JP2023148532A - Test method and manufacturing method for heterogeneous aluminum joint material - Google Patents

Test method and manufacturing method for heterogeneous aluminum joint material Download PDF

Info

Publication number
JP2023148532A
JP2023148532A JP2022056611A JP2022056611A JP2023148532A JP 2023148532 A JP2023148532 A JP 2023148532A JP 2022056611 A JP2022056611 A JP 2022056611A JP 2022056611 A JP2022056611 A JP 2022056611A JP 2023148532 A JP2023148532 A JP 2023148532A
Authority
JP
Japan
Prior art keywords
test
test piece
dissimilar
bonding
aluminum bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022056611A
Other languages
Japanese (ja)
Inventor
正登 伊東
Masato Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Materials Corp
MA Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, MA Aluminum Corp filed Critical Mitsubishi Materials Corp
Priority to JP2022056611A priority Critical patent/JP2023148532A/en
Publication of JP2023148532A publication Critical patent/JP2023148532A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a test method and a manufacturing method for a heterogeneous aluminum joint material.SOLUTION: A test method for a heterogeneous aluminum joint material of the present invention uses plate-like test materials, wherein when the thickness of each of the test materials is defined as h, the length in a long side direction or a major axis direction as LL, and the length in a short side direction or a minor axis direction being the length LL or less, the test materials used satisfy LS, 0.13≤h/LS≤0.54. The method comprises: heating a plurality of metal test materials having the shape of the test material and not having the same component in an overlapped manner; applying a compressive force in a thickness direction to the plurality of test materials to form a heterogeneous aluminum joint material in which the plurality of test materials are joined to each other; and applying a shear force to a joint surface of the obtained heterogeneous aluminum joint material to evaluate bonding strength.SELECTED DRAWING: Figure 1

Description

本発明は、異種アルミニウム接合材の試験方法と製造方法に関する。 The present invention relates to a method for testing and a method for manufacturing dissimilar aluminum bonding materials.

金属同士の接合方法の一つとして、熱間塑性加工による圧着接合法が知られている。特に熱間圧延は生産性が高く、異種アルミニウム板同士などの接合が工業的に広く行われている。
熱間塑性加工による金属同士の接合では、強度差(変形抵抗差)があるほど製造難易度が高い。より具体的には、熱間圧延では一端接合したと思われても、圧延を続行し、接合界面に接合強度以上の応力が作用すると剥離を生じ、生産性を損なうことがあり、最悪の場合は接合が上手くいかないとズレにより所望形状への製造が出来なくなる可能性がある。
このため熱間塑性加工によって、どの程度の接合強度になるかを把握することは重要な技術テーマであると考えられる。
A pressure bonding method using hot plastic working is known as one of the methods for joining metals together. In particular, hot rolling has high productivity and is widely used industrially to join dissimilar aluminum plates.
When joining metals together by hot plastic working, the greater the difference in strength (difference in deformation resistance), the more difficult it is to manufacture. More specifically, in hot rolling, even if it appears to have been joined at one end, if rolling continues and a stress greater than the joint strength is applied to the joint interface, peeling may occur, impairing productivity, and in the worst case scenario. If the bonding is not successful, there is a possibility that manufacturing into the desired shape may not be possible due to misalignment.
Therefore, it is considered to be an important technical theme to understand how much joint strength can be achieved by hot plastic working.

従来、例えば、以下の特許文献1において、板厚が初期の60%以上である場合に圧下率を1.0%以上5%以下に指定し、剥離を避けつつ圧下する技術が開示されている。また、特許文献1の記載では、その後の板厚が初期の30%以上60%未満である間は圧下率を5%以上15%以下として圧延する技術が開示されている。
以下の特許文献2には、アルミニウムクラッド材を製造するためのパススケジュールに関し、剥離を生じない臨界せん断応力を圧延実績データに基づいて求め、この臨界せん断応力を界面での累積ひずみを用いて定量化しておき、圧延パス毎に界面に作用するせん断応力を数値解析により求め、そのせん断応力が臨界せん断応力を超えないように設計する技術が開示されている。
Conventionally, for example, Patent Document 1 below discloses a technique in which when the plate thickness is 60% or more of the initial thickness, the reduction rate is specified to be 1.0% or more and 5% or less, and the reduction is performed while avoiding peeling. . Further, Patent Document 1 discloses a technique of rolling at a rolling reduction rate of 5% or more and 15% or less while the subsequent plate thickness is 30% or more and less than 60% of the initial thickness.
The following Patent Document 2 describes a pass schedule for manufacturing aluminum clad materials, in which the critical shear stress that does not cause peeling is determined based on rolling performance data, and this critical shear stress is quantified using the cumulative strain at the interface. A technique has been disclosed in which the shear stress acting on the interface is determined by numerical analysis for each rolling pass, and the shear stress is designed so that the shear stress does not exceed the critical shear stress.

以下の非特許文献1には、図10に示すようにCuの第1円柱体100とAlの円板体101とCuの第2円柱体102を積み重ねて加圧し、接合材を得た後、第1円柱体100と第2円柱体102をそれらの中心軸に沿って離間する方向に引張試験を実施し、引張強さを測定する試験方法について記載されている。
以下の非特許文献2には、熱間圧縮接合における界面すべり量が接合強度に及ぼす影響の研究として、図11(A)に示すように上下に配置した基台105とパンチ106の間に、心材と皮材を模擬した円柱状の試験片107、108を積み重ね、500℃に加熱しながら加圧接合する試験について記載されている。
更に、非特許文献2には、傾斜圧縮試験として、図11(B)に示すように基台105とパンチ106の間に、下窄まり状の傾斜面109を有する円柱状の上部試験片110と、前記傾斜面109を受ける傾斜凹面111を有する筒状の下部試験片112を設けて行う試験方法が記載されている。この試験方法では、心材と皮材に見立てた上部試験片110と下部試験片112の接合面を斜面としているので、界面すべり量の影響を把握できると記載されている。
In the following non-patent document 1, as shown in FIG. 10, a first cylindrical body 100 of Cu, a disc 101 of Al, and a second cylindrical body 102 of Cu are stacked and pressurized to obtain a bonding material. A test method is described in which a tensile test is performed on the first cylindrical body 100 and the second cylindrical body 102 in a direction in which they are spaced apart along their central axes, and the tensile strength is measured.
In the following non-patent document 2, as a study of the influence of the amount of interfacial slip on the bond strength in hot compression bonding, as shown in FIG. 11(A), there is a A test is described in which cylindrical test pieces 107 and 108 simulating core wood and skin wood are stacked and bonded under pressure while being heated to 500°C.
Furthermore, in Non-Patent Document 2, as shown in FIG. 11(B), a cylindrical upper test piece 110 having a lower converging inclined surface 109 between a base 105 and a punch 106 is used as an inclined compression test. A test method is described in which a cylindrical lower test piece 112 having an inclined concave surface 111 that receives the inclined surface 109 is provided. In this test method, the joint surface of the upper test piece 110 and the lower test piece 112, which are likened to the core material and the skin material, is a slope, so it is stated that the influence of the amount of interfacial slip can be ascertained.

特開平09-184038号公報Japanese Patent Application Publication No. 09-184038 特開2007-098444号公報Japanese Patent Application Publication No. 2007-098444

「塑性加工技術シリーズ 19 1.4 接合状態の評価」、コロナ社刊行、日本塑性加工学会編、1990年、P16"Plastic Working Technology Series 19 1.4 Evaluation of Joint Condition", published by Corona Publishing, edited by Japan Society for Plastic Working, 1990, P16 藤井秀平他著、「熱間圧縮接合における界面すべり量が接合強度に及ぼす影響」、第70回塑性加工連合講演会、P221~P222、2019年10月12日~13日Shuhei Fujii et al., “Effect of interfacial slip amount on bond strength in hot compression bonding”, 70th Plastic Working Union Lecture, P221-P222, October 12-13, 2019

特許文献1に記載されている圧下率を調整する技術は、材料構成の影響を考慮していないため、更に早めに高圧下率にするなどのパススケジュールの効率化に寄与する技術は見い出せない。
特許文献2に記載されている臨界せん断応力を求める手法では、経験の少ない材料構成の場合、パススケジュールを決定できない問題があり、また、実施例として具体的な材料への応用結果や実例が開示されていない問題がある。
The technique for adjusting the rolling reduction described in Patent Document 1 does not take into account the influence of the material composition, and therefore no technology has been found that contributes to improving the efficiency of the pass schedule, such as increasing the rolling reduction earlier to a higher rolling reduction.
The method for determining the critical shear stress described in Patent Document 2 has a problem in that it is not possible to determine the pass schedule in the case of a material configuration with little experience, and the results of application to specific materials and examples are disclosed as examples. There is a problem that has not been done.

非特許文献1の記載によれば、圧縮率50~70%の冷間圧接後に300℃以下で焼き鈍しを行うと記載されているが、例えば、2~20%程度の圧下率に制御することは容易ではなく、Alの円板体101は2mm以下の厚みとなるので、適切なせん断試験も容易ではないと考えられる。
非特許文献2に記載の技術によれば、図面11(A)では圧力を受けた円柱状の下部試験片107が樽型に変形し、接合するべき界面に大きな変形を付与するのは容易ではないと考えられる。このため、大きな界面変形量に対応した接合強度の評価は容易ではないと想定される。また、図面11(B)でも界面の変形量を大きくすることは容易ではないと想定される。また、図面11(B)の圧縮後の試験片はそのまま上下方向に引っ張るしか評価方法がないと考えられる。
According to the description in Non-Patent Document 1, it is stated that annealing is performed at 300°C or less after cold welding with a compression ratio of 50 to 70%, but it is not possible to control the reduction ratio to about 2 to 20%, for example. It is not easy to perform an appropriate shear test because the Al disc body 101 has a thickness of 2 mm or less.
According to the technique described in Non-Patent Document 2, in FIG. 11(A), the cylindrical lower test piece 107 is deformed into a barrel shape when subjected to pressure, and it is not easy to impart a large deformation to the interface to be joined. It is thought that there is no. Therefore, it is assumed that it is not easy to evaluate the bonding strength corresponding to a large amount of interface deformation. Moreover, it is assumed that it is not easy to increase the amount of deformation of the interface in FIG. 11(B). Moreover, it is thought that the only evaluation method is to pull the compressed test piece in FIG. 11(B) in the vertical direction as it is.

一方で、従来から、実スケールや中規模スケールで熱間加工の試作試験を実施することで(実際に熱間圧延を実施することで)試料を採取し、各試料の接合強度を評価することが可能である。
ところが、実スケールや中規模スケールにおける評価方法は、例えば、条件変量が容易ではないため、試作試験として極めてコスト高となる問題がある。従って、接合強度を評価する方法は、圧縮試験機や引張試験機などを用いた小型試験での評価方法であることが望ましい。
On the other hand, conventionally, samples have been collected by conducting prototype tests of hot working on a full-scale or medium-scale scale (by actually performing hot rolling), and the joint strength of each sample has been evaluated. is possible.
However, evaluation methods on actual scales and medium scales have the problem of extremely high costs for prototype testing, for example, because the conditional variables are not easy to determine. Therefore, it is desirable that the bonding strength be evaluated using a small-scale test using a compression tester, a tensile tester, or the like.

しかし、従来の小型試験方法では強度差(変形抵抗差)のある異種金属同士の接合性を評価することは困難であった。
なぜなら、塑性加工は各材料の変形が伴うので、大きな形状の変化がない溶接やろう付けにおける接合性の評価とは違った難しさがあるためである。たとえば、強度が低い金属の変形が卓越し、強度が高い金属はあまり変形しないことがあり、極端な場合、強度が低い金属だけが変形する場合がある。また、塑性変形によって、それぞれの金属の形状が変化するので、そのまま引っ張るなどの強度評価を実施しても、試験片形状が揃わず、試験方法として平等な評価ができない問題があった。
However, with conventional small-scale testing methods, it has been difficult to evaluate the bonding properties of dissimilar metals with different strengths (differences in deformation resistance).
This is because plastic working involves deformation of each material, making it difficult to evaluate bondability in welding or brazing, which do not involve large changes in shape. For example, metals with low strength may deform predominantly, metals with high strength may deform less, and in extreme cases, only metals with low strength may deform. In addition, since the shape of each metal changes due to plastic deformation, even if strength evaluations such as stretching were carried out, the shapes of the test pieces would not be uniform, making it impossible to evaluate equally as a test method.

本願発明は、上述の背景に鑑みなされたもので、圧縮試験機や引張試験機などを用いた小型試験が出来る試験方法であり、異種アルミニウム接合材からの試験片の切り出し後、せん断試験を行って接合強度を評価することができる技術の提供を目的とする。
また、本願発明は、上述のせん断試験において異種アルミニウム接合材を構成する材料の種類と加圧条件と加熱温度を変更して求めた接合強度測定結果を用いて異種アルミニウム接合材を製造する方法の提供を目的とする。
The present invention was developed in view of the above-mentioned background, and is a test method that can perform small-scale tests using a compression tester, a tensile tester, etc. After cutting a test piece from different types of aluminum bonding materials, a shear test is conducted. The purpose of this study is to provide a technology that can evaluate bonding strength.
The present invention also provides a method for manufacturing a dissimilar aluminum bonding material using the bonding strength measurement results obtained by changing the type of material constituting the dissimilar aluminum bonding material, pressurization conditions, and heating temperature in the above-mentioned shear test. For the purpose of providing.

