in Figure 2), it is assumed that the received power (power consumption) has fallen to a dangerous level where reverse power flow may occur, and control control unit to reduce the generated power. Such data acquisition, determination, and control of generated power based on the data acquisition are repeated at a specific cycle that matches the data acquisition.

図2の従来技術の制御方法では、取得した各時点での受電電力値のみに基づいて発電電力を制御しているので、受電電力(消費電力)の各時点での一時的な低下に基づく制御しか行なうことができず、本発明の制御方法のように、受電電力(消費電力)の急激な低下に基づく制御を迅速に行なうことができない。従って、図2の従来技術の制御方法では、受電電力(消費電力)の急激な低下を含めて逆潮流を確実に防止するために上述の判定式の閾値を大きくとらざるをえない。そのため、発電電力の抑制のマージン量が大きく、結果として太陽光発電設備の能力が抑制されることが多く、本来の能力を十分に活用できていない。 In the conventional control method shown in FIG. 2, the generated power is controlled only based on the received power value at each point in time, so the control method is controlled based on a temporary decrease in the received power (power consumption) at each point in time. However, unlike the control method of the present invention, control based on a sudden decrease in received power (power consumption) cannot be performed quickly. Therefore, in the conventional control method shown in FIG. 2, in order to reliably prevent reverse power flow including a sudden drop in received power (power consumption), the threshold value of the above-mentioned determination formula must be set large. Therefore, the amount of margin for suppressing the generated power is large, and as a result, the capacity of the solar power generation equipment is often suppressed, and the original capacity cannot be fully utilized.

次に、本発明の電力制御装置を使用した場合の発電電力の制御方法の一例として、図3のフローチャートを参照して説明する。本発明の発電電力の制御方法は、図3に示すように、最初に、ある最新の計測時点での受電電力値とその直前の計測時点での受電電力値を3秒以下の短い周期で取得し、これらの短い周期の間の受電電力値の差が特定の値以上の場合に受電電力値の急速な経時変化があると判定して逆潮流を迅速に防止するために発電電力の低下の制御を行なうものである。また、さらに必要により、前記の判定の受電電力値の急激な経時変化が認められなくても最新の受電電力値が特定の値より低い場合には逆潮流の発生の傾向が認められると判定して同じく発電電力の低下の制御を行ない、逆潮流を確実に防止しようとするものである。図3では、上記の二つの判定方法のそれぞれが上下に時系列で示されている。 Next, an example of a method for controlling generated power when using the power control device of the present invention will be described with reference to the flowchart in FIG. 3. As shown in FIG. 3, the power generation control method of the present invention first obtains the received power value at a certain latest measurement point and the received power value at the immediately preceding measurement point in a short cycle of 3 seconds or less. However, if the difference in the received power value during these short periods is greater than a certain value, it is determined that there is a rapid change in the received power value over time, and the system detects a decrease in the generated power in order to quickly prevent reverse power flow. It is for controlling. Furthermore, if necessary, even if no rapid change over time in the received power value is observed in the above judgment, if the latest received power value is lower than a specific value, it is determined that there is a tendency for reverse power flow to occur. Similarly, this method attempts to control the decrease in generated power and reliably prevent reverse power flow. In FIG. 3, each of the above two determination methods is shown in chronological order at the top and bottom.

図3の本発明の発電電力の制御方法のフローチャートでは、制御が開始されると、データ取得部において、受電電力値、及び所望により発電電力値が3秒以下の特定の周期(例えば、2秒間隔)で取得される。そして、制御部において、その取得した受電電力値に基づいて発電電力が急激に低下して逆潮流のおそれがあるかどうかを判定する。判定は、直前の受電電力値と最新の受電電力値との差を計算し、この差が特定の閾値A以上であるかどうかで行なわれる。具体的には、(直前の受電電力値-最新の受電電力値)≧閾値Aの式を満たすかどうかにより発電電力の低下の要否が判定される。この閾値Aは、0より大きい値であり、直前の受電電力値がこの短い周期の間にどれくらいの割合で下がると逆潮流の危険が生じるかに基づいて適宜決定される。この閾値Aは、直前の受電電力値(kW)の5~30%の範囲から選択される値であることが好ましい。 In the flowchart of the method for controlling the generated power of the present invention in FIG. 3, when the control is started, the data acquisition unit records the received power value and, if desired, the generated power value at a specific period of 3 seconds or less (for example, 2 seconds). interval). Then, the control unit determines whether there is a risk of a sudden decrease in the generated power and a reverse power flow based on the acquired received power value. The determination is made by calculating the difference between the most recent received power value and the latest received power value, and whether this difference is greater than or equal to a specific threshold value A. Specifically, it is determined whether or not the generated power needs to be lowered depending on whether the following formula ((previous received power value−latest received power value)≧threshold value A) is satisfied. This threshold value A is a value larger than 0, and is appropriately determined based on the rate at which the immediately preceding received power value decreases during this short cycle to cause a risk of reverse power flow. This threshold value A is preferably a value selected from a range of 5 to 30% of the immediately preceding received power value (kW).

