JP2023148459A - System, method, and program for estimating infiltration/inflow into separate sewer pipes - Google Patents

System, method, and program for estimating infiltration/inflow into separate sewer pipes Download PDF

Info

Publication number
JP2023148459A
JP2023148459A JP2022056490A JP2022056490A JP2023148459A JP 2023148459 A JP2023148459 A JP 2023148459A JP 2022056490 A JP2022056490 A JP 2022056490A JP 2022056490 A JP2022056490 A JP 2022056490A JP 2023148459 A JP2023148459 A JP 2023148459A
Authority
JP
Japan
Prior art keywords
amount
water
rainfall
area
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022056490A
Other languages
Japanese (ja)
Other versions
JP7143542B1 (en
Inventor
雄二 伊藤
Yuji Ito
良太 青木
Ryota Aoki
卓 高澤
Taku Takasawa
幹 黒木
Miki Kuroki
亘佐 青島
Tsunesa Aoshima
正樹 宮村
Masaki Miyamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUYAMA CONSULTANTS CO Ltd
JAPAN INSTITUTE OF WASTEWATER ENGINEERING & TECHNOLOGY
Original Assignee
FUKUYAMA CONSULTANTS CO Ltd
JAPAN INSTITUTE OF WASTEWATER ENGINEERING & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUYAMA CONSULTANTS CO Ltd, JAPAN INSTITUTE OF WASTEWATER ENGINEERING & TECHNOLOGY filed Critical FUKUYAMA CONSULTANTS CO Ltd
Priority to JP2022056490A priority Critical patent/JP7143542B1/en
Application granted granted Critical
Publication of JP7143542B1 publication Critical patent/JP7143542B1/en
Publication of JP2023148459A publication Critical patent/JP2023148459A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Sewage (AREA)

Abstract

To provide a technology that increases accuracy of estimating an occurrence location of infiltration/inflow into separate sewer pipes.SOLUTION: An infiltration/inflow estimation system that estimates infiltration/inflow that occurs in a plurality of areas during rainy weather includes: acquisition means for acquiring the amount of rainfall for each area at each time; measurement means for measuring flow-in amounts of sewage flowing into a sewage treatment plant from a plurality of areas at each time; calculation means for calculating a difference between flow-in amounts during sunny weather and flow-in amounts during rainy weather as a total amount of infiltration/inflow, among the flow-in amounts; means for grasping flow-in amounts on weekdays and holidays/national holidays among the flow-in amounts; means for determining a total amount of rainfall in each area by adding the amount of rainfall in each area; means for calculating a total amount of infiltration/inflow at each time within a specific time after the start of rainfall; and means for determining a value for specifying the amount of infiltration/inflow in each area on the basis of the total amount of infiltration/inflow for each of weekdays and holidays/national holidays, the total amount of rainfall in each area, and a time relation before and after the rainfall to estimate an area where the infiltration/inflow occurs from the value.SELECTED DRAWING: Figure 1

Description

本発明は、分流式下水道管への雨水浸入箇所を推定する技術に関する。 The present invention relates to a technique for estimating the location of rainwater intrusion into a separate sewer pipe.

降雨によって地上に集められた雨水は、様々な経路をたどりながら河川へ流れ込む。特許文献1には、降雨情報と河川の増水との関連付け、洪水被害などを予測するための情報を得るシステムが開示されている。また、雨水は河川だけではなく、本来雨水の合流が目的となっていない分流式下水管にも流れ込み、下水処理施設で処理すべき流量の総量が増える。特許文献2には、本来想定されていない浸入水がどの地域から発生しているかを推定するシステムが開示されている。 Rainwater collected on the ground by rainfall flows into rivers following various routes. Patent Document 1 discloses a system for associating rainfall information with river water rise, and obtaining information for predicting flood damage. In addition, rainwater flows not only into rivers but also into separate sewer pipes, which are not originally intended to collect rainwater, increasing the total amount of water that must be treated at sewage treatment facilities. Patent Document 2 discloses a system for estimating from which area infiltration water, which was originally not expected, is coming from.

特開2020-085441号公報JP2020-085441A 特許第5574769号公報Patent No. 5574769

不明水の発生地点の把握には、管渠の埋設状況、下水処理場の運用データ又は調査用の流量計測データ等を収集・解析し、不明水の発生箇所の絞込みを行う必要があり、これらの調査には多くの労力、時間、コストがかかる。例えば、下水管の複数地点に流量を計測する計測器の設置が必要となる。特許文献2に記載の推定方法では、推定精度を高くすることが困難であり、改善の余地がある。 In order to understand where unknown water is occurring, it is necessary to collect and analyze the buried state of pipes, operation data of sewage treatment plants, flow rate measurement data for investigation, etc., and narrow down the locations where unknown water is occurring. Research requires a lot of effort, time, and cost. For example, it is necessary to install meters to measure the flow rate at multiple points along a sewer pipe. In the estimation method described in Patent Document 2, it is difficult to increase the estimation accuracy, and there is room for improvement.

本発明は上記実情に鑑みてなされたものであって、その目的とするところは、分流式下水道管への浸入水の発生箇所の推定精度を高くする技術を提供することである。 The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a technique for increasing the accuracy of estimating the location where water intruding into a separate sewer pipe occurs.

本発明の一観点に係る浸入水推定システムは、
雨天時に複数の区域で発生する浸入水を推定する浸入水推定システムであって、
各区域の時刻毎の降雨量を取得する取得手段と、
前記複数の区域から下水処理場に流入する汚水の時刻毎の流入量を計測する計測手段と、
前記流入量の内、晴天時の流入量と雨天時の流入量との差を浸入水の総量として算出する算出手段と、
前記流入量の内、平日と休日祝日との流入量を把握する手段と、
前記区域毎に降雨する降雨量を積算し、各区域における総降雨量を求める手段と、
降雨開始後特定時間内における時刻毎の浸入水の総量を算出する手段と、
平日の曜日および休日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水量を特定する値を求め、当該値から浸入水の発生する区域を推定する手段と、
を備えることを特徴とする分流式下水管への浸入水推定システムである。
An infiltration water estimation system according to one aspect of the present invention includes:
An infiltration water estimation system that estimates infiltration water that occurs in multiple areas during rainy days,
Acquisition means for acquiring the amount of rainfall for each area at each time;
Measuring means for measuring the amount of sewage flowing into the sewage treatment plant from the plurality of areas at each time;
Calculating means for calculating the difference between the amount of inflow on a sunny day and the amount of inflow on a rainy day as a total amount of infiltration water, of the amount of inflow;
Means for grasping the inflow amount on weekdays and holidays and holidays among the inflow amount;
Means for calculating the total amount of rainfall in each area by integrating the amount of rainfall in each area;
means for calculating the total amount of infiltrated water at each time within a specific time after the start of rainfall;
A value that specifies the amount of infiltrated water in each area is determined from the total amount of infiltrated water for each weekday, holiday, and holiday, total rainfall in each area, and the time relationship before and after rainfall, and the area where infiltrated water occurs is estimated from this value. means and
This is a system for estimating water intrusion into a separate sewer pipe.

本発明の一観点に係る浸入水推定の方法は、
雨天時に複数の区域で発生する浸入水を推定する浸入水推定の方法であって、
各区域の時刻毎の降雨量を取得する取得工程と、
前記複数の区域から下水処理場に流入する汚水の時刻毎の流入量を計測する計測工程と

前記流入量の内、晴天時の流入量と雨天時の流入量との差を浸入水の総量として算出する算出工程と、
前記流入量の内、平日と土日祝日との流入量を把握する工程と、
前記区域毎に降雨する降雨量を積算し、各区域における総降雨量を求める工程と、
降雨開始後特定時間内における時刻毎の浸入水の総量を算出する工程と、
平日の曜日および休日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水を特定する値を求め、当該値から浸水の発生する区域を推定する工程と、
を含むことを特徴とする分流式下水管への浸入水推定方法である。
A method for estimating infiltration water according to one aspect of the present invention includes:
A method for estimating infiltration water that occurs in multiple areas during rainy days, the method comprising:
an acquisition step of acquiring the amount of rainfall for each area at each time;
a measurement step of measuring the amount of sewage flowing into the sewage treatment plant from the plurality of areas at each time;
A calculation step of calculating the difference between the inflow amount on a sunny day and the inflow amount on a rainy day as the total amount of infiltration water among the inflow amounts;
Of the inflow amount, determining the inflow amount on weekdays and weekends and holidays;
A step of accumulating the amount of rainfall in each area and calculating the total amount of rainfall in each area;
a step of calculating the total amount of infiltrated water at each time within a specific time after the start of rain;
A process of determining the value that specifies the infiltrating water in each area from the total amount of infiltrating water for each weekday, holiday, and public holiday, the total amount of rainfall in each area, and the time relationship before and after rainfall, and estimating the area where flooding will occur from this value. and,
This is a method for estimating water intrusion into a separate sewer pipe.

本発明の一観点に係るプログラムは、
雨天時に複数の区域で発生する浸入水を推定する浸入水推定システム上のコンピュータで機能するプログラムであって、
各区域の時刻毎の降雨量を取得する取得工程と、
前記複数の区域から下水処理場に流入する汚水の時刻毎の流入量を計測する計測工程と、
前記流入量の内、晴天時の流入量と雨天時の流入量との差を浸入水の総量として算出する算出工程と、
前記流入量の内、平日と土日祝日との流入量を把握する工程と、
前記区域毎に降雨する降雨量を積算し、各区域における総降雨量を求める工程と、
降雨開始後特定時間内における時刻毎の浸入水の総量を算出する工程と、
平日の曜日および休日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水を特定する値を求め、当該値から浸水の発生する区域を推定する工程と、
をコンピュータに実行させるための分流式下水管への浸入水推定プログラムである。
A program according to one aspect of the present invention is
A program that operates on a computer on an infiltration water estimation system that estimates infiltration water that occurs in multiple areas during rainy days,
an acquisition step of acquiring the amount of rainfall for each area at each time;
a measurement step of measuring the amount of sewage flowing into the sewage treatment plant from the plurality of areas at each time;
A calculation step of calculating the difference between the inflow amount on a sunny day and the inflow amount on a rainy day as the total amount of infiltration water among the inflow amounts;
Of the inflow amount, determining the inflow amount on weekdays and weekends and holidays;
A step of accumulating the amount of rainfall in each area and calculating the total amount of rainfall in each area;
a step of calculating the total amount of infiltrated water at each time within a specific time after the start of rain;
A process of determining the value that specifies the infiltrating water in each area from the total amount of infiltrating water for each weekday, holiday, and public holiday, the total amount of rainfall in each area, and the time relationship before and after rainfall, and estimating the area where flooding will occur from this value. and,
This is a program for estimating water infiltration into separate sewer pipes, which allows a computer to execute the following.

また、本発明は、上記プログラムを非一時的に記録したコンピュータ読取可能な記録媒体として捉えることもできる。なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。 Further, the present invention can also be understood as a computer-readable recording medium on which the above program is recorded non-temporarily. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.