(1)本発明に係る異種アルミニウム接合材の試験方法は、平板状の試験材であり、厚さをh、長辺方向または長軸方向の長さをL、前記長さL以下となる短辺方向または短軸方向の長さをLとした時に、0.13≦h/L≦0.54である試験材を用い、該試験材の形状を有し、成分が同一ではない金属製の試験材を複数重ねた状態で所望の温度に加熱し、厚さ方向に圧縮力を付与して前記複数の試験材を接合した異種アルミニウム接合材を形成し、得られた異種アルミニウム接合材の接合面に対し、せん断力を付与して接合強度を評価することを特徴とする。 (1) The test method for a dissimilar aluminum bonding material according to the present invention is to use a flat plate-shaped test material, with a thickness of h, a length in the long side direction or the long axis direction of L L , and a length equal to or less than the above-mentioned length L L. When L S is the length in the short side direction or short axis direction, a test material with 0.13≦h/L S ≦0.54 is used, and the test material has the shape of the test material and the components are not the same. A dissimilar aluminum bonding material is formed by stacking a plurality of non-metal test materials to a desired temperature and applying compressive force in the thickness direction to bond the plurality of test materials. The method is characterized in that shear force is applied to the bonding surfaces of the bonding materials to evaluate the bonding strength.

(2)本発明に係る異種アルミニウム接合材の試験方法において、前記平板状の試験材が平面視矩形状であり、前記試験材の前記長辺方向の変形を拘束しながら前記圧縮力を付与する金型により前記圧縮力を付与することが好ましい。
(3)本発明に係る異種アルミニウム接合材の試験方法において、前記試験片の短辺方向または短軸方向に平行、かつ、前記試験片の厚さ方向に延在する複数の切断面であるか、前記試験片の長辺方向または長軸方向に平行、かつ、前記試験片の厚さ方向に延在する複数の切断面のいずれかの切断面に沿って前記異種アルミニウム接合材の中央部を含むように前記異種アルミニウム接合材から中間試験片を切り出し、次いで前記中間試験片の中央部を含み、前記中間試験片の厚さ方向に延在する2つの切断面に沿って前記中間試験片から接合強度評価の実施試験片を切り出すことを特徴とする。
(4)本発明に係る異種アルミニウム接合材の試験方法において、前記試験材において接合以前の接合するべき面の表面粗さRaを0.01μm以上30μm以下とすることが好ましい。
(5)本発明に係る異種アルミニウム接合材の試験方法において、前記試験片の厚さ方向に前記圧縮力を付加して前記異種アルミニウム接合材を形成する場合の圧下率を2%以上20%以下とすることが好ましい。
(2) In the method for testing dissimilar aluminum bonding materials according to the present invention, the flat test material has a rectangular shape in plan view, and the compressive force is applied while restraining deformation in the long side direction of the test material. It is preferable that the compressive force is applied by a mold.
(3) In the method for testing a dissimilar aluminum bonding material according to the present invention, the plurality of cut surfaces are parallel to the short side or short axis direction of the test piece and extend in the thickness direction of the test piece. , the center portion of the dissimilar aluminum bonding material is cut along any one of a plurality of cut surfaces that are parallel to the long side or long axis direction of the test piece and extend in the thickness direction of the test piece. An intermediate test piece is cut out from the dissimilar aluminum bonding material so as to include the middle part of the intermediate test piece, and then cut from the intermediate test piece along two cutting planes that include the central part of the intermediate test piece and extend in the thickness direction of the intermediate test piece. It is characterized by cutting out a test piece for conducting joint strength evaluation.
(4) In the method for testing dissimilar aluminum bonding materials according to the present invention, it is preferable that the surface roughness Ra of the surfaces to be bonded before bonding of the test materials is 0.01 μm or more and 30 μm or less.
(5) In the method for testing a dissimilar aluminum bonding material according to the present invention, the rolling reduction rate when forming the dissimilar aluminum bonding material by applying the compressive force in the thickness direction of the test piece is set to 2% or more and 20% or less. It is preferable that

(6)本発明に係る異種アルミニウム接合材の製造方法は、(1)~(5)のいずれかに記載の異種アルミニウム接合材の試験方法において、複数の前記試験材の成分の変更と、圧下率の変更と、前記加熱温度の変更のうち、少なくとも1種の変更を実施し、前記変更に伴う接合強度の試験結果に及ぼす影響を見極め、良好な接合強度が得られた成分、圧下率、加熱温度のうち、1種または2種以上の条件に基づき、異種アルミニウム接合材を製造することを特徴とする。
(7)本発明に係る異種アルミニウム接合材の製造方法において、前記異種アルミニウム接合材が純アルミニウムまたはアルミニウム合金からなる2種~4種のいずれかの試験材が接合された2層構造~4層構造のいずれかの異種アルミニウム接合材であり、前記2種~4種のいずれかの試験材の少なくとも1つが他の試験材と組成の異なる純アルミニウムまたはアルミニウム合金からなることが好ましい。
(6) The method for manufacturing a dissimilar aluminum bonding material according to the present invention includes changing the components of a plurality of test materials and reducing the At least one of the changes in the rate and the heating temperature was made, and the effect of the change on the bonding strength test results was determined, and the ingredients, rolling reduction rate, and The method is characterized in that dissimilar aluminum bonding materials are manufactured based on one or more conditions among heating temperatures.
(7) In the method for manufacturing a dissimilar aluminum bonding material according to the present invention, the dissimilar aluminum bonding material has a two-layer to four-layer structure in which two to four types of test materials made of pure aluminum or aluminum alloy are bonded. It is preferable that at least one of the two to four types of test materials is made of pure aluminum or an aluminum alloy having a composition different from that of the other test materials.

本発明に係る試験方法によれば、試験片の形状を0.13≦h/L≦0.54と規定したので、組成が異なり、よって強度が異なる異種金属の組み合わせからなる異種アルミニウム接合材であっても、短辺長さと厚さの比率範囲を規定した試験材を用い、この試験材にせん断力を付与することで異種金属同士の界面の接合強度を試験により確実に測定できる。
本発明の試験方法は、圧縮試験機や引張試験機などを用いた小型試験ができる評価方法であり、実施することが容易であり、かつ、いずれの異種金属の組み合わせの接合材であっても適用できる利点を有する。
このため、異種アルミニウム接合材において界面剥離を引き起こす接合強度を予め把握できるので、2層構造あるいは3層構造などのようなクラッド材を製造する場合、パススケジュールに応じた適切な圧縮率を選択し、クラッド材の製造方法に活用することができる。
According to the test method according to the present invention, since the shape of the test piece is specified as 0.13≦h/L S ≦0.54, dissimilar aluminum bonding material made of a combination of dissimilar metals with different compositions and therefore different strengths. However, by using a test material with a defined ratio range of short side length and thickness and applying shear force to this test material, the bonding strength of the interface between dissimilar metals can be reliably measured by testing.
The test method of the present invention is an evaluation method that allows small-scale tests using a compression tester, a tensile tester, etc., and is easy to implement, and can be applied to bonding materials of any combination of dissimilar metals. It has applicable advantages.
For this reason, it is possible to know in advance the bonding strength that causes interfacial delamination in dissimilar aluminum bonding materials, so when manufacturing clad materials such as two-layer or three-layer structures, it is possible to select an appropriate compression ratio according to the pass schedule. , it can be utilized in the manufacturing method of cladding material.

本発明に係る異種アルミニウム接合材の試験方法に用いて好適な板状試験片の一例を示すもので、(A)は接合前の試験片を重ねた状態を示す正面図、(B)は接合後の試験片を示す正面図である。An example of a plate-shaped test piece suitable for use in the test method for dissimilar aluminum bonding materials according to the present invention is shown, in which (A) is a front view showing a state in which test pieces are stacked before bonding, and (B) is a front view showing a state in which the test pieces are stacked before bonding. It is a front view showing a subsequent test piece. 同板状試験片を示す斜視図である。It is a perspective view showing the same plate-shaped test piece. 比較例の試験片を示すもので、(A)は接合前の板状試験片を重ねた状態を示す正面図、(B)は接合後の試験片を示す正面図である。1A shows a test piece of a comparative example, in which (A) is a front view showing a stacked state of plate-shaped test pieces before bonding, and (B) is a front view showing a test piece after bonding. JISに規定されている種々の接着強さの評価方法について示すもので、(A)は、JIS K 6849に規定されている引張試験の試験片を示す説明図、(B)はJIS K 6850に規定されている引張せん断試験の試験片を示す説明図、(C)はJIS K 6852に規定されている圧縮せん断試験の試験片を示す説明図、(D)はJIS K 6853に規定されている割裂試験の試験片を示す説明図、(E)はJIS K 6854に規定されている180°剥離試験の試験片を示す説明図、(F)はJIS K 6854に規定されているT型剥離試験の試験片を示す説明図、(G)はJIS K 6855に規定されている衝撃試験の試験片を示す説明図、(H)はJIS K 6856に規定されている曲げ試験の試験片を示す説明図である。This shows various methods for evaluating adhesive strength specified in JIS. (A) is an explanatory diagram showing a tensile test specimen specified in JIS K 6849, and (B) is an explanatory diagram showing a test piece for a tensile test specified in JIS K 6850. An explanatory diagram showing a test piece for the specified tensile shear test, (C) is an explanatory diagram showing a test piece for the compressive shear test specified in JIS K 6852, and (D) is an explanatory diagram showing a test piece for the compressive shear test specified in JIS K 6853. An explanatory diagram showing a test piece for splitting test, (E) is an explanatory diagram showing a test piece for 180° peel test specified in JIS K 6854, (F) is a T-type peel test specified in JIS K 6854. (G) is an explanatory diagram showing a test piece for the impact test specified in JIS K 6855, (H) is an explanatory diagram showing a test piece for the bending test specified in JIS K 6856. It is a diagram. 本発明に用いて好適な板状試験片をJIS規定の引張せん断試験あるいはJIS規定の圧縮せん断試験に適用する場合の問題点について示す説明図である。FIG. 2 is an explanatory diagram showing problems when applying a plate-shaped test piece suitable for use in the present invention to a tensile shear test specified by JIS or a compressive shear test specified by JIS. 異種アルミニウム接合材から実施試験片を切り出す工程について示すもので、(A)は異種アルミニウム接合材の切断位置を示す斜視図、(B)は異種アルミニウム接合材から切り出した中間試験片を示す斜視図、(C)は中間試験片から切り出した実施試験片を示す斜視図である。This figure shows the process of cutting out a practical test piece from a dissimilar aluminum bonding material, where (A) is a perspective view showing the cutting position of the dissimilar aluminum bonding material, and (B) is a perspective view showing an intermediate test piece cut out from a dissimilar aluminum bonding material. , (C) is a perspective view showing an actual test piece cut out from the intermediate test piece. 本発明に係る試験方法を用いて図(C)6に示した実施試験片に対し、せん断応力を付加する試験を行う場合の説明図である。FIG. 6 is an explanatory diagram when a test is performed in which shear stress is applied to the test piece shown in FIG. (C) 6 using the test method according to the present invention. 従来の試験機を用いて図6(C)に示した実施試験片に対し、せん断応力を付加する試験を行う場合を示す図であり、(A)は試験機の説明図、(B)は実施試験片に作用する曲げモーメントを示す図である。FIG. 6 is a diagram showing a case where a conventional testing machine is used to perform a test in which shear stress is applied to the test piece shown in FIG. 6(C), where (A) is an explanatory diagram of the testing machine and (B) FIG. 3 is a diagram showing the bending moment acting on the actual test piece. 本発明に係る試験方法に適用する板状試験片とその作製に用いて好適な熱間圧縮装置を示す説明図であり、(A)は熱間圧縮装置の要部を示す斜視図、(B)は異種アルミニウム接合材の切断位置を示す斜視図、(C)は異種アルミニウム接合材から切り出した中間試験片を示す斜視図、(D)は中間試験片から切り出した実施試験片を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a plate-shaped test piece applied to the test method according to the present invention and a hot compression device suitable for producing the same; ) is a perspective view showing the cutting position of the dissimilar aluminum bonding material, (C) is a perspective view showing an intermediate test piece cut out from the dissimilar aluminum bonding material, and (D) is a perspective view showing a practical test piece cut out from the intermediate test piece. It is. 非特許文献1に記載されている圧縮方法に用いる試料を示す説明図である。FIG. 2 is an explanatory diagram showing a sample used in the compression method described in Non-Patent Document 1. 非特許文献2に記載されている圧縮方法について示すもので、(A)は第1の例を示す側面図、(B)は第2の例を示す側面図である。The compression method described in Non-Patent Document 2 is shown, in which (A) is a side view showing a first example, and (B) is a side view showing a second example.

以下、添付図面に基づき、本発明の一実施形態について詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合がある。 Hereinafter, one embodiment of the present invention will be described in detail based on the accompanying drawings. Note that in the drawings used in the following description, characteristic portions may be shown enlarged for convenience in order to make the characteristics easier to understand.

本発明者は、組成の異なる2枚のアルミニウム合金製金属板を用意し、これら2枚の金属板を重ね合わせて金型にセットし、420~520℃で加圧接合し、2層構造の異種アルミニウム接合材を作製する初期検討試験を行った。そして、得られた異種アルミニウム接合材から棒状の試験片を切り出してみたところ、切出時に異種アルミニウム接合材の接合界面に負荷がかかり、界面で剥離を生じ、接合強度の評価を実施することができなかった。
この初期検討試験の結果に鑑み、本発明者が検討し、試験に用いる異種アルミニウム接合材について、その高さや幅、長さの比が重要ではないかと推定した。
The present inventor prepared two aluminum alloy metal plates with different compositions, stacked these two metal plates, set them in a mold, and bonded them under pressure at 420 to 520°C to create a two-layer structure. An initial investigation test was conducted to create a dissimilar aluminum bonding material. When a bar-shaped test piece was cut out from the obtained dissimilar aluminum bonding material, a load was applied to the bonding interface of the dissimilar aluminum bonding material during cutting, and peeling occurred at the interface, making it difficult to evaluate the bonding strength. could not.
In view of the results of this initial investigation test, the present inventor has studied and deduced that the height, width, and length ratios of the dissimilar aluminum bonding materials used in the test are important.

