JP2023149014A - Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel - Google Patents

Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel Download PDF

Info

Publication number
JP2023149014A
JP2023149014A JP2022057331A JP2022057331A JP2023149014A JP 2023149014 A JP2023149014 A JP 2023149014A JP 2022057331 A JP2022057331 A JP 2022057331A JP 2022057331 A JP2022057331 A JP 2022057331A JP 2023149014 A JP2023149014 A JP 2023149014A
Authority
JP
Japan
Prior art keywords
liquid level
liquid
measuring device
reaction tank
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022057331A
Other languages
Japanese (ja)
Inventor
陽平 大道
Yohei Omichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022057331A priority Critical patent/JP2023149014A/en
Publication of JP2023149014A publication Critical patent/JP2023149014A/en
Pending legal-status Critical Current

Links

Images

Abstract

To make an accurate measurement of a liquid level even if the level of liquid in a reaction vessel is not larger than a specific level when a regular resting repair, for example, is performed for the reaction vessel such as autoclaving to perform a high-pressure acid transudation in a nickel oxidation ore.SOLUTION: A liquid level measurement tool 1 includes a bar-like column 11 and a plurality of liquid collecting containers 12. The liquid collecting containers 12 are set at regular intervals in a side surface of the column 11 along the direction of the center axis of the column 11, with opening parts 121 of all of the liquid collecting containers 12 being directed to the upper part of the column 11, within the range of the column 11 which is on the lower terminal 111 side and the lower side of the column 11.SELECTED DRAWING: Figure 1

Description

本発明は、反応槽用の液位測定器具、及び、反応槽の液位測定方法に関する。本発明は、詳しくは、ニッケル酸化鉱石の高圧酸浸出処理に用いるオートクレーブ等、高温・強酸性のスラリーを処理対象とする大型の反応槽の液位の測定に好適な、反応槽用の液位測定器具、及び、反応槽の液位測定方法に関する。 The present invention relates to a liquid level measuring device for a reaction tank and a method for measuring the liquid level of a reaction tank. Specifically, the present invention provides a liquid level for a reaction tank that is suitable for measuring the liquid level of a large reaction tank that processes high-temperature, strongly acidic slurry, such as an autoclave used for high-pressure acid leaching treatment of nickel oxide ore. The present invention relates to a measuring device and a method for measuring the liquid level in a reaction tank.

ニッケル酸化鉱石の湿式製錬方法として、略円筒形の圧力容器を横向きにした横長形状のオートクレーブ(図4参照)を利用した高圧酸浸出法(HPAL法)が知られている(特許文献1参照)。図4に示す通り、オートクレーブ2の内部は、開閉自在なスラリー移送用通液口を有する堰によって長手方向に連続する複数の貯留部21(21A~21F)に区分されており、硫酸と共に装入されたニッケル酸化鉱石のスラリーは、これら複数の貯留部21(21A~21F)の上流側から下流側に向けて堰をオーバーフローしながら順次移送されるが、一部は上記の通液口を通過することで下流側に移送される。オートクレーブの内部において、このようにして各貯留部で高圧酸浸出が行われた後、最も下流側の貯留部21Fに到達したスラリーは、オートクレーブの上部から垂下する抜出管22を介して抜き出される。この抜出管を介したスラリーの抜出量は、上記の最も下流側の貯留部のスラリーの液面高さ(以下、「液位」とも言う。)に応じて調整される。 As a hydrometallurgical method for nickel oxide ore, a high-pressure acid leaching method (HPAL method) is known that uses an oblong autoclave (see FIG. 4) in which a substantially cylindrical pressure vessel is turned sideways (see Patent Document 1). ). As shown in FIG. 4, the inside of the autoclave 2 is divided into a plurality of storage sections 21 (21A to 21F) continuous in the longitudinal direction by a weir having a slurry passage port that can be opened and closed, and charged with sulfuric acid. The slurry of nickel oxide ore is sequentially transferred from the upstream side to the downstream side of the plurality of storage sections 21 (21A to 21F) while overflowing the weir, but some of it passes through the liquid passage port. By doing so, it is transferred to the downstream side. After high-pressure acid leaching is performed in each storage section inside the autoclave, the slurry that has reached the most downstream storage section 21F is extracted via the extraction pipe 22 hanging from the top of the autoclave. It will be done. The amount of slurry extracted through this extraction pipe is adjusted according to the liquid level height (hereinafter also referred to as "liquid level") of the slurry in the storage section on the most downstream side.

ここで、上記のオートクレーブ2のような大型の反応槽においては、定期的な休転補修が行われている。この休転補修時には、オートクレーブ内部の液を全量払い出した後、底部のマンホール23を開放し、内部に入って種々の補修作業が行われる。底部のマンホール23を開放するにあたって、仮に内部に液溜まりがあった場合には、高温・強酸性の液が周囲に飛散することによる安全面のリスクや、オートクレーブ下部の防液堤外部に高温・強酸性の液が漏れ出すことによる環境面のリスクが顕在化する恐れがあることから、底部マンホールを開放する前に、内部に残存する液溜まりがないことを確認することが重要である。 Here, in a large reaction tank such as the autoclave 2 described above, periodic shutdown repairs are performed. During this shutdown repair, after the entire amount of liquid inside the autoclave is discharged, the manhole 23 at the bottom is opened, and the autoclave is entered inside to perform various repair work. When opening the manhole 23 at the bottom, if there is a pool of liquid inside, there is a safety risk due to the high temperature and strong acid liquid scattering around, and there is a risk of high temperature and strong acid liquid leaking outside the liquid barrier at the bottom of the autoclave. Before opening the bottom manhole, it is important to confirm that there are no remaining liquids inside, as there is a risk of environmental risks arising from the leakage of strongly acidic liquids.