本発明によれば、分流式下水道管への浸入水の発生箇所の推定精度を高くする技術を提供することができる。 According to the present invention, it is possible to provide a technique that increases the accuracy of estimating the location where water intrudes into a separate sewer pipe.

図1は、第1実施形態に係る浸入水推定システムの説明図である。FIG. 1 is an explanatory diagram of an infiltration water estimation system according to a first embodiment. 図2は、降雨量と浸入水量との関係を示す図である。FIG. 2 is a diagram showing the relationship between the amount of rainfall and the amount of infiltrated water. 図3は、処理装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the processing device. 図4は、第1実施形態に係る浸入水推定システムの機能ブロック図である。FIG. 4 is a functional block diagram of the intrusion water estimation system according to the first embodiment. 図5は、ダミーデータとして設定する降雨量データの説明図である。FIG. 5 is an explanatory diagram of rainfall amount data set as dummy data. 図6は、複数の処理分区の順位を示す図である。FIG. 6 is a diagram showing the ranking of a plurality of processing sections. 図7は、所定の対象地域をメッシュで区切ったときの模式図である。FIG. 7 is a schematic diagram of a predetermined target area divided into meshes. 図8は、第1実施形態に係る浸入水推定システムの処理の流れの一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of the process flow of the intrusion water estimation system according to the first embodiment. 図9は、直接浸入水及び間接浸入水の量と浸入水の総量との対応関係を示す図である。FIG. 9 is a diagram showing the correspondence between the amounts of direct intrusion water and indirect infiltration water and the total amount of infiltration water. 図10は、第2実施形態に係る浸入水推定システムの機能ブロック図である。FIG. 10 is a functional block diagram of the intrusion water estimation system according to the second embodiment. 図11は、第2実施形態に係る浸入水推定システムの処理の流れの一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of the processing flow of the infiltration water estimation system according to the second embodiment.

以下、実施形態について図を参照しながら説明する。以下に示す実施形態は、本願の一態様であり、本願の権利範囲を限定するものではない。 Hereinafter, embodiments will be described with reference to the drawings. The embodiment shown below is one aspect of this application, and does not limit the scope of rights of this application.

<第1実施形態>
図1は、第1実施形態に係る浸入水推定システムの説明図である。浸入水推定システム10は、処理装置1を有し、雨天時に複数の区域で発生する浸入水を推定するシステムである。当該浸入水推定システム10は、汚水と雨水とが別々の管渠を流下する分流式下水道を想定する。下水管2は、汚水が流れる汚水管3と雨水が流れる雨水管4とを有する。複数の区域の家庭や事業所等から発生した汚水が汚水管3を流れて下水処理施設(下水処理場)5に流入する。下水処理施設5に流入した汚水は、下水処理施設5内で処理され、河川等に放流される。雨水は、雨水管4を流れて直接河川等に放流される。分流式下水道では、汚水は下水処理場へ、雨水は川や海に直接放流される。汚水と雨水をそれぞれ専用の管で集めるため、河川の水質が守られ、環境面でも衛生面でも優れた方式であり、昨今は分流式の採用が多くなっている。
<First embodiment>
FIG. 1 is an explanatory diagram of an infiltration water estimation system according to a first embodiment. The intrusion water estimation system 10 is a system that includes a processing device 1 and estimates intrusion water that occurs in a plurality of areas during rainy weather. The infiltration water estimation system 10 assumes a separate sewer system in which wastewater and rainwater flow down separate pipes. The sewage pipe 2 has a sewage pipe 3 through which sewage flows and a rainwater pipe 4 through which rainwater flows. Sewage generated from homes, businesses, etc. in multiple areas flows through sewage pipes 3 and flows into a sewage treatment facility (sewage treatment plant) 5. The wastewater that has flowed into the sewage treatment facility 5 is treated within the sewage treatment facility 5 and discharged into a river or the like. Rainwater flows through the rainwater pipe 4 and is directly discharged into a river or the like. In separate sewer systems, wastewater is discharged to a sewage treatment plant and rainwater is discharged directly into rivers or the sea. Since sewage and rainwater are collected through separate pipes, the water quality of the river is protected and is an excellent method from both an environmental and sanitary standpoint, and in recent years, separate systems have been increasingly adopted.

晴天時は、汚水のみが汚水管3を流れて下水処理施設5に流入する。雨天時においては、汚水に加えて本来合流すべきではない雨水が汚水管3に流れ込み、その後下水処理施設5に流入する場合がある。汚水管3が損傷している場合は、土壌に浸入した雨水が汚水管3の損傷箇所から汚水管3に流入することで、汚水管3を流れる汚水に雨水が混入する。こちらの損傷箇所からの浸入水を間接浸入水と定義する。また、汚水管3に雨水管4が誤接続されている場合は、雨水管4から汚水管3に雨水が流入し、汚水管3を流れる汚水に雨水が混入する。汚水管3に流入した雨水は、汚水管3を流れて下水処理施設5に流入する。本明細書では、汚水管3に流入した雨水を浸入水と呼ぶ。この浸入水は、不明水とも呼ばれる。誤接続等によって雨水管4から汚水管3に浸入する雨水を直接浸入水と定義する。分流式の下水道システムでは、雨水を分離する前提のため、本来想定されていない雨水が下水管に流入することによって下水処理場の処理性能を上回り、十分処理されないまま河川等へ放出されることになる。これらの浸入水の発生地域を推定することが当該システムの目的となる。 When the weather is sunny, only sewage flows through the sewage pipe 3 and flows into the sewage treatment facility 5. In rainy weather, in addition to sewage, rainwater that should not originally be combined may flow into the sewage pipe 3 and then flow into the sewage treatment facility 5. When the wastewater pipe 3 is damaged, rainwater that has entered the soil flows into the wastewater pipe 3 from the damaged part of the wastewater pipe 3, and the rainwater is mixed into the wastewater flowing through the wastewater pipe 3. Infiltration water from this damaged area is defined as indirect infiltration water. Furthermore, if the rainwater pipe 4 is incorrectly connected to the wastewater pipe 3, rainwater flows from the rainwater pipe 4 into the wastewater pipe 3, and the rainwater mixes with the wastewater flowing through the wastewater pipe 3. The rainwater that has flowed into the sewage pipe 3 flows through the sewage pipe 3 and flows into the sewage treatment facility 5. In this specification, rainwater that has flowed into the wastewater pipe 3 is referred to as infiltrated water. This infiltrated water is also called unknown water. Rainwater that infiltrates from the rainwater pipe 4 into the wastewater pipe 3 due to incorrect connection or the like is defined as direct infiltration water. In a separate sewer system, since rainwater is separated, unintended rainwater can flow into the sewer pipes, exceeding the treatment capacity of the sewage treatment plant and being discharged into rivers, etc. without being sufficiently treated. Become. The purpose of this system is to estimate the areas where these infiltrated waters occur.

観測装置6は、複数の区域の降雨量を観測する。処理装置1は、区域毎の降雨量データを観測装置6から特定時間単位で取得する。測定センサ7は、下水処理施設5に流入する複数の区域からの汚水の総流入量を測定する。処理装置1は、汚水の流入量を測定センサ7から取得する。 The observation device 6 observes the amount of rainfall in a plurality of areas. The processing device 1 acquires rainfall data for each area from the observation device 6 in specific time units. The measurement sensor 7 measures the total amount of wastewater flowing into the sewage treatment facility 5 from a plurality of areas. The processing device 1 acquires the amount of inflow of wastewater from the measurement sensor 7.

図2は、降雨量と浸入水量との関係を示す図である。グラフの縦軸は水量、横軸は時刻を示している。浸入水は降雨によって発生するが、浸入水量(雨天時浸入水量)は、土壌による浸透や降雨状況による管への到達時間の違い等に影響される。図2に示すように、降雨量のピークと浸入水量のピークの時刻は一致しておらず、また、特徴的なのは降雨の開始から時間経過を経て浸入水が浸入してくることである。同様に降雨が終了した後もしばらくは浸入水の流入が続いている。 FIG. 2 is a diagram showing the relationship between the amount of rainfall and the amount of infiltrated water. The vertical axis of the graph shows the amount of water, and the horizontal axis shows the time. Infiltrated water is generated by rainfall, and the amount of infiltrated water (the amount of infiltrated water in rainy weather) is affected by factors such as infiltration through the soil and differences in the time it takes to reach the pipes depending on the rainfall conditions. As shown in FIG. 2, the times of the peak amount of rainfall and the peak amount of infiltrated water do not coincide, and what is characteristic is that infiltrated water enters over time after the start of rainfall. Similarly, intrusion water continues to flow in for some time even after the rain has stopped.

図3は、処理装置1の構成を示すブロック図である。処理装置1は、制御装置11と、通信インターフェース(IF)装置12と、記憶装置13と、入力装置14と、表示装置15と、を備える。処理装置1は、プロセッサ(CPU)、メモリ、ストレージなどのハードウェア資源を備えている。メモリは、RAMであってもよい。ストレージは、不揮発性の記憶装置(例えばROM、フラッシュメモリなど)であってもよい。処理装置1の各処理手段(機能部)としての機能は、ストレージに格納されたプログラムをメモリに展開
しプロセッサによって実行することにより実現される。なお、処理装置1の構成はこれらに限られない。例えば、機能の全部又は一部をASICやFPGAなどの回路で構成してもよいし、あるいは、機能の全部又は一部をクラウドサーバや他の装置で実行してもよい。
FIG. 3 is a block diagram showing the configuration of the processing device 1. As shown in FIG. The processing device 1 includes a control device 11, a communication interface (IF) device 12, a storage device 13, an input device 14, and a display device 15. The processing device 1 includes hardware resources such as a processor (CPU), memory, and storage. The memory may be RAM. The storage may be a nonvolatile storage device (eg, ROM, flash memory, etc.). The functions of each processing means (functional unit) of the processing device 1 are realized by loading a program stored in a storage into a memory and executing it by a processor. Note that the configuration of the processing device 1 is not limited to these. For example, all or part of the function may be configured with a circuit such as an ASIC or FPGA, or all or part of the function may be executed by a cloud server or other device.

通信インターフェース装置12は、観測装置6や測定センサ7との間で通信を行う。なお、観測装置6や測定センサ7から直接ではなく、それらから得た降雨量や総流水量のデータを格納しているクラウドサーバや制御装置を介して入手する構成でもよい。記憶装置13は、各種の情報、各種のデータを記憶する。入力装置14は、例えば、キーボード、マウス、操作ボタン及びタッチパネルなどの入力機器で構成されてもよい。表示装置15は、例えば、液晶ディスプレイ、プラズマディスプレイ、有機EL(Electro Luminescence)ディスプレイなどである。 The communication interface device 12 communicates with the observation device 6 and the measurement sensor 7 . Note that the data may be obtained not directly from the observation device 6 or the measurement sensor 7, but via a cloud server or a control device that stores data on the amount of rainfall and total water flow obtained therefrom. The storage device 13 stores various information and various data. The input device 14 may include input devices such as a keyboard, a mouse, operation buttons, and a touch panel. The display device 15 is, for example, a liquid crystal display, a plasma display, an organic EL (Electro Luminescence) display, or the like.

