JP2023146805A - Zeolite molding, adsorption device, and method for producing purified gas - Google Patents

Zeolite molding, adsorption device, and method for producing purified gas Download PDF

Info

Publication number
JP2023146805A
JP2023146805A JP2022054193A JP2022054193A JP2023146805A JP 2023146805 A JP2023146805 A JP 2023146805A JP 2022054193 A JP2022054193 A JP 2022054193A JP 2022054193 A JP2022054193 A JP 2022054193A JP 2023146805 A JP2023146805 A JP 2023146805A
Authority
JP
Japan
Prior art keywords
zeolite
molded body
molded article
article according
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022054193A
Other languages
Japanese (ja)
Inventor
敦史 大久保
Atsushi Okubo
裕二 鈴江
Yuji Suzue
隆之 赤荻
Takayuki Akaogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2022054193A priority Critical patent/JP2023146805A/en
Publication of JP2023146805A publication Critical patent/JP2023146805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

To provide a zeolite molding that does not easily become brittle even after adsorbing carbon dioxide, an adsorption device comprising the same, and a method for producing purified gas using the same.SOLUTION: A zeolite molding includes a zeolite that can adsorb carbon dioxide. The elastic modulus E is 10.0 MPa or more.SELECTED DRAWING: None

Description

本発明は、ゼオライト成形体、吸着装置、及び精製ガスの製造方法に関する。 The present invention relates to a zeolite molded body, an adsorption device, and a method for producing purified gas.

ゼオライトは、吸着剤、乾燥剤、分離剤、触媒、触媒用担体、洗剤助剤、イオン交換剤、排水処理剤、肥料、食品添加物、化粧品添加物などとして用いることができ、中でもガス分離用途として有用なものである。 Zeolites can be used as adsorbents, desiccants, separation agents, catalysts, catalyst carriers, detergent aids, ion exchange agents, wastewater treatment agents, fertilizers, food additives, cosmetic additives, etc. Among them, they are used for gas separation. It is useful as a.

例えば、ゼオライトの中でも、IZA(International Zeolite Association)が定めるゼオライトの構造を規定するコードでGIS構造のものは、GIS型ゼオライトと呼ばれる。GIS型ゼオライトは酸素8員環で構成された細孔を有するゼオライトである。かかるGIS型ゼオライトについては、例えば、特許文献1において、二酸化炭素に対する吸着能を有するGIS型ゼオライトが合成されており、吸着材としてGIS型ゼオライトを用いた際に、二酸化炭素の分離、回収、精製に用いることが示されている。 For example, among zeolites, those with a GIS structure according to the code that defines the structure of zeolites set by IZA (International Zeolite Association) are called GIS type zeolites. GIS type zeolite is a zeolite having pores composed of eight-membered oxygen rings. Regarding such GIS type zeolite, for example, in Patent Document 1, a GIS type zeolite having adsorption ability for carbon dioxide has been synthesized, and when the GIS type zeolite is used as an adsorbent, it is difficult to separate, recover, and purify carbon dioxide. It has been shown that it can be used for

国際公開WO2019/202933号International publication WO2019/202933

吸着材を用いた二酸化炭素の分離、回収、精製を行う場合については、圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法などが用いられる。これらの方法において、ゼオライトは、カラムなどに充填して用いられる。装置内で微粉状のゼオライトが流路に蓄積して閉塞しないようにするため、ゼオライトを賦形し、ペレット状のゼオライト成形体として用いられる。当該ゼオライト成形体が、使用条件に対して、十分な耐久性を有することが求められる。 When carbon dioxide is separated, recovered, and purified using an adsorbent, a pressure swing adsorption separation method, a temperature swing adsorption separation method, a pressure/temperature swing adsorption separation method, or the like is used. In these methods, zeolite is used by filling a column or the like. In order to prevent fine powdered zeolite from accumulating and clogging the flow path in the device, the zeolite is shaped and used as a pellet-shaped zeolite molded body. The zeolite molded body is required to have sufficient durability under the conditions of use.

二酸化炭素を吸着可能なゼオライトを含むゼオライト成形体は、より多量の二酸化炭素を吸着すると、ゼオライト成形体が脆化して、ペレット状のゼオライト成形体であれば粉化するという課題を見出した。当該脆化によって、吸着装置内で微粉が発生し圧力損失などにより装置の連続運転が難しくなる。 We have discovered that when a zeolite molded body containing zeolite capable of adsorbing carbon dioxide adsorbs a larger amount of carbon dioxide, the zeolite molded body becomes brittle, and if it is a pellet-shaped zeolite molded body, it becomes powder. This embrittlement generates fine powder within the adsorption device, making continuous operation of the device difficult due to pressure loss and the like.

本発明は、二酸化炭素の吸着に対する耐脆化性に優れるゼオライト成形体、これを含む吸着装置、及びこれを用いる精製ガスの製造方法を提供することを課題とする。 An object of the present invention is to provide a zeolite molded body having excellent embrittlement resistance against adsorption of carbon dioxide, an adsorption device including the same, and a method for producing purified gas using the same.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、ゼオライト成形体の弾性率を10.0MPa以上であると当該課題を解決できることを見出し、本発明をなすに至った。 The present inventors have made extensive studies to solve the above problem, and as a result, have found that the problem can be solved by setting the elastic modulus of the zeolite molded body to 10.0 MPa or more, and have accomplished the present invention.

すなわち、本発明は以下の実施形態を含む。
<1>
二酸化炭素を吸着可能なゼオライトを含む、ゼオライト成形体であって、
弾性率Eが10.0MPa以上である、ゼオライト成形体。
<2>
前記ゼオライトが、10cc/g以上の二酸化炭素吸着量を有する、<1>に記載のゼオライト成形体。
<3>
前記ゼオライトが、GIS型ゼオライトである、<1>又は<2>に記載のゼオライト成形体。
<4>
前記GIS型ゼオライトのシリカアルミナ比が、3.40以上である、<3>に記載のゼオライト成形体。
<5>
前記GIS型ゼオライトのシリカアルミナ比が、4.50以上である、<3>に記載のゼオライト成形体。
<6>
GIS型ゼオライト中のカチオン種としてカリウム又はリチウムを含む、<3>~<5>のいずれかに記載のゼオライト成形体。
<7>
GIS型ゼオライト中のアルカリ金属の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)が、0.05以上である、<6>に記載のゼオライト成形体。
<8>
29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)に帰属されるピーク面積強度をそれぞれ、a、b、c、dとし、(a+d)/(b+c)≧0.192を満たす、GIS型ゼオライトを含む、<3>~<7>のいずれかに記載のゼオライト成形体。
<9>
担体を含む、<1>~<8>のいずれかに記載のゼオライト成形体。
<10>
前記担体が、無機結合剤、及び有機結合剤からなる群から選ばれる1種以上を含む、<9>に記載のゼオライト成形体。
<11>
前記無機結合剤が、アルミナを含む、<10>に記載のゼオライト成形体。
<12>
前記GIS型ゼオライトと前記担体の質量比が、GIS型ゼオライト:担体として、1:99~99:1である、<9>~<11>のいずれかに記載のゼオライト成形体。
<13>
円柱状の形状を有する、<1>~<12>のいずれかに記載のゼオライト成形体。
<14>
長さが3mm以上30mm以下であり、かつ、直径が1mm以上30mm以下である、<13>に記載のゼオライト成形体。
<15>
<1>~<14>のいずれかに記載のゼオライト成形体を含む、吸着装置。
<16>
<15>に記載の吸着装置を用い、H2、N2、O2、Ar、CO、及び炭化水素からなる群より選択される2種以上の気体を含む混合物から、CO2、H2O、He、Ne、Cl2、NH3、及びHClからなる群より選択される1種以上を分離する分離工程を含む、精製ガスの製造方法。
<17>
前記分離工程において、圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法により前記気体の分離を行う、<16>に記載の精製ガスの製造方法。
That is, the present invention includes the following embodiments.
<1>
A zeolite molded body containing zeolite capable of adsorbing carbon dioxide,
A zeolite molded body having an elastic modulus E of 10.0 MPa or more.
<2>
The zeolite molded article according to <1>, wherein the zeolite has a carbon dioxide adsorption amount of 10 cc/g or more.
<3>
The zeolite molded article according to <1> or <2>, wherein the zeolite is a GIS type zeolite.
<4>
The zeolite molded article according to <3>, wherein the GIS-type zeolite has a silica-alumina ratio of 3.40 or more.
<5>
The zeolite molded article according to <3>, wherein the GIS-type zeolite has a silica-alumina ratio of 4.50 or more.
<6>
The zeolite molded article according to any one of <3> to <5>, which contains potassium or lithium as a cationic species in the GIS type zeolite.
<7>
The ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of alkali metals (T) in the GIS-type zeolite is 0.05 or more, described in <6> Zeolite molded body.
<8>
29 Let the peak area intensities attributed to Q4 (3Al), Q4 (2Al), Q4 (1Al), and Q4 (0Al) observed in the Si-MAS-NMR spectrum be a, b, c, and d, respectively, and ( The zeolite molded article according to any one of <3> to <7>, comprising a GIS type zeolite that satisfies a+d)/(b+c)≧0.192.
<9>
The zeolite molded article according to any one of <1> to <8>, comprising a carrier.
<10>
The zeolite molded article according to <9>, wherein the carrier contains one or more selected from the group consisting of an inorganic binder and an organic binder.
<11>
The zeolite molded article according to <10>, wherein the inorganic binder contains alumina.
<12>
The zeolite molded article according to any one of <9> to <11>, wherein the mass ratio of the GIS type zeolite to the carrier is 1:99 to 99:1 as GIS type zeolite:carrier.
<13>
The zeolite molded article according to any one of <1> to <12>, which has a cylindrical shape.
<14>
The zeolite molded article according to <13>, which has a length of 3 mm or more and 30 mm or less, and a diameter of 1 mm or more and 30 mm or less.
<15>
An adsorption device comprising the zeolite molded article according to any one of <1> to <14>.
<16>
Using the adsorption device described in <15>, CO 2 , H 2 O is extracted from a mixture containing two or more gases selected from the group consisting of H 2 , N 2 , O 2 , Ar, CO, and hydrocarbons. , He, Ne, Cl 2 , NH 3 , and HCl.
<17>
The method for producing purified gas according to <16>, wherein in the separation step, the gas is separated by a pressure swing adsorption separation method, a temperature swing adsorption separation method, or a pressure/temperature swing adsorption separation method.

本発明によれば、二酸化炭素の吸着に対する耐脆化性に優れるゼオライト成形体、これを含む吸着装置、及びこれを用いる精製ガスの製造方法を提供することができる。 According to the present invention, it is possible to provide a zeolite molded body having excellent embrittlement resistance against adsorption of carbon dioxide, an adsorption device including the same, and a method for producing purified gas using the same.

図1は、本発明の一実施形態に係る吸着装置を例示する図である。FIG. 1 is a diagram illustrating an adsorption device according to an embodiment of the present invention.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. The present invention is not limited to the following description, and can be implemented with various modifications within the scope of the gist. Note that in this specification, for example, the notation of a numerical range of "1 to 100" includes both the lower limit value "1" and the upper limit value "100". The same applies to other numerical ranges.

本実施形態に係るゼオライト成形体は、二酸化炭素を吸着可能なゼオライトを含み、弾性率Eが10.0MPa以上である。本実施形態に係るゼオライト成形体は、二酸化炭素の吸着に対する耐脆化性に優れる。本実施形態によれば、二酸化炭素を吸着可能なゼオライトを用いて成形を行い、ゼオライト成形体の弾性率Eを10.0MPa以上とすることで、二酸化炭素の吸着によるゼオライトの膨張収縮で生じる応力に対し破壊されづらい構造を持ちやすくなり、膨張収縮に対して耐脆化性を有するゼオライト成形体、これを含む吸着装置、及びこれを用いる精製ガスの製造方法を提供できる。 The zeolite molded body according to this embodiment contains zeolite capable of adsorbing carbon dioxide, and has an elastic modulus E of 10.0 MPa or more. The zeolite molded body according to this embodiment has excellent embrittlement resistance against adsorption of carbon dioxide. According to this embodiment, by molding using zeolite capable of adsorbing carbon dioxide and setting the elastic modulus E of the zeolite molded body to 10.0 MPa or more, stress caused by expansion and contraction of the zeolite due to adsorption of carbon dioxide It is possible to provide a zeolite molded body that has a structure that is difficult to break and has embrittlement resistance against expansion and contraction, an adsorption device containing the same, and a method for producing purified gas using the same.

ゼオライト成形体の弾性率Eは、二酸化炭素の吸着に対する耐脆化性を向上させる観点から、10.0MPa以上であり、より好ましくは11.0MPa以上であり、さらに好ましくは12.0MPa以上である。ゼオライト成形体の弾性率Eの上限は特に限定されないが、弾性率が高すぎるとゼオライトの膨張収縮によって生じる最大主応力が高くなる傾向にあるため、弾性率Eは70.0GPa以下が好ましく、65.0GPa以下がより好ましく、60.0GPa以下がさらに好ましい。弾性率Eは、圧縮弾性率である。弾性率Eは、より詳細には、後述する実施例に記載の方法により測定することができる。また弾性率の高い担体の含有量を高くすると、ゼオライト成形体の弾性率Eも高くなる傾向にあり、弾性率の低い担体の含有量を高くすると、成形体の弾性率Eも低くなる傾向にある。担体の組成を調整することにより、弾性率Eを調整することが可能である。より具体的には後述の成形体の製造方法にて説明する。 The elastic modulus E of the zeolite molded body is 10.0 MPa or more, more preferably 11.0 MPa or more, and still more preferably 12.0 MPa or more, from the viewpoint of improving embrittlement resistance against carbon dioxide adsorption. . The upper limit of the elastic modulus E of the zeolite molded body is not particularly limited, but if the elastic modulus is too high, the maximum principal stress caused by expansion and contraction of the zeolite tends to increase, so the elastic modulus E is preferably 70.0 GPa or less, and 65 .0 GPa or less is more preferable, and 60.0 GPa or less is even more preferable. The elastic modulus E is the compressive elastic modulus. More specifically, the elastic modulus E can be measured by the method described in the Examples below. In addition, when the content of a carrier with a high elastic modulus is increased, the elastic modulus E of the zeolite molded body tends to increase, and when the content of a carrier with a low elastic modulus is increased, the elastic modulus E of the molded body also tends to decrease. be. It is possible to adjust the elastic modulus E by adjusting the composition of the carrier. More specifically, this will be explained in the method for manufacturing a molded body described later.

(ゼオライト)
ゼオライトは、10cc/g以上の二酸化炭素吸着量を有することが好ましい。ゼオライトの二酸化炭素吸着量は、好ましくは20cc/g以上であり、より好ましくは40cc/g以上であり、更に好ましくは50cc/g以上である。ゼオライトの二酸化炭素吸着量は、その上限は特に限定されないが、例えば100cc/以下である。二酸化炭素吸着量は、25℃におけるゼオライト1g当たりの二酸化炭素吸着容量(cc)である。より詳細には、実施例に記載の方法により測定される。
(zeolite)
It is preferable that the zeolite has a carbon dioxide adsorption amount of 10 cc/g or more. The carbon dioxide adsorption amount of zeolite is preferably 20 cc/g or more, more preferably 40 cc/g or more, and even more preferably 50 cc/g or more. The upper limit of the amount of carbon dioxide adsorbed by zeolite is not particularly limited, but is, for example, 100 cc/or less. The carbon dioxide adsorption amount is the carbon dioxide adsorption capacity (cc) per 1 g of zeolite at 25°C. More specifically, it is measured by the method described in Examples.

二酸化炭素を吸着可能なゼオライトとしては、例えば、GIS型ゼオライト、FAU型ゼオライト、MWF型ゼオライト等が挙げられる。これらの中でもGIS型ゼオライトが好ましい。 Examples of zeolites capable of adsorbing carbon dioxide include GIS type zeolite, FAU type zeolite, MWF type zeolite, and the like. Among these, GIS type zeolite is preferred.

本実施形態に係るゼオライトのシリカアルミナ比(SiO2/Al23で表記されるシリカとアルミナのモル比を表し、以下、単に「SAR」ともいう)が低い程、親水性となり、二酸化炭素のような極性分子の吸着力が強くなる。SARが低いと、吸着力が強すぎるために、加熱や真空引きによって脱着させるために必要なエネルギーが大きくなるため、SARは高い方が好ましい。ゼオライトのSARは好ましくは3.40以上であり、より好ましくは4.40以上であり、より好ましくは4.50以上であり、さらに好ましくは4.69以上であり、さらに好ましくは4.90以上であり、さらに好ましくは5.40以上であり、さらに好ましくは6.01以上である。SARの上限は特に制限されないが、SARが高すぎると吸着質に対する相互作用が小さくなるため、ゼオライトのSARは、3000以下が好ましく、より好ましくは500以下であり、さらに好ましくは100以下である。ゼオライト成形体におけるゼオライトのSARは29Si-MAS-NMRを測定することで求める。SARは、より詳細には、後述する実施例に記載の方法により測定することができる。SARは、混合ゲル中の水とOH-の量比等により調整可能である。 The lower the silica-alumina ratio (representing the molar ratio of silica and alumina expressed as SiO 2 /Al 2 O 3 , hereinafter also simply referred to as "SAR") of the zeolite according to the present embodiment, the more hydrophilic it becomes, and the more carbon dioxide it absorbs. The adsorption power of polar molecules such as If the SAR is low, the adsorption force is too strong and the energy required for desorption by heating or vacuuming increases, so a high SAR is preferable. The SAR of the zeolite is preferably 3.40 or more, more preferably 4.40 or more, more preferably 4.50 or more, still more preferably 4.69 or more, and even more preferably 4.90 or more. It is more preferably 5.40 or more, and still more preferably 6.01 or more. Although the upper limit of the SAR is not particularly limited, if the SAR is too high, the interaction with the adsorbate will be reduced, so the SAR of the zeolite is preferably 3000 or less, more preferably 500 or less, and still more preferably 100 or less. The SAR of the zeolite in the zeolite molded body is determined by measuring 29 Si-MAS-NMR. SAR can be measured in more detail by the method described in Examples below. SAR can be adjusted by adjusting the amount ratio of water and OH- in the mixed gel.

脱着させるために必要なエネルギーの観点から、SARは高い方が好ましい一方で、ゼオライトにおいてSARが高くなると、二酸化炭素の吸脱着等温線における吸脱着ヒステリシスが顕在化することが確認される。本実施形態に係るゼオライトでは、ゼオライト骨格中のSi及びAlの結合様式を制御することで、二酸化炭素の吸脱着等温線における吸脱着ヒステリシスを解消できる。具体的には、29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)に帰属されるピーク面積強度をそれぞれ、a、b、c、dとし、(a+d)/(b+c)≧0.192を満たすことが好ましく、より好ましくは0.913≧(a+d)/(b+c)≧0.195であり、さらに好ましくは0.519≧(a+d)/(b+c)≧0.199である。29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)といったピークはゼオライト骨格中におけるSi及びAlの結合様式を表し、面積強度の和である(a+d)、(b+c)はそれらの結合様式の存在量の和、(a+d)/(b+c)は存在比を表す。Si及びAlの結合様式の存在比は吸着時、脱着時におけるゼオライト骨格自体の構造変化に影響を与えるため、ゼオライト骨格中におけるSi及びAlの結合様式の存在比である(a+d)/(b+c)を適切な範囲とすることで吸脱着等温線における吸脱着ヒステリシスを解消できる。(a+d)/(b+c)は、後述する実施例に記載の方法により測定することができる。(a+d)/(b+c)を所定範囲とするためには、アルカリ金属、及び/又はアルカリ土類金属を含む塩化合物を添加し、塩化合物の添加によりもたらされるカチオンとアルミ源の量比等により調整することが可能である。 From the viewpoint of the energy required for desorption, a higher SAR is preferable, but it has been confirmed that as the SAR increases in zeolite, adsorption/desorption hysteresis in the carbon dioxide adsorption/desorption isotherm becomes apparent. In the zeolite according to this embodiment, by controlling the bonding mode of Si and Al in the zeolite skeleton, adsorption/desorption hysteresis in the carbon dioxide adsorption/desorption isotherm can be eliminated. Specifically, the peak area intensities attributed to Q4(3Al), Q4(2Al), Q4(1Al), and Q4(0Al) observed in the 29 Si-MAS-NMR spectrum are expressed as a, b, and c, respectively. , d, preferably satisfying (a+d)/(b+c)≧0.192, more preferably 0.913≧(a+d)/(b+c)≧0.195, still more preferably 0.519≧( a+d)/(b+c)≧0.199. 29 Peaks such as Q4 (3Al), Q4 (2Al), Q4 (1Al), and Q4 (0Al) observed in the Si-MAS-NMR spectrum represent the bonding mode of Si and Al in the zeolite framework, and are the sum of the area intensities. (a+d) and (b+c) represent the sum of abundances of those binding modes, and (a+d)/(b+c) represents the abundance ratio. The abundance ratio of the bonding modes of Si and Al affects the structural changes of the zeolite skeleton itself during adsorption and desorption, so the abundance ratio of the bonding modes of Si and Al in the zeolite skeleton is (a + d) / (b + c) By setting the value to an appropriate range, adsorption/desorption hysteresis in the adsorption/desorption isotherm can be eliminated. (a+d)/(b+c) can be measured by the method described in the Examples below. In order to set (a+d)/(b+c) within a predetermined range, a salt compound containing an alkali metal and/or an alkaline earth metal is added, and the ratio of the cation brought about by the addition of the salt compound to the aluminum source is adjusted. It is possible to adjust.