近年においては、オートクレーブ内の液位の測定には、高温高圧下でも液位の計測を安定して行うことが可能な放射線式レベル測定器が広く用いられている(特許文献2参照)。この放射線式レベル測定器は、放射線源と受信器とがオートクレーブを挟んで対向するように配置されており、オートクレーブ内の液位の高低に応じて増減する放射線のカウント数を検出してこれを液位に換算するものである。 In recent years, radiation level measuring instruments that can stably measure the liquid level even under high temperature and high pressure have been widely used to measure the liquid level in an autoclave (see Patent Document 2). This radiation level measuring device has a radiation source and a receiver placed opposite each other across the autoclave, and detects and measures the number of radiation counts that increase or decrease depending on the level of liquid in the autoclave. It is converted to liquid level.

上述の放射線式レベル測定器は、図6(b)に示すように、反応槽3の内部の液位が一定以上のレベルである通常の操業中には、線源部31から発出されて検出部32にて検出される放射線量から、タンク内のスラリー量を正確に測定することができる。しかしながら、上述の休転補修時の前後のように、反応槽3の内部の液位が一定以下の低位となった場合には、正確な液位の測定が行い得なくなる(図6(a)参照)。 As shown in FIG. 6(b), the radiation level measuring device described above detects radiation emitted from the radiation source section 31 during normal operation when the liquid level inside the reaction tank 3 is above a certain level. From the radiation dose detected in the section 32, the amount of slurry in the tank can be accurately measured. However, when the liquid level inside the reaction tank 3 drops below a certain level, as before and after the shutdown repair described above, accurate liquid level measurement cannot be performed (see Figure 6(a)). reference).

特開2014-025143号公報Japanese Patent Application Publication No. 2014-025143 特開2017-146221号公報Japanese Patent Application Publication No. 2017-146221

本発明は、例えば、ニッケル酸化鉱石の高圧酸浸出処理を行うオートクレーブ等の反応槽における定期的な休転補修時等、反応槽の内部の液位が一定以下の低位となっている状態においても、正確に液位の測定を行うことができる液位測定装置を提供することを目的とする。 The present invention can be used even when the liquid level inside the reaction tank is low below a certain level, such as during periodic shutdown repairs in a reaction tank such as an autoclave that performs high-pressure acid leaching treatment of nickel oxide ore. An object of the present invention is to provide a liquid level measuring device that can accurately measure the liquid level.

本発明者は、棒状の支柱と、複数の液体採取容器と、を備える、液位測定器具によって上記課題を解決できることに想到するに至り、本発明を完成した。具体的に、本発明は、以下のものを提供する。 The present inventor came to the idea that the above problem could be solved by a liquid level measuring device that includes a rod-shaped support and a plurality of liquid collection containers, and completed the present invention. Specifically, the present invention provides the following.

(1) 反応槽用の液位測定器具であって、棒状の支柱と、複数の液体採取容器と、を備え、複数の前記液体採取容器は、前記支柱の下部側末端及び下部側寄りの一部の範囲内に、全ての前記液体採取容器の開口部が支柱上部側方向に向けられた状態で、前記支柱の中心軸方向に沿って、前記支柱の側面に、一定間隔で設置されている、液位測定器具。 (1) A liquid level measuring device for a reaction tank, comprising a rod-shaped support and a plurality of liquid collection containers, wherein the plurality of liquid collection containers are located at the bottom end of the support and one near the bottom side. All of the liquid collection containers are installed at regular intervals on the side surface of the support along the central axis of the support, with the openings of all the liquid collection containers facing toward the upper side of the support. , liquid level measuring instrument.

(1)の液位測定器具によれば、反応槽の内部の液位が一定以下の低位となっている状態においても、正確に液位の測定を行うことができる。 According to the liquid level measuring device (1), the liquid level can be accurately measured even when the liquid level inside the reaction tank is low below a certain level.

(2) 前記支柱の上部側の先端には、吊りロープが接合されている、(1)に記載の液位測定器具。 (2) The liquid level measuring device according to (1), wherein a hanging rope is connected to the top end of the support.

(2)の液位測定器具によれば、支柱長さを取扱い性に優れる長さ(一例として2~3m程度)に規定した上で、ロープの長さを適宜最適化することにより、オートクレーブ等の大型の反応槽を含めて、様々なサイズの反応槽において、当該反応槽の内部の液位が一定以下の低位となっている状態においても、正確に液位の測定を行うことができる。 According to the liquid level measuring device (2), by setting the length of the support to a length that is easy to handle (about 2 to 3 m as an example), and optimizing the rope length appropriately, it can be used in autoclaves, etc. In reaction tanks of various sizes, including large reaction tanks, the liquid level can be accurately measured even when the liquid level inside the reaction tank is below a certain level.

(3) 前記液体採取容器及び前記支柱は、何れも、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる耐酸性樹脂である、(1)に記載の液位測定器具。 (3) Both the liquid collection container and the pillar are made of an acid-resistant resin selected from polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenolic resin. ) The liquid level measuring device described in ).

(3)の液位測定器具によれば、軽量で、且つ、耐酸性に優れる上述の各樹脂で採取容器、及び、支柱を構成することにより、測定対象のスラリーが強酸性である場合において、(1)又は(2)に記載の液位測定器具の取り扱い性と、装置の耐久性と測定作業の安全性とを、高い水準で両立させることができる。 According to the liquid level measuring device (3), by configuring the collection container and support with each of the above-mentioned resins that are lightweight and have excellent acid resistance, even when the slurry to be measured is strongly acidic, The ease of handling the liquid level measuring device described in (1) or (2), the durability of the device, and the safety of the measuring operation can be achieved at a high level.

(4) 前記吊りロープが、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる耐酸性樹脂である、(2)に記載の液位測定器具。 (4) The liquid level measurement according to (2), wherein the hanging rope is made of an acid-resistant resin selected from polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenol resin. utensils.

(4)の液位測定器具によれば、軽量で、且つ、耐酸性に優れる上述の各樹脂でロープ、採取容器、及び、支柱を構成することにより、測定対象のスラリーが強酸性である場合において、(2)に記載の液位測定器具の取り扱い性と、装置の耐久性と測定作業の安全性とを、高い水準で両立させることができる。 According to the liquid level measuring device (4), the rope, collection container, and support are made of the above-mentioned resins that are lightweight and have excellent acid resistance, so that the slurry to be measured is strongly acidic. In this case, the ease of handling the liquid level measuring device described in (2), the durability of the device, and the safety of the measuring operation can be achieved at a high level.