受電電力値の差がこの閾値A以上である場合(図3中の上側の長方形中の「はい」)は、受電電力(消費電力)が急激に低下しており、逆潮流が発生するおそれのある危険域に到達しているとみなされ、制御部が発電電力を低下させるように制御する。この場合の発電電力の低下量は特に限定されないが、最新の発電電力値(kW)から10%以上、さらには20%以上、発電電力を低下させるように制御することが好ましい。即ち、最新の発電電力値(kW)と0~0.90(好ましくは0~0.80)の範囲の値から選択される制御率αとの積の値まで発電電力を低下させるように制御することが好ましい。 If the difference in the received power values is greater than or equal to this threshold A (“Yes” in the upper rectangle in Figure 3), the received power (power consumption) is rapidly decreasing, and there is a risk that reverse power flow may occur. It is assumed that a certain danger zone has been reached, and the control unit controls the generated power to be reduced. Although the amount of reduction in the generated power in this case is not particularly limited, it is preferable to control the generated power to be reduced by 10% or more, further 20% or more, from the latest generated power value (kW). That is, control is performed to reduce the generated power to the product of the latest generated power value (kW) and a control rate α selected from a value in the range of 0 to 0.90 (preferably 0 to 0.80). It is preferable to do so.

一方、受電電力値の差がこの閾値Aよりも小さい場合(図3中の上側の長方形中の「いいえ」)は、受電電力(消費電力)が急激に低下していないとみなされる。この場合、さらに必要により、受電電力(消費電力)自体の低下があるかどうかを判定するために、図3の下側の長方形の部分に進む。この部分は、上述した図2に示される従来の各時点での受電電力値のみに基づく発電電力の制御と実質的に同じである。ここでの判定は、各時点での受電電力値自体が特定の閾値Bより低下して逆潮流のおそれがあるかどうかで行なわれる。具体的には、受電電力値≧閾値Bの式を満たすかどうかにより発電電力の低下の要否が判定される。この閾値Bは、0より大きい値であり、大きいほど逆潮流の防止のマージン量が大きくなるが、急激な受電電力の低下がないと既に判断されているので、従来の図2の方法のように大きくする必要がない。閾値Bは、太陽光発電設備の定格発電量(kW)の5~30%の範囲から選択される値であることが好ましい。受電電力値がこの閾値B以上である場合(図3中の下側の長方形中の「はい」)は、受電電力(消費電力)は低下していないか、又は低下していても逆潮流が発生するおそれのある危険域にはまだ到達していないとみなされ、発電電力の低下は行なわれない。一方、受電電力値がこの閾値Bよりも小さい場合(図3中の下側の長方形中の「いいえ」)は、逆潮流が発生するおそれのある危険域まで受電電力(消費電力)が低下しているとみなされ、制御部が発電電力を低下させるように制御する。具体的には、最新の発電電力値(kW)と制御率αより大きいが1.0未満の値の制御率βとの積の値まで発電電力を低下させるように制御部が制御する。ここで制御率βは、データ取得部が取得した最新の発電電力値及び最新の受電電力値に基づいて、制御率β=[(最新の発電電力値(kW)+最新の受電電力値(kW))-マージン量(kW)]/定格発電量(kW)の式に従って計算されることができる値であり、マージン量は0以上の値、特に最新の発電電力値(kW)の5~40%の範囲から選択される値であることが好ましい。このようなデータ取得、判定、及びそれに基づく二種類の発電電力の制御が、データ取得に合わせた特定の周期で繰り返される。 On the other hand, if the difference in received power values is smaller than this threshold A ("No" in the upper rectangle in FIG. 3), it is considered that the received power (power consumption) has not decreased rapidly. In this case, if necessary, the process proceeds to the lower rectangular portion of FIG. 3 in order to determine whether or not the received power (power consumption) itself has decreased. This part is substantially the same as the conventional control of generated power based only on the received power value at each point in time shown in FIG. 2 described above. The determination here is made based on whether the received power value itself at each point in time has fallen below a specific threshold B and there is a risk of reverse power flow. Specifically, whether or not the generated power needs to be lowered is determined based on whether the received power value≧threshold value B satisfies the equation. This threshold value B is a value greater than 0, and the larger the value, the greater the margin for preventing reverse power flow. However, since it has already been determined that there is no sudden drop in received power, the conventional method shown in Figure 2 There is no need to make it bigger. The threshold value B is preferably a value selected from a range of 5 to 30% of the rated power generation amount (kW) of the solar power generation equipment. If the received power value is greater than or equal to this threshold B (“Yes” in the lower rectangle in Figure 3), the received power (power consumption) has not decreased, or even if it has decreased, there is no reverse power flow. It is assumed that the danger zone in which there is a risk of occurrence has not yet been reached, and the generated power will not be reduced. On the other hand, if the received power value is smaller than this threshold B ("No" in the lower rectangle in Figure 3), the received power (power consumption) will drop to a dangerous range where reverse power flow may occur. The control unit controls the generated power to be reduced. Specifically, the control unit controls the generated power to be reduced to the value of the product of the latest generated power value (kW) and the control rate β which is greater than the control rate α but less than 1.0. Here, the control rate β is calculated based on the latest generated power value and the latest received power value acquired by the data acquisition unit, control rate β = [(latest generated power value (kW) + latest received power value (kW )) - Margin amount (kW)] / Rated power generation amount (kW) is a value that can be calculated according to the formula, and the margin amount is a value of 0 or more, especially 5 to 40 of the latest generated power value (kW). Preferably, the value is selected from the range of %. Such data acquisition, determination, and control of two types of generated power based on the data acquisition are repeated at a specific cycle that matches the data acquisition.

