JP2023144522A - 建設支援システム、建設支援方法及び建設支援プログラム - Google Patents

建設支援システム、建設支援方法及び建設支援プログラム Download PDF

Info

Publication number
JP2023144522A
JP2023144522A JP2022051536A JP2022051536A JP2023144522A JP 2023144522 A JP2023144522 A JP 2023144522A JP 2022051536 A JP2022051536 A JP 2022051536A JP 2022051536 A JP2022051536 A JP 2022051536A JP 2023144522 A JP2023144522 A JP 2023144522A
Authority
JP
Japan
Prior art keywords
imaging device
map
construction
mobile imaging
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022051536A
Other languages
English (en)
Inventor
研二 河野
Kenji Kono
憲一 阿部
Kenichi Abe
晃 松本
Akira Matsumoto
典彦 鎌田
Norihiko Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Communication Systems Ltd
Original Assignee
NEC Communication Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Communication Systems Ltd filed Critical NEC Communication Systems Ltd
Priority to JP2022051536A priority Critical patent/JP2023144522A/ja
Publication of JP2023144522A publication Critical patent/JP2023144522A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • User Interface Of Digital Computer (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】ユーザが所望する視点での画像を取得可能な建設支援システム、建設支援方法及び建設支援プログラムを提供する。【解決手段】建設現場において3次元に移動可能な移動撮像装置を制御する制御装置が、建設現場の3Dマップを作成し、移動撮像装置による撮像モードの選択肢をユーザに対して提示し、ユーザによって選択された撮像モードでの撮像を行うために移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定し、決定された位置へ移動撮像装置を移動させる。【選択図】図1

Description

本発明は、建設支援システム、建設支援方法及び建設支援プログラムに関する。
例えば、特許文献1には、建設機器(例えばショベルカー)に追従して自律移動する撮像ドローンを用いて建設支援を行うシステムが開示されている。
特開2019-101765号公報
以下の分析は、本発明の観点からなされたものである。なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。
後に詳述するように、特許文献1のシステムでは、撮像ドローンが建設機器に追従して自律移動するため、ユーザが所望する視点での画像を取得できないという問題点がある。
そこで、本発明では、ユーザが所望する視点での画像を取得可能な建設支援システム、建設支援方法及び建設支援プログラムを提供することを目的とする。
本発明の第1の視点によれば、
建設現場において3次元に移動可能な移動撮像装置と、前記移動撮像装置を制御する制御装置とを含み、
前記制御装置が、
前記建設現場の3Dマップを作成する3Dマップ作成部と、
前記移動撮像装置による撮像モードの選択肢をユーザに対して提示する撮像モード提示部と、