制御装置11は、降雨量データ取得手段101と、流水量計測手段102と、第1浸水量算出手段103と、総降雨量算出手段104と、第2浸水量算出手段105と、推定手段106と、を有する。制御装置11において、図3に示す構成要素の全てが必須というわけではなく、適宜、制御装置11の構成要素の追加又は削除がなされてもよい。また、制御装置11の構成要素を適宜組み合わせてもよい。 The control device 11 includes a rainfall amount data acquisition means 101, a flow rate measuring means 102, a first inundation amount calculation means 103, a total rainfall amount calculation means 104, a second inundation amount calculation means 105, and an estimation means 106. , has. In the control device 11, not all of the components shown in FIG. 3 are essential, and components of the control device 11 may be added or deleted as appropriate. Further, the components of the control device 11 may be combined as appropriate.

降雨量データ取得手段101は、各区域の降雨量データを取得する。例えば、対象の地域は、複数の区域に区分されている。対象の地域は、メッシュで区切られてもよい。降雨量データ取得手段101は、各区域の時刻(時間)毎の降雨量データを取得してもよい。時刻毎の降雨量データは、所定時刻(例えば、13時)から所定時刻(例えば、14時)までの間の降雨量データである。降雨量データ取得手段101は、降雨開始から一定時間内の単位時間あたりの降雨量データを区域毎に取得してもよい。一定時間は、任意の時間であり、変更可能である。また、本明細書において、「時刻毎」を「単位時間当たり」と読み替えてもよい。降雨量データ取得手段101は、観測装置6から直接降雨量データを取得してもよいし、気象庁などの公的機関から提供される降雨量データ又は私的機関から提供される降雨量データを間接的に取得してもよい。降雨量データ取得手段101は、取得した降雨量データを記憶装置13に記憶する。 The rainfall data acquisition means 101 acquires rainfall data for each area. For example, the target area is divided into multiple areas. The area of interest may be separated by a mesh. The rainfall data acquisition means 101 may acquire rainfall data for each area at each time (hour). The rainfall amount data for each time is rainfall amount data from a predetermined time (for example, 13:00) to a predetermined time (for example, 14:00). The rainfall amount data acquisition means 101 may acquire rainfall amount data per unit time within a certain period of time from the start of rain for each area. The fixed time is an arbitrary time and can be changed. Further, in this specification, "every time" may be read as "per unit time". The rainfall data acquisition means 101 may directly acquire rainfall data from the observation device 6, or indirectly obtain rainfall data provided by a public organization such as the Japan Meteorological Agency or a private organization. It may also be obtained manually. The rainfall data acquisition means 101 stores the acquired rainfall data in the storage device 13.

降雨量データ取得手段101は、記憶装置13に格納された降雨量データから平日の曜日毎の降雨量データを抽出する。また、降雨量データ取得手段101は、同じく記憶装置13に格納された降雨量データから土日祝日の降雨量データを抽出する。降雨量データ取得手段101は、平日の曜日毎の降雨量データと、土日祝日の降雨量データとを改めて記憶装置13に記憶する。これにより、平日の曜日及び土日祝日毎の降雨量データが、ラベリングされた状態で記憶装置13に記憶される。 The rainfall data acquisition means 101 extracts rainfall data for each day of the week on weekdays from the rainfall data stored in the storage device 13. Further, the rainfall data acquisition means 101 extracts rainfall data on Saturdays, Sundays, and holidays from the rainfall data stored in the storage device 13 as well. The rainfall data acquisition means 101 stores rainfall data for each day of the week on weekdays and rainfall data for weekends and holidays anew in the storage device 13. As a result, rainfall amount data for weekdays, weekends, and holidays are stored in the storage device 13 in a labeled state.

流水量計測手段102は、測定センサ7によって測定された汚水の流入量に基づいて、複数の区域から下水処理施設5に流入する汚水の流入量(以下、単に「汚水の流入量」とも表記する。)を把握する。流水量計測手段102は、時刻毎の汚水の流入量を、汚水の流入量データとして取得してもよい。時刻毎の汚水の流入量は、所定時刻(例えば、13時)から所定時刻(例えば、14時)までの間の汚水の流入量である。 The flow rate measuring means 102 measures the inflow rate of sewage flowing into the sewage treatment facility 5 from a plurality of areas (hereinafter also simply referred to as "sewage inflow rate") based on the inflow rate of sewage measured by the measurement sensor 7. ). The flowing water amount measuring means 102 may acquire the amount of sewage flowing in each time as sewage inflow amount data. The inflow amount of sewage at each time is the inflow amount of sewage from a predetermined time (for example, 13:00) to a predetermined time (for example, 14:00).

流水量計測手段102は、汚水の流入量が定常量である場合の汚水の流入量データと、汚水の流入量が定常量を超えた場合の汚水の流入量データとを取得する。より具体的には、晴天時では、下水処理施設5に流入する汚水には雨水が含まれていないため、汚水の流入量を定常量として規定できる。一方、雨天時では、下水処理施設5に流入する汚水には雨水が含まれているため、汚水の流入量は定常量を超える。汚水の流入量は、平日の曜日や土日祝日によって変動するため、定常量は平日の曜日や土日祝日に応じて変動する値と
して設定する。これは人が生活を営む際の生活雑排水量が平日と週末や休みでは変わること、同様に工業用廃水も、工場の稼働状況や会社の勤務状況に依存し、工場や会社の平日と休日とでは使用量が大きく異なることに着目している。流水量計測手段102は、汚水の流入量が定常量である場合の汚水の流入量を、晴天時の汚水の流入量データとして取得する。流水量計測手段102は、降雨開始からの汚水の流入量を計測することで、雨天時の汚水の流入量データとして取得する。流水量計測手段102は、雨天時における時刻毎の汚水の流入量を計測してもよい。流水量計測手段102は、降雨開始から特定時間内(降雨開始から所定時間が経過するまでの間)における汚水の流入量を計測することで、雨天時の汚水の流入量データを取得してもよい。流水量計測手段102は、降雨開始から特定時間内における時刻毎の汚水の流入量を計測してもよい。流水量計測手段102は、晴天時の汚水の流入量データ及び雨天時の汚水の流入量データを記憶装置13に記憶する。
The flow rate measuring means 102 acquires data on the amount of sewage flowing in when the amount of sewage flowing in is a steady amount, and data on the amount of sewage flowing in when the amount of sewage flowing in exceeds the steady amount. More specifically, in sunny weather, the sewage flowing into the sewage treatment facility 5 does not contain rainwater, so the amount of sewage flowing in can be defined as a steady amount. On the other hand, in rainy weather, the sewage flowing into the sewage treatment facility 5 contains rainwater, so the amount of sewage flowing in exceeds the steady amount. Since the inflow amount of sewage varies depending on weekdays, weekends, and holidays, the steady amount is set as a value that varies depending on weekdays, weekends, and holidays. This is because the amount of gray water used in people's daily lives differs between weekdays and weekends and holidays.In the same way, industrial wastewater also depends on the operating status of factories and company work, and differs between weekdays and holidays at factories and companies. The focus is on the large difference in usage. The flowing water amount measuring means 102 acquires the amount of sewage flowing in when the amount of sewage flowing in is a steady amount as data on the amount of sewage flowing in on a clear day. The flowing water amount measuring means 102 measures the amount of sewage flowing in from the start of rain, thereby obtaining data on the amount of sewage flowing in during rainy weather. The flow rate measuring means 102 may measure the inflow rate of wastewater at each time during rainy weather. The flow rate measuring means 102 measures the flow rate of sewage within a specific time from the start of rain (until a predetermined time elapses from the start of rain), thereby obtaining data on the flow rate of sewage during rainy weather. good. The flow rate measuring means 102 may measure the inflow rate of wastewater at each time within a specific time from the start of rainfall. The flow rate measuring means 102 stores in the storage device 13 data on the amount of sewage flowing in on a sunny day and data on the amount of sewage flowing on a rainy day.

流水量計測手段102は、記憶装置13に格納された流水量から平日の曜日毎の流入量データを抽出する。平日の曜日毎の流入量データは、平日の曜日毎の晴天時における流入量データと、平日の曜日毎の雨天時における流入量データとを含む。また、流水量計測手段102は、記憶装置13に格納された流水量から土日祝日の流入量データを抽出する。土日祝日の流入量データは、土日祝日の晴天時における流入量データと、土日祝日の雨天時における流入量データとを含む。流水量計測手段102は、平日の曜日毎の流入量データと、土日祝日の流入量データとを改めて記憶装置13に記憶する。これにより、平日の曜日及び土日祝日毎の流入量データが、ラベリングされた状態で記憶装置13に記憶される。 The flow rate measuring means 102 extracts inflow rate data for each day of the week from the flow rate stored in the storage device 13. The inflow amount data for each day of the week on weekdays includes inflow amount data for each day of the week on a sunny day and inflow amount data for each day of the week on a rainy day. Further, the water flow measuring means 102 extracts inflow data on weekends and holidays from the water flow stored in the storage device 13. The inflow data on Saturdays, Sundays, and holidays includes inflow data during sunny days on Saturdays, Sundays, and holidays, and inflow data during rainy days on Saturdays, Sundays, and holidays. The flow rate measuring means 102 stores the inflow rate data for each day of the week on weekdays and the inflow rate data for weekends and holidays anew in the storage device 13. As a result, the inflow data for each day of the week, weekends, and holidays is stored in the storage device 13 in a labeled state.

第1浸水量算出手段103は、汚水の流入量の内、晴天時の汚水の流入量と雨天時の汚水の流入量との差を、浸入水の総量として算出する。第1浸水量算出手段103は、所定期間の汚水の流入量の内、所定期間の晴天時の汚水の流入量と所定期間の雨天時の汚水の流入量との差を、所定期間の浸入水の総量として算出してもよい。第1浸水量算出手段103は、所定期間の浸入水の総量データを記憶装置13に記憶する。 The first inundation amount calculation means 103 calculates the difference between the inflow amount of sewage on a sunny day and the inflow amount of sewage on a rainy day as the total amount of infiltration water. The first inundation amount calculating means 103 calculates the difference between the inflow amount of sewage during a clear day in a predetermined period and the inflow amount of sewage in a rainy day in a predetermined period, out of the inflow amount of sewage in a predetermined period. It may be calculated as the total amount of The first inundation amount calculation means 103 stores data on the total amount of infiltration water for a predetermined period in the storage device 13.