図3の本発明の制御方法では、まず最新の受電電力値とその直前の受電電力値を短い周期で取得し、これらの受電電力値の差が特定の閾値以上であるかに基づいて受電電力値の急激な低下を判断するようにしているので、受電電力(消費電力)の急激な低下によって逆潮流が生じるおそれがある場合でも迅速に防止することができる。次に、さらに必要により、取得した最新の受電電力値が特定の閾値以上であるかに基づいて受電電力値自体の低下も判断するようにしているので、逆潮流が生じる傾向がある場合も確実に防止することができる。このように、図3の本発明の制御方法では、受電電力(消費電力)の急激な低下による逆潮流に迅速に対応することができているので、安全のための発電電力の抑制のマージン量を従来のように大きくとる必要はなく、従って発電電力の抑制量は最小限で済み、発電電力を有効に活用することができる。また、受電電力値の取得周期を短く設定しているので、受電電力値の急激な低下に対してパワーコンディショナー(PCS)への発電電力の低下の指示も迅速に反映することができる。 In the control method of the present invention shown in FIG. 3, first, the latest received power value and the immediately preceding received power value are acquired in short cycles, and the received power is determined based on whether the difference between these received power values is greater than or equal to a specific threshold. Since a sudden drop in the value is determined, even if there is a risk that reverse power flow may occur due to a sudden drop in received power (power consumption), it can be quickly prevented. Next, if necessary, a decrease in the received power value itself is determined based on whether the latest received power value obtained is above a specific threshold, so even if there is a tendency for reverse power flow to occur, it can be ensured. can be prevented. As described above, in the control method of the present invention shown in FIG. 3, it is possible to quickly respond to reverse power flow due to a sudden drop in received power (power consumption), so the amount of margin for suppressing generated power for safety is reduced. It is not necessary to take a large amount as in the conventional case, so the amount of suppression of the generated power can be minimized, and the generated power can be used effectively. Furthermore, since the acquisition cycle of the received power value is set short, an instruction to reduce the generated power to the power conditioner (PCS) can be quickly reflected in response to a sudden decrease in the received power value.