前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する位置決定部と、
決定された位置へ前記移動撮像装置を移動させる移動撮像装置制御部と、
を備える、
建設支援システムが提供される。
本発明の第2の視点によれば、
建設現場において3次元に移動可能な移動撮像装置を制御する制御装置により実行される、
前記建設現場の3Dマップを作成するステップと、
前記移動撮像装置による撮像モードの選択肢をユーザに対して提示するステップと、
前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定するステップと、
決定された位置へ前記移動撮像装置を移動させるステップと、
を含む建設支援方法が提供される。
本発明の第3の視点によれば、
建設現場において3次元に移動可能な移動撮像装置を制御する制御装置としてのコンピュータに、
前記建設現場の3Dマップを作成する処理と、
前記移動撮像装置による撮像モードの選択肢をユーザに対して提示する処理と、
前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する処理と、
決定された位置へ前記移動撮像装置を移動させる処理と、
を実行させる建設支援プログラム。
が提供される。
本発明の各視点によれば、ユーザが所望する視点での画像を取得可能な建設支援システム、建設支援方法及び建設支援プログラムが提供される。
本発明の一概要を説明するための図である。 本発明の一概要を説明するための図である。 本発明の一概要を説明するための図である。 本発明の一概要を説明するための図である。 移動撮像装置100の構成の一例を示すブロック図である。 実施形態1の制御装置200の構成の一例を示すブロック図である。 建設支援システム10による処理の流れの一例を示すシーケンス図である。 建設支援システム10による処理の流れの一例を示すシーケンス図である。 実施形態2の制御装置200の構成の一例を示すブロック図である。 実施形態2において表示装置に表示される情報の一例を示す図である。 制御装置200としてのコンピュータの一例を示す図である。
本発明のとり得る好適な実施形態について図面を参照して詳細に説明する。なお、以下の記載に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。また、各図におけるブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インターフェイスも同様である。
先ず、本発明の一概要について説明する。本発明の建設支援システム10は、図1に示すように建設現場において3次元に移動可能な移動撮像装置100と、移動撮像装置100を制御する制御装置200とを含む。制御装置200は、3Dマップ作成部210、撮像モード提示部220、位置決定部230及び移動撮像装置制御部240を備える。3Dマップ作成部210は建設現場の3Dマップを作成する。撮像モード提示部220は、移動撮像装置100による撮像モードの選択肢をユーザに対して提示する。位置決定部230は、ユーザによって選択された撮像モードでの撮像を行うために移動撮像装置100が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する。移動撮像装置制御部240は、決定された位置へ移動撮像装置100を移動させる。
具体的な一例として、遠隔操作ショベルカーによる建設作業を支援する場合を説明する。図2に示すように、建設支援システム10は、建設現場に配される移動撮像装置100及び建設機器と、建設現場から離れた場所に設置される制御装置200、表示装置及び建設機器コントローラを含む。ここで、ユーザは、移動撮像装置100によって撮像された画像を表示装置で視聴しつつ、建設機器コントローラで建設機器を遠隔操作することによって建設作業を行う。
移動撮像装置100は、撮像機能を備えた無人航空体(いわゆるドローン)によって例示される。移動撮像装置100は、初期設定(操縦視点モード)ではショベルカーの操縦席からの視点の画像をユーザに提供するように、ショベルカーの上空をショベルカーに追従して自律飛行するものとする。言い換えると、移動撮像装置100はショベルカーの上空に滞在しつつショベルカーの前方を撮像して、ライブ映像として表示装置に表示する。