二酸化炭素の選択的吸着能を向上させる観点から、GIS型ゼオライト中のカチオン種として、カリウム又はリチウムを含むことが好ましく、カリウムを含むことがより好ましい。また、ゼオライト中のカリウム及びリチウムの合計含有量は、GIS型ゼオライト中のアルカリ金属の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)として算出する。Z/Tは、0.05以上であることが好ましく、より好ましくは0.10以上であり、さらに好ましくは0.15以上である。Z/Tの上限は特に制限されないが、Z/Tは1.00以下であってもよい。Z/Tは、ゼオライトを水酸化ナトリウム水溶液又は王水で熱溶解し、適宜希釈した液を用いてICP-発光分光分析することで測定することができる。Z/Tは、より詳細には、後述する実施例に記載の方法により測定することができる。Z/Tは、GIS型ゼオライトのカチオン種のカリウム及びリチウムの割合を変更することで調整できる。
GIS型ゼオライト中のアルカリ金属の各々の物質量の合計値(T)に対するカリウムの物質量の合計値(K)の割合(K/T)が、0.05以上であることが好ましく、より好ましくは0.10以上であり、さらに好ましくは0.15以上である。K/Tの上限は特に制限されないが、K/Tは1.00以下であってもよい。
From the viewpoint of improving the selective adsorption ability of carbon dioxide, the cation species in the GIS type zeolite preferably contains potassium or lithium, and more preferably contains potassium. In addition, the total content of potassium and lithium in the zeolite is determined by the ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of alkali metals (T) in the GIS type zeolite. Calculated as Z/T is preferably 0.05 or more, more preferably 0.10 or more, and still more preferably 0.15 or more. Although the upper limit of Z/T is not particularly limited, Z/T may be 1.00 or less. Z/T can be measured by thermally dissolving zeolite in an aqueous sodium hydroxide solution or aqua regia, and performing ICP-emission spectroscopy using the appropriately diluted solution. Z/T can be measured in more detail by the method described in the Examples below. Z/T can be adjusted by changing the ratio of potassium and lithium of the cation species of the GIS type zeolite.
The ratio (K/T) of the total amount of potassium (K) to the total amount of each alkali metal (T) in the GIS-type zeolite is preferably 0.05 or more, more preferably is 0.10 or more, more preferably 0.15 or more. Although the upper limit of K/T is not particularly limited, K/T may be 1.00 or less.

ゼオライトの含有量は、ゼオライト成形体の全量100質量%に対して、好ましくは、50質量%以上であってもよく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、ゼオライトの含有量は、ゼオライト成形体の全量100質量%に対して98質量%以下であってもよく、95質量%以下であってもよい。 The content of zeolite may be preferably 50% by mass or more, 60% by mass or more, or 70% by mass or more with respect to the total amount of 100% by mass of the zeolite molded body. , 80% by mass or more. Further, the content of zeolite may be 98% by mass or less, or 95% by mass or less with respect to 100% by mass of the total amount of the zeolite molded body.

(GIS型ゼオライトの合成方法)
本実施形態に係るGIS型ゼオライトの製造方法は、例えば、珪素を含むシリカ源、アルミニウムを含むアルミ源、アルカリ金属(M1)及びアルカリ土類金属(M2)から選ばれる少なくとも1種を含むアルカリ源、アルカリ金属(M1)及びアルカリ土類金属(M2)から選ばれる少なくとも1種を含む塩化合物、リンを含むリン源、有機構造規定剤及び水を含有する混合ゲルの調製工程を含むものとすることができる。以下、混合ゲル及びこれに含まれる各成分について説明する。
(Synthesis method of GIS type zeolite)
The method for producing a GIS type zeolite according to the present embodiment includes, for example, a silica source containing silicon, an aluminum source containing aluminum, an alkali source containing at least one selected from an alkali metal (M1) and an alkaline earth metal (M2). , a salt compound containing at least one selected from alkali metals (M1) and alkaline earth metals (M2), a phosphorus source containing phosphorus, an organic structure directing agent, and water. can. The mixed gel and each component contained therein will be explained below.

〔混合ゲル〕
本実施形態における混合ゲルとは、シリカ源、アルミ源、塩化合物、及び水を成分として含み、必要に応じてリン源、アルカリ源、有機構造規定剤を含む混合物のことである。
[Mixed gel]
The mixed gel in this embodiment is a mixture containing a silica source, an aluminum source, a salt compound, and water as components, and optionally a phosphorus source, an alkali source, and an organic structure directing agent.

シリカ源とは、該混合ゲルから製造されたゼオライトに含まれる珪素の原料となる該混合ゲル中の成分をいい、アルミ源とは、該混合ゲルから製造されたゼオライトに含まれるアルミニウムの原料となる該混合ゲル中の成分をいい、塩化合物とは、該混合ゲルから製造されたゼオライトに含まれるアルカリ金属及び/又はアルカリ土類金属の原料となる成分をいい、アルカリ源とは、該混合ゲルのアルカリ性を調整する成分をいい、リン源とは、該混合ゲルから製造されたゼオライトに含まれるリンの原料となる該混合ゲル中の成分をいう。 The silica source refers to the component in the mixed gel that is the raw material for the silicon contained in the zeolite produced from the mixed gel, and the aluminum source refers to the raw material for the aluminum contained in the zeolite produced from the mixed gel. The salt compound refers to a component that is a raw material for the alkali metal and/or alkaline earth metal contained in the zeolite produced from the mixed gel, and the alkali source refers to the component in the mixed gel. It refers to a component that adjusts the alkalinity of the gel, and the phosphorus source refers to a component in the mixed gel that is a raw material for the phosphorus contained in the zeolite produced from the mixed gel.

〔シリカ源〕
シリカ源としては、一般的に使用されるものであれば特に限定されず、結晶性シリカ、非晶性シリカ、ケイ酸、ケイ酸塩、有機ケイ酸化合物等が挙げられる。より具体例には、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ヒュームドシリカ、沈降シリカ、シリカゲル、コロイダルシリカ、アルミノシリケート、テトラエトキシシラン(TEOS)、トリメチルエトキシシラン等が挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。ここで、アルミノシリケートは、シリカ源であるとともにアルミ源となる。
[Silica source]
The silica source is not particularly limited as long as it is commonly used, and examples thereof include crystalline silica, amorphous silica, silicic acid, silicates, organic silicate compounds, and the like. More specific examples include sodium silicate, potassium silicate, calcium silicate, magnesium silicate, fumed silica, precipitated silica, silica gel, colloidal silica, aluminosilicate, tetraethoxysilane (TEOS), trimethylethoxysilane, etc. It will be done. These compounds may be used alone or in combination. Here, aluminosilicate serves as both a silica source and an aluminum source.

これらの中でも、結晶化度の高いゼオライトが得られる傾向にあることから、ヒュームドシリカ、コロイダルシリカ、又は沈降シリカであることが好ましい。 Among these, fumed silica, colloidal silica, or precipitated silica is preferable because zeolite with a high degree of crystallinity tends to be obtained.

〔アルミ源〕
アルミ源としては、一般的に使用されるものであれば特に限定されないが、具体例としては、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム、水酸化アルミニウム、酸化アルミニウム、塩化アルミニウム、アルミニウムアルコキシド、金属アルミニウム、無定形アルミノシリケートゲル等が挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。
[Aluminum source]
The aluminum source is not particularly limited as long as it is commonly used, but specific examples include sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum hydroxide, aluminum oxide, aluminum chloride, and aluminum alkoxide. , metallic aluminum, amorphous aluminosilicate gel, and the like. These compounds may be used alone or in combination.

これらの中でも、結晶化度の高いゼオライトが得られる傾向にあることから、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム、水酸化アルミニウム、塩化アルミニウム、アルミニウムアルコキシドであることが好ましい。同様の観点からアルミン酸ナトリウム、水酸化アルミニウムであることがより好ましく、アルミン酸ナトリウムであることがさらに好ましい。 Among these, sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum hydroxide, aluminum chloride, and aluminum alkoxide are preferred because they tend to yield zeolites with high crystallinity. From the same point of view, sodium aluminate and aluminum hydroxide are more preferred, and sodium aluminate is even more preferred.

〔塩化合物〕
塩化合物は、ゼオライトを製造する場合に、ゼオライト構造への結晶化を促進させるLi、Na、K、Rb、Csといったアルカリ金属や、Ca、Mg、Sr、Baといったアルカリ土類金属を含む化合物である。添加する塩化合物に含まれるアルカリ金属、及びアルカリ土類金属としては、GIS型骨格の結晶形成がより容易となる観点から、Na、Kであることが好ましく、Naであることがより好ましい。また、塩化合物は単独でも、複数を組み合わせて使用してもよい。
[Salt compound]
When producing zeolite, salt compounds are compounds containing alkali metals such as Li, Na, K, Rb, and Cs, and alkaline earth metals such as Ca, Mg, Sr, and Ba, which promote crystallization into a zeolite structure. be. The alkali metal and alkaline earth metal contained in the salt compound to be added are preferably Na and K, and more preferably Na, from the viewpoint of facilitating crystal formation of the GIS type skeleton. Further, the salt compounds may be used alone or in combination.

具体的には、塩化合物としては、以下に限定されないが、例えば、硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、酢酸ナトリウム、ギ酸ナトリウム、クエン酸ナトリウム、シュウ酸ナトリウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、チオナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、四ホウ酸ナトリウム、塩素酸ナトリウム、過塩素酸ナトリウム、シアン化ナトリウム、メタスズ酸ナトリウム、ヘキサヒドロキシドスズ(IV)酸ナトリウム、ヘキサシアニド鉄(II)酸ナトリウム、過マンガン酸ナトリウム、クロム酸ナトリウム、ニクロム酸ナトリウム、
硫酸カリウム、亜硫酸カリウム、チオ硫酸カリウム、亜硝酸カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、酢酸カリウム、ギ酸カリウム、クエン酸カリウム、シュウ酸カリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、チオカリウム、ケイ酸カリウム、メタケイ酸カリウム、四ホウ酸カリウム、塩素酸カリウム、過塩素酸カリウム、シアン化カリウム、メタスズ酸カリウム、ヘキサヒドロキシドスズ(IV)酸カリウム、ヘキサシアニド鉄(II)酸カリウム、過マンガン酸カリウム、クロム酸カリウム、ニクロム酸カリウム、
硫酸リチウム、亜硫酸リチウム、チオ硫酸リチウム、亜硝酸リチウム、硝酸リチウム、炭酸リチウム、炭酸水素リチウム、リン酸リチウム、酢酸リチウム、ギ酸リチウム、クエン酸リチウム、シュウ酸リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、チオリチウム、ケイ酸リチウム、メタケイ酸リチウム、四ホウ酸リチウム、塩素酸リチウム、過塩素酸リチウム、シアン化リチウム、メタスズ酸リチウム、ヘキサヒドロキシドスズ(IV)酸リチウム、ヘキサシアニド鉄(II)酸リチウム、過マンガン酸リチウム、クロム酸リチウム、ニクロム酸リチウム、
硫酸ルビジウム、亜硫酸ルビジウム、チオ硫酸ルビジウム、亜硝酸ルビジウム、硝酸ルビジウム、炭酸ルビジウム、炭酸水素ルビジウム、リン酸ルビジウム、酢酸ルビジウム、ギ酸ルビジウム、クエン酸ルビジウム、シュウ酸ルビジウム、フッ化ルビジウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、チオルビジウム、ケイ酸ルビジウム、メタケイ酸ルビジウム、四ホウ酸ルビジウム、塩素酸ルビジウム、過塩素酸ルビジウム、シアン化ルビジウム、メタスズ酸ルビジウム、ヘキサヒドロキシドスズ(IV)酸ルビジウム、ヘキサシアニド鉄(II)酸ルビジウム、過マンガン酸ルビジウム、クロム酸ルビジウム、ニクロム酸ルビジウム、
硫酸セシウム、亜硫酸セシウム、チオ硫酸セシウム、亜硝酸セシウム、硝酸セシウム、炭酸セシウム、炭酸水素セシウム、リン酸セシウム、酢酸セシウム、ギ酸セシウム、クエン酸セシウム、シュウ酸セシウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、チオセシウム、ケイ酸セシウム、メタケイ酸セシウム、四ホウ酸セシウム、塩素酸セシウム、過塩素酸セシウム、シアン化セシウム、メタスズ酸セシウム、ヘキサヒドロキシドスズ(IV)酸セシウム、ヘキサシアニド鉄(II)酸セシウム、過マンガン酸セシウム、クロム酸セシウム、ニクロム酸セシウム、
硫酸マグネシウム、亜硫酸マグネシウム、チオ硫酸マグネシウム、亜硝酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、炭酸水素マグネシウム、リン酸マグネシウム、酢酸マグネシウム、ギ酸マグネシウム、クエン酸マグネシウム、シュウ酸マグネシウム、フッ化マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、チオマグネシウム、ケイ酸マグネシウム、メタケイ酸マグネシウム、四ホウ酸マグネシウム、塩素酸マグネシウム、過塩素酸マグネシウム、シアン化マグネシウム、メタスズ酸マグネシウム、ヘキサヒドロキシドスズ(IV)酸マグネシウム、ヘキサシアニド鉄(II)酸マグネシウム、過マンガン酸マグネシウム、クロム酸マグネシウム、ニクロム酸マグネシウム、
硫酸カルシウム、亜硫酸カルシウム、チオ硫酸カルシウム、亜硝酸カルシウム、硝酸カルシウム、炭酸カルシウム、炭酸水素カルシウム、リン酸カルシウム、酢酸カルシウム、ギ酸カルシウム、クエン酸カルシウム、シュウ酸カルシウム、フッ化カルシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、チオカルシウム、ケイ酸カルシウム、メタケイ酸カルシウム、四ホウ酸カルシウム、塩素酸カルシウム、過塩素酸カルシウム、シアン化カルシウム、メタスズ酸カルシウム、ヘキサヒドロキシドスズ(IV)酸カルシウム、ヘキサシアニド鉄(II)酸カルシウム、過マンガン酸カルシウム、クロム酸カルシウム、ニクロム酸カルシウム、
硫酸ストロンチウム、亜硫酸ストロンチウム、チオ硫酸ストロンチウム、亜硝酸ストロンチウム、硝酸ストロンチウム、炭酸ストロンチウム、炭酸水素ストロンチウム、リン酸ストロンチウム、酢酸ストロンチウム、ギ酸ストロンチウム、クエン酸ストロンチウム、シュウ酸ストロンチウム、フッ化ストロンチウム、塩化ストロンチウム、臭化ストロンチウム、ヨウ化ストロンチウム、チオストロンチウム、ケイ酸ストロンチウム、メタケイ酸ストロンチウム、四ホウ酸ストロンチウム、塩素酸ストロンチウム、過塩素酸ストロンチウム、シアン化ストロンチウム、メタスズ酸ストロンチウム、ヘキサヒドロキシドスズ(IV)酸ストロンチウム、ヘキサシアニド鉄(II)酸ストロンチウム、過マンガン酸ストロンチウム、クロム酸ストロンチウム、ニクロム酸ストロンチウム、
硫酸バリウム、亜硫酸バリウム、チオ硫酸バリウム、亜硝酸バリウム、硝酸バリウム、炭酸バリウム、炭酸水素バリウム、リン酸バリウム、酢酸バリウム、ギ酸バリウム、クエン酸バリウム、シュウ酸バリウム、フッ化バリウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、チオバリウム、ケイ酸バリウム、メタケイ酸バリウム、四ホウ酸バリウム、塩素酸バリウム、過塩素酸バリウム、シアン化バリウム、メタスズ酸バリウム、ヘキサヒドロキシドスズ(IV)酸バリウム、ヘキサシアニド鉄(II)酸バリウム、過マンガン酸バリウム、クロム酸バリウム、ニクロム酸バリウム、等が挙げられる。
Specifically, salt compounds include, but are not limited to, sodium sulfate, sodium sulfite, sodium thiosulfate, sodium nitrite, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium phosphate, sodium acetate, and formic acid. Sodium, sodium citrate, sodium oxalate, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, sodium thionate, sodium silicate, sodium metasilicate, sodium tetraborate, sodium chlorate, sodium perchlorate, Sodium cyanide, sodium metastannate, sodium hexahydroxide stannate (IV), sodium hexacyanideferrate (II), sodium permanganate, sodium chromate, sodium dichromate,
Potassium sulfate, potassium sulfite, potassium thiosulfate, potassium nitrite, potassium nitrate, potassium carbonate, potassium bicarbonate, potassium phosphate, potassium acetate, potassium formate, potassium citrate, potassium oxalate, potassium fluoride, potassium chloride, potassium bromide , potassium iodide, thiopotassium, potassium silicate, potassium metasilicate, potassium tetraborate, potassium chlorate, potassium perchlorate, potassium cyanide, potassium metastannate, potassium hexahydroxydostan(IV), iron(II) hexacyanide. ) acid potassium, potassium permanganate, potassium chromate, potassium dichromate,
Lithium sulfate, lithium sulfite, lithium thiosulfate, lithium nitrite, lithium nitrate, lithium carbonate, lithium bicarbonate, lithium phosphate, lithium acetate, lithium formate, lithium citrate, lithium oxalate, lithium fluoride, lithium chloride, odor Lithium chloride, lithium iodide, thiolithium, lithium silicate, lithium metasilicate, lithium tetraborate, lithium chlorate, lithium perchlorate, lithium cyanide, lithium metastannate, lithium hexahydroxide tin(IV) oxide, Lithium iron(II) hexacyanide, lithium permanganate, lithium chromate, lithium dichromate,
Rubidium sulfate, rubidium sulfite, rubidium thiosulfate, rubidium nitrite, rubidium nitrate, rubidium carbonate, rubidium hydrogen carbonate, rubidium phosphate, rubidium acetate, rubidium formate, rubidium citrate, rubidium oxalate, rubidium fluoride, rubidium chloride, odor Rubidium chloride, rubidium iodide, thiorbidium, rubidium silicate, rubidium metasilicate, rubidium tetraborate, rubidium chlorate, rubidium perchlorate, rubidium cyanide, rubidium metastannate, rubidium hexahydroxide tin(IV) oxide, Rubidium hexacyanidoferrate (II), rubidium permanganate, rubidium chromate, rubidium dichromate,
Cesium sulfate, cesium sulfite, cesium thiosulfate, cesium nitrite, cesium nitrate, cesium carbonate, cesium hydrogen carbonate, cesium phosphate, cesium acetate, cesium formate, cesium citrate, cesium oxalate, cesium fluoride, cesium chloride, odor Cesium chloride, cesium iodide, thiocesium, cesium silicate, cesium metasilicate, cesium tetraborate, cesium chlorate, cesium perchlorate, cesium cyanide, cesium metastannate, cesium hexahydroxide tin(IV) acid, hexacyanide Cesium iron(II) acid, cesium permanganate, cesium chromate, cesium dichromate,
Magnesium sulfate, magnesium sulfite, magnesium thiosulfate, magnesium nitrite, magnesium nitrate, magnesium carbonate, magnesium hydrogen carbonate, magnesium phosphate, magnesium acetate, magnesium formate, magnesium citrate, magnesium oxalate, magnesium fluoride, magnesium chloride, odor Magnesium chloride, magnesium iodide, thiomagnesium, magnesium silicate, magnesium metasilicate, magnesium tetraborate, magnesium chlorate, magnesium perchlorate, magnesium cyanide, magnesium metastannate, magnesium hexahydroxide stannate (IV), Magnesium hexacyanide ferrate (II), magnesium permanganate, magnesium chromate, magnesium dichromate,
Calcium sulfate, calcium sulfite, calcium thiosulfate, calcium nitrite, calcium nitrate, calcium carbonate, calcium bicarbonate, calcium phosphate, calcium acetate, calcium formate, calcium citrate, calcium oxalate, calcium fluoride, calcium chloride, calcium bromide , calcium iodide, thiocalcium, calcium silicate, calcium metasilicate, calcium tetraborate, calcium chlorate, calcium perchlorate, calcium cyanide, calcium metastannate, calcium hexahydroxydotin(IV)ate, iron hexacyanide. (II) calcium acid, calcium permanganate, calcium chromate, calcium dichromate,
Strontium sulfate, strontium sulfite, strontium thiosulfate, strontium nitrite, strontium nitrate, strontium carbonate, strontium hydrogen carbonate, strontium phosphate, strontium acetate, strontium formate, strontium citrate, strontium oxalate, strontium fluoride, strontium chloride, odor Strontium oxide, strontium iodide, thiostronium, strontium silicate, strontium metasilicate, strontium tetraborate, strontium chlorate, strontium perchlorate, strontium cyanide, strontium metastannate, strontium hexahydroxide tin (IV), Strontium hexacyanide iron (II), strontium permanganate, strontium chromate, strontium dichromate,
Barium sulfate, barium sulfite, barium thiosulfate, barium nitrite, barium nitrate, barium carbonate, barium bicarbonate, barium phosphate, barium acetate, barium formate, barium citrate, barium oxalate, barium fluoride, barium chloride, odor Barium chloride, barium iodide, thiobarium, barium silicate, barium metasilicate, barium tetraborate, barium chlorate, barium perchlorate, barium cyanide, barium metastannate, barium hexahydroxydotin(IV) acid, hexacyanide Examples include barium iron(II) acid, barium permanganate, barium chromate, barium dichromate, and the like.