本発明の制御方法では、データ取得部における受電電力値、及び所望により発電電力値の取得の周期は、受電電力(消費電力)の急激な低下を迅速に検出してPCSの指示に素早く反映するため、従来より短く、3秒以下、好ましくは2.5秒以下、より好ましくは2秒以下である。なお、本発明の制御方法では、最新の受電電力値の急激な変化の有無と、任意選択的に最新の受電電力値自体の大きさの減少の有無に基づいて逆潮流の発生のおそれがあるかどうかを判断して発電電力の低下を行なうが、前者については、上記の短い受電電力値の取得の周期で判断することが好ましく、後者については、前者と同じ周期で判断してもよいが、それより長い周期(即ち、例えば前者の周期の2倍以上の整数倍の長い周期)で判断することで十分である。 In the control method of the present invention, the period of acquiring the received power value and, if desired, the generated power value in the data acquisition unit, is such that a sudden drop in received power (power consumption) is detected quickly and reflected in the PCS instruction. Therefore, it is shorter than conventional methods, and is 3 seconds or less, preferably 2.5 seconds or less, and more preferably 2 seconds or less. Note that in the control method of the present invention, there is a possibility that reverse power flow may occur based on whether there is a sudden change in the latest received power value and optionally whether there is a decrease in the magnitude of the latest received power value itself. The generated power is reduced by determining whether the received power value , it is sufficient to make a determination using a longer cycle (that is, a longer cycle that is an integer multiple of twice or more than the former cycle).

次に、図面を使用して従来の制御方法と比べた本発明の制御方法の効果を具体的に示すが、本発明は、図面に示した方法に限定されるものではない。 Next, the effects of the control method of the present invention compared with the conventional control method will be specifically shown using the drawings, but the present invention is not limited to the method shown in the drawings.

図4及び図5はいずれも、図2の従来技術の制御方法のフローチャートに基づいた発電電力の制御の逆潮流防止効果シミュレーションの一例である。図4と図5は、発電電力の常時抑制のマージン量が異なる以外は、同一条件(受電電力値の測定周期:6秒)でのシミュレーション結果を示しており、図4ではマージン量は50kWであるのに対して、図5ではマージン量は100kWと大きくとっている。図4及び図5のグラフ中、一番上のラインは消費電力を示し、上から二番目に二つ重なっているラインのうち、色の薄い方はパワーコンディショナー(PCS)への指示を示し、色の濃い方はその指示に追従した発電電力を示し、一番下のラインは受電電力を示す。なお、受電電力は、消費電力から発電電力を引いた差に相当する。図4及び図5からわかるように、いずれの場合も各測定周期の間のうち2箇所で受電電力(消費電力)の急激な低下が起こっている。 Both FIGS. 4 and 5 are examples of a simulation of the reverse power flow prevention effect of controlling generated power based on the flowchart of the conventional control method shown in FIG. Figures 4 and 5 show simulation results under the same conditions (measuring cycle of received power value: 6 seconds) except for the difference in margin amount for constant suppression of generated power; in Figure 4, the margin amount is 50 kW. On the other hand, in FIG. 5, the margin amount is set as large as 100 kW. In the graphs of FIGS. 4 and 5, the top line indicates power consumption, and of the two overlapping lines second from the top, the lighter colored one indicates instructions to the power conditioner (PCS). The darker color indicates the generated power following the instructions, and the bottom line indicates the received power. Note that the received power corresponds to the difference obtained by subtracting the generated power from the consumed power. As can be seen from FIGS. 4 and 5, in both cases, the received power (power consumption) sharply decreases at two locations during each measurement period.

図4の方法では、発電電力の常時抑制のマージン量を50kWと小さくとっているため、これらの2箇所の受電電力(消費電力)の急激な低下に対していずれも迅速に対応することができず、発電電力が受電電力(消費電力)を上回ってしまい、逆潮流(図4のグラフにおいて、受電電力が負の値になる現象)が発生している。これに対して、図5の方法では、発電電力の常時抑制のマージン量を100kWと大きくとっているため、受電電力はいずれの箇所も負の値にはなっておらず、逆潮流の発生をギリギリ免れている。この場合、受電電力(消費電力)の急激の低下があっても逆潮流の発生を防止することができているが、発電電力の常時抑制のマージン量が大きいため、発電電力量を常時大幅に低く抑制することになり、太陽光発電システムの発電能力を有効に活用できていない。また、いずれの場合も受電電力の測定周期が6秒と長いため、PCSへの発電電力の低下の指示の反映が遅くなっており、受電電力(消費電力)の低下に迅速に対応できていない。 In the method shown in Figure 4, the margin amount for constant suppression of generated power is set to a small amount of 50 kW, so it is possible to quickly respond to sudden drops in received power (power consumption) at these two locations. First, the generated power exceeds the received power (power consumption), and a reverse power flow (a phenomenon in which the received power becomes a negative value in the graph of FIG. 4) occurs. On the other hand, in the method shown in Figure 5, the margin amount for constant suppression of generated power is set at 100 kW, so the received power does not take a negative value at any point, which prevents the occurrence of reverse power flow. I've barely escaped. In this case, even if there is a sudden drop in the received power (power consumption), it is possible to prevent the occurrence of reverse power flow, but since the amount of margin for constantly suppressing the generated power is large, the amount of generated power is constantly significantly reduced. As a result, the power generation capacity of the solar power generation system cannot be effectively utilized. In addition, in both cases, the measurement cycle of received power is as long as 6 seconds, so the instructions to reduce the generated power are reflected in the PCS slowly, making it impossible to respond quickly to the decrease in received power (power consumption). .