(5) 反応槽の液位測定方法であって、(1)から(4)の何れかに記載の液位測定器具を反応槽の内部に鉛直方向に沿って挿入し、前記支柱の下部側末端を前記反応槽の底面に接触させた後に引き上げる、反応槽の液位測定方法。 (5) A method for measuring the liquid level in a reaction tank, wherein the liquid level measuring device according to any one of (1) to (4) is inserted vertically into the reaction tank, and the liquid level is measured at the lower side of the support. A method for measuring the liquid level in a reaction tank, in which the end is brought into contact with the bottom of the reaction tank and then pulled up.

(5)の液位測定方法によれば、反応槽の内部の液位が一定以下の低位となっている状態においても、正確に液位の測定を行うことができる。 According to the liquid level measuring method (5), even when the liquid level inside the reaction tank is low below a certain level, the liquid level can be accurately measured.

(6) ニッケル酸化鉱石の高圧酸浸出処理に用いるオートクレーブの液位測定方法であって、(3)又は(4)に記載の液位測定器具を前記オートクレーブ内に鉛直方向に沿って挿入し、前記支柱の下部側末端を前記オートクレーブの底面に接触させた後に引き上げる、オートクレーブの液位測定方法。 (6) A method for measuring the liquid level in an autoclave used for high-pressure acid leaching treatment of nickel oxide ore, comprising inserting the liquid level measuring device according to (3) or (4) into the autoclave along the vertical direction, A method for measuring a liquid level in an autoclave, in which the lower end of the support is brought into contact with the bottom of the autoclave and then pulled up.

(6)の液位測定方法によれば、測定対象のスラリーが強酸性であるオートクレーブにおいて、オートクレーブの内部の液位が一定以下の低位となっている状態においても、安全、且つ、正確に液位の測定を行うことができる。 According to the liquid level measurement method (6), in an autoclave where the slurry to be measured is strongly acidic, even when the liquid level inside the autoclave is below a certain level, the liquid level can be measured safely and accurately. It is possible to perform position measurements.

本発明によれば、例えば、ニッケル酸化鉱石の高圧酸浸出処理を行うオートクレーブ等の反応槽における定期的な休転補修時等、反応槽の内部の液位が一定以下の低位となっている状態においても、正確に液位の測定を行うことができる。 According to the present invention, the liquid level inside the reaction tank is at a low level below a certain level, such as during periodic shutdown repair in a reaction tank such as an autoclave that performs high-pressure acid leaching treatment of nickel oxide ore. It is also possible to accurately measure the liquid level.

本発明の液位測定器具の側面図である。FIG. 2 is a side view of the liquid level measuring instrument of the present invention. 本発明の液位測定器具の要部の構成の説明に供する部分拡大斜視図である。FIG. 2 is a partially enlarged perspective view for explaining the configuration of the main parts of the liquid level measuring instrument of the present invention. 本発明の液位測定器具における液体採取容器の配置ピッチの説明に供する図面である。FIG. 3 is a drawing for explaining the arrangement pitch of liquid collection containers in the liquid level measuring device of the present invention. 本発明の液位測定器具及び液位測定方法の好適な適用対象である、オートクレーブの縦断面図である。1 is a longitudinal cross-sectional view of an autoclave to which the liquid level measuring device and liquid level measuring method of the present invention are preferably applied. 図4のオートクレーブを用いた浸出工程が行われるニッケル酸化鉱石の湿式製錬プロセスの一般的な工程フロー図である。FIG. 5 is a general process flow diagram of a hydrometallurgical process for nickel oxide ore in which the leaching step using the autoclave of FIG. 4 is performed. 従来公知の放射線式レベル測定器の動作態様を模式的に示す図面である。1 is a drawing schematically showing an operation mode of a conventionally known radiation type level measuring device.

以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。本発明の液位測定器具及び液位測定方法は、各種の工業用の反応槽の内部に収容された液相の液位を測定するための技術的手段である。本発明は、特には、高圧酸浸出処理を用いたニッケル酸化鉱石の湿式製錬プロセスにおける浸出工程での処理に使用するオートクレーブ内のスラリーの液位の測定に特に好ましく用いることができる。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. The liquid level measuring device and liquid level measuring method of the present invention are technical means for measuring the liquid level of a liquid phase accommodated inside various industrial reaction vessels. The present invention can be particularly preferably used for measuring the liquid level of a slurry in an autoclave used in a leaching step in a hydrometallurgical process for nickel oxide ore using high-pressure acid leaching treatment.

以下においては、本発明の液位測定器具及び液位測定方法を、ニッケル酸化鉱石の湿式製錬プロセスにて使用するオートクレーブにおいてスラリーの液位の測定に用いる場合の実施形態について、その詳細を説明する。但し、本発明の適用対象は上記のオートクレーブに限定されるものではなく、本発明の目的の範囲内において適宜変更を加えながら、様々な反応槽の液位に測定に用いることができる。以下においては、先ず、本発明の好適な適用対象である、オートクレーブを用いて行われる高圧酸浸出法によるニッケル酸化鉱石の湿式製錬プロセスの概要について説明し、その後に、本発明の液位測定器具及び液位測定方法について詳細に説明する。 Below, details will be explained about an embodiment in which the liquid level measuring device and the liquid level measuring method of the present invention are used to measure the liquid level of slurry in an autoclave used in a hydrometallurgical process of nickel oxide ore. do. However, the application of the present invention is not limited to the above-mentioned autoclave, and can be used to measure the liquid level of various reaction vessels while making appropriate changes within the scope of the purpose of the present invention. In the following, first, an overview of the hydrometallurgical process of nickel oxide ore by high-pressure acid leaching using an autoclave, which is a preferred application target of the present invention, will be explained, and then the liquid level measurement of the present invention will be explained. The equipment and liquid level measurement method will be explained in detail.