〔アルカリ源〕
アルカリ源は、ゼオライトを製造する場合に、ゼオライト構造への結晶化を促進するために、混合ゲル中のアルカリ性(pH)を調整する目的で用いられる。用いるアルカリはアルカリ性を示す化合物であればよく、無機化合物、有機化合物どちらでもよいが、コストの面から無機化合物である方が好ましく、より好ましくはアルカリ金属水酸化物が挙げられる。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムが挙げられ、より好ましくは水酸化ナトリウムが挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。
[Alkali source]
When producing zeolite, the alkali source is used for the purpose of adjusting the alkalinity (pH) in the mixed gel in order to promote crystallization into a zeolite structure. The alkali used may be any compound exhibiting alkalinity, and may be either an inorganic compound or an organic compound, but in terms of cost, inorganic compounds are preferred, and alkali metal hydroxides are more preferred. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc., preferably sodium hydroxide, potassium hydroxide, and more preferably hydroxide. Examples include sodium. These compounds may be used alone or in combination.

リン源としては、一般的に使用されるものであれば特に限定されないが、具体例としては、リン酸水溶液、リン酸ナトリウム、リン酸アルミニウム、リン酸カリウム、リン酸リチウム、リン酸カルシウム、リン酸バリウム等が挙げられる。これらの化合物は、単独で使用しても、複数を組み合わせて使用してもよい。 The phosphorus source is not particularly limited as long as it is commonly used, but specific examples include phosphoric acid aqueous solution, sodium phosphate, aluminum phosphate, potassium phosphate, lithium phosphate, calcium phosphate, and barium phosphate. etc. These compounds may be used alone or in combination.

これらの中でも、結晶化度の高いゼオライトが得られる傾向にあることから、リン酸水溶液、リン酸ナトリウム、リン酸アルミニウムであることが好ましい。同様の観点からリン酸水溶液、リン酸ナトリウムであることがより好ましく、リン酸水溶液であることがさらに好ましい。 Among these, phosphoric acid aqueous solution, sodium phosphate, and aluminum phosphate are preferred because they tend to yield zeolite with a high degree of crystallinity. From the same viewpoint, phosphoric acid aqueous solution and sodium phosphate are more preferable, and phosphoric acid aqueous solution is even more preferable.

〔有機構造規定剤〕
混合ゲルを水熱合成することによってゼオライトを製造する場合の有機構造規定剤は、ゼオライト構造への結晶化を促進する作用をする化合物である。ゼオライトの結晶化においては、必要に応じて有機構造規定剤を用いることができる。
[Organic structure directing agent]
When producing zeolite by hydrothermally synthesizing a mixed gel, the organic structure directing agent is a compound that acts to promote crystallization into a zeolite structure. In the crystallization of zeolite, an organic structure directing agent can be used as necessary.

有機構造規定剤は、所望のGIS型ゼオライトを形成しうるものであれば種類は問わず、如何なるものであってもよい。また、有機構造規定剤は単独でも、複数を組み合わせて使用してもよい。 The organic structure directing agent may be of any type as long as it can form the desired GIS type zeolite. Furthermore, the organic structure directing agents may be used alone or in combination.

有機構造規定剤としては、以下に限定されないが、例えば、アミン類、4級アンモニウム塩類、アルコール類、エーテル類、アミド類、アルキル尿素類、アルキルチオ尿素類、シアノアルカン類、ヘテロ原子として窒素を含む脂環式複素環化合物類を用いることができ、好ましくはアルキルアミン類、より好ましくはイソプロピルアミンを用いる。 Examples of organic structure directing agents include, but are not limited to, amines, quaternary ammonium salts, alcohols, ethers, amides, alkyl ureas, alkylthioureas, cyanoalkanes, and those containing nitrogen as a heteroatom. Alicycloheterocyclic compounds can be used, preferably alkylamines, more preferably isopropylamine.

このような塩は、アニオンを伴うものがある。このようなアニオンを代表するものには、以下に限定されないが、例えば、Cl-、Br-、I-などのハロゲンイオンや水酸化物イオン、酢酸イオン、硫酸イオン、硝酸イオン、炭酸イオン及び炭酸水素イオンが含まれる。これらの中で、GIS型骨格の結晶形成がより容易となる観点からハロゲンイオン、水酸化物イオンであることが好ましく、ハロゲンイオンであることがより好ましい。 Some of these salts include anions. Representative examples of such anions include, but are not limited to, halogen ions such as Cl - , Br - , and I - , hydroxide ions, acetate ions, sulfate ions, nitrate ions, carbonate ions, and carbonate ions. Contains hydrogen ions. Among these, halogen ions and hydroxide ions are preferred, and halogen ions are more preferred, from the viewpoint of facilitating crystal formation of a GIS type skeleton.

〔混合ゲルの組成比〕
本実施形態において、アルカリ金属、及び/又はアルカリ土類金属を含む塩化合物を添加することが、適切な構造を持ったGIS型ゼオライトを合成するために最も重要である。ゼオライトの生成は、水溶媒に溶解したシリカ源、アルミ源が溶解しながら反応し、結晶化していくが、塩化合物の添加によってゼオライト骨格中におけるSi及びAlの結合様式やその存在比を調整することが可能で、理想的な結晶構造を有するGISを合成することが可能となる。
[Composition ratio of mixed gel]
In this embodiment, it is most important to add a salt compound containing an alkali metal and/or an alkaline earth metal in order to synthesize a GIS type zeolite with an appropriate structure. In the production of zeolite, the silica source and aluminum source dissolved in an aqueous solvent react and crystallize while being dissolved, but the bonding mode of Si and Al in the zeolite skeleton and their abundance ratio are adjusted by adding a salt compound. This makes it possible to synthesize GIS having an ideal crystal structure.

また、塩化合物の添加によりもたらされるカチオンとアルミ源の比は特に重要である。混合ゲル中の塩化合物によりもたらされるカチオンとアルミ源の比は、Al23に対するカチオン量Eの加算モル比、すなわちE/Al23として表す。ここで、Eは塩化合物からもたらされるカチオンのモル量を表し、例えば、硝酸ナトリウムを添加した場合、カチオン種としてNa+が生成し、炭酸ナトリウムでは2Na+が生成するとし、塩化合物の添加により生じたカチオン種の加算モル量をEで表す。E/Al23により、混合ゲル中におけるAlの凝集状態を変化させることができ、ゼオライト結晶形成時のAlのランダム性を制御することに繋がり、理想的な結晶構造を有するGIS型ゼオライトを合成することが可能となる。以上の観点からE/Al23を最適に制御する必要があり、E/Al23は、好ましくは0.1以上100.0以下であり、より好ましくは、0.5以上80.0以下であり、さらに好ましくは0.8以上50.0以下である。 Also, the ratio of cations provided by the addition of salt compounds to the aluminum source is of particular importance. The ratio of the cations provided by the salt compounds in the mixed gel to the aluminum source is expressed as the additive molar ratio of the amount of cations E to Al 2 O 3 , ie E/Al 2 O 3 . Here, E represents the molar amount of cations produced from the salt compound. For example, when sodium nitrate is added, Na + is generated as a cation species, and when sodium carbonate is used, 2Na + is generated, and the addition of the salt compound produces The added molar amount of the resulting cationic species is represented by E. E/Al 2 O 3 can change the aggregation state of Al in the mixed gel, leading to controlling the randomness of Al during zeolite crystal formation, and making it possible to create GIS type zeolite with an ideal crystal structure. It becomes possible to synthesize. From the above viewpoint, it is necessary to optimally control E/Al 2 O 3 , and E/Al 2 O 3 is preferably 0.1 or more and 100.0 or less, more preferably 0.5 or more and 80.0 or less. It is 0 or less, more preferably 0.8 or more and 50.0 or less.

また、混合ゲル中の水とOH-の比(H2O/OH-)は、適切なSARを有するGIS型ゼオライトを合成するために重要である。OH-とは、アルカリ源として用いるNaOHやCa(OH)2等の無機水酸化物やテトラエチルアンモニウムヒドロキシド等の有機水酸化物に由来するOH-であり、アルミン酸ナトリウムやケイ酸ナトリウムのように酸化物で表されるものや、その水和物を水に溶解させた際に排出されるOH-は含まない。ゼオライトの生成は、水溶媒に溶解したシリカ源、アルミ源、アルカリ源が結晶化していく反応と共に、一部がアルカリ性の溶媒に溶出しており、結晶化と再溶解の平衡が起きている。NaOHやCa(OH)2等の無機水酸化物やテトラエチルアンモニウムヒドロキシド等の有機水酸化物に由来するOH-を混合ゲル中に加えるということは、この結晶化と再溶解の平衡を再溶解側にずらすことを意味している。再溶解は非晶質や結晶性が低い部分から溶解が進む。したがって、適度にOH-を増やすことで不完全な結晶部分を再溶解させ、再度結晶化させることを繰り返し、理想的な結晶構造の形成を増やしていくことができる。一方で、OH-が増えすぎると、過度な溶解が進み、結晶が得られなかったり、他の結晶相、例えばより安定な構造であるANA型ゼオライトが生成してしまう。また、溶解したアルミナはシリカより反応性が高く、アルミナの方が結晶に取り込まれやすい。そこで、OH-を適度の調整することで、結晶化と再溶解の速度を調整し、結晶に取り込まれるシリカとアルミナの比を最適化して、合成されるGIS型ゼオライトのSARを最適にすることができる。 Furthermore, the ratio of water to OH - (H 2 O/OH - ) in the mixed gel is important for synthesizing a GIS-type zeolite with an appropriate SAR. OH - is derived from inorganic hydroxides such as NaOH and Ca(OH) 2 used as alkali sources, and organic hydroxides such as tetraethylammonium hydroxide . It does not include those expressed as oxides or OH - , which is emitted when the hydrate is dissolved in water. The production of zeolite involves a reaction in which the silica source, aluminum source, and alkali source dissolved in an aqueous solvent crystallize, and a portion of the zeolite is eluted into an alkaline solvent, resulting in an equilibrium between crystallization and redissolution. Adding OH - derived from inorganic hydroxides such as NaOH and Ca(OH) 2 and organic hydroxides such as tetraethylammonium hydroxide to the mixed gel changes the equilibrium between crystallization and redissolution. It means to move it to the side. Re-dissolution proceeds from amorphous or low-crystalline parts. Therefore, by appropriately increasing OH -, incomplete crystalline portions can be redissolved and crystallized again, which can be repeated to increase the formation of an ideal crystal structure. On the other hand, if OH - increases too much, excessive dissolution progresses, resulting in failure to obtain crystals or the formation of other crystal phases, such as ANA type zeolite, which has a more stable structure. Also, dissolved alumina is more reactive than silica, and alumina is more easily incorporated into crystals. Therefore, by appropriately adjusting OH - , we can adjust the speed of crystallization and redissolution, optimize the ratio of silica and alumina incorporated into the crystals, and optimize the SAR of the synthesized GIS type zeolite. I can do it.

水とアルミナの比(H2O/Al23)が高いと混合ゲル中の成分がより均一に分散されやすくなるが、高すぎると結晶化速度を著しく低下させてしまう。したがって、結晶化と再溶解の平衡に影響を及ぼすことから、最適なSARを持ち、最適な結晶構造を持つGIS型ゼオライトを合成するためには、H2O/OH-の制御と共にH2O/Al23を最適に制御する必要がある。 If the ratio of water to alumina (H 2 O/Al 2 O 3 ) is high, the components in the mixed gel will be more easily dispersed evenly, but if it is too high, the crystallization rate will be significantly reduced. Therefore, in order to synthesize a GIS- type zeolite with an optimal SAR and an optimal crystal structure, it is necessary to control H 2 O/OH - and to /Al 2 O 3 must be optimally controlled.

以上の観点から、H2O/Al23及びH2O/OH-は、好ましくは100≦H2O/Al23≦780及び50≦H2O/OH-≦1000であり、より好ましくは120≦H2O/Al23≦778及び60≦H2O/OH-≦800であり、さらに好ましくは150≦H2O/Al23≦775及び70≦H2O/OH-≦700である。 From the above viewpoint, H 2 O/Al 2 O 3 and H 2 O/OH are preferably 100≦H 2 O/Al 2 O 3 ≦780 and 50≦H 2 O/OH ≦1000, More preferably 120≦H 2 O/Al 2 O 3 ≦778 and 60≦H 2 O/OH - ≦800, and even more preferably 150≦H 2 O/Al 2 O 3 ≦775 and 70≦H 2 O. /OH - ≦700.

混合ゲル中のシリカ源とアルミ源の比は、それぞれの元素の酸化物のモル比、すなわちSiO2/Al23として表す。(なお、合成したゼオライトの比と混合ゲルのシリカアルミナ比は一致しない。その他の組成や合成条件によって、合成ゼオライトのシリカアルミナ比は決まる。) The ratio of silica source to aluminum source in the mixed gel is expressed as the molar ratio of the oxides of the respective elements, ie, SiO 2 /Al 2 O 3 . (Note that the ratio of the synthesized zeolite and the silica-alumina ratio of the mixed gel do not match.The silica-alumina ratio of the synthesized zeolite is determined by other compositions and synthesis conditions.)

この混合ゲル中のSiO2/Al23は、ゼオライトが形成可能な比であれば特に限定されないが、GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる傾向にあることから、3.0以上70.0以下が好ましく、3.5以上65.0以下がより好ましく、4.0以上60.0以下であることがさらに好ましい。 The SiO 2 /Al 2 O 3 in this mixed gel is not particularly limited as long as it is in a ratio that allows the formation of zeolite, but since it tends to suppress the formation of zeolite having a skeleton different from the GIS type skeleton, 3. It is preferably 0 or more and 70.0 or less, more preferably 3.5 or more and 65.0 or less, and even more preferably 4.0 or more and 60.0 or less.

混合ゲル中のアルミ源とアルカリ金属及びアルカリ土類金属の比は、Al23に対するM12OとM2Oの加算モル比、すなわち(M12O+M2O)/Al23として表す(ここで、M1はアルカリ金属を示し、M2はアルカリ土類金属を示す。これらを酸化物として算出する。)。なお、この(M12O+M2O)/Al23は、GIS型骨格の結晶形成がより容易となる観点から、1.5以上であることが好ましく、1.6以上であることがより好ましく、1.65あることがさらに好ましい。(M12O+M2O)/Al23は、GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる観点から15.0以下であることが好ましく、12.0以下であることがより好ましく、10.0以下がさらに好ましい。 The ratio of the aluminum source to the alkali metal and alkaline earth metal in the mixed gel is expressed as the additive molar ratio of M1 2 O and M2O to Al 2 O 3 , i.e. (M1 2 O + M2O)/Al 2 O 3 (where: M1 represents an alkali metal, and M2 represents an alkaline earth metal. These are calculated as oxides.) Note that this (M1 2 O + M2O)/Al 2 O 3 is preferably 1.5 or more, more preferably 1.6 or more, from the viewpoint of easier crystal formation of the GIS type skeleton. More preferably, it is 1.65. (M1 2 O + M2O)/Al 2 O 3 is preferably 15.0 or less, more preferably 12.0 or less, from the viewpoint of suppressing the formation of zeolite having a skeleton different from the GIS type skeleton, and more preferably 12.0 or less. .0 or less is more preferable.

混合ゲル中のリン源とアルミ源の比は、それぞれの元素の酸化物のモル比、すなわちP25/Al23として表す。このP25/Al23は、ゼオライトが形成可能な比であれば特に限定されないが、GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる傾向にあることから、1.0未満が好ましく、0.6以下であることがより好ましく、0.4以下であることがさらに好ましく、0であることがとりわけ好ましい。 The ratio of phosphorus source to aluminum source in the mixed gel is expressed as the molar ratio of the oxides of the respective elements, ie, P 2 O 5 /Al 2 O 3 . This P 2 O 5 /Al 2 O 3 ratio is not particularly limited as long as zeolite can be formed, but it is less than 1.0 because it tends to suppress the formation of zeolite having a skeleton different from the GIS type skeleton. is preferable, 0.6 or less is more preferable, 0.4 or less is still more preferable, and 0 is especially preferable.

混合ゲル中に有機構造規定剤を含む場合は、混合ゲル中のアルミ源と有機構造規定剤の比は、Al23に対する有機構造規定剤のモル比、すなわちR/Al23として表す(ここでRは有機構造規定剤を示す)。GIS型骨格の結晶形成がより容易となる、及び/又は合成時間が短くなり、ゼオライトを製造する際の経済性に優れる点から、7.0未満であることが好ましく、6.0以下がより好ましく、5.0以下であることがさらに好ましい。有機構造規定剤を用いた場合、ゼオライト細孔内に有機構造規定剤が残存し、二酸化炭素が細孔内に入れず、吸着量が減る。有機構造規定剤を除去するためには少なくとも400℃以上に加熱する必要があるが、GIS型ゼオライトは350℃以上で結晶が崩壊、アモルファス化するため、有機構造規定剤は少ない方が好ましい。その観点での好ましいR/Al23は4.0以下であり、3.5以下がより好ましく、3.0以下であることがさらに好ましい。 When an organic structure directing agent is included in the mixed gel, the ratio of the aluminum source to the organic structure directing agent in the mixed gel is expressed as the molar ratio of the organic structure directing agent to Al 2 O 3 , that is, R/Al 2 O 3 (R represents an organic structure directing agent here). The value is preferably less than 7.0, and more preferably 6.0 or less, because crystal formation of the GIS type skeleton becomes easier and/or the synthesis time is shortened, resulting in excellent economic efficiency when producing zeolite. It is preferably 5.0 or less, and more preferably 5.0 or less. When an organic structure-directing agent is used, the organic structure-directing agent remains in the zeolite pores, preventing carbon dioxide from entering the pores and reducing the amount of adsorption. In order to remove the organic structure directing agent, it is necessary to heat it to at least 400° C., but since the crystals of GIS type zeolite collapse and become amorphous at 350° C. or higher, it is preferable to use less organic structure directing agent. From that point of view, R/Al 2 O 3 is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.

以上のとおり、本実施形態に係るGIS型ゼオライトの製造方法は、珪素を含むシリカ源と、アルミニウムを含むアルミ源と、アルカリ金属(M1)及びアルカリ土類金属(M2)から選ばれる少なくとも1種を含むアルカリ源と、アルカリ金属(M1)及びアルカリ土類金属(M2)から選ばれる少なくとも1種を含む塩化合物と、リン源と、水と、を含有する混合ゲルの調製工程を含み、前記混合ゲルにおける各成分のモル比を、前記珪素、アルミニウム、アルカリ金属(M1)及びアルカリ土類金属(M2)、リン源については各元素の酸化物として算出するとき、下記式(1)、(2)、(3)、(4)、(5)及び(6)で表されるモル比α、β、γ、δ、ε、ζが、0.1≦α≦100.0、3.0≦β≦70.0、1.5≦γ≦15.0、0≦δ<1.0、100≦ε≦780及び50≦ζ≦1000を満たすことが好ましく、0.5≦α≦80.0、3.5≦β≦65.0、1.6≦γ≦12.0、0≦δ≦0.6、120≦ε≦778及び60≦ζ≦800を満たすことがより好ましく、0.8≦α≦50、4.0≦β≦60.0、1.65≦γ≦10.0、0≦δ≦0.4、150≦ε≦775及び70≦ζ≦700を満たすことがさらに好ましい。本実施形態に係るGIS型ゼオライトは、上述した本実施形態に係るGIS型ゼオライトの製造方法により得られるものであることが特に好ましい。
α=E/Al23 (1)
β=SiO2/Al23 (2)
γ=(M12O+M2O)/Al23 (3)
δ=P25/Al23 (4)
ε=H2O/Al23 (5)
ζ=H2O/OH- (6)
As described above, the method for producing GIS type zeolite according to the present embodiment uses a silica source containing silicon, an aluminum source containing aluminum, and at least one metal selected from an alkali metal (M1) and an alkaline earth metal (M2). , a salt compound containing at least one selected from alkali metals (M1) and alkaline earth metals (M2), a phosphorus source, and water. When calculating the molar ratio of each component in the mixed gel as the oxide of each element for silicon, aluminum, alkali metal (M1) and alkaline earth metal (M2), and the phosphorus source, the following formula (1), ( 2), (3), (4), (5) and (6) molar ratios α, β, γ, δ, ε, ζ are 0.1≦α≦100.0, 3.0 It is preferable to satisfy ≦β≦70.0, 1.5≦γ≦15.0, 0≦δ<1.0, 100≦ε≦780 and 50≦ζ≦1000, and 0.5≦α≦80. More preferably, 0, 3.5≦β≦65.0, 1.6≦γ≦12.0, 0≦δ≦0.6, 120≦ε≦778 and 60≦ζ≦800, It is further satisfied that 8≦α≦50, 4.0≦β≦60.0, 1.65≦γ≦10.0, 0≦δ≦0.4, 150≦ε≦775 and 70≦ζ≦700. preferable. It is particularly preferable that the GIS type zeolite according to the present embodiment is obtained by the method for producing a GIS type zeolite according to the present embodiment described above.
α=E/Al 2 O 3 (1)
β=SiO 2 /Al 2 O 3 (2)
γ=(M1 2 O+M2O)/Al 2 O 3 (3)
δ=P 2 O 5 /Al 2 O 3 (4)
ε=H 2 O/Al 2 O 3 (5)
ζ=H 2 O/OH- (6)

さらに、本実施形態に係るGIS型ゼオライトの製造方法において、モル比α、β、γ、δ、ε、ζが上記範囲を満たし、かつ、混合ゲルが、さらに有機構造規定剤Rを含む場合、下記式(7)で表されるモル比ηが、η≦4を満たすことが好ましい。
η=R/Al23 (7)
Furthermore, in the method for producing a GIS type zeolite according to the present embodiment, when the molar ratios α, β, γ, δ, ε, and ζ satisfy the above ranges, and the mixed gel further contains an organic structure directing agent R, It is preferable that the molar ratio η expressed by the following formula (7) satisfies η≦4.
η=R/Al 2 O 3 (7)

必ずしも混合ゲル中に種結晶を存在させる必要は無いが、予め製造したGIS型ゼオライトを種結晶として混合ゲルに添加して、本実施形態に係るGIS型ゼオライトを得ることもできる。 Although it is not always necessary to have a seed crystal in the mixed gel, the GIS type zeolite according to the present embodiment can also be obtained by adding a previously produced GIS type zeolite to the mixed gel as a seed crystal.