図1(A)は、後に詳細に説明する実施例や比較例の結果を基に、望ましい形状の異種アルミニウム接合材を得る場合に有効な2枚の板状試験片1、2を重ねた状態を示し、図1(B)は圧縮接合後の2層構造の異種アルミニウム接合材3のモデル構造を示す。本実施形態の以下の説明では、板状試験片1の強度が板状試験片2の強度よりも高いと仮定する。
図1(A)の板状試験片1、2を圧縮してそれらの厚さ方向に圧縮力を付与し、図1(B)に示す第1層1Aと第2層2Aからなる異種アルミニウム接合材3を得ることができる。この異種アルミニウム接合材3において、強度の低い板状試験片2から生成した第2層2Aの方が変形の度合いが大きく、第1層1Aより第2層2Aの方が大きな変形量となる。また、図1(B)に符号4で示す部分が第1層1Aと第2層2Aの界面で密着した接合部を示す。この接合部4は、第1層1Aと第2層2Aの幅方向両端部を除いた領域に生成されている。
Figure 1(A) shows a state in which two plate-shaped test pieces 1 and 2 are stacked together, which is effective in obtaining a dissimilar aluminum bonding material with a desired shape, based on the results of Examples and Comparative Examples that will be explained in detail later. FIG. 1(B) shows a model structure of a two-layer dissimilar aluminum bonding material 3 after compression bonding. In the following description of this embodiment, it is assumed that the strength of the plate-shaped test piece 1 is higher than the strength of the plate-shaped test piece 2.
By compressing the plate-shaped test pieces 1 and 2 shown in FIG. 1(A) and applying compressive force in their thickness direction, we bonded dissimilar aluminum consisting of the first layer 1A and second layer 2A shown in FIG. 1(B). Material 3 can be obtained. In this dissimilar aluminum bonding material 3, the degree of deformation of the second layer 2A produced from the plate-shaped specimen 2 with low strength is greater, and the amount of deformation of the second layer 2A is greater than that of the first layer 1A. Further, in FIG. 1(B), a portion indicated by reference numeral 4 indicates a joint portion where the first layer 1A and the second layer 2A are in close contact with each other at the interface. The joint portion 4 is formed in a region excluding both ends in the width direction of the first layer 1A and the second layer 2A.

図2は、接合前の板状試験片1の斜視図を示すが、この板状試験片1は平面視長方形状であり、長辺長さL、短辺長さL、高さ(厚さ)hを有すると仮定し、h<L<Lの関係を有する。
また、後述する実施例と比較例の対比結果から、板状試験片1、2において0.13≦h/Ls≦0.54の関係を有することが望ましい。
FIG. 2 shows a perspective view of the plate-like test piece 1 before bonding. This plate-like test piece 1 has a rectangular shape in plan view, and has a long side length L L , a short side length L S , and a height ( thickness) h, and has the relationship h<L S <L L.
Further, from the comparison results between Examples and Comparative Examples described later, it is desirable that the plate-shaped test pieces 1 and 2 have a relationship of 0.13≦h/Ls≦0.54.

これらに対し、図3は、接合後に界面で剥離を生じ易い板状試験片の一例を示すもので、図3(A)に示すように板状試験片5と板状試験片6を積み重ねた構造を有するが、h>Lsの関係を有する組み合わせの板状試験片5、6である。ここでも、板状試験片5の強度は板状試験片6の強度より高いと仮定する。 On the other hand, Fig. 3 shows an example of a plate-shaped test piece that tends to peel off at the interface after bonding, and as shown in Fig. 3(A), plate-shaped test pieces 5 and 6 are stacked. This is a combination of plate-shaped test pieces 5 and 6 having a structure having the relationship h>Ls. Here, it is also assumed that the strength of the plate-shaped test piece 5 is higher than that of the plate-shaped test piece 6.

図3(B)に示すように圧縮力により接合すると、第1層5A、第2層6Aを積層した2層構造となるが、第1層5Aと第2層6Aの界面では、界面両端部分に幅の狭い接合部7、7のみが生成する。図3(B)に示す接合構造では部分的にしか接合していないため、試験片の切り出し加工を行うと接合界面で容易に剥離する。板状試験片5、6に強度差があると強度が低い方(板状試験片6の片側に)変形が集中する傾向があるため、このような幅の狭い接合部7、7が生成すると予想できる。 As shown in FIG. 3(B), when bonded by compressive force, a two-layer structure is formed in which the first layer 5A and the second layer 6A are laminated. However, at the interface between the first layer 5A and the second layer 6A, Only narrow joints 7, 7 are generated. Since the bonded structure shown in FIG. 3(B) is only partially bonded, when the test piece is cut out, it easily peels off at the bonded interface. If there is a difference in strength between the plate-shaped specimens 5 and 6, deformation tends to concentrate on the one with lower strength (on one side of the plate-shaped specimen 6). It's predictable.

一方で、図1、図2に示すように0.13≦h/Ls≦0.54の関係を有する板状試験片1、2では、上下の試験片とも均一に変形し、界面全体が接合される。より詳しくは、高強度材の方が低強度材よりも変形は小さい傾向となるが、h/Lを小さくすることで、変形量の偏りが小さくなり、概ね均一とみなせるように変形する。この場合、界面は広く概ね全体的に接合するため、切り出し加工などの試験片加工が問題なく可能となる。相対的に高さhの比が小さくなることで、試験片全体に圧力がかかりやすくなり、安定した接合試験に供することができるとも言える。 On the other hand, as shown in Figures 1 and 2, in plate-shaped specimens 1 and 2, which have a relationship of 0.13≦h/Ls≦0.54, both the upper and lower specimens deform uniformly, and the entire interface is bonded. be done. More specifically, high-strength materials tend to be smaller in deformation than low-strength materials, but by reducing h/ LS , the deviation in the amount of deformation becomes smaller, and the deformation is approximately uniform. In this case, since the interface is wide and almost entirely joined, it is possible to process the test piece such as cutting out without any problem. It can also be said that by making the ratio of height h relatively small, pressure can be easily applied to the entire test piece, making it possible to perform a stable bonding test.

矩形状断面あるいは円形断面の試験片において、h/Lが0.13未満の場合、界面は均一に接合すると考えられるが、Ls=20mmであっても、hが4mm未満と小さくなるため、接合強度の試験片として後述する試験装置への固定に必要な長さの確保が困難になる。試験片を比例的に大きく形成し、Lを大きくすることでhの絶対値を大きくすることもできるが、高温圧縮試験機に求められる荷重容量と加熱必要出力が大きくなり、コスト高となる。これに対し、0.13≦h/L≦0.54の範囲内では上述したような、無理なく接合試験ができる。更に無理なく良好に接合試験が可能な範囲として、矩形断面形状の場合、0.2≦h/L≦0.54の範囲を選択できる。
h/Lが0.13未満の場合、評価する熱間圧縮の圧下率を小さく制限する必要がある。試験片の形状を比例的に変更することを本実施形態では制限しないが、試験を実施する毎に取り扱う試験片の大きさと、試験片に対応した試験機の容量、規模がバランスの取れたものとなるので、h/Lが0.13未満の場合は不必要に試験機がコスト高になると考える。
In a test piece with a rectangular cross section or a circular cross section, if h/L S is less than 0.13, the interface is considered to be uniformly bonded, but even if L S = 20 mm, h will be small as less than 4 mm, so It becomes difficult to secure the length necessary for fixing the bonding strength test piece to a testing device, which will be described later. It is possible to increase the absolute value of h by making the test piece proportionally larger and increasing L S , but this increases the load capacity and heating output required for the high-temperature compression testing machine, resulting in higher costs. . On the other hand, within the range of 0.13≦h/L S ≦0.54, the above-mentioned bonding test can be carried out without difficulty. Further, in the case of a rectangular cross-sectional shape, the range of 0.2≦h/L S ≦0.54 can be selected as a range in which a bonding test can be carried out reasonably well.
When h/L S is less than 0.13, it is necessary to limit the reduction rate of hot compression to be evaluated. Although this embodiment does not limit proportionally changing the shape of the test piece, it is possible to balance the size of the test piece to be handled each time a test is carried out, and the capacity and scale of the testing machine that can accommodate the test piece. Therefore, if h/L S is less than 0.13, it is considered that the cost of the testing machine becomes unnecessarily high.

以上説明した考えに基づき、試験片1、2の形状について検討すると、板状試験片1、2の長辺方向は短辺方向よりもh/Lが小さくなるので、短辺方向のh/Lは注目するべきパラメータになると考えられる。 Based on the idea explained above, when considering the shape of test pieces 1 and 2, h/L in the long side direction of plate-shaped test pieces 1 and 2 is smaller than that in the short side direction, so h/L in the short side direction S is considered to be a parameter worth paying attention to.

次に本発明者は、接合強度を求める試験を実施する場合、評価条件も重要であると考えた。図4はJISに規定されている種々の接着強さの評価方法である。
図4(A)は、JIS K 6849に規定されている引張試験の試験片と引張力の印加方向を示し、図4(B)はJIS K 6850に規定されている引張せん断試験の試験片と引張力の印加方向を示す。
図4(C)はJIS K 6852に規定されている圧縮せん断試験の試験片と力の印加方向を示し、図4(D)はJIS K 6853に規定されている割裂試験の試験片と力の印加方向を示す。
図4(E)はJIS K 6854に規定されている180°剥離試験の試験片と試験片の引張方向を示し、図4(F)はJIS K 6854に規定されているT型剥離試験の試験片と力を加える方向を示す。
図4(G)はJIS K 6855に規定されている衝撃試験の試験片と衝撃力の印加方向を示し、図4(H)はJIS K 6856に規定されている曲げ試験の試験片と力を印加する方向を示す。
Next, the present inventor considered that evaluation conditions are also important when conducting a test to determine bonding strength. FIG. 4 shows various adhesive strength evaluation methods specified in JIS.
Figure 4 (A) shows the test piece for the tensile test specified in JIS K 6849 and the direction of application of tensile force, and Figure 4 (B) shows the test piece for the tensile shear test specified in JIS K 6850. Indicates the direction of application of tensile force.
Figure 4(C) shows the test piece for the compression shear test specified in JIS K 6852 and the direction of force application, and Figure 4(D) shows the test piece for the splitting test specified in JIS K 6853 and the direction of force application. Indicates the direction of application.
Figure 4 (E) shows the test piece for the 180° peel test specified in JIS K 6854 and the tensile direction of the test piece, and Figure 4 (F) shows the test piece for the T-shaped peel test specified in JIS K 6854. Indicates the direction in which force is applied.
Figure 4 (G) shows the test piece for the impact test specified in JIS K 6855 and the direction of application of the impact force, and Figure 4 (H) shows the test piece for the bending test specified in JIS K 6856 and the direction in which the force was applied. Indicates the direction of application.

これら種々の評価条件に鑑み、本発明者は、熱間塑性加工で接合し、試験の途中で接合面が剥がれないように接合強度を知りたい場合、界面に垂直方向の引張よりは、界面に沿う方向のせん断の方が重要であると考えた。
更に、本発明者は、以下に説明する試験片加工を行うことが有効であると考えた。ただし、以下に説明する試験片の加工方法は、本発明を実施する場合の一例であって、本発明を実施する場合に以下の加工方法に制約されるものではない。
In view of these various evaluation conditions, the present inventor has determined that when bonding is performed by hot plastic working and the bonding strength is to be determined so that the bonded surface does not peel off during the test, it is better to We considered that shear in the along direction is more important.
Furthermore, the present inventor thought that it would be effective to perform the test piece processing described below. However, the method of processing a test piece described below is an example of the case where the present invention is implemented, and the method of processing the test piece described below is not limited to the following method when implementing the present invention.

図5(A)に示す第1層1Aと第2層2Aを有する異種アルミニウム接合材3の場合、図5(B)に示すようにJIS K 6850に従う引張せん断試験を行うには、第1層1A、第2層2Aを更に図5(B)に示す形状に加工する必要がある。
また、図5(C)に示すようにJIS K 6852に従う圧縮せん断試験を実施する場合も第1層1A、第2層2Aを更に加工する必要があり、加工途中で剥離が生じ易い問題があり、現実的ではない。
溶接のような接合前後で変形しないような接合方法であれば、初めから強度試験を想定して接合体を作ることができるが、異種アルミニウム接合材3の場合は手間のかかる加工方法となる。また、以下に説明する図面に示す通りに精度よく加工しないと、接合界面に適切にせん断力を付与できないと考えられる。
In the case of a dissimilar aluminum bonding material 3 having a first layer 1A and a second layer 2A shown in FIG. 5(A), in order to perform a tensile shear test according to JIS K 6850 as shown in FIG. 1A and the second layer 2A need to be further processed into the shape shown in FIG. 5(B).
Furthermore, as shown in Fig. 5(C), when performing a compression shear test according to JIS K 6852, it is necessary to further process the first layer 1A and the second layer 2A, which poses the problem of easy peeling during processing. , not realistic.
If a joining method such as welding does not cause deformation before and after joining, it is possible to make a joined body assuming a strength test from the beginning, but in the case of dissimilar aluminum joining materials 3, the processing method is time-consuming. Further, it is considered that unless the work is performed with high accuracy as shown in the drawings described below, it is not possible to appropriately apply shear force to the bonding interface.