一方、図6は、図3の本発明の制御方法のフローチャートに基づいた発電電力の制御の逆潮流防止効果シミュレーションの一例である。図6の方法では、発電電力の常時抑制のマージン量は、図4,図5の従来の方法に比べて15kWと小さく抑制されている。また、受電電力値の測定周期は、図4、図5の従来の方法に比べて2秒と短く設定されている。図6のグラフ中、一番上のラインは消費電力を示し、上から二番目に二つ重なっているラインのうち、色の薄い方はPCSへの指示を示し、色の濃い方はその指示に追従した発電電力を示し、一番下のラインは受電電力を示す。なお、受電電力は、消費電力から発電電力を引いた差に相当する。 On the other hand, FIG. 6 is an example of a simulation of the reverse power flow prevention effect of controlling the generated power based on the flowchart of the control method of the present invention shown in FIG. In the method shown in FIG. 6, the amount of margin for constantly suppressing the generated power is reduced to 15 kW compared to the conventional methods shown in FIGS. 4 and 5. Furthermore, the measurement cycle of the received power value is set to be shorter than that of the conventional methods shown in FIGS. 4 and 5, at 2 seconds. In the graph of Figure 6, the top line indicates power consumption, and of the two overlapping lines second from the top, the lighter color indicates the instruction to the PCS, and the darker color indicates the instruction. The bottom line shows the received power. Note that the received power corresponds to the difference obtained by subtracting the generated power from the consumed power.

図6の方法では、最初に、最新の計測時点での受電電力値とその直前の計測時点での受電電力値を取得し、これらの受電電力値の差の大きさに基づいて受電電力値の急速な低下があるかどうかを判断して発電電力の制御を行ない、次いでその最新の計測時点での受電電力自体の大きさに基づいて受電電力値の低下の傾向があるかどうかを判断して発電電力の制御を行なっている。 In the method shown in Figure 6, first, the received power value at the latest measurement point and the received power value at the immediately preceding measurement point are obtained, and the received power value is calculated based on the magnitude of the difference between these received power values. The generated power is controlled by determining whether there is a rapid decrease, and then it is determined whether there is a tendency for the received power value to decrease based on the magnitude of the received power itself at the latest measurement point. Controls the generated power.

図6の方法では、上記の制御を行なっているため、発電電力の低下が頻繁に行なわれているが、いずれの消費電力の急激な低下に対しても迅速に対応することができている。即ち、図6のシミュレーション中、発電電力が消費電力を常に下回っており、受電電力は常に正の値であり、逆潮流は全く発生していない。また、図6の方法では、安全のための発電電力の常時抑制のマージン量が15kWと小さいため、発電電力量の常時抑制は最小限で済み、太陽光発電システムの発電能力を有効に活用できている。また、受電電力値の測定周期が2秒と短いため、PCSへの発電電力の低下の指示の反映が早く、受電電力(消費電力)の低下に迅速に対応できている。 In the method of FIG. 6, since the above-mentioned control is performed, the generated power frequently decreases, but it is possible to quickly respond to any sudden decrease in power consumption. That is, during the simulation of FIG. 6, the generated power is always lower than the consumed power, the received power is always a positive value, and no reverse power flow occurs. In addition, in the method shown in Figure 6, the margin amount for constant suppression of generated power for safety is as small as 15 kW, so constant suppression of generated power can be kept to a minimum, and the power generation capacity of the solar power generation system can be effectively utilized. ing. In addition, since the measurement cycle of the received power value is as short as 2 seconds, the instruction to reduce the generated power is quickly reflected in the PCS, and it is possible to quickly respond to a decrease in the received power (power consumption).