〔混合ゲルの調製工程〕
混合ゲルの調製工程は、特に限定されないが、例えば、シリカ源、アルミ源、塩化合物、水、及び必要に応じてリン源、アルカリ源、有機構造規定剤を一時にあるいは多段階で混合する混合工程と、この混合工程で得られた混合物の熟成工程とを含んでもよい。
[Mixed gel preparation process]
The preparation process of the mixed gel is not particularly limited, but for example, a silica source, an aluminum source, a salt compound, water, and if necessary a phosphorus source, an alkali source, and an organic structure directing agent are mixed at once or in multiple stages. and an aging step of the mixture obtained in this mixing step.

混合工程は、シリカ源、アルミ源、塩化合物、水、及び必要に応じてリン源、アルカリ源や有機構造規定剤を含むこれら成分を一時にあるいは多段階で混合することができる。 In the mixing step, these components including a silica source, an aluminum source, a salt compound, water, and if necessary a phosphorus source, an alkali source, and an organic structure directing agent can be mixed all at once or in multiple stages.

多段階で混合する際の順序は限定されず、用いる条件により適宜選択すればよい。多段階で混合する際には、撹拌あるいは無撹拌のどちらで行ってもよい。撹拌する際には、一般的に使用される撹拌方法であれば特に限定されないが、具体例としては、翼撹拌、振動撹拌、揺動撹拌、遠心式撹拌などを用いる方法が挙げられる。 The order of mixing in multiple stages is not limited and may be appropriately selected depending on the conditions used. When mixing in multiple stages, it may be performed with or without stirring. The stirring method is not particularly limited as long as it is a commonly used stirring method, but specific examples include methods using blade stirring, vibration stirring, rocking stirring, centrifugal stirring, and the like.

撹拌の回転速度は一般的に用いられる撹拌速度であれば特に限定されないが、例えば、1rpm以上2000rpm未満であることが挙げられる。 The rotational speed of stirring is not particularly limited as long as it is a commonly used stirring speed, but for example, it may be 1 rpm or more and less than 2000 rpm.

混合工程の温度は一般的に用いられる温度であれば特に限定されないが、例えば、-20℃以上80℃未満が挙げられる。 The temperature of the mixing step is not particularly limited as long as it is a commonly used temperature, and examples thereof include -20°C or more and less than 80°C.

混合工程の時間は、特に限定されず、混合工程の温度により適宜選択することができるが、例えば、0分を超え、1000時間以下が挙げられる。 The time of the mixing step is not particularly limited and can be appropriately selected depending on the temperature of the mixing step, and for example, it may be more than 0 minutes and less than 1000 hours.

熟成工程は静置あるいは撹拌のどちらで行ってもよい。熟成工程で撹拌する際には、一般的に使用される撹拌方法であれば特に限定されないが、具体例としては、翼撹拌、振動撹拌、揺動撹拌、遠心式撹拌などを用いる方法が挙げられる。 The aging step may be performed either by standing still or by stirring. When stirring in the ripening process, there is no particular limitation as long as it is a generally used stirring method, but specific examples include methods using blade stirring, vibration stirring, rocking stirring, centrifugal stirring, etc. .

撹拌の回転速度は一般的に用いられる撹拌速度であれば特に限定されないが、例えば、1rpm以上2000rpm未満であることが挙げられる。 The rotational speed of stirring is not particularly limited as long as it is a commonly used stirring speed, but for example, it may be 1 rpm or more and less than 2000 rpm.

熟成工程の温度は一般的に用いられる温度であれば特に限定されないが、例えば、-20℃以上80℃未満が挙げられる。 The temperature of the aging step is not particularly limited as long as it is a commonly used temperature, but for example, it may be -20°C or higher and lower than 80°C.

熟成工程の時間は、特に限定されず、熟成工程の温度により適宜選択することができるが、例えば、0分を超え、1000時間以下が挙げられる。 The time for the aging process is not particularly limited and can be appropriately selected depending on the temperature of the aging process, and for example, may be more than 0 minutes and 1000 hours or less.

ゼオライトは原料の混合工程、熟成工程において、原料の溶解とゼオライト前駆体の生成及び再溶解が起きていると考えられる。8員環を含む大きな周期構造が欠陥等を生じずに形成するためには、ゼオライト前駆体の形成が過度に進んでいない方が好ましい。また、ゼオライトの前駆体の形成が過度に進んだ場合、より安定な構造であるANA型ゼオライトの生成が増加する傾向にあることからも過度に熟成しないことが好ましい。一方で原料は十分に混合し、原料ゲルが均一な状態が好ましい。混合工程と熟成工程を合わせた時間は、適切な構造のゼオライトを得るため、原料の組成等に基づいて適宜調整すればよく、特に限定されない。上記時間は、典型的には、1分以上24時間未満が好ましく、3分以上23時間未満がより好ましく、10分以上18時間以下がさらに好ましく、12分以上15時間以下がよりさらに好ましく、20分以上6時間以下が一層好ましい。 Zeolite is considered to undergo dissolution of raw materials and generation and re-dissolution of zeolite precursors during the raw material mixing process and aging process. In order to form a large periodic structure containing an 8-membered ring without causing defects, it is preferable that the formation of the zeolite precursor does not proceed excessively. Furthermore, if the formation of the zeolite precursor progresses excessively, the production of ANA type zeolite, which has a more stable structure, tends to increase, so it is preferable not to ripen it excessively. On the other hand, it is preferable that the raw materials are sufficiently mixed so that the raw material gel is uniform. The combined time of the mixing step and aging step is not particularly limited, and may be adjusted as appropriate based on the composition of the raw materials, etc., in order to obtain a zeolite with an appropriate structure. Typically, the above-mentioned time is preferably 1 minute or more and less than 24 hours, more preferably 3 minutes or more and less than 23 hours, further preferably 10 minutes or more and 18 hours or less, even more preferably 12 minutes or more and 15 hours or less, and even more preferably 12 minutes or more and less than 15 hours. The time period is more preferably 6 hours or more.

〔水熱合成工程〕
本実施形態に係るGIS型ゼオライトの製造方法において、水熱合成温度が80℃~200℃である水熱合成工程をさらに含むことが好ましく、当該水熱合成温度は100℃~180℃であることがより好ましい。すなわち、好ましくは、調製工程により得た混合ゲルを所定の温度で、所定の時間、撹拌又は静置状態で保持することにより水熱合成する。
[Hydrothermal synthesis process]
The method for producing GIS-type zeolite according to the present embodiment preferably further includes a hydrothermal synthesis step in which the hydrothermal synthesis temperature is 80°C to 200°C, and the hydrothermal synthesis temperature is 100°C to 180°C. is more preferable. That is, hydrothermal synthesis is preferably carried out by holding the mixed gel obtained in the preparation step at a predetermined temperature for a predetermined period of time under stirring or in a stationary state.

水熱合成の温度は、一般的に用いられる温度であれば特に限定されないが、合成時間が短くなり、ゼオライト製造する際の経済性に優れる点から、80℃以上であることが好ましい。GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる観点から、90℃以上であることがより好ましく、100℃以上であることがさらに好ましい。GIS型骨格と異なる骨格を有するゼオライトの形成が抑制できる観点から、200℃以下であることがより好ましく、180℃以下であることがさらに好ましく、170℃以下であることがさらに好ましい。水熱合成の温度は一定でもよいし、段階的に変化させてもよい。 The temperature for hydrothermal synthesis is not particularly limited as long as it is a commonly used temperature, but it is preferably 80° C. or higher because it shortens the synthesis time and is economically efficient in producing zeolite. From the viewpoint of suppressing the formation of zeolite having a skeleton different from the GIS type skeleton, the temperature is more preferably 90°C or higher, and even more preferably 100°C or higher. From the viewpoint of suppressing the formation of zeolite having a skeleton different from the GIS type skeleton, the temperature is more preferably 200°C or lower, even more preferably 180°C or lower, and even more preferably 170°C or lower. The temperature for hydrothermal synthesis may be constant or may be changed stepwise.

水熱合成の時間は一般的に用いられる時間であれば特に限定されず、水熱合成の温度により適宜選択することができる。水熱合成の時間は、GIS骨格が形成される点から、3時間以上であることが好ましく、10時間以上であることがより好ましい。高結晶性のGIS型ゼオライトが得られる観点から、さらに好ましくは24時間以上である。ゼオライト製造する際の経済性に優れる点から、水熱合成の時間は30日以下であることが好ましく、20日以下であることがより好ましく、10日以下であることがさらに好ましい。 The time for hydrothermal synthesis is not particularly limited as long as it is a commonly used time, and can be appropriately selected depending on the temperature of hydrothermal synthesis. The hydrothermal synthesis time is preferably 3 hours or more, more preferably 10 hours or more, from the viewpoint of forming a GIS skeleton. From the viewpoint of obtaining highly crystalline GIS type zeolite, the heating time is more preferably 24 hours or more. From the viewpoint of excellent economic efficiency in producing zeolite, the hydrothermal synthesis time is preferably 30 days or less, more preferably 20 days or less, and even more preferably 10 days or less.

水熱合成工程において、混合ゲルを入れる容器は一般的に用いられる容器であれば特に限定されないが、所定の温度において容器内の圧力が高まる場合、又は、結晶化を阻害しない気体加圧下とする場合には、耐圧容器に入れ、水熱合成することが好ましい。耐圧容器は、特に限定されず、例えば、球形状、縦長状、横長状等の各種の形状を用いることができる。 In the hydrothermal synthesis process, the container in which the mixed gel is placed is not particularly limited as long as it is a commonly used container, but if the pressure inside the container increases at a predetermined temperature, or if it is under gas pressure that does not inhibit crystallization. In such cases, it is preferable to place the mixture in a pressure-resistant container and perform hydrothermal synthesis. The pressure-resistant container is not particularly limited, and various shapes such as a spherical shape, a vertically long shape, and a horizontally long shape can be used, for example.

耐圧容器内の混合ゲルを撹拌する際には、耐圧容器を上下方向に及び/又は左右方向に回転させるが、好ましくは上下方向に回転させる。耐圧容器を上下方向に回転させる場合、その回転速度は一般的に用いられる範囲であれば特に限定されないが、1~50rpmが好ましく、10~40rpmであることがより好ましい。 When stirring the mixed gel in the pressure container, the pressure container is rotated vertically and/or horizontally, preferably in the vertical direction. When rotating the pressure container in the vertical direction, the rotation speed is not particularly limited as long as it is within a commonly used range, but is preferably 1 to 50 rpm, more preferably 10 to 40 rpm.

水熱合成工程において、混合ゲルを好ましく撹拌するには、耐圧容器として縦長のものを用い、これを上下方向に回転させる方法が挙げられる。 In order to preferably stir the mixed gel in the hydrothermal synthesis step, there is a method in which a vertically elongated pressure vessel is used and the vessel is rotated in the vertical direction.

〔分離・乾燥工程〕
水熱合成工程後、生成物である固体と水を含む液体とを分離するが、その分離方法は一般的な方法であれば特に限定されず、濾過、デカンテーション、噴霧乾燥法(回転噴霧、ノズル噴霧及び超音波噴霧など)、回転蒸発器を用いた乾燥法、真空乾燥法、凍結乾燥法、又は自然乾燥法等を用いることができ、通常は濾過又はデカンテーションにより分離することができる。
[Separation/drying process]
After the hydrothermal synthesis step, the product solid and water-containing liquid are separated, and the separation method is not particularly limited as long as it is a common method, such as filtration, decantation, spray drying (rotary spray, Nozzle spraying, ultrasonic spraying, etc.), a drying method using a rotary evaporator, a vacuum drying method, a freeze-drying method, a natural drying method, etc. can be used, and separation can usually be performed by filtration or decantation.

分離されたものはそのまま用いても、水、又は所定の溶剤で洗浄しても構わない。必要に応じ、分離されたものを乾燥することができる。分離されたものを乾燥する温度は、一般的な乾燥する温度であれば特に限定されないが、通常、室温から150℃以下である。乾燥する際の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。 The separated product may be used as it is or may be washed with water or a prescribed solvent. If necessary, the separated material can be dried. The temperature at which the separated product is dried is not particularly limited as long as it is a general drying temperature, but is usually from room temperature to 150° C. or lower. The atmosphere for drying is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.

〔焼成工程〕
必要に応じて、GIS型ゼオライトを焼成して用いることができる。焼成する温度は、一般的に用いられる温度であれば特に限定されないが、有機構造規定剤を除去したい場合、その残っている割合を少なくできることから、300℃以上であることが好ましく、350℃以上であることがより好ましい。焼成の時間が短くなり、ゼオライトを製造する際の経済性に優れる点から、360℃以上であることがさらに好ましい。ゼオライトの結晶性が保持される傾向にあることから、450℃未満であることが好ましく、420℃以下であることがより好ましく、400℃以下であることがさらに好ましい。
[Firing process]
If necessary, the GIS type zeolite can be calcined and used. The firing temperature is not particularly limited as long as it is a commonly used temperature, but when it is desired to remove the organic structure directing agent, the remaining proportion can be reduced, so it is preferably 300°C or higher, and 350°C or higher. It is more preferable that The temperature is more preferably 360° C. or higher because the firing time is short and the zeolite is produced economically. Since the crystallinity of zeolite tends to be maintained, the temperature is preferably lower than 450°C, more preferably 420°C or lower, and even more preferably 400°C or lower.

焼成する時間は、有機構造規定剤が十分除去される時間であれば特に限定されず、焼成の温度により適宜選択することができるが、有機構造規定剤が残っている割合を少なくできる傾向にあることから、0.5時間以上であることが好ましく、1時間以上であることがより好ましく、3時間以上であることがさらに好ましい。ゼオライトの結晶性が保持される傾向にあることから、10日以下であることが好ましく、7日以下であることがより好ましく、5日以下であることがさらに好ましい。 The firing time is not particularly limited as long as the organic structure directing agent is sufficiently removed, and can be appropriately selected depending on the firing temperature, but it tends to reduce the proportion of the organic structure directing agent remaining. Therefore, the duration is preferably 0.5 hours or more, more preferably 1 hour or more, and even more preferably 3 hours or more. Since the crystallinity of the zeolite tends to be maintained, it is preferably 10 days or less, more preferably 7 days or less, and even more preferably 5 days or less.

焼成の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。 The firing atmosphere is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.

〔カチオン交換〕
必要に応じて、GIS型ゼオライトを、所望のカチオン型へカチオン交換を行うことができる。カチオン交換は、以下に限定されないが、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸アンモニウムなどの炭酸塩、あるいは硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸ルビジウム、硝酸セシウム、硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム、硝酸アンモニウムなどの硝酸塩、あるいは前記炭酸塩、硝酸塩に含まれる炭酸イオン、硝酸イオンをハロゲン化物イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、酢酸イオン、リン酸イオン又はリン酸水素イオンに変更した塩、硝酸や塩酸などの酸を用いることができる。
[Cation exchange]
If necessary, the GIS type zeolite can be cation-exchanged into a desired cation type. Cation exchange includes, but is not limited to, carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, rubidium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, ammonium carbonate, or sodium nitrate. Nitrates such as potassium nitrate, lithium nitrate, rubidium nitrate, cesium nitrate, magnesium nitrate, calcium nitrate, strontium nitrate, barium nitrate, and ammonium nitrate, or carbonate ions and nitrate ions contained in the carbonates and nitrates, can be converted into halide ions, sulfate ions, Salts changed to carbonate ions, hydrogen carbonate ions, acetate ions, phosphate ions or hydrogen phosphate ions, and acids such as nitric acid and hydrochloric acid can be used.

カチオン交換の温度は、一般的なカチオン交換の温度であれば特に限定されないが、通常、室温から100℃以下である。 The temperature of cation exchange is not particularly limited as long as it is a general cation exchange temperature, but is usually from room temperature to 100°C or less.

カチオン交換後のゼオライトを分離する際、その分離方法は一般的な方法であれば特に限定されず、濾過、デカンテーション、噴霧乾燥法(回転噴霧、ノズル噴霧及び超音波噴霧など)、回転蒸発器を用いた乾燥法、真空乾燥法、凍結乾燥法、又は自然乾燥法等を用いることができ、通常は濾過又はデカンテーションにより分離することができる。 When separating zeolite after cation exchange, the separation method is not particularly limited as long as it is a general method, such as filtration, decantation, spray drying method (rotary spray, nozzle spray, ultrasonic spray, etc.), rotary evaporator. A drying method using a vacuum drying method, a freeze drying method, a natural drying method, etc. can be used, and separation can usually be performed by filtration or decantation.

分離されたものはそのまま用いても、水、又は所定の溶剤で洗浄しても構わない。必要に応じ、分離されたものを乾燥することができる。 The separated product may be used as it is or may be washed with water or a prescribed solvent. If necessary, the separated material can be dried.

分離されたものを乾燥する温度は、一般的な乾燥する温度であれば特に限定されないが、通常、室温から150℃以下である。 The temperature at which the separated product is dried is not particularly limited as long as it is a general drying temperature, but is usually from room temperature to 150° C. or lower.

乾燥する際の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。 The atmosphere for drying is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.

さらに、アンモニウム型ゼオライトは該ゼオライトを焼成することによりプロトン型ゼオライトに変換することもできる。 Furthermore, ammonium type zeolite can also be converted into proton type zeolite by calcining the zeolite.

(担体)
本実施形態に係るゼオライト成形体は、担体を含むことが好ましい。担体としては、例えば、無機結合剤、有機結合剤が挙げられる。なお弾性率の高い担体の含有量を高くすると、ゼオライト成形体の弾性率Eも高くなる傾向にあり、弾性率の低い担体の含有量を高くすると、成形体の弾性率Eも低くなる傾向にある。そのため、担体の含有量は、用途により求められる強度や性能などを考慮しつつ、弾性率が所定の範囲内となるように調整することが好ましい。
(carrier)
The zeolite molded article according to this embodiment preferably includes a carrier. Examples of the carrier include inorganic binders and organic binders. In addition, when the content of a carrier with a high elastic modulus is increased, the elastic modulus E of the zeolite molded body tends to increase, and when the content of a carrier with a low elastic modulus is increased, the elastic modulus E of the molded body also tends to decrease. be. Therefore, it is preferable to adjust the content of the carrier so that the modulus of elasticity falls within a predetermined range, taking into consideration the strength and performance required depending on the application.

無機結合剤としては、例えば、アルミナ、シリカ、マグネシア、ジルコニア、チタニア等の無機酸化物、ベントナイト、カオリン等の粘土鉱物、ケイ酸カルシウム、アルミン酸カルシウムが挙げられる。アルミナとしては、例えば、α-アルミナ、γ-アルミナ、ベーマイト、擬ベーマイト、バイヤライト、ギブサイト、ダイアスポアが挙げられる。シリカとしては、例えば、コロイダルシリカ、水ガラス、ヒュームドシリカ、シリカゾル、湿式法シリカ、乾式法シリカ、天然シリカが挙げられる。これらの無機結合剤は単独で使用しても、複数を組み合わせて使用してもよい。これらの無機結合剤の中でも、ゼオライト成形体の強度を高める観点から、アルミナ、シリカ、マグネシア、ジルコニア、チタニアが好ましく、シリカ及びアルミナがより好ましい。
無機結合剤の含有量としては、ゼオライト成形体の全量(100質量%)に対し、1~99質量%が好ましく、5~90質量%がより好ましく、8~80質量%がさらに好ましい。
Examples of the inorganic binder include inorganic oxides such as alumina, silica, magnesia, zirconia, and titania, clay minerals such as bentonite and kaolin, calcium silicate, and calcium aluminate. Examples of alumina include α-alumina, γ-alumina, boehmite, pseudoboehmite, bayerite, gibbsite, and diaspore. Examples of silica include colloidal silica, water glass, fumed silica, silica sol, wet process silica, dry process silica, and natural silica. These inorganic binders may be used alone or in combination. Among these inorganic binders, alumina, silica, magnesia, zirconia, and titania are preferred, and silica and alumina are more preferred, from the viewpoint of increasing the strength of the zeolite molded body.
The content of the inorganic binder is preferably 1 to 99% by mass, more preferably 5 to 90% by mass, and even more preferably 8 to 80% by mass, based on the total amount (100% by mass) of the zeolite molded body.