<ニッケル酸化鉱石の湿式製錬プロセス>
ニッケル酸化鉱石の湿式製錬プロセスは、図5に示す通り、原料のニッケル酸化鉱石のスラリー(以下、単に「鉱石スラリー」とも言う)に硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1、得られた浸出スラリーを多段洗浄しながら浸出液と浸出残渣とに固液分離する固液分離工程S2、得られた浸出液に中和剤を添加してpHを調整することで不純物元素を含む中和澱物をスラリーの形態で分離してニッケル及びコバルトを含む中和終液を得る中和工程S3、得られた中和終液に硫化剤を添加することでニッケル及びコバルトの混合硫化物を生成させる硫化工程S4が、順次行われるプロセスである。
<Hydrometallurgical process of nickel oxide ore>
As shown in Figure 5, the hydrometallurgical smelting process for nickel oxide ore is a leaching process in which sulfuric acid is added to a slurry of nickel oxide ore (hereinafter simply referred to as "ore slurry") as a raw material, and leaching is performed under high temperature and pressure. S1: Solid-liquid separation step S2: solid-liquid separation of the obtained leaching slurry into a leaching solution and leaching residue while washing the obtained leaching slurry in multiple stages; adding a neutralizing agent to the obtained leaching solution to adjust the pH to contain impurity elements; Neutralization step S3 of separating the neutralized precipitate in the form of a slurry to obtain a neutralized final solution containing nickel and cobalt, and adding a sulfiding agent to the obtained neutralized final solution to produce a mixed sulfide of nickel and cobalt. The sulfiding step S4 to generate is a process that is performed sequentially.

[浸出工程]
浸出工程S1は、ニッケルやコバルトを含有する鉱石スラリーを、加圧反応容器であるオートクレーブに硫酸等の酸と共に装入して浸出処理を施す工程である。
[Leaching process]
The leaching step S1 is a step in which an ore slurry containing nickel and cobalt is charged into an autoclave, which is a pressurized reaction vessel, together with an acid such as sulfuric acid, and subjected to leaching treatment.

浸出工程S1では、先ず、処理対象となる鉱石スラリーを、例えば耐圧容器からなるヒータータンクにポンプを介して装入し、高圧蒸気等を該ヒータータンク内に吹き込むことによって鉱石スラリーを所望の高温高圧条件にまで昇温及び昇圧させる。次に、所望の高温高圧力条件に調整した鉱石スラリーを、撹拌機を備えた耐圧容器からなるオートクレーブ2(図4参照)に装入する。このオートクレーブ2に装入した鉱石スラリーには、過剰の硫酸を添加すると共に高圧蒸気を吹き込む。これにより、鉱石スラリーは高温高圧下において撹拌されながら酸処理が施され、鉱石に含まれるニッケルやコバルト等の金属の浸出が行われる。その結果、ニッケルやコバルトを含有する浸出液と、ヘマタイト等を含有する浸出残渣とからなる浸出スラリーが生成される。 In the leaching step S1, first, ore slurry to be treated is charged into a heater tank made of, for example, a pressure-resistant container via a pump, and high-pressure steam or the like is blown into the heater tank to bring the ore slurry to a desired high temperature and high pressure. Raise the temperature and pressure to the desired conditions. Next, the ore slurry adjusted to desired high-temperature and high-pressure conditions is charged into an autoclave 2 (see FIG. 4), which is a pressure-resistant container equipped with a stirrer. Excess sulfuric acid is added to the ore slurry charged into the autoclave 2, and high pressure steam is blown into the ore slurry. As a result, the ore slurry is subjected to acid treatment while being stirred under high temperature and high pressure, and metals such as nickel and cobalt contained in the ore are leached out. As a result, a leaching slurry consisting of a leaching liquid containing nickel and cobalt and a leaching residue containing hematite and the like is produced.

上記のオートクレーブ内の浸出処理では、例えば下記式1~3の浸出反応と下記式4~5の高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。
(式1)
MO+HSO⇒MSO+H
(式中、Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
(式2)
2Fe(OH)+3HSO⇒Fe(SO+6H
(式3)
FeO+HSO⇒FeSO+H
(式4)
2FeSO+HSO+1/2O⇒Fe(SO+H
(式5)
Fe(SO+3HO⇒Fe+3HSO
In the above leaching treatment in the autoclave, for example, leaching reactions of formulas 1 to 3 below and high-temperature hydrolysis reactions of formulas 4 to 5 below occur, resulting in leaching of nickel, cobalt, etc. as sulfates, and leached iron sulfate. is immobilized as hematite.
(Formula 1)
MO+ H2SO4 ⇒MSO4 + H2O
(In the formula, M represents Ni, Co, Fe, Zn, Cu, Mg, Cr, Mn, etc.)
(Formula 2)
2Fe(OH) 3 +3H 2 SO 4 ⇒Fe 2 (SO 4 ) 3 +6H 2 O
(Formula 3)
FeO+ H2SO4 ⇒FeSO4 + H2O
(Formula 4)
2FeSO 4 +H 2 SO 4 +1/2O 2 ⇒Fe 2 (SO 4 ) 3 +H 2 O
(Formula 5)
Fe 2 (SO 4 ) 3 +3H 2 O⇒Fe 2 O 3 +3H 2 SO 4

浸出工程S1における硫酸の添加量には特に限定はないが、鉱石中の鉄が浸出されるように過剰に添加するのが好ましい。具体的には、得られる浸出液のpHが0.1~1.0となるように硫酸の添加量を調整するのが好ましい。これにより、ニッケル及びコバルトを不純物成分と共に含む浸出液と、ヘマタイト等を含む浸出残渣とからなる浸出スラリーが生成される。得られた浸出スラリーは、次工程の固液分離工程S2において固液分離処理を施す前に、予備中和処理を施して浸出反応に関与しなかった余剰の硫酸を部分的に中和するのが好ましい。この予備中和処理の条件としては、例えば浸出スラリーのpHが2.8~3.2程度となるように中和剤を添加するのが好ましい。 Although there is no particular limitation on the amount of sulfuric acid added in the leaching step S1, it is preferable to add it in excess so that the iron in the ore is leached out. Specifically, it is preferable to adjust the amount of sulfuric acid added so that the pH of the obtained leachate is 0.1 to 1.0. As a result, a leaching slurry is produced, which is composed of a leaching liquid containing nickel and cobalt together with impurity components, and a leaching residue containing hematite and the like. The obtained leaching slurry is subjected to preliminary neutralization treatment to partially neutralize excess sulfuric acid that did not participate in the leaching reaction, before performing solid-liquid separation treatment in the next solid-liquid separation step S2. is preferred. As for the conditions for this preliminary neutralization treatment, it is preferable to add a neutralizing agent so that the pH of the leaching slurry is approximately 2.8 to 3.2, for example.