第1浸水量算出手段103は、汚水の流入量の内、平日の汚水の流入量と土日祝日の汚水の流入量とを把握する。第1浸水量算出手段103は、平日の曜日毎の晴天時の汚水の流入量と平日の曜日毎の雨天時の汚水の流入量との差を、平日の曜日毎の浸入水の総量として算出してもよい。第1浸水量算出手段103は、土日祝日毎の晴天時の汚水の流入量と土日祝日毎の雨天時の汚水の流入量との差を、土日祝日毎の浸入水の総量として算出してもよい。第1浸水量算出手段103は、平日の曜日毎の浸入水の総量データと、土日祝日毎の浸入水の総量データとを記憶装置13に記憶する。 The first inundation amount calculation means 103 grasps the inflow amount of sewage on weekdays and the inflow amount of sewage on Saturdays, Sundays, and holidays out of the inflow of sewage. The first inundation amount calculating means 103 calculates the difference between the inflow amount of sewage during sunny weather for each weekday and the inflow amount of sewage during rainy weather for each weekday as the total amount of infiltration for each weekday. You may. The first inundation amount calculating means 103 calculates the difference between the inflow amount of sewage during sunny weather on each weekend and holiday and the inflow amount of sewage during rainy weather on each weekend and holiday as the total amount of infiltration water for each weekend and holiday. good. The first inundation amount calculation means 103 stores in the storage device 13 the total amount of infiltrated water data for each weekday and the total amount of infiltrated water data for each weekend and holiday.

第1浸水量算出手段103は、晴天時における時刻毎の汚水の流入量と雨天時における時刻毎の汚水の流入量との差を、時刻毎の浸入水の総量として算出してもよい。第1浸水量算出手段103は、同じ曜日の同じ時間帯についての晴天時の汚水の流入量と雨天時の汚水の流入量とを比較することにより、時刻毎の浸入水の総量を算出してもよい。また、第1浸水量算出手段103は、祝日の同じ時間帯についての晴天時の汚水の流入量と雨天時の汚水の流入量とを比較することにより、時刻毎の浸入水の総量を算出してもよい。 The first inundation amount calculating means 103 may calculate the difference between the inflow amount of sewage at each time in sunny weather and the inflow amount of sewage at each time in rainy weather as the total amount of infiltration water at each time. The first inundation amount calculation means 103 calculates the total amount of infiltration water at each time by comparing the inflow amount of sewage water in sunny weather and the inflow amount of sewage water in rainy weather for the same time period on the same day of the week. Good too. In addition, the first inundation amount calculating means 103 calculates the total amount of infiltration water at each time by comparing the inflow amount of sewage water during sunny days and the inflow amount of sewage water during rainy days for the same time period on holidays. It's okay.

総降雨量算出手段104は、特定時間内に区域毎に降雨する降雨量を積算し、各区域における総降雨量を算出する。総降雨量算出手段104は、各区域における総降雨量データを記憶装置13に記憶する。 The total rainfall calculation means 104 integrates the amount of rainfall in each area within a specific time, and calculates the total amount of rainfall in each area. The total rainfall calculation means 104 stores total rainfall data in each area in the storage device 13.

第2浸水量算出手段105は、降雨開始後の特定時間内における時刻毎の浸入水の総量を算出する。推定手段106は、平日の曜日及び土日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水量を特定する値を求め、当該値から浸入
水の発生する区域を推定する。推定手段106は、複数の区域のうち何れの区域から下水処理施設5に浸入水が流入したのかを推定する。推定手段106は、浸入水が発生している区域として複数の区域のうちの一つを推定してもよいし、浸入水が発生している区域として複数の区域のうちの二つ以上を推定してもよい。推定手段106は、重回帰分析を利用して、浸入水が発生している区域を推定してもよい。
The second inundation amount calculation means 105 calculates the total amount of infiltration water at each time within a specific time after the start of rain. The estimation means 106 calculates a value that specifies the amount of infiltrated water in each area from the total amount of infiltrated water on weekdays, weekends, and holidays, the total amount of rainfall in each area, and the time relationship before and after rainfall, and uses the value to determine the occurrence of infiltrated water. Estimate the area. The estimating means 106 estimates from which area out of the plurality of areas the infiltrated water has flowed into the sewage treatment facility 5. The estimating means 106 may estimate one of a plurality of areas as the area where infiltration water is occurring, or estimate two or more of the plurality of areas as the area where infiltration water is occurring. You may. The estimating means 106 may use multiple regression analysis to estimate the area where infiltrated water is occurring.

推定手段106は、ディープラーニングなどによって学習した推定モデルを用いて、浸入水の発生する区域を推定してもよい。図4は、第1実施形態に係る浸入水推定システム10の機能ブロック図である。図4に示すように、生成した推定モデルである曜日別流量予測モデル110に、時刻毎かつ平日の曜日及び土日祝日毎の流入量データと、時刻毎の降雨量データを入力することにより、推定手段106の推定精度が向上する。また、推定手段106が推定モデルとして機能してもよい。 The estimating unit 106 may estimate the area where infiltrated water occurs using an estimation model learned by deep learning or the like. FIG. 4 is a functional block diagram of the intrusion water estimation system 10 according to the first embodiment. As shown in FIG. 4, by inputting inflow data for each time, weekdays, weekends, and holidays, and rainfall amount data for each time into the generated estimation model, the day-of-week flow rate prediction model 110, estimation is possible. The estimation accuracy of the means 106 is improved. Furthermore, the estimation means 106 may function as an estimation model.

平日の曜日及び土日祝日毎の流入量データがラベリングされた状態で記憶装置13に記憶されている。記憶装置13から平日の曜日及土日祝日毎の流入量データが抽出されて、平日の曜日及び土日祝日毎の流入量データが曜日別流量予測モデル110に入力される。区域毎の総降雨量データが記憶装置13に記憶されている。記憶装置13から時刻毎の降雨量データが抽出されて、時刻毎の降雨量データが曜日別流量予測モデル110に入力される。また、時刻毎の降雨量データは、該当時間における降雨の有無を決定するための降雨発生データとして用いられる。降雨発生データは、差分演算のトリガとしても用いられる。晴天時の汚水の流入量と雨天時の汚水の流入量との差分演算の結果が曜日別流量予測モデル110に入力される。曜日別流量予測モデル110は、浸入水量の推定処理を行う。 Inflow data for each weekday, weekends, and holidays is stored in the storage device 13 in a labeled state. Inflow data for each day of the week on weekdays and Saturdays, Sundays, and holidays is extracted from the storage device 13, and input into the flow rate prediction model 110 for each day of the week. Total rainfall data for each area is stored in the storage device 13. Rainfall data for each time is extracted from the storage device 13 and input to the day-of-week flow rate prediction model 110. Further, the rainfall amount data for each time is used as rainfall occurrence data for determining the presence or absence of rain at the relevant time. Rainfall occurrence data is also used as a trigger for difference calculations. The result of calculating the difference between the amount of sewage flowing in on a sunny day and the amount of sewage flowing in on a rainy day is input to the day-of-the-week flow rate prediction model 110 . The day-of-week flow rate prediction model 110 performs a process of estimating the amount of infiltrated water.

推定モデルの精度向上のために、推定モデルにダミーデータを適用してもよい。図5を参照して、ダミーデータの一例について説明する。図5は、ダミーデータとして設定する降雨量データの説明図である。図5の(a)は、対象の地域全体(全体処理区)を小区分(小区間)に区分けした状態が示されている。図5に示す例では、全体処理区を20の処理分区(区域)に分けているが、図5に示す例に限定されず、地域全体を他の数の処理分区に分けてもよい。図5の(b)及び(c)に示すように、複数の処理分区の一つに降雨量の多い大降雨が選択され、他の処理分区に降雨量の少ない小降雨が設定されている。図5の(b)では、処理分区No.1に大降雨が設定され、処理分区No.2~20に小降雨が設定されている。図5の(c)では、処理分区No.2に大降雨が設定され、処理分区No.1、3~20に小降雨が設定されている。以降、処理分区No.3~20について、複数の処理分区の一つに大降雨を設定し、他の処理分区に小降雨を設定する処理を繰り返す。このように、ダミーデータとして設定する降雨量は、複数の処理分区に対して、大降雨となる区分を一つ選択した際、他の処理分区を小降雨となるように設定する。大降雨の雨量は、小降雨の雨量よりも多く設定する。大降雨の降雨時間は、小降雨の降雨時間よりも短く設定する。 Dummy data may be applied to the estimation model in order to improve the accuracy of the estimation model. An example of dummy data will be described with reference to FIG. 5. FIG. 5 is an explanatory diagram of rainfall amount data set as dummy data. FIG. 5A shows a state in which the entire target area (total treatment area) is divided into subdivisions (subsections). In the example shown in FIG. 5, the entire processing area is divided into 20 processing subdivisions (areas), but the present invention is not limited to the example shown in FIG. 5, and the entire area may be divided into another number of processing subdivisions. As shown in (b) and (c) of FIG. 5, heavy rainfall with a large amount of rainfall is selected as one of the plurality of processing divisions, and light rainfall with a small amount of rainfall is set in the other processing divisions. In FIG. 5(b), processing section No. Heavy rainfall is set to No. 1, and processing division No. Light rainfall is expected between 2 and 20. In FIG. 5(c), processing section No. 2 is set as heavy rainfall, and processing division No. Light rainfall is expected from 1.3 to 20. From then on, processing division no. For 3 to 20, the process of setting heavy rainfall in one of the plurality of processing divisions and setting light rainfall in the other processing divisions is repeated. In this way, the amount of rainfall set as dummy data is set such that when one of the plurality of processing divisions is selected as a heavy rainfall, the other processing divisions are set as a light rainfall. The amount of rainfall for heavy rainfall is set to be greater than the amount of rainfall for light rainfall. The rainfall duration for heavy rainfall is set shorter than the rainfall duration for light rainfall.

上記のように設定された複数のダミーデータが推定モデルに入力されると共に、曜日毎の流入量データ及び時間毎の降雨量データが推定モデルに入力されることで、浸入水量が算出される。複数の処理分区の一つを大降雨に設定し、他の処理分区を小降雨に設定する処理を全ての処理分区に対して順に行うことで、全ての処理分区についての浸入水量が算出される。処理分区の浸入水量は、処理分区(排水区)の単位面積当たりの雨天時浸入水量(m/ha)であってもよい。複数の処理分区の浸入水量を算出して比較することにより、複数の処理分区の浸水量順位を決定する。 The amount of infiltrated water is calculated by inputting the plurality of dummy data set as described above into the estimation model, and inputting the inflow amount data for each day of the week and the rainfall amount data for each hour into the estimation model. By sequentially performing the process of setting one of the multiple treatment zones to heavy rainfall and the other treatment zones to light rainfall, the amount of infiltration water for all treatment zones is calculated. . The amount of infiltrated water in the treatment subdivision may be the amount of infiltrated water (m 3 /ha) in rainy weather per unit area of the treatment subdivision (drainage area). By calculating and comparing the amount of infiltrated water in a plurality of treatment divisions, the ranking of the amount of inundation in the plurality of treatment divisions is determined.