本実施形態では、図6(A)、(B)、(C)に示す順に加工を実施し、異種アルミニウム接合材3から中間試験片10を切り出し、この中間試験片10から切り出して接合強度評価の実施試験片11を得る方法を採用する。この実施試験片11を用い、後述する図7に示す試験装置30により接合強度を測定し、測定した接合強度を評価することができる。 In this embodiment, processing is performed in the order shown in FIGS. 6(A), (B), and (C), an intermediate test piece 10 is cut out from the dissimilar aluminum bonding material 3, and the joint strength is evaluated by cutting out the intermediate test piece 10. The method for obtaining the test piece 11 is adopted. Using this practical test piece 11, the bonding strength can be measured by a test device 30 shown in FIG. 7, which will be described later, and the measured bonding strength can be evaluated.

図6(A)に示す異種アルミニウム接合材3に対し、鎖線L1、L2で示すそれぞれの位置に異種アルミニウム接合材3の厚さ方向に沿って存在する切断面S1、S2に沿って、切り出し加工を実施し、図6(B)に示す中間試験片10を作製する。切断面S1、S2は、異種アルミニウム接合材3の中央部を異種アルミニウム接合材3の長さ方向両側から挟む位置にあり、鎖線L1、L2に沿うそれぞれの切断面S1、S2は、異種アルミニウム接合材3の長さ方向と直交する位置(短辺方向と平行位置)に形成される。一例として、異種アルミニウム接合材3の長さLが40mmの場合、異種アルミニウム接合材3の長さ方向一端から同長さ方向に12mm離間した位置に一方の切断面S1が策定され、異種アルミニウム接合材3の長さ方向他端から同長さ方向に12mm離間した位置に他方の切断面S2が策定される。よって、異種アルミニウム接合材3の長さ方向に沿う中間試験片10の長さは、16mmとなる。なお、実際には異種アルミニウム接合材3の切り取り幅が若干あるので、中間試験片10の長さは14~18mm程度となる。 The dissimilar aluminum bonding material 3 shown in FIG. 6(A) is cut out along cut surfaces S1 and S2 that exist along the thickness direction of the dissimilar aluminum bonding material 3 at respective positions indicated by chain lines L1 and L2. to prepare an intermediate test piece 10 shown in FIG. 6(B). The cut surfaces S1 and S2 are located at positions sandwiching the center part of the dissimilar aluminum bonding material 3 from both sides in the length direction of the dissimilar aluminum bonding material 3, and the respective cut surfaces S1 and S2 along the chain lines L1 and L2 are dissimilar aluminum bonding materials. It is formed at a position perpendicular to the length direction of the material 3 (a position parallel to the short side direction). As an example, when the length L L of the dissimilar aluminum bonding material 3 is 40 mm, one cut surface S1 is drawn at a position 12 mm apart in the same length direction from one end of the dissimilar aluminum bonding material 3, and the dissimilar aluminum bonding material The other cut surface S2 is drawn at a position 12 mm apart from the other end of the bonding material 3 in the same length direction. Therefore, the length of the intermediate test piece 10 along the length direction of the dissimilar aluminum bonding material 3 is 16 mm. Incidentally, since the dissimilar aluminum bonding material 3 is actually cut out to a certain width, the length of the intermediate test piece 10 is approximately 14 to 18 mm.

次に、中間試験片10において、短辺方向中央部分の幅2.0~2.5mmの領域を挟むように短辺方向両側に離間した鎖線L3、L4を描き、これらの鎖線L3、L4に沿って中間試験片10の厚さ方向に存在する切断面S3、S4に沿って中間試験片10から切り出し加工を行うと、図6(C)に示すロッド状の実施試験片11を得ることができる。
以上のように実施試験片11を切り出すと、図1(B)に示したように第1層1Aと第2層2Aの幅方向両端部において接合部4が未形成となる場合と同じように、異種アルミニウム接合材3の幅方向両端部(短辺方向両端部)に未接合部が存在していたとして、未接合部を除いて実施試験片11を切り出したこととなる。
Next, on the intermediate test piece 10, draw chain lines L3 and L4 spaced apart on both sides in the short side direction so as to sandwich a region with a width of 2.0 to 2.5 mm at the center part in the short side direction, and draw these chain lines L3 and L4. By cutting out the intermediate test piece 10 along the cut surfaces S3 and S4 existing in the thickness direction of the intermediate test piece 10, it is possible to obtain the rod-shaped practical test piece 11 shown in FIG. 6(C). can.
When the actual test piece 11 is cut out as described above, the joint part 4 is not formed at both ends of the first layer 1A and the second layer 2A in the width direction as shown in FIG. Assuming that there were unjoined parts at both ends in the width direction (both ends in the short side direction) of the dissimilar aluminum bonding material 3, the actual test piece 11 was cut out excluding the unjoined parts.

図6(A)~(C)に示す異種アルミニウム接合材3と中間試験片10に対する切り出し加工の場合、図5(A)→(B)に示す加工あるいは図5(A)→図5(C)に示す加工の場合と異なり、第1層1A、第2層2Aに対する負荷を小さくできるので、第1層1Aと第2層2Aの接合面に作用する負荷を小さくできる。従って、異種アルミニウム接合材3から加工して実施試験片11を得る場合、接合界面における剥離を防止できる。
なお、切り出し加工に関し、図6に示す手順が望ましいが、上述と同様の配慮を行いつつ、図6(A)に示す接合材3の長さ方向に平行に中間試験片を切り出し、その後、実施試験片11を切り出すという手順を採用しても良い。
実施試験片11は、第1層1Aから切り出された棒状の第1接合片15に対し、第2層2Aから切り出された棒状の第2接合片16が接合されたもので、第1接合片15の一面と第2接合片16の一面が突き合わされた状態で接合一体化されている。第1接合片15の一面と第2接合片16の一面を合わせた面が接合面17とされている。
In the case of cutting out the dissimilar aluminum bonding material 3 and the intermediate test piece 10 shown in FIGS. 6(A) to 6(C), the cutting process shown in FIGS. 5(A) to 5(B) or the cutting process shown in FIGS. ), the load on the first layer 1A and the second layer 2A can be reduced, so the load acting on the joint surface of the first layer 1A and the second layer 2A can be reduced. Therefore, when processing the dissimilar aluminum bonding material 3 to obtain the practical test piece 11, peeling at the bonding interface can be prevented.
Regarding the cutting process, it is desirable to follow the procedure shown in Figure 6, but while taking the same consideration as above, cut out an intermediate test piece parallel to the length direction of the bonding material 3 shown in Figure 6(A), and then perform the cutting process. A procedure of cutting out the test piece 11 may also be adopted.
The actual test piece 11 is one in which a rod-shaped second joint piece 16 cut out from the second layer 2A is joined to a rod-shaped first joint piece 15 cut out from the first layer 1A. One surface of the second joint piece 15 and one surface of the second joint piece 16 are joined together in a butted state. A joint surface 17 is a combination of one surface of the first joint piece 15 and one surface of the second joint piece 16 .

ここで、実施試験片11は、第1接合片15の一面と第2接合片16の一面が接合面17を介し接合され、第1接合片15の端面15aと第2接合片16の端面16aは図6(C)に示すように面一に揃えられている。以下、端面15aと端面16aを面一に揃えて構成した長方形状の面において、長辺側を実施試験片11の幅Wと称し、短辺側を実施試験片11の厚さtと称する。
実施試験片11を得たならば、実施試験片11に対し図7に示す試験装置を用いてせん断試験を実施する。
Here, in the practical test piece 11, one surface of the first joint piece 15 and one surface of the second joint piece 16 are joined via the joint surface 17, and the end face 15a of the first joint piece 15 and the end face 16a of the second joint piece 16 are bonded together. are aligned flush as shown in FIG. 6(C). Hereinafter, in the rectangular surface formed by aligning the end surfaces 15a and 16a flush, the longer side will be referred to as the width W of the actual test piece 11, and the shorter side will be referred to as the thickness t of the actual test piece 11.
Once the practical test piece 11 is obtained, a shear test is performed on the practical test piece 11 using the testing apparatus shown in FIG.

図7は本実施形態に係る試験方法を実施する場合に用いる試験装置30を示す。この試験装置30は、下側挟持治具31と上側挟持治具32を有し、下側挟持治具31と上側挟持治具32は、図示略の支持機構により上下方向に接近離間自在に支持されている。この試験装置30に対し実施試験片11を図7に示すように取り付けることで後述する接合強度測定試験を実施することができる。
下側挟持治具31と上側挟持治具32の間にこれらに挟持された状態で実施試験片11の厚さtと同じ厚さを有する支持板33を設置する。また、下側挟持治具31と上側挟持治具32の間にこれらに挟持された状態で支持板33に隣接するように実施試験片11の第1接合片15を設置する。
実施試験片11については、第1接合片15の大部分を下側挟持治具31と上側挟持治具32で挟持するが、第1接合片15における接合面17側の一部を下側挟持治具31の側面31aと上側挟持治具32の側面32aから若干外側に突出させた状態となるように挟持する。
FIG. 7 shows a test apparatus 30 used when implementing the test method according to this embodiment. This test device 30 has a lower clamping jig 31 and an upper clamping jig 32, and the lower clamping jig 31 and the upper clamping jig 32 are supported by a support mechanism (not shown) so that they can move toward and away from each other in the vertical direction. has been done. By attaching the test piece 11 to this test device 30 as shown in FIG. 7, a joint strength measurement test to be described later can be performed.
A support plate 33 having the same thickness as the thickness t of the test piece 11 is installed between the lower clamping jig 31 and the upper clamping jig 32 while being clamped therebetween. Further, the first bonded piece 15 of the actual test piece 11 is placed between the lower clamping jig 31 and the upper clamping jig 32 so as to be sandwiched therebetween and adjacent to the support plate 33 .
Regarding the actual test piece 11, most of the first bonded piece 15 is held between the lower holding jig 31 and the upper holding jig 32, but a part of the first bonded piece 15 on the joint surface 17 side is held by the lower holding jig 31 and the upper holding jig 32. It is held so that it slightly protrudes outward from the side surface 31a of the jig 31 and the side surface 32a of the upper holding jig 32.

試験装置30において、下側挟持治具31の側面31aと上側挟持治具32の側面32aの外側には下部挟持治具35と上部挟持治具36が設けられ、下部挟持治具35と上部挟持治具36は図示略の支持機構により上下方向に移動自在かつ互いに接近離間自在に設けられている。
下側挟持治具31の側面31aと上側挟持治具32の側面32aから外側に突出した第2接合片16の大部分を、下部挟持治具35と上部挟持治具36により上下から把持する。また、下部挟持治具35と上部挟持治具36の間に実施試験片11の厚さtと同等の厚さを有する支持板34を第2接合片16とともに挟持する。
In the test apparatus 30, a lower clamping jig 35 and an upper clamping jig 36 are provided outside the side surface 31a of the lower clamping jig 31 and the side surface 32a of the upper clamping jig 32, and the lower clamping jig 35 and the upper clamping jig 36 The jigs 36 are provided to be movable in the vertical direction and to be able to move toward and away from each other by a support mechanism (not shown).
Most of the second joining piece 16 protruding outward from the side surface 31a of the lower clamping jig 31 and the side surface 32a of the upper clamping jig 32 is gripped from above and below by the lower clamping jig 35 and the upper clamping jig 36. Further, a support plate 34 having a thickness equivalent to the thickness t of the actual test piece 11 is held between the lower holding jig 35 and the upper holding jig 36 together with the second bonding piece 16 .

下側挟持治具31の側面31aと下部挟持治具35の間に若干のクリアランス(隙間)が設けられる。この隙間を埋めるように、下側挟持治具31の側面31aに下側潤滑テープ37を貼り付け、下部挟持治具35の側面に下部潤滑テープ38を貼り付ける。
上側挟持治具32の側面32aと下部挟持治具36の間に若干のクリアランス(隙間)が設けられる。この隙間を埋めるように、上側挟持治具32の側面32aに上側潤滑テープ39を貼り付け、上部挟持治具36の側面に上部潤滑テープ40を貼り付ける。
試験装置30において上述のクリアランスは、例えば、0.8mm程度に設定できる。このクリアランスを埋めるために、実施試験片1の下方に下側潤滑テープ37と下部潤滑テープ38を設けるので、これら潤滑テープの厚さを0.4mm程度とする。また、実施試験片11の上方に上側潤滑テープ39と上部潤滑テープ40を設けるので、これら潤滑テープの厚さも0.4mm程度とする。
A slight clearance (gap) is provided between the side surface 31a of the lower clamping jig 31 and the lower clamping jig 35. A lower lubricating tape 37 is attached to the side surface 31a of the lower holding jig 31, and a lower lubricating tape 38 is attached to the side surface of the lower holding jig 35 so as to fill this gap.
A slight clearance (gap) is provided between the side surface 32a of the upper clamping jig 32 and the lower clamping jig 36. An upper lubricating tape 39 is attached to the side surface 32a of the upper holding jig 32, and an upper lubricating tape 40 is attached to the side surface of the upper holding jig 36 so as to fill this gap.
In the test apparatus 30, the above-mentioned clearance can be set to, for example, about 0.8 mm. In order to fill this clearance, a lower lubricating tape 37 and a lower lubricating tape 38 are provided below the practical test piece 1, so the thickness of these lubricating tapes is approximately 0.4 mm. Further, since the upper lubricating tape 39 and the upper lubricating tape 40 are provided above the actual test piece 11, the thickness of these lubricating tapes is also about 0.4 mm.