本発明の自家消費型太陽光発電システムの電力制御装置及び電力制御方法によれば、逆潮流防止のための発電電力の抑制量を最小限にしながら、消費電力の急激な低下時であっても逆潮流を迅速に防止することができる。従って、当業者において本発明は、極めて有用である。 According to the power control device and power control method for a self-consumption solar power generation system of the present invention, the amount of suppression of generated power to prevent reverse power flow can be minimized, even when power consumption suddenly decreases. Reverse power flow can be quickly prevented. Therefore, the present invention will be extremely useful to those skilled in the art.

1 太陽光発電システム
2 太陽光発電設備
2A 発電電力
3 電力会社
3A 受電電力
4 負荷
4A 消費電力
5 空調設備
6 計測データ取得部
7 制御部
8 スマートメーター
9 分電盤
10 インターネット
11 クラウドサーバー
1 Solar power generation system 2 Solar power generation equipment 2A Generated power 3 Power company 3A Received power 4 Load 4A Power consumption 5 Air conditioning equipment 6 Measurement data acquisition unit 7 Control unit 8 Smart meter 9 Distribution board 10 Internet 11 Cloud server

Claims (17)

太陽光発電設備からの発電電力と電力会社からの受電電力とによって負荷による消費電力を賄う自家消費型太陽光発電システムの電力制御装置であって、前記電力制御装置が、受電電力値を3秒以下の周期で取得することができるデータ取得部と、取得した受電電力値のデータ結果に基づいて発電電力を変更することができる制御部とを含み、前記制御部は、前記データ取得部が取得したデータに基づいて、(直前の受電電力値(kW)-最新の受電電力値(kW))≧閾値A(但し、閾値Aは0より大きい)の式(i)を満たすかどうかを判定し、式(i)を満たす場合には、発電電力を低下させるように構成したことを特徴とする電力制御装置。 A power control device for a self-consumption type solar power generation system in which power consumption by a load is covered by power generated from a solar power generation facility and power received from an electric power company, wherein the power control device adjusts the value of received power within 3 seconds. The data acquisition unit includes a data acquisition unit that can acquire the data at the following intervals, and a control unit that can change the generated power based on the acquired received power value data result, and the control unit is configured to Based on the obtained data, it is determined whether formula (i) of (previous received power value (kW) - latest received power value (kW))≧threshold A (however, threshold A is greater than 0) is satisfied. , a power control device configured to reduce generated power when formula (i) is satisfied. データ取得部が、発電電力値を受電電力値と同じ周期で取得することができるように構成されており、式(i)を満たす場合には、最新の発電電力値(kW)と0~0.90の範囲の値から選択される制御率αとの積の値まで発電電力を低下させるように構成したことを特徴とする請求項1に記載の電力制御装置。 The data acquisition unit is configured to be able to acquire the generated power value at the same cycle as the received power value, and when formula (i) is satisfied, the latest generated power value (kW) and 0 to 0 2. The power control device according to claim 1, wherein the power control device is configured to reduce the generated power to a value multiplied by a control rate α selected from a value in the range of .90. 閾値Aが、直前の受電電力値(kW)の5~30%の範囲から選択される値であることを特徴とする請求項1又は2に記載の電力制御装置。 The power control device according to claim 1 or 2, wherein the threshold value A is a value selected from a range of 5 to 30% of the immediately preceding received power value (kW). 式(i)を満たさない場合には、制御部が、データ取得部が取得したデータに基づいて、最新の受電電力値(kW)≧閾値B(但し、閾値Bは0より大きい)の式(ii)を満たすかどうかを判定し、式(ii)を満たさない場合には、最新の発電電力値(kW)と制御率αより大きいが1.0未満の値の制御率βとの積の値まで発電電力を低下させるように構成したことを特徴とする請求項2又は3に記載の電力制御装置。 If formula (i) is not satisfied, the control unit, based on the data acquired by the data acquisition unit, calculates the latest received power value (kW)≧threshold value B (however, threshold value B is greater than 0) using the formula ( Determine whether formula (ii) is satisfied, and if formula (ii) is not satisfied, calculate the product of the latest generated power value (kW) and the control rate β, which is greater than the control rate α but less than 1.0. The power control device according to claim 2 or 3, characterized in that the power control device is configured to reduce the generated power to a value equal to or less than the value. 閾値Bが、太陽光発電設備の定格発電量(kW)の5~30%の範囲から選択される値であることを特徴とする請求項4に記載の電力制御装置。 The power control device according to claim 4, wherein the threshold value B is a value selected from a range of 5 to 30% of the rated power generation amount (kW) of the solar power generation equipment. 制御率βが、データ取得部が取得したデータに基づいて、以下の式(iii)に従って計算された値であることを特徴とする請求項4又は5に記載の電力制御装置。
制御率β=[(最新の発電電力値(kW)+最新の受電電力値(kW))-マージン量(kW)]/定格発電量(kW)…式(iii)
The power control device according to claim 4 or 5, wherein the control rate β is a value calculated according to the following formula (iii) based on data acquired by the data acquisition unit.
Control rate β = [(Latest generated power value (kW) + latest received power value (kW)) - Margin amount (kW)]/Rated power generation amount (kW)...Formula (iii)