図6は、推定モデルによって算出された浸入水量に基づいて決定した複数の処理分区の浸水量順位と、統計データにおける浸入水量に基づいて決定した複数の処理分区の浸水量
順位との関係を示す図である。こちらは関東圏の特定地域において、実際に下水管の流路上に複数の流水量計測器を設置した実測の統計データと推定結果との比較である。実測の統計データは、機械学習において教師データ、検証データとしても使用している。図6では、推定モデルによって算出された浸入水量に基づいて決定した複数の処理分区の順位を実線で結び、統計データにおける浸入水量に基づいて決定した複数の処理分区の順位を点線で結んでいる。図6に示すように、推定モデルによって算出された浸入水量に基づいて決定した複数の処理分区の順位と、統計データにおける浸入水量に基づいて決定した複数の処理分区の順位との間で殆ど差がない結果となっている。推定モデルによって算出された推定結果と統計結果との間で大きな乖離はないため、推定モデルの推定精度が高く、推定モデルが妥当であることが理解できる。
Figure 6 shows the relationship between the inundation rankings of multiple treatment divisions determined based on the infiltration volume calculated by the estimation model and the inundation rankings of multiple treatment divisions determined based on the infiltration volume in statistical data. It is a diagram. This is a comparison between actual statistical data and estimated results obtained by installing multiple water flow measuring instruments on the flow paths of sewer pipes in a specific region of the Kanto region. Actual statistical data is also used as training data and verification data in machine learning. In Figure 6, a solid line connects the rankings of multiple treatment divisions determined based on the amount of infiltrated water calculated by the estimation model, and a dotted line connects the rankings of multiple treatment divisions determined based on the amount of infiltrated water in statistical data. . As shown in Figure 6, there is almost no difference between the ranking of multiple treatment divisions determined based on the amount of infiltration water calculated by the estimation model and the ranking of multiple treatment divisions determined based on the amount of infiltration water in the statistical data. The result is that there is no. Since there is no large discrepancy between the estimation results calculated by the estimation model and the statistical results, it can be understood that the estimation accuracy of the estimation model is high and the estimation model is valid.

図7は、所定の対象地域をメッシュで区切ったときの模式図である。図7の白丸で示した各位置に汚水管3を流れる汚水の流量を測定する流量計を設置している。各流量計によって測定された汚水の流量を測定することで、複数の区域のいずれで浸入水が発生したかを実測した。推定手段106によって推定した浸入水が発生している区域と、実測によって特定した浸入水が発生している区域とが、一致していることが確認された。 FIG. 7 is a schematic diagram of a predetermined target area divided into meshes. Flowmeters for measuring the flow rate of wastewater flowing through the wastewater pipe 3 are installed at each position indicated by white circles in FIG. By measuring the flow rate of sewage measured by each flow meter, it was actually determined in which of the multiple areas infiltration water occurred. It was confirmed that the area where infiltration water is occurring as estimated by the estimating means 106 and the area where intrusion water is occurring and identified by actual measurement are the same.

図8は、第1実施形態に係る浸入水推定システム10の処理の流れの一例を示すフローチャートである。S1において、流水量計測手段102は、汚水の流入量データを取得し、記憶装置13に汚水の流入量データを記憶する。S2において、流水量計測手段102は、記憶装置13から曜日毎の流入量データを抽出する。S3において、総降雨量算出手段104は、区域毎に降雨する降雨量を積算することで、区域(小区分)毎の総降雨量データを取得し、記憶装置13に区域毎の総降雨量データを記憶する。S4において、降雨データ取得手段101は、記憶装置13から各区域の時刻毎の降雨量データを抽出する。 FIG. 8 is a flowchart illustrating an example of the process flow of the intrusion water estimation system 10 according to the first embodiment. In S<b>1 , the flow rate measuring means 102 acquires wastewater inflow rate data, and stores the wastewater inflow rate data in the storage device 13 . In S2, the flow rate measuring means 102 extracts inflow rate data for each day of the week from the storage device 13. In S3, the total rainfall calculation means 104 acquires total rainfall data for each area (subdivision) by integrating the amount of rainfall for each area, and stores the total rainfall data for each area in the storage device 13. remember. In S4, the rainfall data acquisition means 101 extracts rainfall amount data for each area at each time from the storage device 13.

S5において、推定手段106は、曜日毎の流入量データ及び時刻毎の降雨量データを曜日別流量予測モデル110に入力する。S6において、曜日別流量予測モデル110にダミーデータを入力する。S7において、推定手段106は、全ての処理分区への適用が完了しているか否を判定する。複数の処理分区の一つに大降雨を設定し、他の処理分区に小降雨を設定してダミーデータを作成する処理が、全ての処理分区に対して行われた場合(S7;YES)、S8に進む。一方、未作成のダミーデータが残っている場合(S7;NO)、S6に進む。 In S5, the estimating means 106 inputs the inflow amount data for each day of the week and the rainfall amount data for each time into the day-of-week flow rate prediction model 110. In S6, dummy data is input into the day-of-week flow rate prediction model 110. In S7, the estimating means 106 determines whether application to all processing sections has been completed. If the process of creating dummy data by setting heavy rainfall in one of the plurality of processing divisions and setting light rainfall in the other processing divisions is performed for all processing divisions (S7; YES), Proceed to S8. On the other hand, if uncreated dummy data remains (S7; NO), the process advances to S6.

S8において、第1浸水量算出手段103は、雨天時浸入水量の差分演算を行い、平日の曜日毎の浸入水の総量データと、土日祝日毎の浸入水の総量データとを算出して記憶装置13に記憶する。S8において、推定手段106は、平日の曜日及び土日祝日毎の浸入水の総量データを曜日別流量予測モデル110に入力する。S9において、推定手段106は、処理分区毎の浸入水量の推定結果を曜日別流量予測モデル110から取得する。 In S8, the first inundation amount calculating means 103 calculates the difference in the amount of infiltrated water during rainy weather, calculates the total amount of infiltrated water for each day of the week on weekdays, and the total amount of infiltrated water for each weekend and holiday, and stores the data in the storage device. 13. In S8, the estimating means 106 inputs the total amount of infiltrated water data for each day of the week, weekends, and holidays into the day-of-week flow rate prediction model 110. In S9, the estimation means 106 acquires the estimation result of the amount of infiltration water for each treatment division from the day-of-week flow rate prediction model 110.

推定手段106は、曜日別流量予測モデル110によって算出された複数の処理分区の浸入水量を比較して、複数の処理分区の順位を決定してもよい。推定手段106は、複数の処理分区の浸入水量と閾値とを比較する。複数の処理分区の少なくとも一つの浸入水量が閾値以上である場合、推定手段106は、複数の処理分区の少なくとも一つを浸入水が発生している処理分区と推定する。閾値は、設計、実験又はシミュレーションによって予め求められており、記憶装置13に記憶されている。 The estimation means 106 may determine the ranking of the plurality of treatment divisions by comparing the amounts of infiltration water in the plurality of treatment divisions calculated by the day-of-week flow rate prediction model 110. The estimation means 106 compares the amount of infiltrated water in the plurality of treatment divisions with a threshold value. When the amount of infiltration water in at least one of the plurality of treatment divisions is equal to or greater than the threshold value, the estimation means 106 estimates at least one of the plurality of treatment divisions as the treatment division in which infiltration water is occurring. The threshold value is determined in advance by design, experiment, or simulation, and is stored in the storage device 13.

制御装置11は、複数の処理分区の浸入水量に関する情報、浸入水が発生している処理分区に関する情報などを表示装置15に表示してもよい。また、制御装置11は、複数の処理分区の浸入水量に関する情報、浸入水が発生している処理分区に関する情報などを外部表示装置に表示してもよい。 The control device 11 may display on the display device 15 information regarding the amount of infiltrated water in a plurality of treatment divisions, information regarding the treatment division where infiltration water is occurring, and the like. Further, the control device 11 may display information regarding the amount of infiltrated water in a plurality of treatment divisions, information regarding the treatment division where infiltration water is occurring, etc. on an external display device.

第1実施形態に係る浸入水推定システム10によれば、平日の曜日や休日祝日毎で変動する汚水の流入量(生活排水量および工業排水量)を考慮して区域(処理分区)で発生する浸入水量を推定するため、複数の区域の浸入水量を高い精度で推定することができる。浸入水が発生している区域を高い精度で推定することができるため、浸入水の発生箇所の改修を効率的に行うことが可能となる。下水処理施設5に流入する汚水の流入量を測定すればよいため、流量計などの計測器を広い地域に設定する必要がなくなり、コストを削減することができる。また、特定の処理分区に大降雨を、その他の処理分区に小降雨を設定するダミーデータを適用することで、推定モデルにおける機械学習の精度を高めることができる。 According to the infiltration water estimation system 10 according to the first embodiment, the amount of infiltration water generated in the area (treatment division) takes into account the amount of sewage inflow (domestic wastewater amount and industrial wastewater amount) that changes depending on weekdays, holidays, and holidays. Therefore, the amount of infiltrated water in multiple areas can be estimated with high accuracy. Since the area where infiltrated water is occurring can be estimated with high accuracy, it becomes possible to efficiently repair the location where infiltrated water occurs. Since it is sufficient to measure the amount of wastewater flowing into the sewage treatment facility 5, there is no need to set measuring instruments such as flowmeters in a wide area, and costs can be reduced. Furthermore, by applying dummy data that sets heavy rainfall to a specific processing division and light rainfall to other processing divisions, it is possible to improve the accuracy of machine learning in the estimation model.

<第2実施形態>
第2実施形態に係る浸入水推定システムについて説明する。第2実施形態において、第1実施形態と同一の構成要素については、第1実施形態と同一の符号を付し、その説明を適宜省略する。
<Second embodiment>
An infiltration water estimation system according to a second embodiment will be described. In the second embodiment, the same components as in the first embodiment are given the same reference numerals as in the first embodiment, and the description thereof will be omitted as appropriate.