図7に示す状態となるように実施試験片11をセットしたならば、上部挟持治具36と下部挟持治具37を下降させ、これらにより挟持した第2接合片16に対し、下向きの押圧力を作用させる。この押圧力の印加により実施試験片11のせん断試験を実施できる。
第2接合片16に対する押圧力を順次増加させ、実施試験片11において第1接合片15と第2接合片16が接合面17を介し分離した時点の押圧力を接合強度と把握することができる。接合強度は、詳細に言えば、せん断力付与時の最大荷重を界面断面積で除することで求めることができる。
なお、下部挟持治具35と上部挟持治具36は図示略の油圧装置などに接続され、上下移動される。実施試験片11に対する押圧力の増加に伴い、何れかの時点で接合面17がせん断破壊されるので、せん断破壊した際の荷重を図示略の油圧装置などに備えられたロードセルで把握できる。加重を試験片11の界面断面積で除することで上述の接合強度を求めることができる。
Once the actual test piece 11 is set in the state shown in FIG. 7, the upper clamping jig 36 and the lower clamping jig 37 are lowered, and a downward pressing force is applied to the second bonded piece 16 clamped by these. to act. By applying this pressing force, a shear test can be performed on the working test piece 11.
The pressing force applied to the second joint piece 16 is gradually increased, and the pressing force at the time when the first joint piece 15 and the second joint piece 16 are separated via the joint surface 17 in the actual test piece 11 can be understood as the joint strength. . In detail, the bonding strength can be determined by dividing the maximum load when shearing force is applied by the interfacial cross-sectional area.
Note that the lower clamping jig 35 and the upper clamping jig 36 are connected to a hydraulic device (not shown) or the like, and are moved up and down. As the pressing force against the test specimen 11 increases, the bonding surface 17 will undergo shear failure at some point, so the load at the time of shear failure can be determined by a load cell provided in a hydraulic device (not shown). By dividing the load by the interfacial cross-sectional area of the test piece 11, the above-mentioned bonding strength can be determined.

試験装置30においては、第1接合片15と第2接合片16に作用させる曲げモーメントを極力少なくした状態でせん断試験を実施できる。また、下側挟持治具31と下部挟持治具35の間のクリアランスと、上側挟持治具32と上部挟持治具36の間のクリアランスを潤滑テープ37、38、39、40で塞ぎつつ上部挟持治具36と下部挟持治具37を下降させてせん断試験を実施する。このため、上述のクリアランスの影響で生じる曲げモーメントを極力少なくし、第1接合片15と第2接合片16の接合面17に曲げモーメントを除き、せん断力のみを作用させて接合強度を測定できる。
また、下側挟持治具31と上側挟持治具32の間に支持板33を挟み、下部挟持治具35と上部挟持治具36の間に支持板34を挟むことにより、実施試験片11を安定支持しながらせん断力を付加することができる。
In the testing apparatus 30, the shear test can be performed with the bending moment acting on the first joint piece 15 and the second joint piece 16 being minimized. Also, while closing the clearance between the lower clamping jig 31 and the lower clamping jig 35 and the clearance between the upper clamping jig 32 and the upper clamping jig 36 with lubricating tapes 37, 38, 39, and 40, the upper clamping A shear test is performed by lowering the jig 36 and the lower clamping jig 37. Therefore, the bending moment caused by the above-mentioned clearance is minimized, and the joint strength can be measured by applying only shear force to the joint surface 17 of the first joint piece 15 and the second joint piece 16, excluding the bending moment. .
In addition, by sandwiching the support plate 33 between the lower clamping jig 31 and the upper clamping jig 32, and by sandwiching the support plate 34 between the lower clamping jig 35 and the upper clamping jig 36, the actual test piece 11 is Shearing force can be applied while providing stable support.

図8(A)は図7に示す試験装置30において、下部支持治具35と支持板34を省略し、上部挟持治具36に代わりに押下治具41を設け、押下治具41により第2接合片16の上面を下方に押圧し、せん断試験を行う試験装置43を示す。
図8(A)に示す試験装置43では、図8(B)に拡大して示すように、第1接合片15と第2接合片16の両方に曲げモーメントmf、mfが作用する。
図8(B)に示す曲げモーメントmf、mfが作用すると、第1接合片15と第2接合片16の接合部17の上部側に引張力が作用し、第1接合片15と第2接合片16を引き離す方向に引張力が作用する。また、第1接合片15と第2接合片16の接合部17の下部側に圧縮力が作用し、第1接合片15と第2接合片16を接近させる方向に圧力が作用する。接合部17の上部側に引張力が作用すると、ここではせん断応力+引張力が作用する条件となり、基礎的な試験として安定した結果が得られないおそれがある。
この点、図7に示す試験装置30であれば、曲げモーメントの影響を極力除いた、せん断のみによる接合強度を測定することが可能となり、より正確な測定が可能となる。
FIG. 8(A) shows the test apparatus 30 shown in FIG. 7 in which the lower support jig 35 and the support plate 34 are omitted, a push-down jig 41 is provided instead of the upper clamping jig 36, and the push-down jig 41 is used to control the second A test device 43 is shown that presses the upper surface of the bonded piece 16 downward and performs a shear test.
In the test apparatus 43 shown in FIG. 8(A), bending moments mf 1 and mf 2 act on both the first joint piece 15 and the second joint piece 16, as shown in an enlarged view in FIG. 8(B).
When the bending moments mf 1 and mf 2 shown in FIG. 8B act, a tensile force acts on the upper side of the joint 17 between the first joint piece 15 and the second joint piece 16, and A tensile force acts in a direction to separate the two joint pieces 16. Further, a compressive force acts on the lower side of the joint portion 17 between the first joint piece 15 and the second joint piece 16, and pressure acts in a direction that brings the first joint piece 15 and the second joint piece 16 closer together. When a tensile force is applied to the upper side of the joint 17, a condition is created in which shear stress + tensile force is applied, and there is a possibility that stable results cannot be obtained as a basic test.
In this regard, the testing apparatus 30 shown in FIG. 7 makes it possible to measure the bonding strength only by shearing, with the influence of bending moment removed as much as possible, and more accurate measurement becomes possible.

図9(A)は、本実施形態の接合強度を求める試験に用いて好適な異種アルミニウム接合材3を作製するために用いる熱間圧縮装置50を示す。
熱間圧縮装置50は、角型ブロック状の下型51とパンチ52を備え、下型51の上面には図1に示した板状試験片1、2を受けるためのチャンネル溝53が形成されている。
チャンネル溝53の溝幅MWは、一例として、板状試験片1の長辺長さLと同一に形成されている。また、チャンネル溝53の溝幅に直交する方向の長さは、前述の長辺長さLよりも大きく形成されている。一例として図9(A)に示す下型51では、チャンネル溝53の長さ方向一端部53aが下型51の一方の端部に到達して開放され、チャンネル溝53の長さ方向他端部53bが下型51の他方の端部に到達して開放されている。チャンネル溝53は、例えば、板状試験片1、2を重ねた総厚の数倍程度の深さに形成されている。
FIG. 9(A) shows a hot compression apparatus 50 used to produce a dissimilar aluminum bonding material 3 suitable for use in the test for determining bonding strength of this embodiment.
The hot compression device 50 includes a square block-shaped lower mold 51 and a punch 52, and a channel groove 53 for receiving the plate-shaped test pieces 1 and 2 shown in FIG. 1 is formed on the upper surface of the lower mold 51. ing.
The groove width MW of the channel groove 53 is, for example, formed to be the same as the long side length LL of the plate-shaped test piece 1. Further, the length of the channel groove 53 in the direction perpendicular to the groove width is larger than the long side length LL described above. As an example, in the lower mold 51 shown in FIG. 53b reaches the other end of the lower mold 51 and is opened. The channel groove 53 is formed, for example, to a depth that is approximately several times the total thickness of the plate-shaped test pieces 1 and 2 stacked together.

パンチ52は、下型51のチャンネル溝53に嵌合可能な凸部54を有する。凸部54の高さはチャンネル溝53の深さと同等である。下型51とパンチ52は、図示略の油圧装置などの移動機構により相対移動自在に設けられている。例えば、下型51が固定型であり、下型51に対しパンチ52が上下に移動自在に支持されている。また、下型51とパンチ52には、図示略の加熱装置(ヒータ)が組み込まれていて、下型51とパンチ52を所望の温度(例えば200℃~800℃など)に加熱できるように構成されている。
板状試験片1、2を熱間圧縮装置50にセットして接合するには、下型51のチャンネル溝53に図9(A)に示す向きとした板状試験片1、2を収容する。板状試験片1、2の長辺長さLとチャンネル溝53の溝幅は等しいので、板状試験片1、2の短辺側の端部をチャンネル溝53の両隅部に隙間無く挿入し、板状試験片1、2をチャンネル溝53の底部中央に収容する。
この後、パンチ52を所定の速度で下降させて凸部54をチャンネル溝53内に挿入し、凸部54の下面で板状試験片1、2を押圧し、それらの厚さ方向に圧縮力を付加することで、板状試験片1、2を接合し、異種アルミニウム接合材3を得ることができる。
The punch 52 has a convex portion 54 that can fit into the channel groove 53 of the lower die 51. The height of the convex portion 54 is equivalent to the depth of the channel groove 53. The lower die 51 and the punch 52 are provided so as to be relatively movable by a moving mechanism such as a hydraulic device (not shown). For example, the lower mold 51 is a fixed mold, and the punch 52 is supported to be movable up and down with respect to the lower mold 51. Further, a heating device (heater) not shown is built into the lower mold 51 and punch 52, and is configured to heat the lower mold 51 and punch 52 to a desired temperature (for example, 200° C. to 800° C.). has been done.
To set the plate-shaped test pieces 1 and 2 in the hot compression device 50 and join them, the plate-shaped test pieces 1 and 2 are placed in the channel groove 53 of the lower die 51 in the orientation shown in FIG. 9(A). . Since the long side length L L of the plate-shaped test pieces 1 and 2 and the groove width of the channel groove 53 are equal, the short side ends of the plate-shaped test pieces 1 and 2 are placed at both corners of the channel groove 53 without any gaps. Insert the plate-shaped test pieces 1 and 2 into the center of the bottom of the channel groove 53.
After that, the punch 52 is lowered at a predetermined speed to insert the protrusion 54 into the channel groove 53, and the lower surface of the protrusion 54 presses the plate-shaped specimens 1 and 2, applying a compressive force in the thickness direction. By adding , it is possible to join the plate-shaped test pieces 1 and 2 and obtain a dissimilar aluminum joining material 3.

板状試験片1、2を熱間圧縮により接合すると、図9(B)に示す異種アルミニウム接合材3が得られるので、この異種アルミニウム接合材3の鎖線L1、L2に沿う切断面S1、S2に沿って切り出し、図9(C)に示す中間試験片10を得、この中間試験片10の鎖線L3、L4に沿う切断面S3、S4に沿って切り出すと、図9(D)に示す実施試験片11を得ることができる。
図9(A)に示す熱間圧縮装置50は、板状試験片1、2の長さ方向両端をチャンネル溝53の溝壁内面で拘束し、板状試験片1、2の長さ方向への伸びを抑止した状態で板状試験片1、2に圧縮力を付加する。このため、例えば、図1(B)に例示したように、強度の低い板状試験片2がその幅方向両側に若干膨らむように変形し、板状試験片1の変形量が少なく、板状試験片2の変形量が多い状態の異種アルミニウム接合材3が得られる。
When the plate-shaped test pieces 1 and 2 are bonded by hot compression, a dissimilar aluminum bonding material 3 shown in FIG. 9(B) is obtained. The intermediate test piece 10 shown in FIG. 9(C) is obtained, and the intermediate test piece 10 is cut out along the cut planes S3 and S4 along the chain lines L3 and L4, resulting in the test piece shown in FIG. 9(D). A test piece 11 can be obtained.
The hot compression device 50 shown in FIG. A compressive force is applied to the plate-shaped test pieces 1 and 2 while suppressing their elongation. For this reason, for example, as illustrated in FIG. 1(B), the plate-shaped test piece 2 with low strength is deformed to slightly bulge on both sides in the width direction, and the amount of deformation of the plate-shaped test piece 1 is small, and the plate-shaped test piece 2 A dissimilar aluminum bonding material 3 with a large amount of deformation of the test piece 2 is obtained.

また、中間試験片10から複数の実施試験片11を切り出すこともできる。この場合、鎖線L3、L4に加えてこれらに対し等間隔で描く、鎖線L5、L6を策定し、これらの鎖線L5、L6に沿って中間試験片10の厚さ方向に延在する切断面に沿って切り出すことにより、例えば、3本の実施試験片11を得ることができる。 Further, a plurality of practical test pieces 11 can also be cut out from the intermediate test piece 10. In this case, in addition to the chain lines L3 and L4, chain lines L5 and L6 are drawn at equal intervals, and the cut plane extending in the thickness direction of the intermediate test piece 10 is drawn along these chain lines L5 and L6. For example, three working test pieces 11 can be obtained by cutting along the line.

「異種アルミニウム接合材の製造方法」
先に、異種アルミニウム接合材3から切り出した実施試験片11に対し、図7に示す試験装置30を用いて接合強度を測定する試験を実施できることについて説明した。
本実施形態では、異種アルミニウム接合材3を作製する場合、板状試験片1、2の材料を適宜変更し、板状試験片1、2に圧縮力を付加する場合の圧縮力の大小と、加熱温度を調整することで、材料の種別と、圧縮力の大小と、加熱温度に応じた複数の異種アルミニウム接合材を作成することができる。そして、複数の異種アルミニウム接合材から実施試験片を切り出して上述の接合強度を測定するならば、材料の種別と、圧縮力の大小と、加熱温度に応じ、如何なる接合力が得られるか、把握することができる。
換言すると、材料の種別に応じ、どの程度の温度で、どの程度の圧縮力を付加すると、クラッド材としてどの程度の層間接合力を得ることができるかを把握できる。
“Method for manufacturing dissimilar aluminum bonding materials”
It was previously explained that a test for measuring the bonding strength can be performed on the test piece 11 cut out from the dissimilar aluminum bonding material 3 using the testing apparatus 30 shown in FIG. 7 .
In this embodiment, when producing the dissimilar aluminum bonding material 3, the material of the plate-like test pieces 1 and 2 is changed as appropriate, and the magnitude of the compressive force when applying the compressive force to the plate-like test pieces 1 and 2, By adjusting the heating temperature, it is possible to create a plurality of different types of aluminum bonding materials according to the type of material, the magnitude of the compressive force, and the heating temperature. If the above-mentioned bonding strength is measured by cutting test pieces from multiple different types of aluminum bonding materials, it is possible to understand what kind of bonding force can be obtained depending on the type of material, the magnitude of the compressive force, and the heating temperature. can do.
In other words, it is possible to understand how much interlayer bonding force can be obtained as a cladding material by applying what compression force and at what temperature, depending on the type of material.