ショベルカーによる建設作業は掘削作業であるため、ユーザは掘削位置とショベルカーとの間の距離や、掘削深度を把握する必要がある。ここで、ユーザが掘削位置とショベルカーとの間の距離を把握するためには、ショベルカーを横方向から見た視点での画像が必要である。また、ユーザが掘削深度を把握するためには、ショベルカーによって掘削された穴をショベルカーと正対する位置から撮像した画像、穴を上方向から見た視点での画像、穴の中から撮像した画像などが必要である。
従来のショベルカーに追従して自律移動する撮像ドローンを用いたシステムでは、ショベルカーの操縦席からの視点の画像しか提供されず、ユーザが所望する視点での画像を取得できない。ここで、自律移動を解除してユーザが所望する視点での画像を取得できる位置まで撮像ドローンを操縦してユーザが移動させる場合には、ユーザには撮像ドローンを操縦する技能が要求されるという問題がある。また、撮像ドローンが自律移動するというメリットも失われる。複数台の撮像ドローンを用いて多数の方向から撮像を行う場合には、コスト的問題が生じるし、撮像ドローンの制御が複雑になるという問題が生じる。さらに、ユーザが複数の画像の内のどの画像を見るべきかを考えながら掘削作業を行わなければならないという問題もある。
一方で、本発明の建設支援システム10は、撮像モードの選択肢として、操縦視点モードの他に、俯瞰視点モード、横視点モード、上空視点モード、正対視点モード、掘削位置モードなどをユーザに対して提示する。例えば、操縦視点モードでは、図3に示すように建設機器の一部が写されたライブ映像とともに、撮像モードの選択肢が表示装置に表示される。
ここで、例えば、ユーザによって横視点モードが選択された場合には、本発明の建設支援システム10は、ライブ映像をユーザに提供しつつ、移動撮像装置100を移動させる。横視点モードでは、図4に示すように建設機器を横から撮像したライブ映像とともに、撮像モードの選択肢が表示装置に表示される。
本発明の建設支援システム10では、ユーザにとっては、撮像モードを選択するのみで所望する視点での画像を取得できる。また、1台の移動撮像装置100で撮像を行うため、ユーザはどの画像を見るべきかを考えずに済む。また、例えば、操縦視点モードから横視点モードへ切り替わるケースでは、移動撮像装置100はショベルカーの上空からショベルカーの横方向へ移動する。そのため、あたかもユーザが実際に操縦席から降りてショベルカーの横へ移動する時のような連続画像(つまり映像)が提供される。
以上のように本発明の建設支援システム10によれば、ユーザが所望する視点での画像を取得可能である。
[実施形態1]
実施形態1では、上述の建設支援システム10について具体的に説明する。実施形態1の建設支援システム10は、上記概要と同様に(図2参照)、建設機器、移動撮像装置100、制御装置200、表示装置及び建設機器コントローラを含む。
表示装置は移動撮像装置100によって撮像されたライブ映像及び撮像モードの選択肢を表示する。建設機器は、建設機器コントローラを介した遠隔操作によって操縦される。なお、ユーザが撮像装置によって撮像されたライブ映像を視聴しつつ建設機器を遠隔操作するための技術は、例えば、遠隔操作ロボットなどの応用であるため、詳細な説明は割愛する。
移動撮像装置100は、図5に示すように、RGBカメラ110、3Dセンサ120、データ送信部130、データ受信部140及び駆動部150を備える。
RGBカメラ110は、撮像を行い、データ送信部130を介してライブ映像として表示装置に対して送信する。
3Dセンサ120は、例えば、建設現場に配される物体(地面、建設機器を含む)に対して赤外線を照射し、反射された赤外線を受信して移動撮像装置100と物体との間の距離を測定する。3Dセンサ120による測定データは、データ送信部130を介して制御装置200に対して送信され、3Dマップの作成や移動撮像装置100の物体に対する衝突の回避に利用される。
データ送信部130及びデータ受信部140は、表示装置との間、制御装置200との間でデータの送受信を行う。
駆動部150は、データ受信部140を介して制御装置200から受信した制御信号に応じて移動撮像装置100を移動させるなどの駆動を行う。
なお、移動撮像装置100は、上記の点を除いて一般的なドローンと変わらないため、詳細な説明を割愛する。
制御装置200は、図6に示すように、測定データ取得部201、3Dマップ記憶部202、3Dマップ作成部210、撮像モード提示部220、位置決定部230及び移動撮像装置制御部240を備える。