マージン量が、最新の発電電力値(kW)の5~40%の範囲から選択される値であることを特徴とする請求項6に記載の電力制御装置。 The power control device according to claim 6, wherein the margin amount is a value selected from a range of 5 to 40% of the latest generated power value (kW). 式(ii)を満たす場合は、データ取得部の次のデータ取得後に、式(i)を満たすかどうかの判定を再び繰り返すように構成したことを特徴とする請求項4~7のいずれかに記載の電力制御装置。 Any one of claims 4 to 7, characterized in that, when formula (ii) is satisfied, the determination as to whether formula (i) is satisfied is repeated again after the data acquisition unit acquires the next data. The power control device described. 請求項1~8のいずれかに記載の電力制御装置を含むことを特徴とする自家消費型太陽光発電システム。 A self-consumption solar power generation system comprising the power control device according to claim 1. 太陽光発電設備からの発電電力と電力会社からの受電電力とによって負荷による消費電力を賄う自家消費型太陽光発電システムにおいて電力制御装置によって発電電力を制御する方法であって、前記電力制御装置が、受電電力値を3秒以下の周期で取得することができるデータ取得部と、取得した受電電力値のデータ結果に基づいて発電電力を変更することができる制御部とを含み、前記制御部によって、前記データ取得部が取得したデータに基づいて、(直前の受電電力値(kW)-最新の受電電力値(kW))≧閾値A(但し、閾値Aは0より大きい)の式(i)を満たすかどうかを判定し、式(i)を満たす場合には、発電電力を低下させることを特徴とする方法。 A method for controlling generated power by a power control device in a self-consumption solar power generation system in which power consumption by a load is covered by power generated from a solar power generation facility and power received from a power company, the power control device comprising: , a data acquisition unit that can acquire the received power value at a cycle of 3 seconds or less, and a control unit that can change the generated power based on the acquired data result of the received power value, and the control unit , based on the data acquired by the data acquisition unit, formula (i) of (immediately received power value (kW) - latest received power value (kW))≧threshold value A (however, threshold value A is greater than 0) A method characterized by determining whether the formula (i) is satisfied, and reducing the generated power if the formula (i) is satisfied. データ取得部が、発電電力値を受電電力値と同じ周期で取得することができるように構成されており、式(i)を満たす場合には、最新の発電電力値(kW)と0~0.90の範囲の値から選択される制御率αとの積の値まで発電電力を低下させることを特徴とする請求項10に記載の方法。 The data acquisition unit is configured to be able to acquire the generated power value at the same cycle as the received power value, and when formula (i) is satisfied, the latest generated power value (kW) and 0 to 0 11. A method according to claim 10, characterized in that the generated power is reduced to a value multiplied by a control factor α selected from a value in the range of .90. 閾値Aが、直前の受電電力値(kW)の5~30%の範囲から選択される値であることを特徴とする請求項10又は11に記載の方法。 The method according to claim 10 or 11, characterized in that the threshold value A is a value selected from a range of 5 to 30% of the immediately preceding received power value (kW). 式(i)を満たさない場合には、制御部が、データ取得部が取得したデータに基づいて、最新の受電電力値(kW)≧閾値B(但し、閾値Bは0より大きい)の式(ii)を満たすかどうかを判定し、式(ii)を満たさない場合には、最新の発電電力値(kW)と制御率αより大きいが1.0未満の値の制御率βとの積の値まで発電電力を低下させることを特徴とする請求項11又は12に記載の電力制御装置。 If formula (i) is not satisfied, the control unit, based on the data acquired by the data acquisition unit, calculates the latest received power value (kW)≧threshold value B (however, threshold value B is greater than 0) using the formula ( Determine whether formula (ii) is satisfied, and if formula (ii) is not satisfied, calculate the product of the latest generated power value (kW) and the control rate β, which is greater than the control rate α but less than 1.0. 13. The power control device according to claim 11 or 12, wherein the power control device reduces the generated power to a value equal to or lower than the value of the power control device. 閾値Bが、太陽光発電設備の定格発電量(kW)の5~30%の範囲から選択される値であることを特徴とする請求項13に記載の方法。 14. The method according to claim 13, wherein the threshold value B is a value selected from a range of 5 to 30% of the rated power generation (kW) of the solar power generation equipment. 制御率βが、データ取得部が取得したデータに基づいて、以下の式(iii)に従って計算された値であることを特徴とする請求項13又は14に記載の方法。
制御率β=[(最新の発電電力値(kW)+最新の受電電力値(kW))-マージン量(kW)]/定格発電量(kW)…式(iii)
The method according to claim 13 or 14, wherein the control rate β is a value calculated according to the following formula (iii) based on the data acquired by the data acquisition unit.
Control rate β = [(Latest generated power value (kW) + latest received power value (kW)) - Margin amount (kW)]/Rated power generation amount (kW)...Formula (iii)
マージン量が、最新の発電電力値(kW)の5~40%の範囲から選択される値であることを特徴とする請求項15に記載の方法。 The method according to claim 15, characterized in that the margin amount is a value selected from a range of 5 to 40% of the latest generated power value (kW). 式(ii)を満たす場合は、データ取得部の次のデータ取得後に、式(i)を満たすかどうかの判定を再び繰り返すことを特徴とする請求項13~16のいずれかに記載の方法。 17. The method according to claim 13, wherein when formula (ii) is satisfied, the determination as to whether formula (i) is satisfied is repeated again after the data acquisition unit acquires the next data.
JP2022062792A 2022-04-05 2022-04-05 Power control device and power control method for self-consumption solar power generation system Pending JP2023153485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022062792A JP2023153485A (en) 2022-04-05 2022-04-05 Power control device and power control method for self-consumption solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022062792A JP2023153485A (en) 2022-04-05 2022-04-05 Power control device and power control method for self-consumption solar power generation system