従って、2層積層構造のクラッド材を製造する場合、材料の種別を選択し、クラッドする場合の温度と圧縮力をどの程度に設定すると、どの程度の接合強度を有する2層クラッド材を製造できるのか、上述の試験により予め把握することができる。
そして、この把握結果に基づき、材料を選択し、目的の温度と圧縮力を印加して圧延によりクラッド材を製造すると、目的の接合性のクラッド材を得ることができる。
Therefore, when manufacturing a cladding material with a two-layer laminated structure, by selecting the type of material and setting the temperature and compression force when cladding, the two-layer cladding material can be manufactured with what bonding strength. This can be determined in advance by the above-mentioned test.
Then, by selecting a material based on this grasping result and manufacturing the cladding material by rolling while applying the desired temperature and compression force, it is possible to obtain the cladding material with the desired bondability.

なお、上述の例では、2層構造の異種アルミニウム接合材3を例に説明したが、3層構造あるいは4層構造などの多層構造のクラッド材を製造する場合にも、同様に接合強度の試験を実施し、試験結果の把握に基づいて、クラッド材を製造すると、目的の層間接合性を有する多層構造のクラッド材を製造できる。
それらの場合、図1(A)に示す2枚重ね構造に代えて、3枚重ね構造、あるいは、4枚重ね構造として、3層構造あるいは4層構造の異種アルミニウム接合材を作製し、これらから実施試験片を切り出して図7に示す試験装置30で評価し、評価結果に基づいて3層構造のクラッド材、4層構造のクラッド材を製造することができる。
3層構造あるいは4層構造とする場合においても、先に説明した、0.13≦h/L≦0.54の関係を満足することが好ましい。
In the above example, the explanation was given using a two-layer structure of dissimilar aluminum bonding material 3, but the bonding strength test can be similarly performed when manufacturing a multi-layer structure cladding material such as a three-layer structure or a four-layer structure. If the cladding material is manufactured based on the test results, it is possible to manufacture a cladding material with a multilayer structure having the desired interlayer bonding properties.
In those cases, instead of the two-layered structure shown in Fig. 1(A), a three-layered structure or a four-layered structure is produced using different types of aluminum bonding materials with a three-layered structure or a four-layered structure. A practical test piece is cut out and evaluated using a test apparatus 30 shown in FIG. 7, and based on the evaluation results, a three-layer structure cladding material and a four-layer structure cladding material can be manufactured.
Even in the case of a three-layer structure or a four-layer structure, it is preferable that the above-described relationship of 0.13≦h/L S ≦0.54 is satisfied.

なお、上述の例では、図9(A)に示す熱間圧縮装置50を用いて異種アルミニウム接合材3を作製する場合について説明したが、異種アルミニウム接合材3を作製する装置は熱間圧縮装置50に限らず、板状試験片1、2の厚さ方向に圧縮力を付加できる装置であればいずれの装置を用いても差し支えない。
更に、異種アルミニウム接合材3から実施試験片11を切り出す方法と切り出し位置について、図6、図9(A)を基に説明した切り出し方法には限らない。図6、図9(A)に示す例では、異種アルミニウム接合材3の中央部から実施試験片11を切り出す場合について説明したが、中央部を除く位置から実施試験片11を切り出しても良い。
In addition, in the above example, the case where the dissimilar aluminum bonding material 3 is produced using the hot compression apparatus 50 shown in FIG. 50, any device that can apply compressive force in the thickness direction of the plate-shaped test pieces 1 and 2 may be used.
Furthermore, the method and position of cutting out the practical test piece 11 from the dissimilar aluminum bonding material 3 are not limited to the cutting method explained based on FIGS. 6 and 9(A). In the example shown in FIGS. 6 and 9(A), a case has been described in which the working test piece 11 is cut out from the center of the dissimilar aluminum bonding material 3, but the working test piece 11 may be cut out from a position other than the center.

また、上述したように板状試験片1、2に適用する金属材料は純アルミニウムあるいはアルミニウム合金を例示することができるが、これらの組み合わせには限定されない。
板状試験片1、2は、組成の異なるアルミニウム合金どうしの組み合わせでも良いし、純アルミニウムとアルミニウム合金の組み合わせでも良い。
また、異種アルミニウム接合材3は2層構造に限らず、3層構造あるいは4層構造を採用することもできる。例えば、熱交換器などの分野で多用されているアルミニウム合金板の3層構造や4層構造の積層体であっても良い。
Moreover, as mentioned above, the metal material applied to the plate-shaped test pieces 1 and 2 can be exemplified by pure aluminum or an aluminum alloy, but is not limited to a combination thereof.
The plate-shaped test pieces 1 and 2 may be a combination of aluminum alloys having different compositions, or may be a combination of pure aluminum and an aluminum alloy.
Further, the dissimilar aluminum bonding material 3 is not limited to a two-layer structure, but may also have a three-layer structure or a four-layer structure. For example, it may be a laminate having a three-layer structure or a four-layer structure of aluminum alloy plates, which are often used in fields such as heat exchangers.

以下に説明するA1~A11のアルミニウム合金試料を準備した。
・アルミニウム合金試料A1
Mnを1.5質量%含有し、その他、Cuや不可避不純物を含有するAl-Mn系合金A1を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A2
Mnを1.2質量%含有し、その他、Cuや不可避不純物を含有するAl-Mn系合金A2を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A3
Mnを1.4質量%含有し、その他、CuやMgや不可避不純物を含有するAl-Mn系合金A3を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A4
Mnを1.2質量%含有し、その他、CuやMgや不可避不純物を含有するAl-Mn系合金A4を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
Aluminum alloy samples A1 to A11 described below were prepared.
・Aluminum alloy sample A1
An Al-Mn alloy A1 containing 1.5% by mass of Mn and also containing Cu and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A2
An Al-Mn alloy A2 containing 1.2% by mass of Mn and also containing Cu and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A3
An Al-Mn alloy A3 containing 1.4% by mass of Mn and also containing Cu, Mg, and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A4
An Al-Mn alloy A4 containing 1.2% by mass of Mn and also containing Cu, Mg, and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.

・アルミニウム合金試料A5
Siを7.5質量%含有し、その他、MgやMnや不可避不純物を含有するAl-Si系合金A5を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A6
Siを12質量%含有し、その他、MgやMnや不可避不純物を含有するAl-Si系合金A6を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A7
Siを10質量%含有し、その他、MgやMnや不可避不純物を含有するAl-Si系合金A7を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A8
Znを2.0質量%含有し、その他、MnやSiや不可避不純物を含有するAl-Zn系合金A8を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・Aluminum alloy sample A5
An Al--Si alloy A5 containing 7.5% by mass of Si and other unavoidable impurities such as Mg and Mn was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A6
An Al--Si alloy A6 containing 12% by mass of Si and other unavoidable impurities such as Mg and Mn was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A7
An Al--Si alloy A7 containing 10% by mass of Si and also containing Mg, Mn, and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A8
An Al--Zn alloy A8 containing 2.0% by mass of Zn and other unavoidable impurities such as Mn and Si was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.

・アルミニウム合金試料A9
Znを1.0質量%含有し、その他、Mnや不可避不純物を含有するAl-Zn系合金A9を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A10
Znを2.0質量%含有し、その他、Siや不可避不純物を含有するAl-Zn系合金A10を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・アルミニウム合金試料A11
Znを5.0質量%含有し、その他、MnやSiや不可避不純物を含有するAl-Zn系合金A11を製造した。溶解鋳造にて鋳塊を作製し、鋳塊に均質化熱処理500℃の処理を施した合金を、本試験に用いた。
・Aluminum alloy sample A9
An Al-Zn alloy A9 containing 1.0% by mass of Zn and also containing Mn and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A10
An Al-Zn alloy A10 containing 2.0% by mass of Zn and also containing Si and unavoidable impurities was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.
・Aluminum alloy sample A11
An Al--Zn alloy A11 containing 5.0% by mass of Zn and other unavoidable impurities such as Mn and Si was produced. An alloy obtained by producing an ingot by melting and casting and subjecting the ingot to homogenization heat treatment at 500° C. was used in this test.

上述のように作製した合金の組み合わせを採用し下記の表1に示す組合せで種々の板状試験片を作製し、接合試験を行った。各板状試験片の形状は、以下の表2に示すh(高さ)、L(長辺長さ)、L(短辺長さ)、h/Lを有する円柱形状または平板形状である。
実施例の板状試験片の形状は、矩形または円柱で、表2に示す0.13≦h/L≦0.54の関係としている。実施例では、h=圧縮方向(矩形の場合4~7.5mm、円形の場合4~12mm)、L=長辺長さ(矩形の場合40mm、円柱の場合28~32mm)、L=短辺長さ(銅の試料も含めて矩形の場合14~20mm、円柱の場合28~32mm)の範囲であるが、0.13≦h/L≦0.54を満たしていれば、圧縮試験機の仕様(最大荷重/均熱化可能サイズ)により比例的形状にすることも出来る。また、試験片の形状は矩形や円柱に限らず、楕円状薄板や多角形薄板でも良い。
Using the alloy combinations prepared as described above, various plate-shaped test pieces were prepared using the combinations shown in Table 1 below, and a bonding test was conducted. The shape of each plate-shaped test piece is a cylindrical shape or a flat plate shape having h (height), L L (long side length), L S (short side length), and h/L S shown in Table 2 below. It is.
The shape of the plate-shaped test piece of the example was rectangular or cylindrical, and the relationship of 0.13≦h/L S ≦0.54 shown in Table 2 was established. In the example, h = compression direction (4 to 7.5 mm for a rectangle, 4 to 12 mm for a circle), L L = long side length (40 mm for a rectangle, 28 to 32 mm for a cylinder), L S = The short side length is within the range of 14 to 20 mm for rectangles (including copper samples, 28 to 32 mm for cylinders), but if it satisfies 0.13≦h/L S ≦0.54, compression is possible. It is also possible to create a proportional shape depending on the specifications of the testing machine (maximum load/size that can be soaked). Further, the shape of the test piece is not limited to a rectangle or a cylinder, but may be an elliptical thin plate or a polygonal thin plate.

上述の例では上側(SU側)を高強度材、下側(SL側)を低強度材としたが、逆でも構わない。接合においては、表面の平滑性が重要である。今回の試料は、鋳塊から切削加工により作製し、接合試験前の表面の算術平均粗さRaは0.08μmから3.1μmの間とした。
また、各試料表面のうねりWaは0.09μmから2.9μmの間とした。粗さRaやうねりWaは、対象とする製造工程における表面粗さに合わせることが望ましいが、対象の製造工程向けに制御可能な範囲で例えば、Raを0.012μm~25μmにて粗さをあえて変量し、その効果を評価検討しても良い。なお、RaおよびWaの計測には共焦点レーザー顕微鏡を用いた。なお、計測に際し、Raを0.012μm~25μmを対象に計測できる手法であれば、共焦点レーザー顕微鏡ではなく他の手法でも良い。
In the above example, the upper side (SU side) is made of high-strength material and the lower side (SL side) is made of low-strength material, but the reverse may be used. Surface smoothness is important in bonding. This sample was produced by cutting from an ingot, and the arithmetic mean roughness Ra of the surface before the bonding test was between 0.08 μm and 3.1 μm.
Further, the waviness Wa on the surface of each sample was set between 0.09 μm and 2.9 μm. It is desirable that the roughness Ra and waviness Wa match the surface roughness in the target manufacturing process, but the roughness can be set within a controllable range for the target manufacturing process, for example, by setting Ra to 0.012 μm to 25 μm. It is also possible to evaluate and consider the effect by varying the amount. Note that a confocal laser microscope was used to measure Ra and Wa. Note that for measurement, other methods may be used instead of the confocal laser microscope as long as they can measure Ra in a range of 0.012 μm to 25 μm.

図9(A)に示すチャンネル溝53を有する下型51とそれに対向するパンチ52を備えた熱間圧縮装置50を用いた。本例では、チャンネル溝53の溝幅は40mmに設定し、矩形の場合の長辺長さLと一致させている。
先の説明と同様、圧縮試験機の仕様(最大荷重/均熱化可能サイズ)により比例的形状にすることも出来る。また、剛性を高めるための追加的形状変更や高温試験としての均熱性を高めるための工夫を施した形状としてもよい。なお、L方向は必ずしも拘束しなくてもよい。この場合、必ずしも図9(A)に示す熱間圧縮装置50を用いなくても、フラットなアンビル(鉄床、金敷き)で加熱圧縮してもよい。拘束により材料の塑性流動方向が変わるので、検討したい熱間接合プロセスに応じ適宜熱間圧縮装置の形状を選択することができる。
A hot compression device 50 including a lower die 51 having a channel groove 53 and a punch 52 facing the lower die 51 as shown in FIG. 9(A) was used. In this example, the groove width of the channel groove 53 is set to 40 mm, which is made to match the long side length LL in the case of a rectangle.
Similar to the previous explanation, it is also possible to make it into a proportional shape depending on the specifications of the compression tester (maximum load/size that allows temperature equalization). Further, the shape may be additionally modified to increase rigidity or devised to improve heat uniformity for high temperature tests. Note that the LL direction does not necessarily have to be constrained. In this case, the hot compression apparatus 50 shown in FIG. 9(A) is not necessarily used, and a flat anvil (anvil, anvil) may be used for heating and compression. Since the plastic flow direction of the material changes due to restraint, the shape of the hot compression device can be selected as appropriate depending on the hot joining process to be considered.