浸入水には、汚水管3に直接的に流入した浸入水(以下、直接浸入水とも表記する。)と、汚水管3に間接的に流入した浸入水(以下、間接浸入水とも表記する。)と、が含まれる。直接浸入水は、例えば、汚水管3に対して意図しないで合流した浸入水、汚水管3に雨水管4が誤接続されることで汚水管3に流入した浸入水である。間接浸入水は、汚水管3の損傷箇所から汚水管3に流入した浸入水である。降雨開始後から直接浸入水が下水処理施設5に到達するまでの到達時間と、降雨開始後から間接浸入水が下水処理施設5に到達するまでの到達時間と、は異なる。これは直接および間接に浸入する下水管の位置がほぼ同じ場合とした想定においてである。直接浸入水は、降雨開始後の一定時間で下水処理施設5に流入する。間接浸入水は、一度、土壌などの地下に入り込んで滞留した後、汚水管3に流入する。従って、降雨開始後から一定時間までに下水処理施設5に流入する浸入水には、直接浸入水が多く含まれ、降雨開始後の一定時間から降雨終了又は降雨終了の一定時間までに下水処理施設5に流入する浸入水には、間接浸入水が多く含まれることになる。 The infiltrated water includes infiltrated water that directly entered the wastewater pipe 3 (hereinafter also referred to as direct infiltrated water), and infiltrated water that indirectly entered the wastewater pipe 3 (hereinafter also referred to as indirect infiltrated water). ) and are included. Directly infiltrating water is, for example, infiltrating water that has unintentionally joined the wastewater pipe 3, or infiltrating water that has flowed into the wastewater pipe 3 due to the rainwater pipe 4 being incorrectly connected to the wastewater pipe 3. Indirect infiltration water is infiltration water that has flowed into the wastewater pipe 3 from a damaged part of the wastewater pipe 3. The arrival time from the start of rainfall until the direct infiltration water reaches the sewage treatment facility 5 is different from the arrival time from the start of the rain until the indirect infiltration water reaches the sewage treatment facility 5. This is based on the assumption that the locations of direct and indirect sewer pipes are approximately the same. Direct infiltration water flows into the sewage treatment facility 5 at a certain time after the start of rain. The indirect infiltration water once enters underground, such as the soil, and stagnates therein, and then flows into the sewage pipe 3. Therefore, the infiltration water that flows into the sewage treatment facility 5 within a certain time after the start of rain contains a large amount of direct infiltration water, and the sewage treatment facility The infiltrated water flowing into No. 5 contains a large amount of indirect infiltrated water.

図9は、直接浸入水及び間接浸入水の量と浸入水の総量との対応関係を示す図である。図9の縦軸は、浸入水量を示し、図9の横軸は、時間(時刻)を示している。図9の実線L1は、浸入水の総量を示し、図9の実線L2は、直接浸入水の量を示し、図9の点線L3は、間接浸入水の量を示している。浸入水の総量は、直接浸入水の量と間接浸入水の量との合計量である。図9に示すように、所定時間T1までは直接浸入水の量が間接浸入水の量よりも大きいが、所定時間T1を過ぎると間接浸入水の量が直接浸入水の量よりも大きくなる。所定時間T1は、例えば、降雨開始後の一定時間である。また、所定時間T1後、直接浸水量L2の値が0となる時刻が、降雨がほぼ終了した時刻となる。 FIG. 9 is a diagram showing the correspondence between the amounts of direct intrusion water and indirect infiltration water and the total amount of infiltration water. The vertical axis in FIG. 9 indicates the amount of infiltrated water, and the horizontal axis in FIG. 9 indicates time. The solid line L1 in FIG. 9 shows the total amount of infiltrating water, the solid line L2 in FIG. 9 shows the amount of direct intruding water, and the dotted line L3 in FIG. 9 shows the amount of indirect invading water. The total amount of infiltrated water is the sum of the amount of direct infiltrated water and the amount of indirect infiltrated water. As shown in FIG. 9, the amount of direct infiltration water is larger than the amount of indirect infiltration water until a predetermined time T1, but after the predetermined time T1, the amount of indirect infiltration water becomes larger than the amount of direct infiltration water. The predetermined time T1 is, for example, a certain time after the start of rain. Further, after the predetermined time T1, the time when the value of the direct inundation amount L2 becomes 0 is the time when the rain has almost ended.

降雨開始後から直接浸入水が下水処理施設5に到達するまでの到達時間は、降雨開始後から間接浸入水が下水処理施設5に到達するまでの到達時間よりも短い。例えば、降雨開始後の一定時間以降に浸入水の総量が急激に小さくなった場合、浸入水の総量に対する直接浸入水の量の比率が大きいといえる。例えば、降雨開始後の一定時間以降に浸入水の総量が徐々に小さくなった場合、浸入水の総量に対する間接浸入水の量の比率が大きいといえる。 The arrival time from the start of rain until the direct infiltration water reaches the sewage treatment facility 5 is shorter than the arrival time from the start of the rain until the indirect infiltration water reaches the sewage treatment facility 5. For example, if the total amount of infiltrated water suddenly decreases after a certain period of time after the start of rain, it can be said that the ratio of the amount of direct infiltrated water to the total amount of infiltrated water is large. For example, if the total amount of infiltrated water gradually decreases after a certain period of time after the start of rain, it can be said that the ratio of the amount of indirect infiltrated water to the total amount of infiltrated water is large.

推定手段106は、降雨中及び降雨後の特定期間における浸入水の総量の時間変化によって、降雨中及び降雨後の特定期間における浸入水が、直接浸入水か間接浸入水かを推定する。推定手段106は、降雨中及び降雨後の特定期間における浸入水の総量の時間変化によって、降雨中及び降雨後の特定期間における浸入水の総量に対する直接浸入水の量の
比率と、降雨中及び降雨後の特定期間における浸入水の総量に対する間接浸入水の量の比率と、を推定してもよい。推定手段106は、曜日別流量予測モデル110を用いて、直接浸入水の量の比率及び間接浸入水の量の比率を推定してもよい。推定手段106は、直接浸入水の量の比率及び間接浸入水の量の比率に基づいて、降雨中及び降雨後の特定期間における浸入水が、直接浸入水か間接浸入水かを推定してもよい。
The estimating means 106 estimates whether the infiltrated water during the rainfall and in the specific period after the rain is direct infiltrated water or indirect infiltrated water based on the temporal change in the total amount of infiltrated water during the rain and during the specific period after the rain. The estimation means 106 calculates the ratio of the amount of direct infiltration water to the total amount of infiltration water during and after rainfall, and the ratio of the amount of direct infiltration water to the total amount of infiltration water during and after rainfall, based on the time change in the total amount of infiltration water during and during specific periods after rainfall. The ratio of the amount of indirect intrusion water to the total amount of infiltration water in a later specific period may be estimated. The estimation means 106 may estimate the ratio of the amount of direct infiltration water and the ratio of the amount of indirect infiltration water using the day-of-week flow rate prediction model 110. The estimation means 106 estimates whether the infiltrated water during a specific period of time during and after rainfall is direct infiltrated water or indirect infiltrated water based on the ratio of the amount of direct infiltrated water and the ratio of the amount of indirect infiltrated water. good.

図10及び図11を参照して、第2実施形態に係る浸入水推定システム10で行われる処理について説明する。図10は、第2実施形態に係る浸入水推定システム10の機能ブロック図である。図10に示すように、第2実施形態に係る浸入水推定システム10では、第1実施形態に係る浸入水推定システム10と比較して、直接浸入水及び間接浸入水の推定処理が追加されている。 Processing performed by the intrusion water estimation system 10 according to the second embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a functional block diagram of the intrusion water estimation system 10 according to the second embodiment. As shown in FIG. 10, in the intrusion water estimation system 10 according to the second embodiment, estimation processing for direct intrusion water and indirect intrusion water is added compared to the intrusion water estimation system 10 according to the first embodiment. There is.

図11は、第2実施形態に係る浸入水推定システム10の処理の流れの一例を示すフローチャートである。図11に示すS11~S19では、図8に示すS1~S9と同様の処理が行われる。S20において、推定手段106は、降雨中及び降雨後の特定期間における浸入水の総量の時間変化に基づいて、直接浸入水の量の比率及び間接浸入水の量の比率を推定する。S20において、推定手段106は、直接浸入水の量の比率及び間接浸入水の量の比率に基づいて、降雨中及び降雨後の特定期間における浸入水が、直接浸入水か間接浸入水かを推定する。制御装置11は、降雨中及び降雨後の特定期間における浸入水が、直接浸入水又は間接浸入水であることを示す情報などを表示装置15に表示してもよい。また、制御装置11は、降雨中及び降雨後の特定期間における浸入水が、直接浸入水又は間接浸入水であることを示す情報などを外部表示装置に表示してもよい。推定処理は、統計処理、多変量解析、ディープラーニング等の機械学習いずれを使用してもよい。 FIG. 11 is a flowchart showing an example of the process flow of the intrusion water estimation system 10 according to the second embodiment. In S11 to S19 shown in FIG. 11, the same processing as S1 to S9 shown in FIG. 8 is performed. In S20, the estimating means 106 estimates the ratio of the amount of direct infiltrated water and the ratio of the amount of indirect infiltrated water based on the temporal change in the total amount of infiltrated water during and during a specific period after the rain. In S20, the estimating means 106 estimates whether the infiltrated water during a specific period of time during and after rainfall is direct infiltrated water or indirect infiltrated water, based on the ratio of the amount of direct infiltrated water and the ratio of the amount of indirect infiltrated water. do. The control device 11 may display, on the display device 15, information indicating that the infiltrated water during and during a specific period after the rain is direct infiltrated water or indirect infiltrated water. Further, the control device 11 may display on the external display device information indicating that the infiltrated water during and during a specific period after the rain is direct infiltrated water or indirect infiltrated water. The estimation process may use any of statistical processing, multivariate analysis, and machine learning such as deep learning.

第2実施形態に係る浸入水推定システム10によれば、第1実施形態と同様、平日の曜日や休日祝日毎で変動する汚水量(生活排水量および工業排水量)を考慮して区域(処理分区)で発生する浸入水量を推定するため、複数の区域の浸入水量を高い精度で推定することができる。浸入水が発生している区域を高い精度で推定することができるため、浸入水の発生箇所の改修を効率的に行うことが可能となる。下水処理施設5に流入する汚水の流入量を測定すればよいため、流量計などの計測器を広い地域に設定する必要がなくなり、コストを削減することができる。また、特定の処理分区に大降雨を、その他の処理分区に小降雨を設定するダミーデータを適用することで、推定モデルにおける機械学習の精度を高めることができる。 According to the infiltration water estimation system 10 according to the second embodiment, as in the first embodiment, areas (treatment divisions) are created in consideration of the amount of sewage (domestic wastewater amount and industrial wastewater amount) that changes depending on weekdays, holidays, and public holidays. In order to estimate the amount of infiltrated water that occurs in multiple areas, it is possible to estimate the amount of infiltrated water in multiple areas with high accuracy. Since the area where infiltrated water is occurring can be estimated with high accuracy, it becomes possible to efficiently repair the location where infiltrated water occurs. Since it is sufficient to measure the amount of wastewater flowing into the sewage treatment facility 5, there is no need to set measuring instruments such as flowmeters in a wide area, and costs can be reduced. Furthermore, by applying dummy data that sets heavy rainfall to a specific processing division and light rainfall to other processing divisions, it is possible to improve the accuracy of machine learning in the estimation model.