Publications (1)

Publication Number Publication Date
JP2023153485A true JP2023153485A (en) 2023-10-18

Family

ID=88349806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022062792A Pending JP2023153485A (en) 2022-04-05 2022-04-05 Power control device and power control method for self-consumption solar power generation system

Country Status (1)

Country Link
JP (1) JP2023153485A (en)

Similar Documents

Publication Publication Date Title
JP5372724B2 (en) Power generation system using natural energy
KR102067830B1 (en) ESS Output Control Method
WO2014167928A1 (en) Storage battery charge/discharge control device and storage battery charge/discharge control method
JP6548570B2 (en) POWER SUPPLY SYSTEM, CONTROL DEVICE AND PROGRAM FOR POWER SUPPLY SYSTEM
WO2011040470A1 (en) Charge/discharge control device and power generating system
JP7202963B2 (en) MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR
JP2013074668A (en) Distributed power supply control device and centralized voltage control system
JP7284559B2 (en) Storage battery control device, storage battery control program
JP4607533B2 (en) Operation method of power storage system
JP5091439B2 (en) Voltage rise suppression device, voltage rise suppression method, and voltage rise suppression program
JP2009065820A (en) Voltage fluctuation controller for natural energy power generation
EP3059829B1 (en) System and method for regulating energy in electrical installations
KR20170104809A (en) Apparatus and method for stabilizing voltage for direct current distribution system
CN113708423A (en) Active power scheduling method and system of photovoltaic system
JP2023153485A (en) Power control device and power control method for self-consumption solar power generation system
US9595829B2 (en) Power control apparatus, power control method, and power control program
JP5677823B2 (en) Monitoring device and monitoring method
JP7066948B2 (en) Storage battery control device, storage battery control program
JP5215121B2 (en) In-house power generator
JP2022167768A (en) Output control device, output control program, and solar self-consumption system using the same
JP6783581B2 (en) Power supply system
CN114430173A (en) System and method for sudden voltage change detection and reactive current response on a power grid
JP2022156403A (en) Power generation control system and power generation control method
CN114228553B (en) Charging pile active power adjusting method and related device
CN113067345B (en) Power factor compensation method, controller and system of photovoltaic alternating current system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220405