なお、(軟質材の変形抵抗÷硬質材の変形抵抗)が、0.878以上の実施例を本実施例では提示していない。しかし、重ね合わせの2枚の塑性変形挙動は、より同質化する方向である。このため、(軟質材の変形抵抗÷硬質材の変形抵抗)が、0.878以上の場合であっても、本発明の技術思想から外れる可能性はない。
(軟質材の変形抵抗÷硬質材の変形抵抗)が0.377未満の組み合わせであっても、本発明の技術的思想を逸脱しない範囲内において、接合強度を測定する試験を実施することができる。
Note that this example does not present an example in which (deformation resistance of soft material/deformation resistance of hard material) is 0.878 or more. However, the plastic deformation behavior of the two stacked sheets tends to become more homogeneous. Therefore, even if (deformation resistance of soft material/deformation resistance of hard material) is 0.878 or more, there is no possibility of departing from the technical concept of the present invention.
Even if the combination (deformation resistance of soft material ÷ deformation resistance of hard material) is less than 0.377, a test to measure the joint strength can be conducted within the scope of the technical idea of the present invention. .

熱間圧縮装置により得られた異種アルミニウム接合材の中央部から、厚さ方向はそのままで14~18mm×2~2.5mmの大きさの中間試験片を切出加工した(図6(A)の中央部で切断面S1、S2により挟まれた領域参照)。
より詳しくは、既述の長辺(L)方向の長さが矩形の場合40mm、円柱の場合20~40mmとなるように、既述の短辺(L)方向の長さが矩形の場合14~20mm、円柱の場合28~32mmとなるように、切出加工を実施した。
本発明の方法は界面全体を均一に接合させることができるが、図2(B)に示す接合部のイメージのように完全ではない場合(界面の幅方向両端側が一部未接続)も考えられるので、できるだけ中央部から試料を切り出すことが好ましい。
An intermediate test piece with a size of 14 to 18 mm x 2 to 2.5 mm was cut out from the center of the dissimilar aluminum bonding material obtained using a hot compression device, with the thickness direction unchanged (Figure 6 (A) )
More specifically, the length in the short side (L S ) direction is 40 mm in the case of a rectangle, and 20 to 40 mm in the case of a cylinder. Cutting was carried out so that the length was 14 to 20 mm for the case and 28 to 32 mm for the cylinder.
Although the method of the present invention can uniformly bond the entire interface, there may be cases where the bond is not perfect (parts of both ends of the interface in the width direction are not connected), as shown in the image of the bonded part shown in Figure 2 (B). Therefore, it is preferable to cut out the sample from the center as much as possible.

試験の精度より試験の効率性を重視する場合、試験片を切出さずに、異種アルミニウム接合材3にそのまません断力を付与しても良い。本実施例では、切出加工した実施試験片11に対し、図7に示す試験装置30を用い、せん断力を付与して接合強度を測定した。
なお、L、Lの絶対値に応じ、同一の比率範囲内で、切り出した実施試験片の形状を比例形状とし、採用しても良い。せん断力を付与する前に、1000番以上の研磨で表面を平滑にすることが好ましい。その後、実施試験片の寸法を測定し、実施試験片の界面断面積を求めた。
If the efficiency of the test is more important than the accuracy of the test, a shearing force may be directly applied to the dissimilar aluminum bonding material 3 without cutting out the test piece. In this example, a shearing force was applied to the cut-out working test piece 11 using a testing apparatus 30 shown in FIG. 7 to measure the bonding strength.
Note that, depending on the absolute values of L L and L S , the shape of the cut-out test piece may be made into a proportional shape within the same ratio range. Before applying shearing force, it is preferable to smooth the surface by polishing with No. 1000 or higher. Thereafter, the dimensions of the actual test piece were measured, and the interfacial cross-sectional area of the actual test piece was determined.

表1に示す変形抵抗は、直径8mm高さ12mmの円柱圧縮試験で評価した。480℃、ひずみ速度0.1/secで対数ひずみ0.1における結果である。後述する表2~表4に示す如く、COM1~COM7は440℃~520℃で実施した。
表2~表4に示す(圧縮)速度は熱間圧縮時のパンチの圧縮速度を示す。
表2~表4に示す圧下率は、圧縮前後の2枚(2枚の板状試験片の総厚と圧縮後の第1層と第2層の総厚)の厚さ合計に対して算出した。
表2~表4に示す接合面圧は、熱間圧縮時の最大荷重を初期試料断面積で除することで求めた。
表2~表4に示す接合強度は、せん断付与時の最大荷重を界面断面積で除することで求めた。
The deformation resistance shown in Table 1 was evaluated by a cylindrical compression test with a diameter of 8 mm and a height of 12 mm. These are the results at 480°C, strain rate of 0.1/sec, and logarithmic strain of 0.1. As shown in Tables 2 to 4 below, COM1 to COM7 were conducted at 440°C to 520°C.
The (compression) speeds shown in Tables 2 to 4 indicate the compression speed of the punch during hot compression.
The rolling reduction ratios shown in Tables 2 to 4 are calculated based on the total thickness of the two sheets before and after compression (the total thickness of the two plate-shaped specimens and the total thickness of the first and second layers after compression). did.
The joint surface pressures shown in Tables 2 to 4 were determined by dividing the maximum load during hot compression by the initial sample cross-sectional area.
The bonding strengths shown in Tables 2 to 4 were determined by dividing the maximum load when shearing was applied by the interfacial cross-sectional area.

Figure 2023148532000002
Figure 2023148532000002

Figure 2023148532000003
Figure 2023148532000003

Figure 2023148532000004
Figure 2023148532000004

Figure 2023148532000005
Figure 2023148532000005

表2、表3に示すno.1~7および19~28は比較例である。実施試験片の形状がh/L>0.54のため、熱間圧縮後に試験片加工することができず、接合強度の評価不可であった。なお、no.1~7および19~23の比較例では、試験片界面に負荷がかかりにくいワイヤー切断を選択し、試験片加工を行なったが、加工途中のハンドリングで接合面が剥離するなどの問題を生じ、試験片加工を最後まで完了出来なかった。
表2に示すno.8~18および表2、表3に示すno.29~63は実施例である。試験片の形状は、0.13≦h/L≦0.54の式に合致する範囲であり、安定した接合状態の試験片が得られ、接合強度の評価が可能であった。なお、no.8~18および24~63では作業効率の観点で砥石切断としたが、0.13≦h/L≦0.54であれば問題なく試験片加工可能であった。no.8~18およびno.24~63の試験片を加工する場合、ワイヤー切断を実施しても良い。
Nos. 1 to 7 and 19 to 28 shown in Tables 2 and 3 are comparative examples. Since the shape of the test piece was h/L S >0.54, the test piece could not be processed after hot compression, and the bonding strength could not be evaluated. In Comparative Examples Nos. 1 to 7 and 19 to 23, wire cutting, which does not place much stress on the interface of the specimen, was selected to process the specimen, but there were some problems such as peeling of the bonded surface during handling during processing. A problem occurred and the test piece processing could not be completed to the end.
No. 8 to 18 shown in Table 2 and No. 29 to 63 shown in Table 2 and Table 3 are Examples. The shape of the test piece was in a range that matched the formula 0.13≦h/L S ≦0.54, and a test piece in a stable bonded state was obtained, making it possible to evaluate the bonding strength. Note that for Nos. 8 to 18 and 24 to 63, grindstone cutting was used from the viewpoint of work efficiency, but test pieces could be processed without problems if 0.13≦h/L S ≦0.54. When processing test pieces No. 8 to 18 and No. 24 to 63, wire cutting may be performed.

no.1~8およびno.19~23およびno.28およびno.35およびno.45~47の試験片は円柱形状である。h=円柱高さ(4~30mm)、L=円柱直径(20~32mm)とし、h/Lを算出した。
no.9~18およびno.24~27およびno.29~34およびno.36~44およびno.48~63の試験片は、平面視矩形状である。h=圧縮方向(4~9mm)、L=長辺長さ、(40mm)、L=短辺長さ(14~20mm)とし、h/Lを算出した。
平面視矩形状の試料の中でno.24、26、29、31、33、36、42において長辺方向は拘束せずに圧縮を行い、それ以外のno.の試料において長辺方向は図9(A)に示す熱間圧縮装置50のチャンネル溝53による拘束がある状態で圧縮を行った。
no.11~15は同一条件で5回繰り返し試験を行った実施例試料である。接合強度の測定試験として、実用的な安定性が得られた。望ましくはn=3~5程度の繰り返し試験を行い、平均を取ることが好ましい。
Test pieces No. 1 to 8, No. 19 to 23, No. 28, No. 35, and No. 45 to 47 have a cylindrical shape. h/L S was calculated by setting h = cylinder height (4 to 30 mm) and L S = cylinder diameter (20 to 32 mm).
Test pieces no. 9 to 18, no. 24 to 27, no. 29 to 34, no. 36 to 44, and no. 48 to 63 are rectangular in plan view. h/L S was calculated by setting h = compression direction (4 to 9 mm), L L = long side length (40 mm), and L S = short side length (14 to 20 mm).
Among the samples having a rectangular shape in a plan view, compression was performed in the long side direction for Nos. 24, 26, 29, 31, 33, 36, and 42 without restraint, and for the other Nos. The sample was compressed in a state where the long side direction was constrained by the channel groove 53 of the hot compression device 50 shown in FIG. 9(A).
Nos. 11 to 15 are example samples in which the test was repeated five times under the same conditions. Practical stability was obtained as a joint strength measurement test. It is preferable to conduct repeated tests with n=3 to 5 and take the average.

表2~表4に示す結果から、温度、圧縮速度、圧下率、潤滑を容易に変量可能であり、体系的にデータ取得することで熱間加工条件と接合強度の関係を調査できることが分かった。
なお、表2~表4に示す潤滑とは、下型およびパンチと試料表面間の処理を意味し、潤滑なしとスプレーによるBN粉を塗装した潤滑とを行った。潤滑を行うことで接合面圧を低くし、接合面圧の影響を議論することができる。なお、潤滑する手段はBN粉による潤滑に限らず、他の潤滑手段を適用しても良い。
From the results shown in Tables 2 to 4, it was found that temperature, compression speed, rolling reduction, and lubrication can be easily varied, and that the relationship between hot working conditions and joint strength can be investigated by systematically acquiring data. .
Note that the lubrication shown in Tables 2 to 4 refers to the treatment between the lower die and punch and the sample surface, and lubrication was performed without lubrication and with BN powder applied by spraying. By applying lubrication, the joint surface pressure can be lowered and the influence of the joint surface pressure can be discussed. Note that the lubrication means is not limited to lubrication using BN powder, and other lubrication means may be applied.

材種は、表1に示すように、COM1、COM2、COM3、COM4、COM5、COM6、COM7に記載した様々な組み合わせで実施した。表2~表4の結果に示す通り、いずれの材種でも、問題なく試験を実施でき、異種アルミニウム合金同士の接合強度を求める接合試験を実施できた。 As shown in Table 1, various combinations of materials were used as listed in COM1, COM2, COM3, COM4, COM5, COM6, and COM7. As shown in the results in Tables 2 to 4, the test could be carried out without any problem with any material type, and the bonding test to determine the bonding strength between dissimilar aluminum alloys could be carried out.

「3層クラッド材の製造」
心材の両面に皮材を被着した3層クラッド材の作製を実施した。
一方の皮材を前述のA11合金から形成し、心材をA4合金から形成し、他方の皮材をA5合金から形成した3層クラッド材を製造した。一方の皮材のクラッド率を心材に対し15%、他方の皮材のクラッド率を心材に対し20%とした。3層クラッド材の総厚さは600mmとした。圧延温度は480℃に設定した。
このような3層クラッド材を製造する場合、表2~表4に示す実施例no.8~18およびno.29~60の結果から読み取れる通り、材種COM6(A4-A11)および材種COM7(A4-A5)の接合強度は低めであり、熱間圧延による接合は容易ではないことが、表2~表4の試験結果を見た時点で容易に判断できる。
"Manufacture of 3-layer cladding material"
A three-layer cladding material was fabricated in which skin material was adhered to both sides of the core material.
A three-layer cladding material was manufactured in which one skin material was formed from the aforementioned A11 alloy, the core material was formed from A4 alloy, and the other skin material was formed from A5 alloy. The cladding ratio of one skin material was 15% with respect to the core material, and the cladding ratio of the other skin material was 20% with respect to the core material. The total thickness of the three-layer clad material was 600 mm. The rolling temperature was set at 480°C.
When manufacturing such a three-layer cladding material, Example no. shown in Tables 2 to 4 is used. 8 to 18 and no. As can be seen from the results in Tables 29 to 60, the bonding strength of grade COM6 (A4-A11) and grade COM7 (A4-A5) is low, and bonding by hot rolling is not easy. It can be easily determined by looking at the test results in step 4.