有機結合剤としては、例えば、セルロース、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ラテックス、ポリビニルアルコール、酢酸ビニル、ポリビニルアセタール、塩化ビニル、アクリル、ポリアミド、ウレア、メラミン、フェノール樹脂、ポリエステル、ポリウレタン、ポリアミド、ポリベンズイミダゾール、クロロプレンゴム、ニトリルゴム、スチレンブタジエンゴム、ポリサルファイド、ブチルゴム、シリコーンゴム、アクリルゴム、ウレタンゴムが挙げられる。これらの有機結合剤は単独で使用しても、複数を組み合わせて使用してもよい。これらの有機結合剤の中でも、GIS型ゼオライトとの表面結合の観点から、セルロース、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコールが好ましく、セルロース、メチルセルロース、及びポリビニルアルコールがより好ましい。
有機結合剤の含有量としては、ゼオライト成形体の全量(100質量%)に対し、1~99質量%が好ましく、5~90質量%がより好ましく、8~80質量%がさらに好ましい。
Examples of the organic binder include cellulose, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, latex, polyvinyl alcohol, vinyl acetate, polyvinyl acetal, vinyl chloride, acrylic, polyamide, urea, melamine, phenolic resin, polyester, polyurethane, polyamide, and polyester. Examples include benzimidazole, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, polysulfide, butyl rubber, silicone rubber, acrylic rubber, and urethane rubber. These organic binders may be used alone or in combination. Among these organic binders, cellulose, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and polyvinyl alcohol are preferred, and cellulose, methylcellulose, and polyvinyl alcohol are more preferred, from the viewpoint of surface bonding with GIS type zeolite.
The content of the organic binder is preferably 1 to 99% by mass, more preferably 5 to 90% by mass, and even more preferably 8 to 80% by mass, based on the total amount (100% by mass) of the zeolite molded body.

なお、上述の無機結合剤、有機結合剤をそれぞれ1種類以上含むことが好ましい。 In addition, it is preferable to contain one or more types of each of the above-mentioned inorganic binder and organic binder.

担体の合計含有量としては、ゼオライト成形体の全量(100質量%)に対し、1~99質量%が好ましく、5~90質量%がより好ましく、8~80質量%がさらに好ましい。担体の含有量を高くすると、成形体は強度が高くなる傾向にあるが、ゼオライト自体の含有量が低くなる傾向にある。そのため、担体の含有量は、用途により求められる強度や性能などを考慮し、調整してもよい。 The total content of the carrier is preferably 1 to 99% by mass, more preferably 5 to 90% by mass, and even more preferably 8 to 80% by mass, based on the total amount (100% by mass) of the zeolite molded body. When the content of the carrier is increased, the strength of the molded body tends to increase, but the content of the zeolite itself tends to decrease. Therefore, the content of the carrier may be adjusted in consideration of the strength and performance required depending on the application.

ゼオライト成形体の形状は、特に限定されないが、例えば、球状、円柱状、楕円状、俵型、三つ葉型、リング状、粉状などが挙げられる。これらの中でも、球状、円柱状がさらに好ましい。成形体の大きさは特に制限ないが、成形体を使用する状況により変化する。例えば、固定床や移動床など、流動状態以外で成形体を用いるプロセスの使用においては、長さ3mm以上30mm以下及び直径1mm以上30mm以下の円柱状であることが好ましい。円柱の長さは、より好ましくは3mm以上10mm以下であり、さらに好ましくは3mm以上8mm以下である。円柱の直径は、より好ましくは2mm以上4mm以下である。
上記長さ及び直径は、最小読み取り値が0.1mm以下のノギスを用いた、ノギス法によりペレットの長さ及び直径を3つのサンプルに対して測定を行い、その平均値を長さ及び直径として測定することができ、例えば分級等の操作によって上述した範囲に調整することができる。
流動床など成形体を流動させて用いるプロセスへの使用においては、粉体として粒子径20μm以上300μm以下の粒子であることが好ましい。上記粒子径は、より好ましくは20μm以上200μm以下であり、さらに好ましくは30μm以上100μm以下である。粒子径は、レーザー回折・散乱式粒度分析計(Microtrac社製MT3000)を用い、付属のマニュアルに従いに従いメディアン径(D50)として測定できる。
The shape of the zeolite molded body is not particularly limited, and examples thereof include spherical, cylindrical, elliptical, bag-shaped, trefoil-shaped, ring-shaped, and powder-shaped. Among these, spherical and cylindrical shapes are more preferable. The size of the molded body is not particularly limited, but it changes depending on the conditions in which the molded body is used. For example, when using a process that uses a molded body in a state other than a fluidized state, such as a fixed bed or a moving bed, it is preferably cylindrical with a length of 3 mm or more and 30 mm or less and a diameter of 1 mm or more and 30 mm or less. The length of the cylinder is more preferably 3 mm or more and 10 mm or less, and even more preferably 3 mm or more and 8 mm or less. The diameter of the cylinder is more preferably 2 mm or more and 4 mm or less.
The above length and diameter are determined by measuring the pellet length and diameter on three samples using a caliper with a minimum reading of 0.1 mm or less, and using the average value as the length and diameter. It can be measured and adjusted to the above-mentioned range by, for example, operations such as classification.
When used in a process in which a molded body is fluidized such as a fluidized bed, it is preferable that the powder has a particle diameter of 20 μm or more and 300 μm or less. The particle diameter is more preferably 20 μm or more and 200 μm or less, and even more preferably 30 μm or more and 100 μm or less. The particle size can be measured as a median diameter (D50) using a laser diffraction/scattering particle size analyzer (MT3000 manufactured by Microtrac) according to the attached manual.

本実施形態に係るゼオライト成形体の圧縮強度は、1.0MPa以上であることが好ましく、より好ましくは2.2MPa以上であり、さらに好ましくは3.4MPa以上である。とりわけ、本実施形態に係るゼオライト成形体が粉状である場合、上述の範囲を満たすことが好ましい。
上記圧縮強度は、微小圧縮試験機(島津製作所製MCT-W500、圧縮強度測定)を用い、20回測定して得られた値の平均値として、測定することができ、例えば焼成温度や焼成時間によって上述した範囲に調整することができる。
The compressive strength of the zeolite molded body according to the present embodiment is preferably 1.0 MPa or more, more preferably 2.2 MPa or more, and still more preferably 3.4 MPa or more. In particular, when the zeolite molded article according to the present embodiment is in powder form, it is preferable that the above-mentioned range is satisfied.
The above compressive strength can be measured as the average value of the values obtained by measuring 20 times using a micro compression tester (MCT-W500 manufactured by Shimadzu Corporation, compressive strength measurement). can be adjusted within the above-mentioned range.

本実施形態に係るゼオライト成形体の破壊強度は、5N以上であることが好ましく、より好ましくは10N以上であり、さらに好ましくは20N以上である。とりわけ、本実施形態に係るゼオライト成形体がペレットである場合、上述の範囲を満たすことが好ましい。
上記破壊強度は、デジタル硬度計(株式会社藤原製作所製KHT-40N、圧子3mm、破壊強度測定)を用い、それぞれ20回測定して得られた値の平均値として、測定することができ、例えば焼成温度や焼成時間によって上述した範囲に調整することができる。
The breaking strength of the zeolite molded body according to this embodiment is preferably 5N or more, more preferably 10N or more, and still more preferably 20N or more. In particular, when the zeolite molded body according to the present embodiment is a pellet, it is preferable that the above-mentioned range is satisfied.
The above breaking strength can be measured as the average value of the values obtained by measuring each 20 times using a digital hardness meter (KHT-40N manufactured by Fujiwara Seisakusho Co., Ltd., indenter 3 mm, breaking strength measurement). It can be adjusted within the above range by changing the firing temperature and firing time.

[ゼオライト成形体の製造方法]
本実施形態に係るゼオライト成形体の製造方法としては、特に限定されないが、本実施形態に係るゼオライトと、その他の任意成分(例えば担体)とを混合して調製する原料混合工程(X)と、調製した原料を成形処理に供して前駆体を得る成形処理工程(Y)と、前記前駆体を焼成してゼオライト成形体を得る焼成工程(Z)と、を含んでいてもよい。
その他、ゼオライト成形体の製造方法としては、所望のゼオライト成形体が得られる場合には、例えば、押出し成形処理、射出処理、射出・鋳込処理、転動造粒処理、圧縮成形処理、噴霧乾燥処理もしくはこれらの方法を2種以上を組み合わせた方法等により成形してもよい。
[Method for producing zeolite molded body]
The method for producing the zeolite molded body according to the present embodiment is not particularly limited, but includes a raw material mixing step (X) of mixing and preparing the zeolite according to the present embodiment and other optional components (for example, a carrier); The method may include a shaping treatment step (Y) in which the prepared raw material is subjected to a shaping treatment to obtain a precursor, and a firing step (Z) in which the precursor is fired to obtain a zeolite molded body.
Other methods for producing zeolite molded bodies include extrusion processing, injection treatment, injection/casting treatment, rolling granulation treatment, compression molding treatment, and spray drying, if the desired zeolite molded body can be obtained. The molding may be performed by processing or by a combination of two or more of these methods.

〔原料混合工程(X)〕
原料混合工程(X)において、原料を混合する温度としては、特に限定されないが、例えば、10℃~80℃が好ましく、15℃~60℃がより好ましい。例えば噴霧乾燥処理の様に、原料混合後の状態がスラリー状であると、原料の温度が80℃以下の場合は、原料中の水の蒸発が抑制できる傾向にあり、原料の温度が10℃以上の場合は、スラリー中の凍結を抑制できる傾向にある。また、例えば押出成形処理の様に、原料混合後にファニキュラーからキャピラリー域の粘土状であると、原料の温度が80℃以下の場合は、粘土からの水分の蒸発が抑制され、粘土中の水分量を一定に保持しやすい傾向にあり、原料の温度が10℃以上の場合は、粘土中の水分の凍結を抑制できる傾向にある。原料を調製する際の撹拌手段としては、任意の手段を採用することがでる。例えば噴霧乾燥処理の様に、原料混合後の状態がスラリー状である場合、好ましくは撹拌翼があげられる。撹拌に使用する翼としては、具体的には、プロペラ形、パドル形、フラットパドル形、タービン形、コーン形などが挙げられる。また、効率的な撹拌を行なうために、槽内に邪魔板等を設置してもよい。撹拌機の数は、触媒原料液槽の大きさ、撹拌翼の形状などに応じて最適な条件を選択すればよい。本実施形態において、原料の撹拌時間の合計は、1分~24時間であることが好ましく、より好ましくは10分~5時間であり、更に好ましくは15分~3時間である。混合液の撹拌時間が、1分以上の場合は、原料中の組成が均一になりやすく、24時間以下の場合は、原料中の水分蒸発の影響が小さくなる傾向にある。また、例えば押出成形処理の様に、原料混合後にファニキュラーからキャピラリー域の粘土状となる場合、原料の状態に合わせて、混合機や混練機 などを選択することが好ましい。本実施形態において、原料の混合や混練時間の合計は、1分~24時間であることが好ましく、より好ましくは2分~5時間であり、更に好ましくは3分~3時間である。混合液の撹拌時間が、1分以上の場合は、原料中の組成が均一になりやすく、24時間以下の場合は、原料中の水分蒸発の影響が小さくなる傾向にある。またメチルセルロースなど、熱によりゲル化しやすい有機結合剤を配合している場合、混合機や混練機などの内部温度を前記有機結合剤の熱ゲル化温度よりも低い値で維持することにより、前記有機結合剤のゲル化を抑制でき、均一な組成の原料を得やすい傾向にある。
さらに粘土状となった原料を静置し、熟成することもできる。熟成することにより、水分が原料ゼオライトの間に行き渡りやすくなり、成形性が向上しやすくなる傾向にあるほか、ゼオライトの間に存在する空気などの気体と入れ替わり、より緻密な成形体を得られる傾向にある。
[Raw material mixing process (X)]
In the raw material mixing step (X), the temperature at which the raw materials are mixed is not particularly limited, but is preferably, for example, 10°C to 80°C, more preferably 15°C to 60°C. For example, when the raw materials are mixed in a slurry state, as in the case of spray drying, the evaporation of water in the raw materials tends to be suppressed when the temperature of the raw materials is 80°C or lower; In the above cases, freezing in the slurry tends to be suppressed. In addition, for example, in extrusion molding process, if the clay-like region from the funicular to the capillary is formed after mixing the raw materials, if the temperature of the raw materials is below 80°C, the evaporation of water from the clay will be suppressed, and the moisture in the clay will be reduced. It tends to be easy to keep the amount constant, and when the temperature of the raw material is 10°C or higher, it tends to suppress the freezing of water in the clay. Any means can be used as the stirring means when preparing the raw materials. For example, when the state after mixing the raw materials is in the form of a slurry, as in the case of spray drying, a stirring blade is preferably used. Specific examples of the blades used for stirring include propeller shapes, paddle shapes, flat paddle shapes, turbine shapes, and cone shapes. Further, in order to perform efficient stirring, a baffle plate or the like may be installed in the tank. The optimum number of stirrers may be selected depending on the size of the catalyst raw material liquid tank, the shape of the stirring blades, etc. In this embodiment, the total stirring time of the raw materials is preferably 1 minute to 24 hours, more preferably 10 minutes to 5 hours, and even more preferably 15 minutes to 3 hours. When the stirring time of the mixed liquid is 1 minute or more, the composition in the raw material tends to become uniform, and when it is 24 hours or less, the influence of water evaporation in the raw material tends to be reduced. Further, when the mixture becomes clay-like in the funicular to capillary region after mixing the raw materials, as in extrusion molding, for example, it is preferable to select a mixer, kneader, etc. according to the condition of the raw materials. In this embodiment, the total time for mixing and kneading the raw materials is preferably 1 minute to 24 hours, more preferably 2 minutes to 5 hours, and still more preferably 3 minutes to 3 hours. When the stirring time of the mixed liquid is 1 minute or more, the composition in the raw material tends to become uniform, and when it is 24 hours or less, the influence of water evaporation in the raw material tends to be reduced. In addition, when an organic binder such as methyl cellulose that is easily gelled by heat is blended, the internal temperature of the mixer or kneader is maintained at a value lower than the thermal gelation temperature of the organic binder. It is possible to suppress gelation of the binder, and it tends to be easier to obtain raw materials with a uniform composition.
Furthermore, the clay-like raw material can be allowed to stand and mature. As it ages, water tends to spread more easily between the raw zeolites, improving moldability, and replaces air and other gases that exist between the zeolites, resulting in a more dense molded product. It is in.

〔成形処理工程(Y)〕
成形処理工程(Y)における成形処理としては、例えば、押出し成形処理、圧縮成形処理、噴霧乾燥処理が挙げられる。
[Molding process (Y)]
Examples of the molding treatment in the molding treatment step (Y) include extrusion molding treatment, compression molding treatment, and spray drying treatment.

押出し成形処理としては、特に限定されないが、例えば、用いる原料(押出し成形処理においては「原料粘土」ともいう。)の性状に合わせて、押出し成形時の温度としては10℃~80℃が好ましく、15℃~75℃がより好ましい。原料粘土中の水分量は35質量%~50質量%が好ましく、38質量%~45質量%がより好ましい。水分量が50質量%以下である場合、原料粘土の柔軟性の過度な向上を防止でき、成形性が向上する傾向にあり、水分量が35質量%以上である場合、原料粘土の柔軟性の適度な低下を防止でき、成形性が向上する傾向にある。 The extrusion molding process is not particularly limited, but for example, the temperature during extrusion molding is preferably 10°C to 80°C, depending on the properties of the raw material used (also referred to as "raw material clay" in extrusion molding processing). More preferably 15°C to 75°C. The moisture content in the raw clay is preferably 35% by mass to 50% by mass, more preferably 38% by mass to 45% by mass. When the moisture content is 50% by mass or less, excessive improvement in the flexibility of the raw clay can be prevented and the moldability tends to improve, and when the moisture content is 35% by mass or more, the flexibility of the raw clay can be improved. Moderate deterioration can be prevented and moldability tends to improve.

成形処理工程(Y)として、押出し成形処理を用いる場合、押出成形機としては、特に限定されないが、例えば、スクリュー型、ロール型、ブレード型、自己成形型、ラム型、ディスクペレッター型などが挙げられる。これらの中でも特にロール型、スクリュー型、ディスクペレッター型の押出成形機で押出し成形処理を実施することが好ましい。 When using an extrusion molding process as the molding process (Y), the extrusion molding machine is not particularly limited, but examples include a screw type, roll type, blade type, self-molding type, ram type, disk pelleter type, etc. Can be mentioned. Among these, it is particularly preferable to carry out the extrusion molding process using a roll type, screw type, or disk pelleter type extrusion molding machine.

成形処理工程(Y)として、圧縮成形処理を用いる場合、圧縮成形機としては、特に限定されないが、例えば、一軸プレス成型、ホットプレス成型などが挙げられる。 When compression molding is used as the molding process (Y), examples of the compression molding machine include, but are not limited to, uniaxial press molding, hot press molding, and the like.

噴霧乾燥処理においては、例えば、スラリーの噴霧化は、通常工業的に実施される回転円盤方式、二流体ノズル方式および高圧ノズル方式等の方法によって行うことができるが、特に回転円盤方式で行うことが好ましい。噴霧された液滴の乾燥における乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることが好ましい。乾燥機入口の温度は100℃~400℃程度とすることができ、好ましくは150℃~300℃である。乾燥機出口の温度は40℃~150℃程度とすることができ、好ましくは50℃~130℃である。 In the spray drying process, for example, atomization of the slurry can be performed by a rotating disk method, a two-fluid nozzle method, a high-pressure nozzle method, etc., which are usually carried out industrially, but it is especially preferable to use the rotating disk method. is preferred. As the drying heat source for drying the sprayed droplets, it is preferable to use air heated by steam, an electric heater, or the like. The temperature at the inlet of the dryer can be about 100°C to 400°C, preferably 150°C to 300°C. The temperature at the outlet of the dryer can be about 40°C to 150°C, preferably 50°C to 130°C.

〔焼成工程(Z)〕
焼成工程(Z)における焼成温度は、一般的に用いられる温度であれば特に限定されないが、ゼオライトの結晶性を保持しつつ強度を確保できる傾向にあることから、550℃未満であることが好ましく、530℃以下であることがより好ましく、500℃以下であることがさらに好ましい。また、焼成温度は、110℃以上であることが好ましく、より好ましくは120℃以上である。
焼成工程(Z)における焼成時間は、担体が十分に乾燥や焼結される時間であれば特に限定されず、焼成の温度により適宜選択することができるが、ゼオライトの結晶性を保持しつつ強度を確保できる傾向にあることから、20日以下であることが好ましく、10日以下であることがより好ましく、7日以下であることがさらに好ましい。
焼成工程(Y)における焼成の雰囲気は、一般的に用いられる雰囲気であれば特に限定されないが、通常、空気雰囲気、窒素、アルゴンなどの不活性ガスや酸素を付加した雰囲気が用いられる。
焼成工程(Z)における焼成は、回転炉、トンネル炉、マッフル炉等の焼成炉を用いて行うことができる。
[Firing process (Z)]
The firing temperature in the firing step (Z) is not particularly limited as long as it is a commonly used temperature, but it is preferably less than 550°C because it tends to ensure strength while maintaining the crystallinity of the zeolite. , more preferably 530°C or lower, and even more preferably 500°C or lower. Further, the firing temperature is preferably 110°C or higher, more preferably 120°C or higher.
The firing time in the firing step (Z) is not particularly limited as long as the carrier is sufficiently dried and sintered, and can be appropriately selected depending on the firing temperature. It is preferable that the period of time is 20 days or less, more preferably 10 days or less, and even more preferably 7 days or less.
The firing atmosphere in the firing step (Y) is not particularly limited as long as it is a commonly used atmosphere, but usually an air atmosphere or an atmosphere to which oxygen or an inert gas such as nitrogen or argon is added is used.
Firing in the firing step (Z) can be performed using a firing furnace such as a rotary furnace, a tunnel furnace, a muffle furnace, or the like.

本実施形態に係るゼオライト成形体の用途は、特に限定されるものではなく、例えば、各種ガス及び液などの分離剤あるいは分離膜、燃料電池などの電解質膜、各種樹脂成形体のフィラー、メンブランリアクター、あるいはハイドロクラッキング、アルキレーションなどの触媒、金属、金属酸化物などの担持用触媒担体、吸着剤、乾燥剤、洗剤助剤、イオン交換剤、排水処理剤、肥料、食品添加物、化粧品添加物等として用いることができる。
上述した中でも、本実施形態に係るゼオライト成形体は二酸化炭素吸着剤として好適に用いることができる。
The applications of the zeolite molded body according to this embodiment are not particularly limited, and include, for example, separation agents or separation membranes for various gases and liquids, electrolyte membranes for fuel cells, fillers for various resin molded bodies, and membrane reactors. or catalysts for hydrocracking, alkylation, etc., catalyst carriers for supporting metals, metal oxides, etc., adsorbents, desiccants, detergent aids, ion exchange agents, wastewater treatment agents, fertilizers, food additives, cosmetic additives. It can be used as, etc.
Among those described above, the zeolite molded body according to this embodiment can be suitably used as a carbon dioxide adsorbent.

[吸着装置]
本実施形態に係る吸着装置は、本実施形態に係るゼオライト成形体を備える。本実施形態に係る吸着装置は、このように構成されているため、二酸化炭素を十分に吸着できると共にメタンの吸着量に対する二酸化炭素吸着の選択性が高い。そのため、例えば、天然ガスからの二酸化炭素の選択的除去等の目的にとりわけ好ましく用いることができる。
[Adsorption device]
The adsorption device according to this embodiment includes the zeolite molded body according to this embodiment. Since the adsorption device according to the present embodiment is configured as described above, it can sufficiently adsorb carbon dioxide and has high selectivity of carbon dioxide adsorption with respect to the amount of methane adsorbed. Therefore, it can be particularly preferably used for the purpose of selectively removing carbon dioxide from natural gas, for example.