測定データ取得部201は、移動撮像装置100から送信された測定データを取得する。3Dマップ作成部210は、測定データに基づいて建設現場の3Dマップを作成する。3Dマップ記憶部202は、3Dマップを記憶する。なお、被写体と撮像装置との間の距離に基づく3Dマップの作成は既存の技術であるため、詳細な説明は割愛する。
撮像モード提示部220は、操縦視点モード、俯瞰視点モード、横視点モード、上空視点モード、正対視点モード、掘削位置モードなどを表示装置に対して出力して、ユーザに提示する。なお、表示装置はタッチパネルとしても機能し、ユーザによる撮像モードの選択(変更)を受け付ける。
位置決定部230は、ユーザによって選択された撮像モードでの撮像を行うために移動撮像装置100が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する。具体的には、位置決定部230は、表示装置からユーザによって選択された撮像モードを受信する。
ここで、受信した撮像モードが操縦視点モードである場合には、位置決定部230は、移動撮像装置100が居るべき位置を、建設機器の上空(例えば、建設機器の屋根から50cm上空)に決定する。受信した撮像モードが俯瞰視点モードである場合には、位置決定部230は、移動撮像装置100が居るべき位置を、建設機器を俯瞰視する位置(例えば、建設機器から横方向に10m離れ、かつ10mの高さの位置)に決定する。受信した撮像モードが横視点モードである場合には、位置決定部230は、移動撮像装置100が居るべき位置を、建設機器を横から撮像する位置(例えば、建設機器から横方向に10m離れ、かつ1mの高さの位置)に決定する。受信した撮像モードが上空視点モードである場合には、位置決定部230は、移動撮像装置100が居るべき位置を、建設機器の作業部の上空(例えば、ショベルカーの場合にはショベルの10m上空)、かつ下方向を向く位置に決定する。受信した撮像モードが正対視点モードである場合には、位置決定部230は、移動撮像装置100が居るべき位置を、建設機器の前方かつ建設機器の方向を向く位置に決定する。受信した撮像モードが掘削位置モードである場合には、位置決定部230は、移動撮像装置100が居るべき位置を、建設機器の作業部の周囲(例えば、ショベルから50cm離れた位置)に決定する。
なお、ユーザによって選択された撮像モードに従って決定した位置が、建設現場に配される物体と重複する、すなわち決定した位置へ移動撮像装置100を移動させた場合には移動撮像装置100と物体とが衝突するケースもあり得る。このケースでは位置決定部230は、決定した位置への移動撮像装置100の移動は不可能であると判断し、その旨を表示装置を介してユーザに通知しても良い。
移動撮像装置制御部240は、決定された位置へ移動撮像装置100を移動させる。なお、移動撮像装置100の自動操縦は既存の技術であるため、詳細な説明は割愛する。
次に、建設支援システム10による処理の流れの一例を説明する。
<建設作業の事前処理>
制御装置200は、建設作業に先立って3Dマップを作成する。例えば、図7に示すように、制御装置200は、移動撮像装置100を起動し(ステップS101)、建設現場を巡回させて測定データを取得する(ステップS102)。そして、制御装置200は、測定データに基づいて建設現場の3Dマップを作成する(ステップS103)。
<建設作業中の処理>
制御装置200は、建設作業中に撮像モードの選択肢をユーザに対して提示して建設作業を支援する。例えば、図8に示すように、制御装置200は、建設機器コントローラを介してユーザから建設作業の開始指示を受け付けると(ステップS201)、初期設定(操縦視点モード)の位置へ移動撮像装置100を移動させる(ステップS202)。ここでユーザが遠隔操作によって建設機器を作業位置(掘削位置)まで移動させた場合には、制御装置200は、操縦視点モードでの映像をユーザに提供し続けるように、建設機器の移動にあわせて移動撮像装置100を移動させる。
建設機器が作業位置(掘削位置)の付近まで移動した後に、ユーザが建設機器の位置の微調整(例えば掘削位置の直近までの前進)を行うものとする。その際に、ユーザは提示された撮像モードの選択肢の中から横視点モードを選択し、表示装置(タッチパネル)に入力する。言い換えると、ユーザは操縦視点モードから横視点モードへの変更指示を行う。制御装置200は、撮像モードの変更指示を受け付け(ステップS203、Yes)、移動撮像装置100が居るべき位置を3Dマップ上で決定し(ステップS204)、決定された位置へ移動撮像装置100を移動させる(ステップS205)。その際に、ユーザは移動撮像装置100から提供される横視点モードでのライブ映像を視聴しつつ、建設機器の位置の微調整を行う。