COM6(A4-A11)は圧下率増(no.55~57の比較)による接合強度の増加率が小さく、圧下率10%以上となってようやく接合強度が10MPa以上となる。
COM7(A4-A5)は(no.58~60の比較から)圧下率が小さい時は接合強度が低いが、圧下率増による接合強度の増加率が大きく、圧下率8%程度で接合強度が10MPaを超える値となる。故に、圧下率10%以上でいずれの組合せも接合強度が10MPa以上となることがわかる。
For COM6 (A4-A11), the rate of increase in bonding strength due to an increase in rolling reduction (comparison of no. 55 to 57) is small, and the bonding strength only reaches 10 MPa or more when the rolling reduction is 10% or more.
COM7 (A4-A5) (from a comparison of nos. 58 to 60) has a low joint strength when the rolling reduction is small, but the increase rate of joint strength with an increase in rolling reduction is large, and the joint strength increases at a rolling reduction of about 8%. The value exceeds 10 MPa. Therefore, it can be seen that at a rolling reduction rate of 10% or more, the bonding strength of any combination becomes 10 MPa or more.

表2~表4に示す接合試験結果を基に下記の条件で3層クラッド材の製造を行った。
板厚が初期の90%超である間はパス毎圧下率5%以下で圧延した。パス毎圧下率5%以下とすることで、剥離を起こさず徐々に接合強度を高めることが出来るためである。
板厚が初期の50%以上90%以下である間はパス毎圧下率5.1%以上15%以下で圧延した。上述の通り、本試験の接合強度評価でCOM5(A4-A11)およびCOM6(A4-A5)のいずれも、圧下率10%以上(板厚が初期の90%以下)では、接合強度が10MPa以上に達しており、パス毎圧下率を5.1%以上に高めても剥離は起きないためである。ここで、パス毎圧下率を15%超にしてしまうと、界面に発生するせん断応力で剥離することが想定される。
Based on the bonding test results shown in Tables 2 to 4, three-layer cladding materials were manufactured under the following conditions.
While the plate thickness was over 90% of the initial thickness, rolling was performed at a rolling reduction rate of 5% or less in each pass. This is because by setting the rolling reduction rate per pass to 5% or less, the bonding strength can be gradually increased without causing peeling.
While the plate thickness was 50% or more and 90% or less of the initial thickness, rolling was performed at a rolling reduction rate of 5.1% or more and 15% or less per pass. As mentioned above, in the joint strength evaluation of this test, for both COM5 (A4-A11) and COM6 (A4-A5), the joint strength was 10 MPa or more when the reduction rate was 10% or more (plate thickness was 90% or less of the initial value). This is because peeling does not occur even if the per-pass rolling reduction rate is increased to 5.1% or more. Here, if the per-pass rolling reduction rate exceeds 15%, it is assumed that peeling will occur due to shear stress generated at the interface.

以降の板厚が初期の50%未満では接合などのクラッドとしての問題は生じ得ないので、条件指定なしで圧延の生産上の都合に従って圧延した。
以上の結果、圧延中に界面が顕著にズレることなく、良好に圧延することが出来、目的の3層クラッド材を得ることができた。
従って、接合が難しい材料構成で、高コストな試作を複数回実施することなく、表2に示す結果に基づき、層間接合性の良好な3層クラッド材を良好に製造することが出来た。
望ましくは数値解析等で発生するせん断応力を求め、その瞬間の接合応力と比較することにより、より効率的なパススケジュールを選択することもできる。
If the subsequent plate thickness is less than 50% of the initial thickness, problems as a cladding such as bonding cannot occur, so rolling was carried out according to the production convenience of rolling without specifying conditions.
As a result of the above, it was possible to roll the material well without any noticeable displacement of the interface during rolling, and to obtain the desired three-layer cladding material.
Therefore, based on the results shown in Table 2, it was possible to successfully manufacture a three-layer cladding material with good interlayer bonding properties without having to carry out multiple expensive trial productions with a material configuration that is difficult to bond.
It is also possible to select a more efficient pass schedule by desirably determining the shear stress generated by numerical analysis or the like and comparing it with the bonding stress at that moment.

1、2…板状試験片、1A…第1層、2A…第2層、3…異種アルミニウム接合材、4…接合部、10…中間試験片、11…実施試験片、15…第1接合片、16…第2接合片、17…接合部、30…試験装置、31…下側挟持治具、32…上側挟持治具、33…支持板、34…支持板、35…下部挟持治具、36…上部挟持治具、37、38、39、40…潤滑テープ、50…熱間圧縮装置、51…下型、52…パンチ、53…チャンネル溝、54…凸部。 DESCRIPTION OF SYMBOLS 1, 2...Plate test piece, 1A...First layer, 2A...Second layer, 3...Different aluminum joining material, 4...Joint part, 10...Intermediate test piece, 11...Execution test piece, 15...First joining Piece, 16...Second joint piece, 17...Joint portion, 30...Testing device, 31...Lower clamping jig, 32...Upper clamping jig, 33...Support plate, 34...Support plate, 35...Lower clamping jig , 36... Upper clamping jig, 37, 38, 39, 40... Lubricating tape, 50... Hot compression device, 51... Lower mold, 52... Punch, 53... Channel groove, 54... Convex portion.

Claims (7)

平板状の試験材であり、厚さをh、長辺方向または長軸方向の長さをL、前記長さL以下となる短辺方向または短軸方向の長さをLとした時に、0.13≦h/L≦0.54である試験材を用い、該試験材の形状を有し、成分が同一ではない金属製の試験材を複数重ねた状態で所望の温度に加熱し、厚さ方向に圧縮力を付与して前記複数の試験材を接合した異種アルミニウム接合材を形成し、得られた異種アルミニウム接合材の接合面に対し、せん断力を付与して接合強度を評価する異種アルミニウム接合材の試験方法。 It is a flat test material, the thickness is h, the length in the long side direction or major axis direction is L L , and the length in the short side direction or short axis direction that is equal to or less than the above length L L is L S Sometimes, a test material with 0.13≦h/L S ≦0.54 is used, and a plurality of metal test materials having the shape of the test material and having different components are stacked and heated to a desired temperature. A dissimilar aluminum bonding material is formed by bonding the plurality of test materials by heating and applying compressive force in the thickness direction, and a shearing force is applied to the joint surface of the obtained dissimilar aluminum bonding material to measure the bonding strength. Test method for dissimilar aluminum bonding materials to evaluate 前記平板状の試験材が平面視矩形状であり、前記試験材の前記長辺方向の変形を拘束しながら前記圧縮力を付与する金型により前記圧縮力を付与する、請求項1に記載の異種アルミニウム接合材の試験方法。 The flat test material has a rectangular shape in plan view, and the compressive force is applied by a mold that applies the compressive force while restraining deformation of the test material in the long side direction. Test method for dissimilar aluminum joints. 前記試験片の短辺方向または短軸方向に平行、かつ、前記試験片の厚さ方向に延在する複数の切断面であるか、前記試験片の長辺方向または長軸方向に平行、かつ、前記試験片の厚さ方向に延在する複数の切断面のいずれかの切断面に沿って前記異種アルミニウム接合材の中央部を含むように前記異種アルミニウム接合材から中間試験片を切り出し、次いで前記中間試験片の中央部を含み、前記中間試験片の厚さ方向に延在する複数の切断面に沿って前記中間試験片から接合強度評価の実施試験片を切り出すことを特徴とする請求項1または請求項2に記載の異種アルミニウム接合材の試験方法。 A plurality of cut surfaces parallel to the short side or short axis direction of the test piece and extending in the thickness direction of the test piece, or parallel to the long side or long axis direction of the test piece, and , cutting an intermediate test piece from the dissimilar aluminum bonding material so as to include the center portion of the dissimilar aluminum bonding material along any one of a plurality of cut surfaces extending in the thickness direction of the test piece; A claim characterized in that test pieces for joint strength evaluation are cut out from the intermediate test piece along a plurality of cutting planes that include a central portion of the intermediate test piece and extend in the thickness direction of the intermediate test piece. The method for testing dissimilar aluminum bonding materials according to claim 1 or claim 2. 前記試験材において接合以前の接合するべき面の表面粗さRaを0.01μm以上30μm以下とする、請求項1~請求項3のいずれか一項に記載の異種アルミニウム接合材の試験方法。 The method for testing dissimilar aluminum bonding materials according to any one of claims 1 to 3, wherein the surface roughness Ra of the surfaces to be bonded before bonding in the test material is 0.01 μm or more and 30 μm or less. 前記試験片の厚さ方向に前記圧縮力を付加して前記異種アルミニウム接合材を形成する場合の圧下率を2%以上20%以下とする、請求項1~請求項4のいずれか一項に記載の異種アルミニウム接合材の試験方法。 According to any one of claims 1 to 4, the rolling reduction ratio when forming the dissimilar aluminum bonding material by applying the compressive force in the thickness direction of the test piece is 2% or more and 20% or less. Test method for dissimilar aluminum bonding materials described. 請求項1~請求項5のいずれか一項に記載の異種アルミニウム接合材の試験方法において、複数の前記試験材の成分の変更と、圧下率の変更と、前記加熱温度の変更のうち、少なくとも1種の変更を実施し、前記変更に伴う接合強度の試験結果に及ぼす影響を見極め、良好な接合強度が得られた成分、圧下率、加熱温度のうち、1種または2種以上の条件に基づき、異種アルミニウム接合材を製造する、異種アルミニウム接合材の製造方法。 In the method for testing dissimilar aluminum bonding materials according to any one of claims 1 to 5, at least one of changing the components of the plurality of test materials, changing the rolling reduction rate, and changing the heating temperature. Implement one type of change, determine the effect of the change on the joint strength test results, and change one or more conditions among the ingredients, rolling reduction rate, and heating temperature that gave good joint strength. A method for producing a dissimilar aluminum bonding material based on the method of producing a dissimilar aluminum bonding material. 前記異種アルミニウム接合材が純アルミニウムまたはアルミニウム合金からなる2種~4種のいずれかの試験材が接合された2層構造~4層構造のいずれかの異種アルミニウム接合材であり、前記2種~4種のいずれかの試験材の少なくとも1つが他の試験材と組成の異なる純アルミニウムまたはアルミニウム合金からなる、請求項6に記載の異種アルミニウム接合材の製造方法。 The dissimilar aluminum bonding material is a dissimilar aluminum bonding material having a two-layer structure to a four-layer structure in which two to four types of test materials made of pure aluminum or aluminum alloy are bonded, and the two to four types of test materials are bonded together. 7. The method for producing a dissimilar aluminum bonding material according to claim 6, wherein at least one of the four types of test materials is made of pure aluminum or an aluminum alloy having a composition different from that of the other test materials.
JP2022056611A 2022-03-30 2022-03-30 Test method and manufacturing method for heterogeneous aluminum joint material Pending JP2023148532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022056611A JP2023148532A (en) 2022-03-30 2022-03-30 Test method and manufacturing method for heterogeneous aluminum joint material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022056611A JP2023148532A (en) 2022-03-30 2022-03-30 Test method and manufacturing method for heterogeneous aluminum joint material

Publications (1)

Publication Number Publication Date
JP2023148532A true JP2023148532A (en) 2023-10-13

Family

ID=88289314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022056611A Pending JP2023148532A (en) 2022-03-30 2022-03-30 Test method and manufacturing method for heterogeneous aluminum joint material

Country Status (1)

Country Link
JP (1) JP2023148532A (en)

Similar Documents

Publication Publication Date Title
US7845203B2 (en) Preparation method of laminated composite materials of different alloys
Ming et al. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding
EP2368651A1 (en) Method for producing a hollow fan blade
Khaledi et al. Modeling of joining by plastic deformation using a bonding interface finite element
Weber et al. Joining by forming–a selective review
JP2023148532A (en) Test method and manufacturing method for heterogeneous aluminum joint material
Lei et al. Study on microstructure evolution and fracture behavior of Al/Al/Cu multilayer composites
Gautam et al. Experimental and numerical studies on spring back in U-bending of 3-Ply cladded sheet metal
DE69821369T2 (en) CONNECT METALS
Herrmann et al. Experimental investigation and numerical modeling of the bond shear strength of multi-layered 6000 series aluminum alloys
Domitner et al. Influence of the sheet edge condition on the fracture behavior of riv-bonded aluminum-magnesium joints
US5431327A (en) Superplastic deformation of diffusion bonded aluminium structures
US20230241843A1 (en) Enhanced fracture toughness of bonded joints using tailored sacrificial cracks
US3359083A (en) Composite structural metal members with improved fracture toughness
Senge et al. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2
Arbo et al. Influence of stacking sequence and intermediate layer thickness in AA6082-IF steel tri-layered cold roll bonded composite sheets
RU2552464C1 (en) Method for obtaining layered composite material based on aluminium alloys and low-alloyed steel
Çetkin The clinching joints strength performance of EN 10346: 2015 DX52D+ Z sheets
Mucha et al. Research on the influence of the aw 5754 aluminum alloy state condition and sheet arrangements with aw 6082 aluminum alloy on the forming process and strength of the clinchrivet joints. Materials. 2021; 14: 2980
Sardar et al. Solid-state joining by roll bonding and accumulative roll bonding
RU2490613C2 (en) Sample to test diffusion connection of sheet billets for shifting, method of manufacturing and testing
Jawad et al. Evaluating the mechanical behavior of ARB processed aluminum composites using shear punch testing
Hassan et al. Experimenta Experimental and numerical simulation l and numerical simulation l and numerical simulation of Steel/Steel (St/St) interface in of Steel/Steel (St/St) interface in bi-layer sheet metal layer sheet metal layer sheet metal
JP2024000781A (en) Estimation method of limit surface area enlargement ratio used for prediction of slippage of dissimilar metal joint material and production method of dissimilar metal joint material
Mróz et al. Theoretical and experimental analysis of formability of explosive welded Mg/Al bimetallic bars

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220630