本実施形態に係る吸着装置は、本実施形態に係るゼオライトを含むゼオライト成形体を備え、図2に示す構成例であってもよい。図2に例示する本実施形態に係る吸着装置1は、容器2の内部において、入り口側と出口側の2か所に配されたフィルター3と、2つのフィルター3の間に充填された複数のゼオライト成形体4とを備えている。フィルター3としては、例えば、石英から構成されるフィルターを使用することができる。例えば、天然ガスから二酸化炭素を分離するために吸着装置1を使用する場合、上方のラインから天然ガスを導入し、フィルター3で不純物を除去した後、さらにゼオライト成形体4により選択的に二酸化炭素を吸着除去し、下方のラインからメタンリッチガスを取り出すことができる。ただし、吸着装置に供する対象は天然ガスに限定されず、吸着装置の内部構造についても図3に示す例に限定されるものではない。 The adsorption device according to this embodiment includes a zeolite molded body containing the zeolite according to this embodiment, and may have the configuration example shown in FIG. 2. The adsorption device 1 according to the present embodiment illustrated in FIG. The zeolite molded body 4 is provided. As the filter 3, for example, a filter made of quartz can be used. For example, when using the adsorption device 1 to separate carbon dioxide from natural gas, natural gas is introduced from the upper line, impurities are removed by the filter 3, and then the zeolite molded body 4 selectively removes carbon dioxide. can be adsorbed and removed, and methane-rich gas can be taken out from the lower line. However, the target to be supplied to the adsorption device is not limited to natural gas, and the internal structure of the adsorption device is not limited to the example shown in FIG. 3.

[精製ガスの製造方法]
本実施形態に係る精製ガスの製造方法は、本実施形態に係るゼオライト成形体を含む吸着装置を用い、H2、N2、O2、CO、及び炭化水素からなる群より選択される2種以上の気体を含む混合物から、CO2、H2O、He、Ne、Cl2、NH3、及びHClからなる群より選択される1種以上を分離する。本実施形態においては、N2、O2、CO、及び炭化水素からなる群より選択される1種以上の気体から、CO2、H2Oからなる群より選択される1種以上を分離することが好ましい。なお、炭化水素としては、特に限定されないが、メタン、エタン、エチレン、プロパン、プロピレン、1-ブテン、2-ブテン、2-メチルプロペン、ジメチルエーテル、アセチレン等が挙げられる。
[Production method of purified gas]
The method for producing purified gas according to the present embodiment uses an adsorption device including the zeolite molded body according to the present embodiment, and uses two types selected from the group consisting of H 2 , N 2 , O 2 , CO, and hydrocarbons. One or more selected from the group consisting of CO 2 , H 2 O, He, Ne, Cl 2 , NH 3 , and HCl is separated from the mixture containing the above gases. In this embodiment, one or more gases selected from the group consisting of CO 2 and H 2 O are separated from one or more gases selected from the group consisting of N 2 , O 2 , CO, and hydrocarbons. It is preferable. Note that hydrocarbons include, but are not particularly limited to, methane, ethane, ethylene, propane, propylene, 1-butene, 2-butene, 2-methylpropene, dimethyl ether, acetylene, and the like.

本実施形態に係るGIS型ゼオライトは特にCO2の吸着容量が多く、化学結合を介さない物理吸着が観測される。本実施形態に係るゼオライト成形体を用いた分離方法としては、特に限定されるものではないが、吸着材の再生時のエネルギーが低く経済性に優れる方法が好ましい。かかる方法の具体例としては、特に限定されないが、圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法のいずれかを用いることが好ましい。圧力スイング式吸着分離方法(PSA:Pressure Swing Adsorption)とは、ガスの吸着時の圧力より脱離時の圧力を下げ、高圧力時の吸着量と低圧力時の吸着量の差を利用してガスの分離を行う方法である。また、温度スイング式吸着分離方法(TSA:Thermal Swing Adsorption)とは、ガスの吸着時の温度より脱離時の温度を上げ、低温時の吸着量と高温時の吸着量の差を利用してガスの分離を行う方法である。さらに、これらを組み合わせた方法が、圧力・温度スイング式吸着脱離法(PTSA:Pressure and Therml Swing Adsorption)である。これらの方法は、種々公知の条件にて実施することができる。 The GIS type zeolite according to the present embodiment has a particularly large adsorption capacity for CO 2 , and physical adsorption that does not involve chemical bonds is observed. The separation method using the zeolite molded body according to the present embodiment is not particularly limited, but a method that requires low energy during regeneration of the adsorbent and is excellent in economic efficiency is preferred. Specific examples of such methods are not particularly limited, but it is preferable to use any one of a pressure swing adsorption separation method, a temperature swing adsorption separation method, or a pressure/temperature swing adsorption separation method. Pressure swing adsorption separation method (PSA) is a method that lowers the pressure during desorption than the pressure during gas adsorption, and utilizes the difference between the amount of adsorption at high pressure and the amount of adsorption at low pressure. This is a method of separating gases. In addition, the thermal swing adsorption separation method (TSA) is a method in which the temperature during desorption is higher than the temperature during gas adsorption, and the difference between the amount of adsorption at low temperatures and the amount of adsorption at high temperatures is utilized. This is a method of separating gases. Furthermore, a method that combines these methods is a pressure and temperature swing adsorption and desorption method (PTSA). These methods can be carried out under various known conditions.

以下に実施例等を挙げて本実施形態を更に詳細に説明するが、これらは例示的なものであり、本実施形態は以下の実施例に限定されるものではない。 The present embodiment will be described in more detail with reference to examples below, but these are merely illustrative, and the present embodiment is not limited to the following examples.

〔弾性率Eの測定〕
ゼオライト成形体の弾性率Eの測定は、JIS K 7181:2011に準じて行った。すなわち、ゼオライト成形体を密閉可能な真空容器に入れ、120℃―真空下で3時間の乾燥させたのち、室温まで空冷後、室内空気にて大気圧まで復圧した。ゼオライト成形体は復圧後、23℃、相対湿度50%にて7日間静置した。静置後のゼオライト成形体100gを直径50cm、高さ10cmの円柱型のSUS容器に充填し、初期充填高さを記録した後、上部から容器と同直径のSUS蓋を設置した。加圧板の中心とSUS蓋の中心を合わせた後、上部から2mm/minの速度で加圧板を降下させながら、試験力と圧縮量を記録した。得られた値とSUS蓋面積、初期充填高さから、以下の通り応力とひずみを算出し、得られた応力-ひずみ線図上で線形関係である弾性域の傾きから弾性率Eを算出した。測定は、温度23℃、相対湿度50%で5回行い、その平均値を弾性率とした。
応力(MPa)=試験力(N)/SUS蓋面積(mm2
ひずみ=圧縮量(mm)/初期充填高さ(mm)
[Measurement of elastic modulus E]
The elastic modulus E of the zeolite molded body was measured according to JIS K 7181:2011. That is, the zeolite molded body was placed in a sealable vacuum container, dried at 120° C. under vacuum for 3 hours, cooled to room temperature, and then returned to atmospheric pressure with room air. After restoring the pressure, the zeolite molded body was allowed to stand at 23° C. and 50% relative humidity for 7 days. After standing, 100 g of the zeolite molded body was filled into a cylindrical SUS container with a diameter of 50 cm and a height of 10 cm. After recording the initial filling height, a SUS lid with the same diameter as the container was installed from above. After aligning the center of the pressure plate with the center of the SUS lid, the test force and amount of compression were recorded while lowering the pressure plate from the top at a speed of 2 mm/min. From the obtained values, SUS lid area, and initial filling height, the stress and strain were calculated as follows, and the elastic modulus E was calculated from the slope of the elastic region, which is a linear relationship on the stress-strain diagram obtained. . The measurement was performed five times at a temperature of 23° C. and a relative humidity of 50%, and the average value was taken as the elastic modulus.
Stress (MPa) = Test force (N) / SUS lid area (mm 2 )
Strain = compression amount (mm) / initial filling height (mm)

〔X線回折;結晶構造解析〕
X線回折は以下の手順で行った。
(1)各実施例及び比較例で得られたゼオライト成形体(乾燥物)を試料として、メノウ乳鉢で粉砕した。さらに結晶性シリコン(株式会社レアメタリック製)を10質量%加え、メノウ乳鉢で均一になるまで混合したものを構造解析の試料とした。
(2)上記(1)の試料を粉末用無反射試料板上に均一に固定し、下記条件でX線回折により結晶構造解析を行った。
X線回折装置(XRD):リガク社製粉末X線回折装置「RINT2500型」(商品名)
X線源:Cu管球(40kV、200mA)
測定温度:25℃
測定範囲:5~60°(0.02°/step)
測定速度:0.2°/分
スリット幅(散乱、発散、受光):1°、1°、0.15mm
[X-ray diffraction; crystal structure analysis]
X-ray diffraction was performed according to the following procedure.
(1) The zeolite molded bodies (dried products) obtained in each of the Examples and Comparative Examples were used as samples and ground in an agate mortar. Further, 10% by mass of crystalline silicon (manufactured by Rare Metallic Co., Ltd.) was added and mixed in an agate mortar until uniform, which was used as a sample for structural analysis.
(2) The sample of (1) above was uniformly fixed on a non-reflective sample plate for powder, and crystal structure analysis was performed by X-ray diffraction under the following conditions.
X-ray diffraction device (XRD): Rigaku powder X-ray diffraction device “RINT2500 model” (product name)
X-ray source: Cu tube (40kV, 200mA)
Measurement temperature: 25℃
Measurement range: 5~60° (0.02°/step)
Measurement speed: 0.2°/min Slit width (scattering, divergence, light reception): 1°, 1°, 0.15mm

29Si-MAS-NMRスペクトル、SARの測定〕
ゼオライト成形体におけるゼオライトのSARは29Si-MAS-NMRを測定することで求めることができる。まず、ゼオライトの調湿として、デシケーターの底に水を張っておき、その上部に試料管に入れたゼオライトを48時間保持した。調湿処理を行った後、下記条件で29Si-MAS-NMRの測定を行った。
装置:JEOL RESONANCE ECA700
磁場強度:16.44 T(1H共鳴周波数700MHz)
測定核:29Si
共鳴周波数:139.08MHz
NMR管:4mmφ(ジルコニア製ローター)
測定方法:DD/MAS(dipolar decoupling magic angle spinning)
パルス幅:45°
待ち時間:50sec
積算回数:800回 (測定時間;約22時間)
MAS:10,000Hz
化学シフト基準:シリコーンゴム(-22.34ppm)外部基準
ゼオライトを含む成形体では、29Si-MAS-NMRスペクトルにおいて、次の5つのピークを示す。
(1)Q4(0Al):酸素を介してAlと全く結合していないSiのピーク
(2)Q4(1Al):酸素を介して1個のAlと結合しているSiのピーク
(3)Q4(2Al):酸素を介して2個のAlと結合しているSiのピーク
(4)Q4(3Al):酸素を介して3個のAlと結合しているSiのピーク
(5)Q4(4Al):酸素を介して4個のAlと結合しているSiのピーク
また、29Si-MAS-NMRスペクトルにおいて、それらのピーク位置は、一般的には-112ppmから-80ppmに存在し、高磁場側からQ4(0Al)、Q4(1Al)、Q4(2Al)、Q4(3Al)、Q4(4Al)に帰属できる。ゼオライト骨格中に存在するカチオン種によってピーク位置は変化し得るが、一般的には以下の範囲にピーク位置が存在する。
(1)Q4(0Al):-105ppmから-112ppm
(2)Q4(1Al):-100ppmから-105ppm
(3)Q4(2Al):-95ppmから-100ppm
(4)Q4(3Al):-87ppmから-95ppm
(5)Q4(4Al):-80ppmから-87ppm
29Si-MAS-NMRスペクトルのピーク面積強度については、解析プログラムdmfit(♯202000113バージョン)を用いて、ガウス及びローレンツ関数により解析を行い、振幅(スペクトルの最大値の高さ)、位置(スペクトル位置、ppm)、幅(スペクトルの半値全幅、ppm)、ガウス/ローレンツ比(xG/(1-x)L)の4つのパラメーターを最小二乗法のアルゴリズムで最適化計算することで得られる。こうして求められたQ4(0Al)、Q4(1Al)、Q4(2Al)、Q4(3Al)、Q4(4Al)それぞれのピーク面積をA_Q4(0Al)、A_Q4(1Al)、A_Q4(2Al)、A_Q4(3Al)、A_Q4(4Al)とし、A_Q4(0Al)、A_Q4(1Al)、A_Q4(2Al)、A_Q4(3Al)、A_Q4(4Al)の合計値をA_totalするとSARとしては以下で求めることが可能である。
SAR=100/〔A_Q4(1Al)/4+2×A_Q4(2Al)/4
+3×A_Q4(3Al)/4+4×A_Q4(4Al)/4〕×2
[ 29 Si-MAS-NMR spectrum, SAR measurement]
The SAR of zeolite in a zeolite molded body can be determined by measuring 29 Si-MAS-NMR. First, to adjust the humidity of the zeolite, water was filled at the bottom of a desiccator, and the zeolite placed in a sample tube was held on top of the desiccator for 48 hours. After performing humidity conditioning treatment, 29 Si-MAS-NMR measurements were performed under the following conditions.
Equipment: JEOL RESONANCE ECA700
Magnetic field strength: 16.44 T ( 1H resonance frequency 700MHz)
Measurement nucleus: 29 Si
Resonance frequency: 139.08MHz
NMR tube: 4mmφ (zirconia rotor)
Measurement method: DD/MAS (dipolar decoupling magic angle spinning)
Pulse width: 45°
Waiting time: 50sec
Total number of times: 800 times (measurement time: approximately 22 hours)
MAS: 10,000Hz
Chemical shift standard: silicone rubber (-22.34 ppm) external standard A molded article containing zeolite shows the following five peaks in the 29 Si-MAS-NMR spectrum.
(1) Q4 (0Al): A peak of Si that is not bonded to Al through oxygen (2) Q4 (1Al): A peak of Si that is bonded to one Al through oxygen (3) Q4 (2Al): Peak of Si bonded to 2 Al via oxygen (4) Q4(3Al): Peak of Si bonded to 3 Al via oxygen (5) Q4(4Al ): peak of Si bonded to four Al atoms via oxygen In addition, in the 29 Si-MAS-NMR spectrum, these peak positions generally exist from -112 ppm to -80 ppm, and in a high magnetic field From the side, it can be assigned to Q4 (0Al), Q4 (1Al), Q4 (2Al), Q4 (3Al), and Q4 (4Al). The peak position may vary depending on the cation species present in the zeolite skeleton, but generally the peak position exists within the following range.
(1) Q4 (0Al): -105ppm to -112ppm
(2) Q4 (1Al): -100ppm to -105ppm
(3) Q4 (2Al): -95ppm to -100ppm
(4) Q4 (3Al): -87ppm to -95ppm
(5) Q4 (4Al): -80ppm to -87ppm
29 The peak area intensity of the Si-MAS-NMR spectrum was analyzed using Gaussian and Lorentz functions using the analysis program dmfit (#202000113 version), and the amplitude (height of the maximum value of the spectrum), position (spectral position) , ppm), width (full width at half maximum of the spectrum, ppm), and Gauss/Lorentz ratio (xG/(1-x)L), which are obtained by optimizing and calculating the four parameters using a least squares algorithm. The peak areas of Q4(0Al), Q4(1Al), Q4(2Al), Q4(3Al), Q4(4Al) obtained in this way are A_Q4(0Al), A_Q4(1Al), A_Q4(2Al), A_Q4( 3Al), A_Q4(4Al), and the total value of A_Q4(0Al), A_Q4(1Al), A_Q4(2Al), A_Q4(3Al), A_Q4(4Al) is A_total, and the SAR can be calculated as follows. .
SAR=100/[A_Q4(1Al)/4+2×A_Q4(2Al)/4
+3×A_Q4(3Al)/4+4×A_Q4(4Al)/4]×2

〔ゼオライト成形体のCO2雰囲気下での耐脆化性評価〕
実施例及び比較例で得られたゼオライト成形体のCO2雰囲気下での耐脆化性評価は以下の手順で行った。
(1)ゼオライト成形体を100g秤量し、ゼオライト成形体の短径の測定を行い、当該ゼオライト成形体の短径の平均値をdsとした。dsより小さく、かつ最も大きな目開きを有するふるいをJISZ8801-1の公開目開きから選定、用意し、当該ふるいにかけて、ふるい上に残ったゼオライト成形体をCO2雰囲気下での耐脆化性評価に用いる。試験サンプルとした。
(2)試験サンプルを200℃のN2雰囲気下で3時間乾燥させた。N2雰囲気下で室温まで冷却後、室温のCO2に30分間暴露した。
(3)CO2暴露後の試験サンプルの質量W1を測定した後、上記目開きのふるいにかけ、ふるいを通過したゼオライト成形体の質量W2を測定した。式(1)にて算出した値をゼオライト成形体の粉化率[質量%]と定義し、粉化率が低いゼオライト成形体ほどCO2雰囲気下での耐脆化性を有する成形体であるとした。
[Evaluation of embrittlement resistance of zeolite molded body in CO2 atmosphere]
The embrittlement resistance of the zeolite molded bodies obtained in Examples and Comparative Examples in a CO 2 atmosphere was evaluated using the following procedure.
(1) 100 g of the zeolite molded body was weighed, the short axis of the zeolite molded body was measured, and the average value of the short axis of the zeolite molded body was defined as ds. A sieve with the largest opening size smaller than ds was selected and prepared from the published openings of JIS Z8801-1, and the zeolite molded body remaining on the sieve was evaluated for embrittlement resistance in a CO 2 atmosphere. used for This was used as a test sample.
(2) The test sample was dried under N2 atmosphere at 200°C for 3 hours. After cooling to room temperature under a N2 atmosphere, it was exposed to room temperature CO2 for 30 minutes.
(3) After measuring the mass W1 of the test sample after exposure to CO 2 , it was passed through a sieve with the above-mentioned openings, and the mass W2 of the zeolite molded body that passed through the sieve was measured. The value calculated using formula (1) is defined as the powdering rate [mass%] of the zeolite molded body, and the lower the powdery rate of the zeolite molded body, the more embrittlement resistance it has in a CO 2 atmosphere. And so.

〔アルカリ金属の含有量〕
ゼオライトを水酸化ナトリウム水溶液あるいは王水で熱溶解し、適宜希釈した液を用いてICP-発光分光分析(以下、「ICP-AES」ともいう、株式会社日立ハイテクサイエンス製SPS3520UV-DD:装置名)によってゼオライト中のアルカリ金属の濃度を測定した。ゼオライト中のカリウム及びリチウムの含有量は、ゼオライト中のアルカリ金属の各々の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)として算出した。K/Tも同様にして算出した。
[Alkali metal content]
Zeolite is thermally dissolved in an aqueous sodium hydroxide solution or aqua regia, and the appropriately diluted solution is used for ICP-emission spectrometry analysis (hereinafter also referred to as "ICP-AES", SPS3520UV-DD manufactured by Hitachi High-Tech Science Co., Ltd.: device name). The concentration of alkali metals in zeolite was measured by The content of potassium and lithium in the zeolite was calculated as the ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of each alkali metal (T) in the zeolite. . K/T was calculated in the same manner.

〔CO2吸着量及びヒステリシス量;ガス吸脱着等温線測定〕
ガス吸脱着等温線測定は以下の手順で行った。
(1)各実施例及び比較例で得られた乾燥物を試料とし、12mmセル(Micro Meritics社製)に0.2g入れた。
(2)上記(1)のセルに入れた試料をMicro Meritics社製ガス吸着測定装置「3-Flex」(商品名)に設置し、250℃、0.001mmHg以下で12時間加熱真空脱気処理した。
(3)上記(2)の処理後のセルに入れた試料を25℃の恒温循環水中に入れ、試料の温度が25±0.2℃になった後、液化炭酸ガス(住友精化株式会社製、純度99.9質量%以上)を用いて絶対圧0.25~760mmHgまで測定した。なお、上記測定中、圧力を経時的に測定し、その圧力変動が0.001%/10sec以下となったときに飽和吸着量に達したものと判定し、25℃におけるCO2吸着量(単位:cc/g)とした。
(4)上記(3)の測定に続き、絶対圧760~0.25mmHgまで経時的に減圧処理を行い二酸化炭素の脱着等温線の測定を行った。なお、平衡判断としては、(3)と同様に、圧力変動が0.001%/10sec以下として測定を行った。
(5)二酸化炭素の吸脱着等温線におけるヒステリシス量を示す指標としては、(3)にて測定した吸着等温線75mmHgにおける平衡吸着量と、(4)にて測定した脱着等温線75mmHgにおける平衡吸着量をそれぞれ、q(Ad),q(De)としたとき、q(Ad)/q(De)をヒステリシス量を示す指標とした。q(Ad)/q(De)=1.00である場合は、ヒステリシスがないことを示し、q(Ad)/q(De)が小さいほどヒステリシスが大きい状態を示す。
[CO 2 adsorption amount and hysteresis amount; gas adsorption/desorption isotherm measurement]
Gas adsorption/desorption isotherm measurement was performed using the following procedure.
(1) A sample of 0.2 g of the dried product obtained in each Example and Comparative Example was placed in a 12 mm cell (manufactured by Micro Meritics).
(2) The sample placed in the cell of (1) above was placed in a gas adsorption measurement device “3-Flex” (trade name) manufactured by Micro Meritics, and heated and vacuum degassed at 250°C and 0.001 mmHg or less for 12 hours. did.
(3) The sample placed in the cell after the treatment in (2) above is placed in constant temperature circulating water at 25℃, and after the sample temperature reaches 25±0.2℃, liquefied carbon dioxide gas (Sumitomo Seika Co., Ltd. Absolute pressure was measured from 0.25 to 760 mmHg. During the above measurement, the pressure was measured over time, and when the pressure fluctuation became 0.001%/10 seconds or less, it was determined that the saturated adsorption amount had been reached, and the CO 2 adsorption amount at 25°C (unit: :cc/g).
(4) Following the measurement in (3) above, depressurization treatment was carried out over time to an absolute pressure of 760 to 0.25 mmHg, and the desorption isotherm of carbon dioxide was measured. Note that, as in the case of (3), the equilibrium judgment was performed under the assumption that the pressure fluctuation was 0.001%/10 sec or less.
(5) As an index showing the amount of hysteresis in the adsorption/desorption isotherm of carbon dioxide, the equilibrium adsorption amount at the adsorption isotherm of 75 mmHg measured in (3) and the equilibrium adsorption amount at the desorption isotherm of 75 mmHg measured in (4) When the amounts were respectively q(Ad) and q(De), q(Ad)/q(De) was used as an index indicating the amount of hysteresis. When q(Ad)/q(De)=1.00, it indicates that there is no hysteresis, and the smaller q(Ad)/q(De), the greater the hysteresis.