その後、制御装置200は、撮像モードの変更指示を再び受け付けるまで横視点モードでの映像をユーザに提供し続けるように、建設機器の移動にあわせて移動撮像装置100を移動させる(ステップS203、No)。
なお、横視点モードから操縦視点モードへの復帰や、他の撮像モードへの変更も同様である。
[実施形態2]
本発明では、3Dマップを利用して更なる建設支援を行うこともできる。
例えば、制御装置200は、建設作業中に移動撮像装置100の3Dセンサ120によって施工箇所の3次元データを取得する。そして、制御装置200は、3次元データを元に必要な作業量(掘削作業における規定深度までの残りの距離、建設機器の移動時における目的地までの移動距離)を算出し、表示装置に算出した値を表示する。このようにすれば、ユーザをナビゲートすることができる。
具体的には、制御装置200は、図9に示すように、建設機器情報取得部251、作業位置取得部252、作業量計測部253、及びシミュレーション部254を更に備える。
建設機器情報取得部251は、建設機器の位置情報を取得し、3Dマップに反映する。作業位置取得部252は、3Dマップ上の作業位置を取得する。例えば、作業位置取得部252は、ショベルカーによる地面の掘削作業の場合は、3Dマップからショベルカーの周辺にある陥没領域を検知する。また、作業位置は、ユーザが3Dマップ上で指定しても良い。作業量計測部253は、3Dマップの3Dデータと建設機器情報取得部251で取得した情報とに基づいて、ユーザが予め登録した規定作業量に対する差分を計測する。そして、例えば、作業量計測部253は、3Dマップ上の建設機器の位置と、作業位置との間の距離を計測する。そして、制御装置200は、図10に示すように、例えばユーザが建設機器の位置の微調整(例えば掘削位置の直近までの前進)を行う際に、掘削位置までの距離を表示装置に出力する。また、作業量計測部253は、移動撮像装置100及び/又は建設機器の3Dマップ上の位置を過去と現在と比較することで、建設機器の走行ルート、走行距離、実働時間、待機時間などを計測することができる。
また、シミュレーション部254は、例えば、3Dマップ上に仮想のオブジェクトを追加、又は既存の3Dデータの一部を加工、削除等するなど、3Dマップ上でシミュレーションを行うように使用される。
[変化形態]
以下では、本発明における種々の変化形態を説明する。
移動撮像装置100が複数台の場合には、複数の映像が個別で表示装置に表示されるため、直感的に全景をイメージしにくくなる。そのため、移動撮像装置100は1台であることが望ましい。しかしながら、移動撮像装置100は1台に限定されない。例えば、操縦視点モード、俯瞰視点モード、掘削位置モードは明らかに異なる映像になるため、ユーザはどの画像を見るべきかを直感的に判断できる。つまり、操縦視点モード、横視点モード、上空視点モード、正対視点モードでの撮像を1台の移動撮像装置100で行い、俯瞰視点モード及び掘削位置モードでの撮像を各々専用の移動撮像装置100で行っても良い。
ユーザによる建設機器の遠隔操作は、建設機器コントローラを介した物理的なコントローラによる制御が挙げられる。その他、例えば表示装置に表示したソフトウェアのコントローラによる制御や、3Dマップ上に表示した仮想的な建機の動作と連動させる制御であっても良い。
表示装置は、VR(virtual reality)ゴーグルのようなデバイスであっても良い。その場合には、制御装置200は、建設機器コントローラを介して撮像モードの変更指示を受け付ければ良い。
撮像モードは、ユーザからの要望などを反映することができる。例えば、事前にユーザに移動撮像装置100をマニュアル操作してもらい、ベストアングルを撮像モードに反映することができる。また、移動撮像装置100がマニュアル操作された際の操作履歴に基づいて、撮像モードを追加しても良い。
RGBカメラ110に代えて、赤外線カメラやハイパースペクトルカメラ等を適用してもよいし、それらを重ねて表示してもよい。
移動撮像装置100の位置は、GPSを使用して指定してもよいし、3Dマップ上で建設機器からの相対距離を元に指定してもよい。