[固液分離工程]
固液分離工程S2は、沈降分離装置等の固液分離手段に浸出工程S1で得られた浸出スラリーを導入することで、多段洗浄を行うと共に、ニッケルやコバルト等の有価金属を含む浸出液の浸出残渣からの固液分離を行う工程である。尚、上記の洗浄水には湿式製錬プロセスに悪影響を及ぼさないものを用いることが好ましく、例えば後述する硫化工程S4で得られる低pHの貧液を繰り返して利用することができる。
[Solid-liquid separation process]
In the solid-liquid separation step S2, the leaching slurry obtained in the leaching step S1 is introduced into a solid-liquid separation means such as a sedimentation separator to perform multi-stage cleaning and leaching of the leachate containing valuable metals such as nickel and cobalt. This is a step of performing solid-liquid separation from the residue. In addition, it is preferable to use water that does not adversely affect the hydrometallurgical smelting process as the above-mentioned washing water, and for example, a poor liquid with a low pH obtained in the sulfurization step S4 described later can be repeatedly used.

[中和工程]
中和工程S3は、固液分離工程S2においてシックナーのオーバーフロー液として回収された浸出液に炭酸カルシウム等の中和剤を添加して中和処理を施し、不純物元素としての3価の鉄を含む中和澱物を析出させる工程である。この中和処理の処理液のpHは好ましくは4.0以下、より好ましくは3.0以上3.5以下、最も好ましくは3.1以上3.2以下の範囲内になるように中和剤の添加量を調整するのが好ましい。この中和処理後は、中和澱物を含むスラリーを例えばシックナー等の固液分離装置に導入することで中和澱物を除去し、ニッケル及びコバルト回収用の母液となる中和終液を回収する。
[Neutralization process]
In the neutralization step S3, a neutralizing agent such as calcium carbonate is added to the leachate collected as the overflow liquid of the thickener in the solid-liquid separation step S2 to neutralize the leachate, which contains trivalent iron as an impurity element. This is a step of precipitating Japanese sediment. The pH of the treatment solution in this neutralization treatment is preferably within the range of 4.0 or less, more preferably 3.0 or more and 3.5 or less, and most preferably 3.1 or more and 3.2 or less. It is preferable to adjust the amount of addition. After this neutralization treatment, the neutralized precipitate is removed by introducing the slurry containing the neutralized precipitate into a solid-liquid separator such as a thickener, and the neutralized final liquid is obtained as a mother liquor for recovering nickel and cobalt. to recover.

[硫化工程]
硫化工程S4は、中和工程S3の固液分離装置から回収された中和終液としてのニッケル及びコバルト回収用母液(硫化反応始液)に対して、硫化剤を添加して硫化処理を行うことによって硫化反応を生じさせ、硫化反応始液中に含まれるニッケル及びコバルトを混合硫化物として固定化する工程である。硫化反応の終了後のニッケル及びコバルトの混合硫化物を含むスラリーを固液分離装置に導入することで混合硫化物を回収することができる。
[Sulfurization process]
In the sulfurizing step S4, a sulfurizing agent is added to the mother liquor for recovering nickel and cobalt (sulfurizing reaction starting liquid) as the neutralization final liquid recovered from the solid-liquid separator of the neutralizing step S3 to perform sulfurizing treatment. This is a process in which a sulfurization reaction is caused and the nickel and cobalt contained in the sulfurization reaction starting solution are fixed as a mixed sulfide. The mixed sulfide can be recovered by introducing the slurry containing the mixed sulfide of nickel and cobalt after the sulfurization reaction into a solid-liquid separator.

<液位測定器具>
本発明の液位測定器具は、反応槽内の液位を測定するために用いる器具である。測定対象となる反応槽の好例として、ニッケル酸化鉱石の高圧酸浸出処理に用いる上述のオートクレーブを挙げることができる。本発明の液位測定器具は、特に、オートクレーブ等の反応槽における定期的な休転補修時等、反応槽の内部の液位が一定以下の低位となっている状態においても、正確に液位の測定を行うことができる点を機能面における主たる特徴とする。
<Liquid level measuring device>
The liquid level measuring instrument of the present invention is an instrument used for measuring the liquid level within a reaction tank. A good example of a reaction tank to be measured is the above-mentioned autoclave used for high-pressure acid leaching treatment of nickel oxide ore. The liquid level measuring device of the present invention can accurately measure the liquid level even when the liquid level inside the reaction tank is below a certain level, especially when the reaction tank such as an autoclave is regularly shut down and repaired. Its main functional feature is that it can measure

図1~3に示す液位測定器具1は、本発明の液位測定器具の好ましい実施形態の一例である。オートクレーブ等の反応槽用の液位測定器具である液位測定器具1は、図1に示す通り、棒状の支柱11と、支柱11に等間隔で設置されている複数の液体採取容器12と、を備える。そして、液位測定器具1の支柱11の上部側の先端には、吊りロープ13が接合されていることが好ましい。 The liquid level measuring instrument 1 shown in FIGS. 1 to 3 is an example of a preferred embodiment of the liquid level measuring instrument of the present invention. As shown in FIG. 1, a liquid level measuring device 1, which is a liquid level measuring device for a reaction tank such as an autoclave, includes a rod-shaped support 11, a plurality of liquid collection containers 12 installed at equal intervals on the support 11, Equipped with Preferably, a hanging rope 13 is connected to the top end of the support 11 of the liquid level measuring device 1.