〔CH4吸着量;ガス吸着等温線測定〕
ガス吸着等温線測定は以下の手順で行った。
(1)各実施例及び比較例で得られた乾燥物を試料とし、12mmセル(Micro Meritics社製)に0.2g入れた。
(2)上記(1)のセルに入れた試料をMicro Meritics社製ガス吸着測定装置「3-Flex」(商品名)に設置し、250℃、0.001mmHg以下で12時間加熱真空脱気処理した。
(3)上記(2)の処理後のセルに入れた試料を35℃の恒温循環水中に入れ、試料の温度が25±0.2℃になった後、メタンガス(藤井商事株式会社製、純度99.99質量%以上)を用いて絶対圧0.25~760mmHgまで測定した。なお、上記測定中、圧力を経時的に測定し、その圧力変動が0.001%/10sec以下となったときに飽和吸着量に達したものと判定し、25℃におけるCH4吸着量(単位:cc/g)とした。
[CH 4 adsorption amount; gas adsorption isotherm measurement]
Gas adsorption isotherm measurement was performed using the following procedure.
(1) A sample of 0.2 g of the dried product obtained in each Example and Comparative Example was placed in a 12 mm cell (manufactured by Micro Meritics).
(2) The sample placed in the cell of (1) above was placed in a gas adsorption measurement device “3-Flex” (trade name) manufactured by Micro Meritics, and heated and vacuum degassed at 250°C and 0.001 mmHg or less for 12 hours. did.
(3) The sample placed in the cell after the treatment in (2) above was placed in constant temperature circulating water at 35°C, and after the sample temperature reached 25 ± 0.2°C, methane gas (manufactured by Fujii Shoji Co., Ltd., purity (99.99% by mass or more) was used to measure absolute pressures from 0.25 to 760 mmHg. During the above measurement, the pressure was measured over time, and when the pressure fluctuation became 0.001%/10 seconds or less, it was determined that the saturated adsorption amount had been reached, and the CH 4 adsorption amount at 25°C (unit: :cc/g).

[ペレットの長さ及び直径測定]
ゼオライト成形体は、ペレット形状である場合、ノギス法によりペレットの長さ及び直径を測定した。かかる測定においては、最小読み取り値が0.1mm以下のノギスを用い、3つのサンプルに対して測定を行い、その平均値を長さ及び直径とした。
[Measurement of pellet length and diameter]
When the zeolite molded body was in the form of a pellet, the length and diameter of the pellet were measured using a caliper method. In this measurement, measurements were performed on three samples using a caliper with a minimum reading value of 0.1 mm or less, and the average value was taken as the length and diameter.

〔製造例1〕
水61.93gと水酸化ナトリウム(NaOH、富士フイルム和光純薬社製)0.403gと、硝酸ナトリウム(NaNO3、富士フイルム和光純薬社製)3.39gと、アルミン酸ナトリウム(NaAlO2、富士フイルム和光純薬社製)1.64gとコロイダルシリカ(Ludox AS-40、固形分濃度40質量%、Grace社製)10.82gを混合し、30分間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=E/Al23=4.53、β=SiO2/Al23=8.17、γ=Na2O/Al23=3.99、δ=P25/Al23=0.00、ε=H2O/Al23=431.0、ζ=H2O/OH-=376.7、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った200mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、135℃、4日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Manufacture example 1]
61.93 g of water, 0.403 g of sodium hydroxide (NaOH, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.39 g of sodium nitrate (NaNO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and sodium aluminate (NaAlO 2 , A mixed gel was prepared by mixing 1.64 g of Fuji Film (manufactured by Wako Pure Chemical Industries, Ltd.) and 10.82 g of colloidal silica (Ludox AS-40, solid content concentration 40% by mass, manufactured by Grace) and stirring for 30 minutes. The composition of the mixed gel is α=E/Al 2 O 3 =4.53, β=SiO 2 /Al 2 O 3 =8.17, γ=Na 2 O/Al 2 O 3 =3.99, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =431.0, ζ=H 2 O/OH - =376.7, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 200 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 135°C using a stirring type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 4 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SAR=6.90であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。29Si-MAS-NMRスペクトルより、(a+d)/(b+c)=0.305であった。得られたGIS型ゼオライトのCO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は82.2cc/gであり、q(Ad)/q(De)=0.984であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は6.2cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and the result was SAR=6.90. The contents of potassium and lithium in the zeolite were Z/T=0.00 (=K/T). From the 29 Si-MAS-NMR spectrum, (a+d)/(b+c)=0.305. When the adsorption isotherm and desorption isotherm of CO 2 of the obtained GIS type zeolite were measured, the adsorption amount at 760 mmHg was 82.2 cc/g, and q(Ad)/q(De) = 0.984. Ta. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 6.2 cc/g.

〔製造例2〕
水21.05gと水酸化ナトリウム水溶液(NaOH、富士フイルム和光純薬社製)0.33gと、硝酸ナトリウム(NaNO3、富士フイルム和光純薬社製)1.37gと、アルミン酸ナトリウム(NaAlO2、富士フイルム和光純薬社製)1.13gと水ガラス3号(キシダ化学社製)15.5gを混合し、1時間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=E/Al23=2.66、β=SiO2/Al23=12.39、γ=Na2O/Al23=5.89、δ=P25/Al23=0.00、ε=H2O/Al23=197.9、ζ=H2O/OH-=145.2、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った100mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、5日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Production example 2]
21.05 g of water, 0.33 g of sodium hydroxide aqueous solution (NaOH, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 1.37 g of sodium nitrate (NaNO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and sodium aluminate (NaAlO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 15.5 g of Water Glass No. 3 (manufactured by Kishida Chemical Co., Ltd.) were mixed and stirred for 1 hour to prepare a mixed gel. The composition of the mixed gel is α=E/Al 2 O 3 =2.66, β=SiO 2 /Al 2 O 3 =12.39, γ=Na 2 O/Al 2 O 3 =5.89, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =197.9, ζ=H 2 O/OH - = 145.2, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 100 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 5 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SARは4.50であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。29Si-MAS-NMRスペクトルより、(a+d)/(b+c)=0.192であり、炭素原子は検出されなかった。得られたGIS型ゼオライトのCO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は53.5cc/gであり、q(Ad)/q(De)=0.980であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は4.0cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and the SAR was 4.50. The contents of potassium and lithium in the zeolite were Z/T=0.00 (=K/T). From the 29 Si-MAS-NMR spectrum, (a+d)/(b+c)=0.192, and no carbon atom was detected. When the adsorption isotherm and desorption isotherm of CO 2 of the obtained GIS type zeolite were measured, the adsorption amount at 760 mmHg was 53.5 cc/g, and q(Ad)/q(De) = 0.980. Ta. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 4.0 cc/g.

〔製造例3〕
水61.65gと48質量%水酸化ナトリウム水溶液(NaOH、固形分濃度48質量%、トクヤマソーダ社製)0.60gと、炭酸ナトリウム(Na2CO3、トクヤマソーダ社製)2.27gと、アルミン酸ナトリウム(NaAlO2、北陸化成工業所製)1.64gとコロイダルシリカ(Ludox AS-40、固形分濃度40質量%、Grace社製)10.82gを混合し、30分間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=E/Al23=4.86、β=SiO2/Al23=8.17、γ=Na2O/Al23=3.99、δ=P25/Al23=0.00、ε=H2O/Al23=431.2、ζ=H2O/OH-=527.8、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った200mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、5日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。得られたゼオライト1gを、炭酸カリウム(K2CO3、日本曹達社製)を用いて調整した0.05Nの炭酸カリウム水溶液500mLに入れ、室温で3時間、500rpmで攪拌した。生成物をろ過して120℃で乾燥し、カチオンの一部がカリウムに交換された粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Manufacture example 3]
61.65 g of water, 0.60 g of a 48% by mass aqueous sodium hydroxide solution (NaOH, solid content concentration 48% by mass, manufactured by Tokuyama Soda Company), and 2.27 g of sodium carbonate (Na 2 CO 3 , manufactured by Tokuyama Soda Company), 1.64 g of sodium aluminate (NaAlO 2 , manufactured by Hokuriku Kasei Kogyo Co., Ltd.) and 10.82 g of colloidal silica (Ludox AS-40, solid content concentration 40% by mass, manufactured by Grace) were mixed by stirring for 30 minutes. A gel was prepared. The composition of the mixed gel is α=E/Al 2 O 3 =4.86, β=SiO 2 /Al 2 O 3 =8.17, γ=Na 2 O/Al 2 O 3 =3.99, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =431.2, ζ=H 2 O/OH - =527.8, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 200 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 5 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. 1 g of the obtained zeolite was placed in 500 mL of a 0.05N aqueous potassium carbonate solution prepared using potassium carbonate (K 2 CO 3 , manufactured by Nippon Soda Co., Ltd.), and stirred at 500 rpm for 3 hours at room temperature. The product was filtered and dried at 120°C to obtain powdered zeolite in which some of the cations were exchanged with potassium. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SARは6.90であり、(a+d)/(b+c)=0.220であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.98(=K/T)であった。CO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は84.0cc/gであり、q(Ad)/q(De)=1.000であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は0.0cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and the SAR was 6.90, and (a+d)/(b+c)=0.220. The content of potassium and lithium in the zeolite was Z/T=0.98 (=K/T). When the adsorption isotherm and desorption isotherm of CO 2 were measured, the adsorption amount at 760 mmHg was 84.0 cc/g, and q(Ad)/q(De) = 1.000. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 0.0 cc/g.

〔製造例4〕
水141.41gと水酸化ナトリウム水溶液(NaOH、富士フイルム和光純薬社製)2.62gと、硝酸ナトリウム(NaNO3、富士フイルム和光純薬社製)8.53gと、アルミン酸ナトリウム(NaAlO2、富士フイルム和光純薬社製)3.85gと非晶質シリカ(Perkasil SM500、Grace社製)17.41gを混合し、1時間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=E/Al23=4.85、β=SiO2/Al23=14.00、γ=Na2O/Al23=5.16、δ=P25/Al23=0.00、ε=H2O/Al23=379.3、ζ=H2O/OH-=120.0、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った300mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、4日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Manufacture example 4]
141.41 g of water, 2.62 g of sodium hydroxide aqueous solution (NaOH, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 8.53 g of sodium nitrate (NaNO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and sodium aluminate (NaAlO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 17.41 g of amorphous silica (Perkasil SM500, manufactured by Grace) were mixed and stirred for 1 hour to prepare a mixed gel. The composition of the mixed gel is α=E/Al 2 O 3 =4.85, β=SiO 2 /Al 2 O 3 =14.00, γ=Na 2 O/Al 2 O 3 =5.16, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =379.3, ζ=H 2 O/OH - =120.0, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 300 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 4 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SARは10.1であり、(a+d)/(b+c)=0.519であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。CO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は80.0cc/gであり、q(Ad)/q(De)=1.000であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は7.2cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and the SAR was 10.1, and (a+d)/(b+c)=0.519. The contents of potassium and lithium in the zeolite were Z/T=0.00 (=K/T). When the adsorption isotherm and desorption isotherm of CO 2 were measured, the adsorption amount at 760 mmHg was 80.0 cc/g, and q(Ad)/q(De) = 1.000. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 7.2 cc/g.

〔製造例5〕
水141.41gと水酸化ナトリウム水溶液(NaOH、富士フイルム和光純薬社製)2.62gと、硝酸ナトリウム(NaNO3、富士フイルム和光純薬社製)2.43gと、アルミン酸ナトリウム(NaAlO2、富士フイルム和光純薬社製)0.55gとアルミノシリケート(SIPERNAT 820A、Evonik社製)35.33gを混合し、1時間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=E/Al23=0.88、β=SiO2/Al23=14.00、γ=Na2O/Al23=2.62、δ=P25/Al23=0.00、ε=H2O/Al23=242.4、ζ=H2O/OH-=120.0、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った300mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、5日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。得られたゼオライト1gを、炭酸カリウム(K2CO3、日本曹達社製)を用いて調整した0.005Nの炭酸カリウム水溶液500mLに入れ、室温で3時間、500rpmで攪拌した。生成物をろ過して120℃で乾燥し、カチオンの一部がカリウムに交換された粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Manufacture example 5]
141.41 g of water, 2.62 g of sodium hydroxide aqueous solution (NaOH, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 2.43 g of sodium nitrate (NaNO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and sodium aluminate (NaAlO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 35.33 g of aluminosilicate (SIPERNAT 820A, manufactured by Evonik) were mixed and stirred for 1 hour to prepare a mixed gel. The composition of the mixed gel is α=E/Al 2 O 3 =0.88, β=SiO 2 /Al 2 O 3 =14.00, γ=Na 2 O/Al 2 O 3 =2.62, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =242.4, ζ=H 2 O/OH - =120.0, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 300 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 5 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. 1 g of the obtained zeolite was placed in 500 mL of a 0.005N aqueous potassium carbonate solution prepared using potassium carbonate (K 2 CO 3 , manufactured by Nippon Soda Co., Ltd.), and stirred at 500 rpm for 3 hours at room temperature. The product was filtered and dried at 120°C to obtain powdered zeolite in which some of the cations were exchanged with potassium. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SARは8.20であり、(a+d)/(b+c)=0.356であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.16(=K/T)であった。CO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は72.7cc/gであり、q(Ad)/q(De)=0.991であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は0.5cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and the SAR was 8.20, and (a+d)/(b+c)=0.356. The content of potassium and lithium in the zeolite was Z/T=0.16 (=K/T). When the adsorption isotherm and desorption isotherm of CO 2 were measured, the adsorption amount at 760 mmHg was 72.7 cc/g, and q(Ad)/q(De) = 0.991. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 0.5 cc/g.

〔製造例6〕
水207.30gと水酸化ナトリウム(NaOH、和光純薬工業株式会社製)8.78gと、アルミン酸ナトリウム(NaAlO2、和光純薬工業株式会社製)16.4gと水ガラス3号(キシダ化学製)248.3gを混合し、15分間撹拌することで混合ゲルを調製した。混合ゲルの組成は、SiO2/Al23=12.0、Na2O/Al23=4.0、H2O/Al23=200であった。混合ゲルの組成は、α=E/Al23=0.00、β=SiO2/Al23=13.60、γ=Na2O/Al23=9.37、δ=P25/Al23=0.00、ε=H2O/Al23=135.9、ζ=H2O/OH-=54.56、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った1000mLのステンレス製オートクレーブに仕込み、撹拌なしで130℃、5日間水熱合成し、生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Production example 6]
207.30 g of water, 8.78 g of sodium hydroxide (NaOH, manufactured by Wako Pure Chemical Industries, Ltd.), 16.4 g of sodium aluminate (NaAlO 2 , manufactured by Wako Pure Chemical Industries, Ltd.), and water glass No. 3 (Kishida Chemical Co., Ltd.) A mixed gel was prepared by mixing 248.3 g of (manufactured by) and stirring for 15 minutes. The composition of the mixed gel was SiO 2 /Al 2 O 3 = 12.0, Na 2 O/Al 2 O 3 = 4.0, and H 2 O/Al 2 O 3 = 200. The composition of the mixed gel is α=E/Al 2 O 3 =0.00, β=SiO 2 /Al 2 O 3 =13.60, γ=Na 2 O/Al 2 O 3 =9.37, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =135.9, ζ=H 2 O/OH - =54.56, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 1000 mL stainless steel autoclave containing a fluororesin inner cylinder, and hydrothermally synthesized at 130 °C for 5 days without stirring. The product was filtered and dried at 120 °C to obtain powdered zeolite. Ta. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SAR=4.30であり、(a+d)/(b+c)=0.151であった。また、カリウム濃度を測定し、ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。得られたGIS型ゼオライトのCO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は52.4cc/gであり、q(Ad)/q(De)=0.302であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は0.0cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and as a result, SAR=4.30 and (a+d)/(b+c)=0.151. Further, the potassium concentration was measured, and the contents of potassium and lithium in the zeolite were found to be Z/T=0.00 (=K/T). When the adsorption isotherm and desorption isotherm of CO 2 of the obtained GIS type zeolite were measured, the adsorption amount at 760 mmHg was 52.4 cc/g, and q(Ad)/q(De) = 0.302. Ta. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 0.0 cc/g.

〔製造例7〕
水41.0gと、水酸化ナトリウム(和光純薬工業株式会社製試薬特級)1.8gと、アルミン酸ナトリウム(和光純薬工業株式会社製和光一級)3.4gを混合し、溶解させ溶液を得た。この溶液に水ガラス3号(キシダ化学株式会社製)54gを添加して混合し、15分間撹拌することで混合ゲルを調製した。混合ゲルの組成は、混合ゲルの組成は、α=E/Al23=0.00、β=SiO2/Al23=14.27、γ=Na2O/Al23=9.57、δ=P25/Al23=0.00、ε=H2O/Al23=130.2、ζ=H2O/OH-=52.85、η=R/Al23=0.00であった。
混合ゲルをポリテトラフルオロエチレン樹脂内筒の入った1000mLのステンレス製オートクレーブに仕込み、撹拌せず、130℃で5日間水熱合成した。生成物をろ過して120℃で乾燥し、ゼオライト粉を得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Manufacture example 7]
Mix 41.0 g of water, 1.8 g of sodium hydroxide (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.), and 3.4 g of sodium aluminate (Wako 1st grade manufactured by Wako Pure Chemical Industries, Ltd.) and dissolve the solution. Obtained. A mixed gel was prepared by adding and mixing 54 g of Water Glass No. 3 (manufactured by Kishida Chemical Co., Ltd.) to this solution and stirring for 15 minutes. The composition of the mixed gel is α=E/Al 2 O 3 =0.00, β=SiO 2 /Al 2 O 3 =14.27, γ=Na 2 O/Al 2 O 3 = 9.57, δ=P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =130.2, ζ=H 2 O/OH =52.85, η= R/Al 2 O 3 =0.00.
The mixed gel was placed in a 1000 mL stainless steel autoclave containing a polytetrafluoroethylene resin inner cylinder, and hydrothermally synthesized at 130° C. for 5 days without stirring. The product was filtered and dried at 120°C to obtain zeolite powder. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SAR=4.40であり、(a+d)/(b+c)=0.156であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.00(=K/T)であった。得られたGIS型ゼオライトのCO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は53.0cc/gであり、q(Ad)/q(De)=0.352であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は3.9cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and as a result, SAR=4.40 and (a+d)/(b+c)=0.156. The contents of potassium and lithium in the zeolite were Z/T=0.00 (=K/T). When the adsorption isotherm and desorption isotherm of CO 2 of the obtained GIS type zeolite were measured, the adsorption amount at 760 mmHg was 53.0 cc/g, and q(Ad)/q(De) = 0.352. Ta. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 3.9 cc/g.