第2実施形態に係る浸入水推定システム10によれば、降雨中及び降雨後の特定期間における浸入水の総量に対する直接浸入水の量の比率及び間接浸入水の量の比率を把握することができる。第2実施形態に係る浸入水推定システム10によれば、降雨中及び降雨後の特定期間における浸入水が、直接浸入水又は間接浸入水であることを把握することができる。これにより、浸入水が発生している区域における浸入水の発生箇所を絞り込むことが容易になり、浸入水の発生箇所の改修を更に効率的に行うことが可能となる。 According to the infiltration water estimation system 10 according to the second embodiment, it is possible to grasp the ratio of the amount of direct infiltration water and the ratio of the amount of indirect intrusion water to the total amount of infiltration water during and during a specific period after rainfall. . According to the infiltration water estimation system 10 according to the second embodiment, it is possible to understand that intrusion water during a specific period of time during and after rainfall is direct infiltration water or indirect infiltration water. This makes it easy to narrow down the locations where the infiltrated water occurs in the area where the infiltrated water occurs, and it becomes possible to repair the locations where the infiltrated water occurs more efficiently.

<変形例>
変形例に係る浸入水推定システム10について説明する。記憶装置13は、汚水管3の工事の履歴情報が記憶されていてもよい。記憶装置13は、記憶部の一例である。汚水管3の工事の履歴情報は、各区域の汚水管3の工事の場所及び工事の時期を含む。汚水管3の工事の履歴情報は、汚水管3の工事の概要を更に含んでもよい。第1浸水量算出手段103は、所定期間内における時刻毎の浸入水の総量を算出する。第1浸水量算出手段103は、所定期間内における時刻毎の浸入水の総量の変化を検出する。例えば、所定期間内における第1の時刻の浸入水の総量と、所定期間内における第1の時刻と連続する第2の時刻の浸入水の総量との差分が、閾値以上である場合、所定期間内における第2の時刻の
浸入水の総量が変化したとしてもよい。
<Modified example>
An infiltration water estimation system 10 according to a modification will be described. The storage device 13 may store history information on construction of the wastewater pipe 3. The storage device 13 is an example of a storage section. The history information of the construction of the wastewater pipe 3 includes the location and time of the construction of the wastewater pipe 3 in each area. The history information of the construction of the wastewater pipe 3 may further include a summary of the construction of the wastewater pipe 3. The first inundation amount calculation means 103 calculates the total amount of infiltration water at each time within a predetermined period. The first inundation amount calculating means 103 detects changes in the total amount of infiltration water at each time within a predetermined period. For example, if the difference between the total amount of infiltrated water at the first time within the predetermined period and the total amount of infiltrated water at the second time consecutive to the first time within the predetermined period is equal to or greater than the threshold value, then the predetermined period of time is The total amount of infiltrated water at the second time point may change.

第1浸水量算出手段103は、所定期間内における時刻毎の浸入水の総量の変化を工事履歴情報に対応付けて記憶装置13に記憶する。所定期間内における第2の時刻の浸入水の総量が変化し、かつ、汚水管3の工事の時期と所定期間内における第2の時刻とが一致又は近似している場合、第1浸水量算出手段103は、所定期間内における第2の時刻の浸入水の総量の変化を工事履歴情報に対応付けて記憶装置13に記憶してもよい。 The first inundation amount calculating means 103 stores changes in the total amount of infiltration water at each time within a predetermined period in the storage device 13 in association with construction history information. If the total amount of infiltration water at the second time within the predetermined period changes, and the time of construction of the sewage pipe 3 and the second time within the predetermined period coincide or are similar, the first inundation amount calculation The means 103 may store a change in the total amount of infiltrated water at a second time within a predetermined period in the storage device 13 in association with the construction history information.

記憶装置13は、土壌変化情報が記憶されていてもよい。土壌変化情報は、各区域における土壌変化が発生した位置及び土壌変化が発生した時期を含む。土壌変化情報は、土壌変化が発生した原因に関する情報を更に含んでもよい。土壌変化が発生した原因は、例えば、台風、大雨、川の氾濫などである。第1浸水量算出手段103は、所定期間内における時刻毎の浸入水の総量の変化を土壌変化情報に対応付けて記憶装置13に記憶する。例えば、所定期間内における第2の時刻の浸入水の総量が変化し、かつ、土壌変化が発生した時期と所定期間内における第2の時刻とが一致又は近似している場合、第1浸水量算出手段103は、所定期間内における第2の時刻の浸入水の総量の変化を土壌変化情報に対応付けて記憶装置13に記憶してもよい。 The storage device 13 may store soil change information. The soil change information includes the position where the soil change occurred in each area and the time when the soil change occurred. The soil change information may further include information regarding the cause of the soil change. The causes of soil changes include, for example, typhoons, heavy rain, and river flooding. The first inundation amount calculation means 103 stores changes in the total amount of infiltrated water at each time within a predetermined period in the storage device 13 in association with soil change information. For example, if the total amount of infiltration water changes at the second time within a predetermined period, and the time when soil change occurs coincides with or is similar to the second time within the predetermined period, the first inundation amount The calculation means 103 may store a change in the total amount of infiltrated water at a second time within a predetermined period in the storage device 13 in association with the soil change information.

上記の処理は、第2浸水量算出手段105が行ってもよいし、第1浸水量算出手段103とは異なる他の算出手段が行ってもよい。制御装置11は、所定期間内における時刻毎の浸入水の総量の変化に関する情報と、浸入水の総量の変化に対応付けられた工事履歴情報とを、表示装置15に表示してもよい。制御装置11は、所定期間内における時刻毎の浸入水の総量の変化に関する情報と、浸入水の総量の変化に対応付けられた土壌変化情報とを、表示装置15に表示してもよい。また、制御装置11は、これらの情報を外部表示装置に表示してもよい。 The above process may be performed by the second water inundation amount calculation means 105 or may be performed by another calculation means different from the first water inundation amount calculation means 103. The control device 11 may display on the display device 15 information regarding changes in the total amount of infiltrated water at each time within a predetermined period and construction history information associated with changes in the total amount of infiltrated water. The control device 11 may display on the display device 15 information regarding changes in the total amount of infiltrated water at each time within a predetermined period and soil change information associated with changes in the total amount of infiltrated water. Further, the control device 11 may display this information on an external display device.

変形例に係る浸入水推定システム10によれば、汚水管3の工事や土壌変化が、浸入水の総量の変化にどの程度影響を及ぼすのかを把握することができる。浸入水の総量が増加した場合には、汚水管3の工事の場所や土壌変化が発生した位置において浸入水が発生している可能性がある。汚水管3の工事の場所や土壌変化が発生した位置を把握することで、浸入水が発生している区域における浸入水の発生箇所を絞り込むことが容易になり、浸入水の発生箇所の改修を更に効率的に行うことが可能となる。 According to the infiltration water estimation system 10 according to the modified example, it is possible to grasp the extent to which construction of the sewage pipe 3 and soil changes affect changes in the total amount of infiltration water. If the total amount of infiltrated water increases, there is a possibility that infiltrated water is occurring at the location where the sewer pipe 3 is being constructed or where soil changes have occurred. By understanding the location of sewage pipe 3 construction and the location where soil changes have occurred, it becomes easier to narrow down the locations where infiltrated water is occurring in the area where infiltrated water is occurring, and it is possible to repair the locations where infiltrated water is occurring. This can be done even more efficiently.

上記で説明した各処理は、コンピュータが実行する方法(浸入水推定方法)として捉えてもよい。また、上記で説明した各処理をコンピュータに実行させるためのプログラム(浸入水推定プログラム)として捉えてもよい。更に、当該プログラムを、ネットワークを通じて、又は、非一時的にデータを保持するコンピュータ読取可能な記録媒体等からコンピュータに提供してもよい。 Each of the processes described above may be regarded as a method (infiltration water estimation method) executed by a computer. Moreover, you may consider it as a program (infiltration water estimation program) for making a computer perform each process demonstrated above. Furthermore, the program may be provided to the computer through a network or from a computer-readable recording medium that holds data non-temporarily.

1・・・処理装置
2・・・下水管
3・・・汚水管
4・・・雨水管
5・・・下水処理施設
6・・・観測装置
7・・・測定センサ
10・・・浸入水推定システム
11・・・制御装置
12・・・通信インターフェース装置
13・・・記憶装置
14・・・入力装置
15・・・表示装置
101・・・降雨量データ取得手段
102・・・流水量計測手段
103・・・第1浸水量算出手段
104・・・総降雨量算出手段
105・・・第2浸水量算出手段
106・・・推定手段
110・・・曜日別流量予測モデル
1... Processing device 2... Sewage pipe 3... Sewage pipe 4... Storm drain 5... Sewage treatment facility 6... Observation device 7... Measurement sensor 10... Infiltration water estimation system 11...Control device 12...Communication interface device 13...Storage device 14...Input device 15...Display device 101...Rainfall data acquisition means 102...Flow rate measuring means 103. ...First inundation amount calculation means 104...Total rainfall amount calculation means 105...Second inundation amount calculation means 106...Estimation means 110...Flow rate prediction model by day of the week

Claims (8)