支柱11の長さは特に限定されず、使用対象とする反応槽の深さに応じて適宜最適に設計することができる。具体的には、支柱11の長さは、適用対象とする反応槽の深さの80%以上とすることが好ましい。一方で、液位測定器具1は測定作業者の手作業により取り扱われることが想定されていることから、作業時の取扱い性を良好に維持する観点からは、支柱11の長さは3m以内とすることが好ましい。 The length of the support column 11 is not particularly limited, and can be optimally designed depending on the depth of the reaction tank to be used. Specifically, the length of the support column 11 is preferably 80% or more of the depth of the reaction tank to which it is applied. On the other hand, since it is assumed that the liquid level measuring device 1 will be handled manually by the measuring worker, the length of the support 11 should be within 3 m from the viewpoint of maintaining good handling during work. It is preferable to do so.

ここで、上記のオートクレーブ等、適用対象の反応槽の深さが4m程度以上である場合には、長さを3m以下とした支柱11の上部側の先端に、更に任意の長さの吊りロープ13を接合することで、取扱い性を良好に維持したまま、反応槽の底部側近傍域における液位の測定を正確に行うことができる。 Here, if the depth of the reaction tank to which the application is applied, such as the above-mentioned autoclave, is approximately 4 m or more, a hanging rope of any length is additionally attached to the upper end of the support 11 whose length is 3 m or less. By joining 13, it is possible to accurately measure the liquid level in the area near the bottom of the reaction tank while maintaining good handling properties.

支柱11の材料は、必要な強度や測定対象とする液相に対する耐性を有するものであれば、その限りにおいて特に限定されないが、重量を小さく抑えて作業者の取扱い性を良好に維持する観点から、樹脂性とすることが好ましい。又、測定対象のスラリーが強酸性である場合にも使用可能とするために、耐酸性に優れる樹脂とすることがより好ましい。支柱11の材料として好ましい耐酸性樹脂として、具体的には、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる樹脂を支柱11の材料として用いることができる。中でも、耐酸性、耐熱性、経済性をバランスよく兼ね備えるポリプロピレンを、支柱11の材料として特に好ましく用いることができる。 The material of the support column 11 is not particularly limited as long as it has the necessary strength and resistance to the liquid phase to be measured, but from the viewpoint of keeping the weight low and maintaining good handling by the operator. , preferably resinous. Further, in order to enable use even when the slurry to be measured is strongly acidic, it is more preferable to use a resin with excellent acid resistance. As the acid-resistant resin preferable as the material for the pillar 11, specifically, a resin selected from polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenolic resin is used as the material for the pillar 11. Can be used. Among these, polypropylene, which has acid resistance, heat resistance, and economic efficiency in a well-balanced manner, can be particularly preferably used as the material for the pillars 11.

支柱11に封数設置される液体採取容器12の形状は、上部側に液相を流入させる開口部121が形成されていて流入した液相を内部に貯留できる容器であれば特に限定されないが、例えば、図2に示す液体採取容器12のように、コップ型の容器であってもよいし、或いは、試薬用のサンプルボトル等のボトル型の容器を利用することもできる。 The shape of the liquid collection containers 12 installed on the support column 11 is not particularly limited as long as the container has an opening 121 on the upper side through which the liquid phase flows in and can store the liquid phase flowing therein. For example, it may be a cup-shaped container like the liquid collection container 12 shown in FIG. 2, or a bottle-shaped container such as a sample bottle for a reagent.

液体採取容器12の容量は、使用対象とする反応槽の深さに応じて適宜最適に設計することができる。一例として、深さ4mのオートクレーブに用いる場合であれば、液体採取容器12の容量は、取扱い性と測定精度とのバランスから、50ml以上150ml以下とすることが好ましい。 The capacity of the liquid collection container 12 can be optimally designed depending on the depth of the reaction tank to be used. For example, when used in an autoclave with a depth of 4 m, the capacity of the liquid collection container 12 is preferably 50 ml or more and 150 ml or less from the viewpoint of balance between ease of handling and measurement accuracy.

液体採取容器12の材料も、必要な強度や測定対象とする液相に対する耐性を有するものであれば、その限りにおいて特に限定されないが、支柱11と同様に、上述の耐酸性樹脂、即ち、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる何れかの樹脂とすることが好ましい。 The material of the liquid collection container 12 is not particularly limited as long as it has the necessary strength and resistance to the liquid phase to be measured. It is preferable to use any resin selected from vinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenol resin.

液位測定器具1においては、液体採取容器12は、図1~図3の各図面に示すように、支柱11の下部側末端及び下部側寄りの一部の範囲内において、全ての液体採取容器12の開口部121が支柱11の上部側方向に向けられた状態で、支柱11の中心軸方向に沿って、支柱11の側面に一定間隔で設置されている。支柱11への液体採取容器12の設置方法は、接合部分の耐久性を担保できる限りにおいて特に限定されず、公知の接着、溶着、緊定、懸吊等の接合手段によることができる。 In the liquid level measuring device 1, as shown in each drawing of FIGS. 1 to 3, the liquid collection containers 12 are connected to all the liquid collection containers within the lower end of the support 11 and a part of the lower side. 12 are installed on the side surface of the support 11 at regular intervals along the central axis direction of the support 11, with the openings 121 of the support 12 facing toward the upper side of the support 11. The method of installing the liquid collection container 12 on the support column 11 is not particularly limited as long as the durability of the joint can be ensured, and known joining means such as adhesion, welding, tightening, and suspension can be used.

支柱11に対する液体採取容器12の配置範囲は、より詳しくは、支柱11の下部側末端111を起点として、上部側末端112までの支柱11の全長の50%以上80%以下の高さまでの範囲を上限とすることが好ましい。液位測定器具1は、主として、反応槽下部に残存する比較的少量の低位の液位を測定することを主たる目的とするものであることから、液体採取容器12の配置範囲を上記範囲とすることで、十分な作用効果を享受することができるからである。 More specifically, the arrangement range of the liquid collection container 12 with respect to the strut 11 is a range from the lower end 111 of the strut 11 to the upper end 112 to a height of 50% or more and 80% or less of the total length of the strut 11. It is preferable to set it as an upper limit. Since the main purpose of the liquid level measuring device 1 is to measure a relatively small amount of low liquid level remaining at the bottom of the reaction tank, the arrangement range of the liquid collection container 12 is set to the above range. This is because sufficient effects can be enjoyed.