〔製造例8〕
水141.41gと水酸化ナトリウム水溶液(NaOH、富士フイルム和光純薬社製)2.62gと、硝酸ナトリウム(NaNO3、富士フイルム和光純薬社製)2.43gと、アルミン酸ナトリウム(NaAlO2、富士フイルム和光純薬社製)0.55gとアルミノシリケート(SIPERNAT 820A、Evonik社製)35.33gを混合し、1時間撹拌することで混合ゲルを調製した。混合ゲルの組成は、α=E/Al23=0.88、β=SiO2/Al23=14.00、γ=Na2O/Al23=2.62、δ=P25/Al23=0.00、ε=H2O/Al23=242.4、ζ=H2O/OH-=120.0、η=R/Al23=0.00であった。混合ゲルをフッ素樹脂内筒の入った300mLのステンレス製マイクロボンベ(HIRO COMPANY製)に仕込み、マイクロボンベ上下方向に回転可能な撹拌型恒温槽(HIRO COMPANY製)によって、撹拌速度30rpm、130℃、5日間水熱合成した。生成物をろ過して120℃で乾燥した後、粉末状のゼオライトを得た。得られたゼオライト1gを、硝酸リチウム(LiNO3、富士フイルム和光純薬社製)を用いて調整した0.010Nの硝酸リチウム水溶液500mLに入れ、室温で3時間、500rpmで攪拌した。生成物をろ過して120℃で乾燥し、カチオンの一部がリチウムに交換された粉末状のゼオライトを得た。XRDスペクトルより、得られたゼオライトがGIS型ゼオライトであることを確認した。さらに、他のゼオライトや非晶質シリカアルミナなどに由来するピークが見られなかったことから、高純度のGIS型ゼオライトであると評価した。
[Production example 8]
141.41 g of water, 2.62 g of sodium hydroxide aqueous solution (NaOH, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 2.43 g of sodium nitrate (NaNO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and sodium aluminate (NaAlO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 35.33 g of aluminosilicate (SIPERNAT 820A, manufactured by Evonik) were mixed and stirred for 1 hour to prepare a mixed gel. The composition of the mixed gel is α=E/Al 2 O 3 =0.88, β=SiO 2 /Al 2 O 3 =14.00, γ=Na 2 O/Al 2 O 3 =2.62, δ= P 2 O 5 /Al 2 O 3 =0.00, ε=H 2 O/Al 2 O 3 =242.4, ζ=H 2 O/OH - =120.0, η=R/Al 2 O 3 =0.00. The mixed gel was placed in a 300 mL stainless steel micro cylinder (manufactured by HIRO COMPANY) containing a fluororesin inner cylinder, and stirred at a stirring speed of 30 rpm at 130°C using a stirring-type constant temperature bath (manufactured by HIRO COMPANY) that allowed the micro cylinder to rotate vertically. Hydrothermal synthesis was carried out for 5 days. After filtering the product and drying at 120°C, a powdered zeolite was obtained. 1 g of the obtained zeolite was placed in 500 mL of a 0.010N lithium nitrate aqueous solution prepared using lithium nitrate (LiNO 3 , manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and stirred at 500 rpm for 3 hours at room temperature. The product was filtered and dried at 120°C to obtain powdered zeolite in which some of the cations were exchanged with lithium. It was confirmed from the XRD spectrum that the obtained zeolite was a GIS type zeolite. Furthermore, since no peaks derived from other zeolites or amorphous silica alumina were observed, it was evaluated that it was a high purity GIS type zeolite.

得られたゼオライトについて29Si-MAS-NMRスペクトルよりシリカアルミナ比を算出した結果、SARは8.20であり、(a+d)/(b+c)=0.356であった。ゼオライト中のカリウム及びリチウムの含有量は、Z/T=0.16であった。CO2の吸着等温線及び脱着等温線を測定すると、760mmHgでの吸着量は72.5cc/gであり、q(Ad)/q(De)=0.991であった。また、同様にCH4の吸着等温線について測定を行うと、760mmHgでの吸着量は0.5cc/gであった。 The silica-alumina ratio of the obtained zeolite was calculated from the 29 Si-MAS-NMR spectrum, and the SAR was 8.20, and (a+d)/(b+c)=0.356. The content of potassium and lithium in the zeolite was Z/T=0.16. When the adsorption isotherm and desorption isotherm of CO 2 were measured, the adsorption amount at 760 mmHg was 72.5 cc/g, and q(Ad)/q(De) = 0.991. Further, when the CH 4 adsorption isotherm was similarly measured, the adsorption amount at 760 mmHg was 0.5 cc/g.

〔実施例1〕
製造例1で得たGIS型ゼオライト粉60質量部とアルミナゾル60質量部(日産化学株式会社製、アルミナ含有率:10.5質量%)とメチルセルロース(ハイケム株式会社製セランダーYB‐167)1.8質量部、ポリビニルアルコール0.3質量部(三菱ケミカル株式会社製ゴーセノールN‐300)を混合した。
上記混合物を湿式押出造粒機MG‐55(株式会社ダルトン製)にて直径3mmの円柱状に押出した後、電気炉を用いて400℃で5時間、空気雰囲気下で焼成した。こうして得られたGIS型ゼオライト成形体の弾性率Eは10.5MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると5質量%であった。
[Example 1]
60 parts by mass of the GIS type zeolite powder obtained in Production Example 1, 60 parts by mass of alumina sol (manufactured by Nissan Chemical Co., Ltd., alumina content: 10.5% by mass), and 1.8 parts of methylcellulose (Selander YB-167, manufactured by Hichem Corporation) parts by mass and 0.3 parts by mass of polyvinyl alcohol (Gohsenol N-300 manufactured by Mitsubishi Chemical Corporation) were mixed.
The above mixture was extruded into a cylinder with a diameter of 3 mm using a wet extrusion granulator MG-55 (manufactured by Dalton Co., Ltd.), and then baked in an air atmosphere at 400° C. for 5 hours using an electric furnace. The elastic modulus E of the GIS type zeolite molded body thus obtained was 10.5 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 5% by mass.

実施例1のゼオライト成形体のCO2及びCH4の吸着等温線を測定すると、760mmHgでの吸着量はそれぞれ、CO2:74.4cm3/g、CH4:5.6cm3/g、であり、吸着選択率(CO2/CH4)は13.3であり、吸着材として十分な性能を有することが確認された。 When the adsorption isotherms of CO 2 and CH 4 of the zeolite molded body of Example 1 were measured, the adsorption amounts at 760 mmHg were 74.4 cm 3 /g for CO 2 and 5.6 cm 3 /g for CH 4 , respectively. It was confirmed that the adsorption selectivity (CO 2 /CH 4 ) was 13.3, and that it had sufficient performance as an adsorbent.

〔実施例2〕
アルミナ含有率10.5質量%のアルミナゾルに代えてシリカ含有量34質量%のシリカゾル(Nalco社製)30質量部およびイオン交換水35質量部を用い、製造例2で得たGIS型ゼオライト粉を用いた以外は実施例1と同様にして成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは19.8MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると6質量%であった。
[Example 2]
Using 30 parts by mass of silica sol (manufactured by Nalco) with a silica content of 34% by mass and 35 parts by mass of ion-exchanged water in place of the alumina sol with an alumina content of 10.5% by mass, the GIS type zeolite powder obtained in Production Example 2 was prepared. A molded article was obtained in the same manner as in Example 1 except that the following was used.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 19.8 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the powdering rate was measured to be 6% by mass.

〔実施例3〕
製造例3で得たGIS型ゼオライト粉60質量部とメチルセルロース(ハイケム株式会社製セランダーYB-167)13.2質量部、イオン交換水50質量部を混合した。
上記混合物を湿式押出造粒機MG‐55(株式会社ダルトン製)にて直径3mmの円柱状に押出した後、電気炉を用いて、120℃で5時間、窒素雰囲気下で焼成した。
こうして得られたGIS型ゼオライト成形体の弾性率Eは32.0MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると0質量%であった。
[Example 3]
60 parts by mass of the GIS type zeolite powder obtained in Production Example 3, 13.2 parts by mass of methyl cellulose (Selander YB-167 manufactured by Hi-Chem Co., Ltd.), and 50 parts by mass of ion-exchanged water were mixed.
The above mixture was extruded into a cylindrical shape with a diameter of 3 mm using a wet extrusion granulator MG-55 (manufactured by Dalton Co., Ltd.), and then baked in a nitrogen atmosphere at 120° C. for 5 hours using an electric furnace.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 32.0 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 0% by mass.

〔比較例1〕
焼成温度を300℃とした以外は実施例1と同様にして成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは7.0MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると60質量%であった。
[Comparative example 1]
A molded body was obtained in the same manner as in Example 1 except that the firing temperature was 300°C.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 7.0 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 60% by mass.

〔実施例4〕
製造例4で得たGIS型ゼオライト粉を用いた以外は実施例1と同様にして成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは10.7MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると8質量%であった。
[Example 4]
A molded body was obtained in the same manner as in Example 1 except that the GIS type zeolite powder obtained in Production Example 4 was used.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 10.7 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 8% by mass.

〔実施例5〕
製造例5で得たGIS型ゼオライト粉を用いた以外は実施例1と同様にして成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは10.7MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると8質量%であった。
[Example 5]
A molded body was obtained in the same manner as in Example 1 except that the GIS type zeolite powder obtained in Production Example 5 was used.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 10.7 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 8% by mass.

〔比較例2〕
製造例6で得たGIS型ゼオライト粉100質量部とアルミナゾル250質量部(川研ファインケミカル株式会社製、アルミナ含有率:10質量%)とイオン交換水275質量部を混合したのち、70℃加熱濃縮により水分量を40質量%に調整した。
上記混合物を湿式押出造粒機MG‐55(株式会社ダルトン製)にて直径3mmの円柱状に押出した後、電気炉を用いて350℃ で3時間、空気雰囲気下で焼成した。
こうして得られたGIS型ゼオライト成形体の弾性率Eは6.0MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると86質量%であった。
[Comparative example 2]
After mixing 100 parts by mass of the GIS type zeolite powder obtained in Production Example 6, 250 parts by mass of alumina sol (manufactured by Kawaken Fine Chemical Co., Ltd., alumina content: 10% by mass) and 275 parts by mass of ion-exchanged water, the mixture was heated and concentrated at 70°C. The moisture content was adjusted to 40% by mass.
The above mixture was extruded into a cylindrical shape with a diameter of 3 mm using a wet extrusion granulator MG-55 (manufactured by Dalton Co., Ltd.), and then baked in an air atmosphere at 350° C. for 3 hours using an electric furnace.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 6.0 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 86% by mass.

〔実施例6〕
湿式押出造粒機MG‐55に代えてクレイガンにて手動で押出成形した以外は実施例3と同様にして成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは30.0MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると10質量%であった。
[Example 6]
A molded body was obtained in the same manner as in Example 3 except that extrusion molding was performed manually using a clay gun instead of the wet extrusion granulator MG-55.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 30.0 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 10% by mass.

〔実施例7〕
製造例1で得たGIS型ゼオライト10.1質量部をイオン交換水10.3質量部に分散させたのち、アルミナゾル(日産化学株式会社製、アルミナ含有率:10.5質量%)79.6質量部へ添加し、原料スラリーとした。得られた原料スラリーを25℃で1時間攪拌した。原料スラリーはゾル状を呈しており、粘度は300cP(英弘精機株式会社製、B型粘度計により測定した。)であった。その原料スラリーを、噴霧乾燥機入口の流体温度を230℃、噴霧乾燥機出口の流体温度を120℃に設定した噴霧乾燥機(大川原化工機製 OC-16型スプレードライヤー)へ供給し、回転円盤方式で噴霧乾燥を行い、乾燥粉末を得た後、電気炉を用いて350℃で24時間、空気雰囲気下で焼成した。昇温および降温速度は1℃/分とした。
こうして得られたゼオライト成形体の弾性率Eは19.7MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い、粉化率を測定すると、粉化率は10質量%であった。
[Example 7]
After dispersing 10.1 parts by mass of the GIS type zeolite obtained in Production Example 1 in 10.3 parts by mass of ion-exchanged water, 79.6 parts of alumina sol (manufactured by Nissan Chemical Co., Ltd., alumina content: 10.5% by mass) was prepared. It was added to parts by mass to form a raw material slurry. The obtained raw material slurry was stirred at 25° C. for 1 hour. The raw material slurry was in the form of a sol, and the viscosity was 300 cP (measured using a B-type viscometer manufactured by Hideko Seiki Co., Ltd.). The raw material slurry was supplied to a spray dryer (OC-16 type spray dryer manufactured by Okawara Kakoki Co., Ltd.) in which the fluid temperature at the inlet of the spray dryer was set to 230°C and the fluid temperature at the outlet of the spray dryer was set to 120°C. After spray drying was performed to obtain a dry powder, it was fired in an air atmosphere at 350° C. for 24 hours using an electric furnace. The rate of temperature increase and decrease was 1° C./min.
The elastic modulus E of the zeolite molded body thus obtained was 19.7 MPa. When the embrittlement resistance of the zeolite molded body was evaluated in a CO 2 atmosphere and the powdering rate was measured, the powdering rate was 10% by mass.

〔比較例3〕
製造例7で得たGIS型ゼオライト粉70質量部、ポリアミド樹脂(デュポン株式会社製 ザイテル101L)30質量部を二軸押出機(東芝機械社製TEM48‐SS)にて285℃400rpmで溶融混練し、複合体を得た。得られた複合体を、シリンダー温度285℃、金型温度70℃に設定した射出成形機(東芝機械社製EC75NII)にて、長さ80mm、幅10mm、厚さ4mmの成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは2.1MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると70質量%であった。
[Comparative example 3]
70 parts by mass of the GIS type zeolite powder obtained in Production Example 7 and 30 parts by mass of polyamide resin (Zytel 101L manufactured by DuPont Corporation) were melt-kneaded at 285°C and 400 rpm in a twin screw extruder (TEM48-SS manufactured by Toshiba Machinery Co., Ltd.). , a complex was obtained. The resulting composite was molded using an injection molding machine (EC75NII manufactured by Toshiba Machinery Co., Ltd.) set at a cylinder temperature of 285° C. and a mold temperature of 70° C. to obtain a molded product having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 2.1 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the powdering rate was measured to be 70% by mass.

〔実施例8〕
製造例8で得たGIS型ゼオライト粉を用いた以外は実施例1と同様にして成形体を得た。
こうして得られたGIS型ゼオライト成形体の弾性率Eは11.0MPaであった。ゼオライト成形体のCO2雰囲気下での耐脆化性評価を行い粉化率を測定すると7質量%であった。
[Example 8]
A molded body was obtained in the same manner as in Example 1 except that the GIS type zeolite powder obtained in Production Example 8 was used.
The elastic modulus E of the GIS type zeolite molded body thus obtained was 11.0 MPa. The embrittlement resistance of the zeolite molded body in a CO 2 atmosphere was evaluated and the pulverization rate was determined to be 7% by mass.

Claims (17)

二酸化炭素を吸着可能なゼオライトを含む、ゼオライト成形体であって、
弾性率Eが10.0MPa以上である、ゼオライト成形体。
A zeolite molded body containing zeolite capable of adsorbing carbon dioxide,
A zeolite molded body having an elastic modulus E of 10.0 MPa or more.
前記ゼオライトが、10cc/g以上の二酸化炭素吸着量を有する、請求項1に記載のゼオライト成形体。 The zeolite molded article according to claim 1, wherein the zeolite has a carbon dioxide adsorption amount of 10 cc/g or more. 前記ゼオライトが、GIS型ゼオライトである、請求項1又は2に記載のゼオライト成形体。 The zeolite molded article according to claim 1 or 2, wherein the zeolite is a GIS type zeolite. 前記GIS型ゼオライトのシリカアルミナ比が、3.40以上である、請求項3に記載のゼオライト成形体。 The zeolite molded article according to claim 3, wherein the GIS type zeolite has a silica alumina ratio of 3.40 or more. 前記GIS型ゼオライトのシリカアルミナ比が、4.50以上である、請求項3に記載のゼオライト成形体。 The zeolite molded article according to claim 3, wherein the GIS type zeolite has a silica alumina ratio of 4.50 or more. GIS型ゼオライト中のカチオン種としてカリウム又はリチウムを含む、請求項3~5のいずれか一項に記載のゼオライト成形体。 The zeolite molded article according to any one of claims 3 to 5, which contains potassium or lithium as a cationic species in the GIS type zeolite. GIS型ゼオライト中のアルカリ金属の物質量の合計値(T)に対するカリウム及びリチウムの物質量の合計値(Z)の割合(Z/T)が、0.05以上である、請求項6に記載のゼオライト成形体。 According to claim 6, the ratio (Z/T) of the total amount of potassium and lithium (Z) to the total amount of alkali metals (T) in the GIS-type zeolite is 0.05 or more. Zeolite molded body. 29Si-MAS-NMRスペクトルで観測されるQ4(3Al)、Q4(2Al)、Q4(1Al)、Q4(0Al)に帰属されるピーク面積強度をそれぞれ、a、b、c、dとし、(a+d)/(b+c)≧0.192を満たす、GIS型ゼオライトを含む、請求項3~7のいずれか一項に記載のゼオライト成形体。 29 Let the peak area intensities attributed to Q4 (3Al), Q4 (2Al), Q4 (1Al), and Q4 (0Al) observed in the Si-MAS-NMR spectrum be a, b, c, and d, respectively, and ( The zeolite molded article according to any one of claims 3 to 7, comprising a GIS type zeolite satisfying a+d)/(b+c)≧0.192. 担体を含む、請求項1~8のいずれか一項に記載のゼオライト成形体。 The zeolite molded article according to any one of claims 1 to 8, comprising a carrier. 前記担体が、無機結合剤、及び有機結合剤からなる群から選ばれる1種以上を含む、請求項9に記載のゼオライト成形体。 The zeolite molded article according to claim 9, wherein the carrier contains one or more selected from the group consisting of an inorganic binder and an organic binder. 前記無機結合剤が、アルミナを含む、請求項10に記載のゼオライト成形体。 The zeolite molded article according to claim 10, wherein the inorganic binder contains alumina. 前記GIS型ゼオライトと前記担体の質量比が、GIS型ゼオライト:担体として、1:99~99:1である、請求項9~11のいずれか一項に記載のゼオライト成形体。 The zeolite molded article according to any one of claims 9 to 11, wherein the mass ratio of the GIS type zeolite to the carrier is 1:99 to 99:1 as GIS type zeolite:carrier. 円柱状の形状を有する、請求項1~12のいずれか一項に記載のゼオライト成形体。 The zeolite molded article according to any one of claims 1 to 12, having a cylindrical shape. 長さが3mm以上30mm以下であり、かつ、直径が1mm以上30mm以下である、請求項13に記載のゼオライト成形体。 The zeolite molded article according to claim 13, having a length of 3 mm or more and 30 mm or less, and a diameter of 1 mm or more and 30 mm or less. 請求項1~14のいずれか一項に記載のゼオライト成形体を含む、吸着装置。 An adsorption device comprising the zeolite molded body according to any one of claims 1 to 14. 請求項15に記載の吸着装置を用い、H2、N2、O2、Ar、CO、及び炭化水素からなる群より選択される2種以上の気体を含む混合物から、CO2、H2O、He、Ne、Cl2、NH3、及びHClからなる群より選択される1種以上を分離する分離工程を含む、精製ガスの製造方法。 Using the adsorption device according to claim 15, CO 2 , H 2 O is extracted from a mixture containing two or more gases selected from the group consisting of H 2 , N 2 , O 2 , Ar, CO, and hydrocarbons. , He, Ne, Cl 2 , NH 3 , and HCl. 前記分離工程において、圧力スイング式吸着分離法、温度スイング式吸着分離法、又は圧力・温度スイング式吸着分離法により前記気体の分離を行う、請求項16に記載の精製ガスの製造方法。 17. The method for producing purified gas according to claim 16, wherein in the separation step, the gas is separated by a pressure swing adsorption separation method, a temperature swing adsorption separation method, or a pressure/temperature swing adsorption separation method.
JP2022054193A 2022-03-29 2022-03-29 Zeolite molding, adsorption device, and method for producing purified gas Pending JP2023146805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022054193A JP2023146805A (en) 2022-03-29 2022-03-29 Zeolite molding, adsorption device, and method for producing purified gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022054193A JP2023146805A (en) 2022-03-29 2022-03-29 Zeolite molding, adsorption device, and method for producing purified gas

Publications (1)

Publication Number Publication Date
JP2023146805A true JP2023146805A (en) 2023-10-12

Family

ID=88286820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022054193A Pending JP2023146805A (en) 2022-03-29 2022-03-29 Zeolite molding, adsorption device, and method for producing purified gas

Country Status (1)

Country Link
JP (1) JP2023146805A (en)

Similar Documents

Publication Publication Date Title
JP6552728B2 (en) GIS type zeolite
JP6505323B2 (en) MWF type zeolite
JP6714789B2 (en) GIS type zeolite
JP7185433B2 (en) Gas separation method
WO2023190600A1 (en) Gis zeolite, zeolite molded body, adsorption device and method for producing purified gas
WO2023190603A1 (en) Gis-type zeolite, zeolite molded body, adsorption device, and purified gas production method
JP2023146805A (en) Zeolite molding, adsorption device, and method for producing purified gas
JP2023146647A (en) Zeolite molding, adsorption device, and method for producing purified gas
WO2023190609A1 (en) Zeolite molded article, adsorption device, method for producing purified gas, and method for producing zeolite molded article
JP2023147269A (en) Zeolite molding, adsorption device, and method for producing purified gas
WO2022259880A1 (en) Gis-type zeolite molded body, adsorption device, separation method, and gis-type zeolite
KR20240149940A (en) GIS-type zeolite, zeolite molding, adsorption device, and method for producing purified gas
JP6797045B2 (en) MWF type zeolite
JP7505002B2 (en) GIS type zeolite
KR20240153383A (en) GIS-type zeolite, zeolite molding, adsorption device, and method for producing purified gas
JP2019115895A (en) Mwf type zeolite, and method of separating gas
JP2019116404A (en) Mwf-type zeolite
WO2023067841A1 (en) Gis-type zeolite, adsorbent, and separation method
WO2023067840A1 (en) Gis-type zeolite, adsorbent, and separation method
JP2024140983A (en) Gas separation apparatus, gas separation method, and method for producing purified gas
JP2018203604A (en) MWF type zeolite