雨天時に複数の区域で発生する浸入水を推定する浸入水推定システムであって、
各区域の時刻毎の降雨量を取得する取得手段と、
前記複数の区域から下水処理場に流入する汚水の時刻毎の流入量を計測する計測手段と、
前記流入量の内、晴天時の流入量と雨天時の流入量との差を浸入水の総量として算出する算出手段と、
前記流入量の内、平日と休日祝日との流入量を把握する手段と、
前記区域毎に降雨する降雨量を積算し、各区域における総降雨量を求める手段と、
降雨開始後特定時間内における時刻毎の浸入水の総量を算出する手段と、
平日の曜日および休日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水量を特定する値を求め、当該値から浸入水の発生する区域を推定する手段と、
を備えることを特徴とする分流式下水管への浸入水推定システム。
An infiltration water estimation system that estimates infiltration water that occurs in multiple areas during rainy days,
Acquisition means for acquiring the amount of rainfall for each area at each time;
Measuring means for measuring the amount of sewage flowing into the sewage treatment plant from the plurality of areas at each time;
Calculating means for calculating the difference between the amount of inflow on a sunny day and the amount of inflow on a rainy day as a total amount of infiltration water, of the amount of inflow;
Means for grasping the inflow amount on weekdays and holidays and holidays among the inflow amount;
Means for calculating the total amount of rainfall in each area by integrating the amount of rainfall in each area;
means for calculating the total amount of infiltrated water at each time within a specific time after the start of rainfall;
A value that specifies the amount of infiltrated water in each area is determined from the total amount of infiltrated water for each weekday, holiday, and holiday, total rainfall in each area, and the time relationship before and after rainfall, and the area where infiltrated water occurs is estimated from this value. means and
A system for estimating water intrusion into a separate sewer pipe, characterized by comprising:
前記推定する手段は、前記浸入水の発生する区域を推定する推定モデルに対し、特定地域の降雨を模したダミーデータを適用することを特徴とする請求項1に記載の分流式下水管への浸入水推定システム。 2. The estimation means applies dummy data simulating rainfall in a specific area to the estimation model for estimating the area where the infiltration water occurs. Infiltration water estimation system. 前記ダミーデータとして設定する降雨量は、全体処理区を小区間に区分した複数の処理分区に対し、降雨量の多い大降雨となる区分を一つ選択した際、他の処理分区を降雨量の少ない小降雨となるよう設定することを特徴とする請求請2に記載の分流式下水管への浸入水推定システム。 The amount of rainfall set as the dummy data is determined by dividing the entire treatment area into small sections, and when selecting one category that will experience heavy rainfall with a large amount of rainfall, The system for estimating water infiltration into a separate sewer pipe according to claim 2, characterized in that the system is set so that there is little rainfall. 降雨中および降雨後の特定期間における浸入水の総量の時間変化によって、浸入水が分流式下水管の損傷箇所からの流入か、浸入水が意図しない雨水合流および管の誤接続による流入かを推定することを特徴とする請求項1から3の何れか一項に記載の分流式下水管への浸入水推定システム。 Based on temporal changes in the total amount of infiltrated water during and after rainfall during a specific period, it can be estimated whether the infiltrated water is coming from a damaged part of a separate sewer pipe, or whether the infiltrated water is coming from unintended rainwater confluence or incorrect connection of pipes. The system for estimating water intrusion into a separate sewer pipe according to any one of claims 1 to 3. 浸入水量は、排水区の単位面積あたりの雨天時浸入水量であることを特徴とする請求請1から4の何れか一項に記載の分流式下水管への浸入水推定システム。 5. The system for estimating water intrusion into a separate sewer pipe according to any one of claims 1 to 4, wherein the amount of water intrusion is the amount of water intrusion per unit area of the drainage area during rainy weather. 各区域の分流式下水管の工事の場所および工事の時期を含む工事履歴情報及び各区域における土壌変化が発生した位置および土壌変化が発生した時期を含む土壌変化情報の少なくとも一方を記憶する記憶部と、
所定期間内における時刻毎の浸入水の総量を算出し、前記所定期間内における時刻毎の浸入水の総量の変化を前記工事履歴情報及び前記土壌変化情報の少なくとも一方に対応付けて前記記憶部に記憶する手段と、
を備えることを特徴とする請求請1から5の何れか一項に記載の分流式下水管への浸入水推定システム。
A storage unit that stores at least one of construction history information including the location and timing of construction of the separate sewer pipe in each area, and soil change information including the location where soil change occurred and the time when soil change occurred in each area. and,
Calculating the total amount of infiltrating water at each time within a predetermined period, and storing the change in the total amount of infiltrating water at each time in the predetermined period in correspondence with at least one of the construction history information and the soil change information. a means of remembering,
6. The system for estimating water infiltration into a separate sewer pipe according to any one of claims 1 to 5.
雨天時に複数の区域で発生する浸入水を推定する浸入水推定の方法であって、
各区域の時刻毎の降雨量を取得する取得工程と、
前記複数の区域から下水処理場に流入する汚水の時刻毎の流入量を計測する計測工程と、
前記流入量の内、晴天時の流入量と雨天時の流入量との差を浸入水の総量として算出する算出工程と、
前記流入量の内、平日と土日祝日との流入量を把握する工程と、
前記区域毎に降雨する降雨量を積算し、各区域における総降雨量を求める工程と、
降雨開始後特定時間内における時刻毎の浸入水の総量を算出する工程と、
平日の曜日および休日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水を特定する値を求め、当該値から浸水の発生する区域を推定する工程と、
を含むことを特徴とする分流式下水管への浸入水推定の方法。
A method for estimating infiltration water that occurs in multiple areas during rainy days, the method comprising:
an acquisition step of acquiring the amount of rainfall for each area at each time;
a measurement step of measuring the amount of sewage flowing into the sewage treatment plant from the plurality of areas at each time;
A calculation step of calculating the difference between the inflow amount on a sunny day and the inflow amount on a rainy day as the total amount of infiltration water among the inflow amounts;
Of the inflow amount, determining the inflow amount on weekdays and weekends and holidays;
A step of accumulating the amount of rainfall in each area and calculating the total amount of rainfall in each area;
a step of calculating the total amount of infiltrated water at each time within a specific time after the start of rain;
A process of determining the value that specifies the infiltrating water in each area from the total amount of infiltrating water for each weekday, holiday, and public holiday, the total amount of rainfall in each area, and the time relationship before and after rainfall, and estimating the area where flooding will occur from this value. and,
A method for estimating water infiltration into a separate sewer pipe, the method comprising:
雨天時に複数の区域で発生する浸入水を推定する浸入水推定システム上のコンピュータで機能するプログラムであって、
各区域の時刻毎の降雨量を取得する取得工程と、
前記複数の区域から下水処理場に流入する汚水の時刻毎の流入量を計測する計測工程と、
前記流入量の内、晴天時の流入量と雨天時の流入量との差を浸入水の総量として算出する算出工程と、
前記流入量の内、平日と土日祝日との流入量を把握する工程と、
前記区域毎に降雨する降雨量を積算し、各区域における総降雨量を求める工程と、
降雨開始後特定時間内における時刻毎の浸入水の総量を算出する工程と、
平日の曜日および休日祝日毎の浸入水の総量と各区域の総降雨量と降雨前後の時間関係から各区域の浸入水を特定する値を求め、当該値から浸水の発生する区域を推定する工程と、
をコンピュータに実行させるための分流式下水管への浸入水推定プログラム。
A program that operates on a computer on an infiltration water estimation system that estimates infiltration water that occurs in multiple areas during rainy days,
an acquisition step of acquiring the amount of rainfall for each area at each time;
a measurement step of measuring the amount of sewage flowing into the sewage treatment plant from the plurality of areas at each time;
A calculation step of calculating the difference between the inflow amount on a sunny day and the inflow amount on a rainy day as the total amount of infiltration water among the inflow amounts;
Of the inflow amount, determining the inflow amount on weekdays and weekends and holidays;
A step of accumulating the amount of rainfall in each area and calculating the total amount of rainfall in each area;
a step of calculating the total amount of infiltrated water at each time within a specific time after the start of rain;
A process of determining the value that specifies the infiltrating water in each area from the total amount of infiltrating water for each weekday, holiday, and public holiday, the total amount of rainfall in each area, and the time relationship before and after rainfall, and estimating the area where flooding will occur from this value. and,
A program for estimating water infiltration into separate sewer pipes to be executed by a computer.
JP2022056490A 2022-03-30 2022-03-30 Infiltration Estimation System, Method, and Program for Divided Sewer Active JP7143542B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022056490A JP7143542B1 (en) 2022-03-30 2022-03-30 Infiltration Estimation System, Method, and Program for Divided Sewer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022056490A JP7143542B1 (en) 2022-03-30 2022-03-30 Infiltration Estimation System, Method, and Program for Divided Sewer

Publications (2)

Publication Number Publication Date
JP7143542B1 JP7143542B1 (en) 2022-09-28
JP2023148459A true JP2023148459A (en) 2023-10-13

Family

ID=83444677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022056490A Active JP7143542B1 (en) 2022-03-30 2022-03-30 Infiltration Estimation System, Method, and Program for Divided Sewer

Country Status (1)

Country Link
JP (1) JP7143542B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027567A (en) * 2001-07-16 2003-01-29 Yamatake Corp Sewage inflow estimating device and method, and server device
JP2003184160A (en) * 2001-12-17 2003-07-03 Hitachi Ltd Method and system for improving chargeable sewage rate
JP2005023763A (en) * 2003-07-04 2005-01-27 Yamatake Corp Unknown water generation distribution inferring device, its method, and program
JP2011080347A (en) * 2009-09-10 2011-04-21 Toshiba Corp Unknown water monitoring device and unknown water monitoring method
JP2016108743A (en) * 2014-12-02 2016-06-20 株式会社東芝 Device for estimating unknown water generation area, method for estimating unknown water generation area and computer program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027567A (en) * 2001-07-16 2003-01-29 Yamatake Corp Sewage inflow estimating device and method, and server device
JP2003184160A (en) * 2001-12-17 2003-07-03 Hitachi Ltd Method and system for improving chargeable sewage rate
JP2005023763A (en) * 2003-07-04 2005-01-27 Yamatake Corp Unknown water generation distribution inferring device, its method, and program
JP2011080347A (en) * 2009-09-10 2011-04-21 Toshiba Corp Unknown water monitoring device and unknown water monitoring method
JP2016108743A (en) * 2014-12-02 2016-06-20 株式会社東芝 Device for estimating unknown water generation area, method for estimating unknown water generation area and computer program

Also Published As

Publication number Publication date
JP7143542B1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
KR100828968B1 (en) Method connected to gis for maintaining and managing sewage pipe and system with function thereof
KR101381192B1 (en) Intelligent management system and method for rainwater based on real time control
Pawlowski et al. Some factors affecting inflow and infiltration from residential sources in a core urban area: Case study in a Columbus, Ohio, neighborhood
Jenkins et al. A probabilistic analysis of surface water flood risk in London
Kim et al. Design method for determining rainwater tank retention volumes to control runoff from building rooftops
CN113792367B (en) PySWMM-based drainage system multi-source inflow infiltration and outflow dynamic estimation method
Jiang et al. Quantifying rainfall-derived inflow from private foundation drains in sanitary sewers: case study in London, Ontario, Canada
Creaco et al. Peak demand assessment and hydraulic analysis in WDN design
JP5574769B2 (en) Unknown water monitoring device and unknown water monitoring method
Hao et al. Comparison of dynamic flow interaction methods between pipe system and overland in urban flood analysis
JP4427509B2 (en) Rainwater storage facility operation system
Sowby et al. A practical statistical method to differentiate inflow and infiltration in sanitary sewer systems
JP2006221402A (en) Underground water management system in underground water development institution
Nasrin et al. Modelling impact of extreme rainfall on sanitary sewer system by predicting rainfall derived infiltration/inflow
JP2023148459A (en) System, method, and program for estimating infiltration/inflow into separate sewer pipes
KR101703809B1 (en) Discharge estimation method for ungauged basin using known discharge transfer
WO2022264422A1 (en) Rainy weather water infiltration rate estimation device, rainy weather water infiltration rate estimation method, and program
Lindblom et al. How uncertain is model-based prediction of copper loads in stormwater runoff?
Vallabhaneni et al. SSO evaluations: Infiltration and inflow using SWMM RUNOFF and EXTRAN
Szeląg et al. Simulation of a storm overflow with probabilistic and hydrodynamic models
Vieritz et al. Rainwater tank modelling
Vallabhaneni et al. SSOAP—a USEPA toolbox for SSO analysis and control planning
KR101500795B1 (en) Rainwater inflow facility management supporting method, rainwater inflow facility management supporting device, rainwater inflow facility management supporting system
Abdellatif et al. Application of the UKCP09 WG outputs to assess performance of combined sewers system in a changing climate
Fleming Description of the hydrologic engineering center's hydrologic modeling system (HEC-HMS) and application to watershed studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220330

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220914

R150 Certificate of patent or registration of utility model

Ref document number: 7143542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150