又、支柱11に対する液体採取容器12の配置間隔(図3に示す配置ピッチp)も、使用対象とする反応槽の深さに応じて適宜最適に設計することができるが、一例として、深さ4mのオートクレーブに用いる場合であれば、液位の測定精度を適切に維持する観点から、複数の液体採取容器12の配置ピッチは、10cm以上30cm以下とすることが好ましい。尚、液体採取容器12の設置数は特に限定されないが、上記において説明した好ましい設置範囲内において、上記配置ピッチで設置した場合に必然的に必要となる個数が設置されることが好ましく、尚且つ、少なくとも3つ以上の液体採取容器12を設置するようにすることが好ましい。 Further, the arrangement interval (arrangement pitch p shown in FIG. 3) of the liquid collection container 12 with respect to the support column 11 can be optimally designed depending on the depth of the reaction tank to be used. When used in a 4 m autoclave, the arrangement pitch of the plurality of liquid collection containers 12 is preferably 10 cm or more and 30 cm or less from the viewpoint of appropriately maintaining the measurement accuracy of the liquid level. Note that the number of liquid collection containers 12 to be installed is not particularly limited, but it is preferable that the number of liquid collection containers 12 that is necessarily required when installed at the above arrangement pitch is preferably installed within the preferred installation range explained above, and It is preferable that at least three or more liquid collection containers 12 are installed.

吊りロープ13の長さは特に限定されず、使用対象とする反応槽の深さ及び支柱11の長さに応じて適宜最適に設計することができる。具体的には、支柱11の長さが適用対象とする反応槽の深さの80%程度である場合において、吊りロープ13の長さを、当該反応槽の深さの50%以上70%以下程度とすることが好ましい。上記のオートクレーブ等、適用対象の反応槽の深さが4m程度以上である場合には、液位測定器具1をこのように構成することによって、取扱い性を良好に維持したまま、反応槽の底部側近傍域における液位の測定を正確に行うことができる。 The length of the hanging rope 13 is not particularly limited, and can be optimally designed depending on the depth of the reaction tank to be used and the length of the support column 11. Specifically, when the length of the support column 11 is approximately 80% of the depth of the reaction tank to which the application is applied, the length of the hanging rope 13 is set to 50% or more and 70% or less of the depth of the reaction tank. It is preferable to set it as approximately. When the depth of the target reaction tank is approximately 4 m or more, such as the above-mentioned autoclave, by configuring the liquid level measuring device 1 in this way, the bottom of the reaction tank can be easily accessed while maintaining good handling. It is possible to accurately measure the liquid level in the area near the side.

吊りロープ13の材料は、必要な強度や測定対象とする液相に対する耐性を有するものであれば、支柱11や液体採取容器12と同様に、軽量で耐酸性に優れる耐酸性樹脂、具体的には、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる樹脂を用いることが好ましく、中でも、耐酸性、耐熱性、経済性をバランスよく兼ね備えるポリプロピレンからなり、直径が3mm以上7mm以下のロープを特に好ましく用いることができる。 The material of the hanging rope 13 can be a light weight acid-resistant resin with excellent acid resistance, as long as it has the necessary strength and resistance to the liquid phase to be measured, like the support 11 and the liquid collection container 12. It is preferable to use a resin selected from polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenol resin, and among them, it is preferable to use a resin that has a good balance of acid resistance, heat resistance, and economic efficiency. A rope made of polypropylene and having a diameter of 3 mm or more and 7 mm or less can be particularly preferably used.

<液位測定方法>
本発明の液位測定方法は、上記において詳細を説明した本発明の液位測定器具を用いて行うことができる。液位測定器具1を用いて、本発明の液位測定方法を実施する場合、先ず、液位測定器具1を反応槽の内部に鉛直方向に沿って挿入し、支柱11の下部側末端111を反応槽の底面に接触させる。そして、その後に液位測定器具1を反応槽から引き上げる。
<Liquid level measurement method>
The liquid level measuring method of the present invention can be carried out using the liquid level measuring instrument of the present invention described in detail above. When implementing the liquid level measuring method of the present invention using the liquid level measuring device 1, first, the liquid level measuring device 1 is inserted into the reaction tank along the vertical direction, and the lower end 111 of the column 11 is inserted into the reaction tank. Make contact with the bottom of the reaction tank. Then, the liquid level measuring device 1 is pulled up from the reaction tank.

次に、引き上げた液位測定器具1の複数の液体採取容器12のうち、下部側末端111から数えて何番目の液体採取容器12まで、スラリーが流入しているかを確認する。これにより、反応槽の内部に残存するスラリー等の液位を必要十分な精度で安全に測定することが出来る。 Next, it is confirmed to which liquid sampling container 12, counting from the lower end 111, the slurry has flowed into among the plurality of liquid sampling containers 12 of the liquid level measuring device 1 that has been pulled up. Thereby, the liquid level of the slurry or the like remaining inside the reaction tank can be safely measured with necessary and sufficient accuracy.

尚、図4に示すオートクレーブ2のような強酸性のスラリーを取り扱う大型の反応槽が適用対象であり、定期的な休転補修時における内部の液溜まりの有無の確認を行う場合であれば、液位測定器具1にて測定された液位が所定の高さを超えていた場合には、液だまりの存在を推認し、液だまりの消滅が推認されるが無くなるまで、液の払い出しを繰り返し行う。液位が十分に低下して液だまりの消滅が推認された後に、オートクレーブ2の下部のマンホール23を開いて、作業者が、オートクレーブ2の内部に入るようにすることによって、安全に補修作業を行うことが出来る。 In addition, if the target is a large reaction tank that handles strongly acidic slurry, such as the autoclave 2 shown in Figure 4, and if the presence or absence of liquid accumulation inside is to be confirmed during periodic shutdown repairs, If the liquid level measured by the liquid level measuring device 1 exceeds a predetermined height, the existence of a liquid pool is presumed, and the liquid is discharged repeatedly until the liquid pool is presumed to have disappeared. conduct. After the liquid level is sufficiently lowered and the liquid pool is presumed to have disappeared, the manhole 23 at the bottom of the autoclave 2 is opened and the worker can enter the interior of the autoclave 2 to safely carry out repair work. It can be done.

1 液位測定器具
11 支柱
111 (支柱の)下部側末端
112 (支柱の)上部側末端
12 液体採取容器
121 開口部
2 オートクレーブ
21 貯留部
22 抜出管
23 マンホール
3 反応槽
31 線源部
32 検出部
S1 浸出工程
S2 固液分離工程
S3 中和工程
S4 硫化工程
1 Liquid level measuring device 11 Strut 111 Lower end (of the strut) 112 Upper end (of the strut) 12 Liquid collection container 121 Opening 2 Autoclave 21 Storage section 22 Extraction pipe 23 Manhole 3 Reaction tank 31 Radiation source section 32 Detection Part S1 Leaching process S2 Solid-liquid separation process S3 Neutralization process S4 Sulfurization process

Claims (6)

反応槽用の液位測定器具であって、
棒状の支柱と、
複数の液体採取容器と、を備え、
複数の前記液体採取容器は、前記支柱の下部側末端及び下部側寄りの一部の範囲内に、全ての前記液体採取容器の開口部が支柱上部側方向に向けられた状態で、前記支柱の中心軸方向に沿って、前記支柱の側面に、一定間隔で設置されている、
液位測定器具。
A liquid level measuring device for a reaction tank,
A rod-shaped support,
a plurality of liquid collection containers;
The plurality of liquid collection containers are arranged within the lower end of the support and a portion of the support, with the openings of all of the liquid collection containers oriented toward the upper side of the support. installed at regular intervals on the side of the support column along the central axis direction;
Liquid level measuring device.
前記支柱の上部側の先端には、吊りロープが接合されている、
請求項1に記載の液位測定器具。
A hanging rope is connected to the top end of the support.
The liquid level measuring device according to claim 1.
前記液体採取容器及び前記支柱は、何れも、
ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる耐酸性樹脂である、
請求項1に記載の液位測定器具。
The liquid collection container and the support column both include:
Acid-resistant resin selected from polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenolic resin,
The liquid level measuring device according to claim 1.
前記吊りロープが、
ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、アクリル樹脂、ポリフッ化ビニリデン、フェノール樹脂のうちから選ばれる耐酸性樹脂である、
請求項2に記載の液位測定器具。
The hanging rope is
Acid-resistant resin selected from polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin, polyvinylidene fluoride, and phenolic resin,
The liquid level measuring device according to claim 2.
反応槽の液位測定方法であって、
請求項1から4の何れかに記載の液位測定器具を反応槽の内部に鉛直方向に沿って挿入し、前記支柱の下部側末端を前記反応槽の底面に接触させた後に引き上げる、
反応槽の液位測定方法。
A method for measuring a liquid level in a reaction tank, the method comprising:
Inserting the liquid level measuring device according to any one of claims 1 to 4 vertically into a reaction tank, bringing the lower end of the support into contact with the bottom of the reaction tank, and then pulling it up.
Method for measuring liquid level in reaction tank.
ニッケル酸化鉱石の高圧酸浸出処理に用いるオートクレーブの液位測定方法であって、請求項3又は請求項4に記載の液位測定器具をオートクレーブの内に鉛直方向に沿って挿入し、前記支柱の下部側末端を前記オートクレーブの底面に接触させた後に引き上げる、オートクレーブの液位測定方法。 A method for measuring a liquid level in an autoclave used for high-pressure acid leaching treatment of nickel oxide ore, wherein the liquid level measuring device according to claim 3 or 4 is inserted vertically into the autoclave, and A method for measuring the liquid level in an autoclave, in which the lower end is brought into contact with the bottom of the autoclave and then pulled up.
JP2022057331A 2022-03-30 2022-03-30 Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel Pending JP2023149014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022057331A JP2023149014A (en) 2022-03-30 2022-03-30 Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022057331A JP2023149014A (en) 2022-03-30 2022-03-30 Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel

Publications (1)

Publication Number Publication Date
JP2023149014A true JP2023149014A (en) 2023-10-13

Family

ID=88289187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022057331A Pending JP2023149014A (en) 2022-03-30 2022-03-30 Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel

Country Status (1)

Country Link
JP (1) JP2023149014A (en)

Similar Documents

Publication Publication Date Title
CN104955774B (en) Processing device and processing method for hydrogen-sulphide-containing barren solution
JP4888580B2 (en) Liquid storage device and pressure control method thereof
CN107002176B (en) The recovery method of high-purity scandium
CA2861034C (en) Flash vessel and method for operating same
JP2016011442A (en) Autoclave, and method for blowing gas to autoclave
JP5716614B2 (en) Metal sulfide precipitation method
JP2014113564A (en) Stirring reactor
JP5720665B2 (en) Heavy metal removal method and heavy metal removal apparatus
US3018170A (en) Pressure leaching apparatus
JP2023149014A (en) Tool for measuring liquid level in reaction vessel and method for measuring liquid level of reactor vessel
JP5534121B1 (en) How to operate the flash vessel
CN103115799A (en) Powerless sampling device capable of automatically and rapidly sucking solution
JP5751393B1 (en) Heavy metal removal method and heavy metal removal apparatus
US11299408B2 (en) Method and assembly for recovering magnesium ammonium phosphate
CN204752300U (en) Automatic change sewage treatment plant
CN215365934U (en) Device for continuously leaching lithium sulfate from spodumene acid clinker
CN210711682U (en) Noble metal adsorption equipment in gold purification technology acid waste liquid
JP7298126B2 (en) Nickel Oxide Ore Autoclave Equipment
WO2020113264A1 (en) Method and apparatus for mineral processing
WO2017130693A1 (en) Method for removing residual hydrogen sulfide
JP2019215257A (en) Calibration method of level measuring instrument of autoclave
JP2019126742A (en) Removal method for remaining hydrogen sulfide, and sulfurization reaction vessel
CN215328302U (en) Production line for recovering manganese metal by using electrolytic manganese slag leachate
CN109470521A (en) Seawater sample bucket is discharged in desulfurization
CN220572733U (en) Waste water recovery adds medicine treatment facility