移動撮像装置100の位置は、VRゴーグルを装着したユーザの顔の動きと連動して制御してもよい。
移動撮像装置100による、3Dデータ撮影とRGB撮影は統合しても良いし、分割させてもよい。
表示装置は、PC(personal computer)やタブレット、スマートフォン等の端末であってもよい。
建設支援システム10は、建設機器の遠隔操作を行うユーザに対して適用するのみならず、作業現場で実機を操作する作業者に適用してもよい。また、建設機器に代えて自動運転車やロボットアーム等の機械に適用してもよい。
移動撮像装置100は、建設現場に固定設置されるカメラであっても良い。例えば、建設現場に複数のカメラを固定設置する。各カメラの設置位置や画角の情報は把握できていて、これらの情報を元に各カメラの映像を合成する。合成した映像は、例えば3Dマップに重畳できる(重畳しなくても、3Dマップと合成映像の位置関係が把握できていればよい)。ユーザがアングルを要求した際は、視点となる場所を3Dマップで特定し、その視点に該当する映像を合成映像から抽出して表示する。
また、本発明は、制御装置200が実行する建設支援方法、又は制御装置200としてのコンピュータが実行する建設支援プログラムとしても実現可能である。すなわち、図11に示すように、コンピュータのCPU(Central Processing Unit)がメモリからプログラムを読み出して、3Dマップ作成部210、撮像モード提示部220、位置決定部230及び移動撮像装置制御部240に相当するモジュールを実現する。なおインターフェイスは、移動撮像装置100との間で通信を行う。
上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
建設現場において3次元に移動可能な移動撮像装置と、前記移動撮像装置を制御する制御装置とを含み、
前記制御装置が、
前記建設現場の3Dマップを作成する3Dマップ作成部と、
前記移動撮像装置による撮像モードの選択肢をユーザに対して提示する撮像モード提示部と、
前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する位置決定部と、
決定された位置へ前記移動撮像装置を移動させる移動撮像装置制御部と、
を備える、
建設支援システム。
(付記2)
前記制御装置が、前記移動撮像装置によるライブ撮像画像をユーザに対して提供しつつ、決定された位置へ前記移動撮像装置を移動させる、付記1に記載の建設支援システム。
(付記3)
前記移動撮像装置が自己と対象物との間の距離を測定するための3Dセンサを備え、
前記3Dマップ作成部が、3Dセンサによる測定データに基づいて3Dマップを作成する、付記1又は2に記載の建設支援システム。
(付記4)
前記制御装置が、
3Dマップ上の作業位置を取得する作業位置取得部と、
3Dマップ上の建設機器の位置と、前記作業位置との間の距離を計測して計測された距離をユーザに対して提示する計測部と、
を更に有する、付記1~3のいずれか1つに記載の建設支援システム。
(付記5)
前記計測部が、移動撮像装置及び/又は建設機器の3Dマップ上の位置を過去と現在と比較することで、建設機器の走行ルート、走行距離、実働時間、待機時間を計測し、計測された情報をユーザに対して提示する、付記4に記載の建設支援システム。
(付記6)
前記制御装置が、
3Dマップ上でシミュレーションを行うシミュレーション部、
を更に備える、付記1~5のいずれか1つに記載の建設支援システム。
(付記7)
建設現場において3次元に移動可能な移動撮像装置を制御する制御装置により実行される、
前記建設現場の3Dマップを作成するステップと、
前記移動撮像装置による撮像モードの選択肢をユーザに対して提示するステップと、
前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定するステップと、
決定された位置へ前記移動撮像装置を移動させるステップと、
を含む建設支援方法。
(付記8)
建設現場において3次元に移動可能な移動撮像装置を制御する制御装置としてのコンピュータに、
前記建設現場の3Dマップを作成する処理と、
前記移動撮像装置による撮像モードの選択肢をユーザに対して提示する処理と、
前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する処理と、
決定された位置へ前記移動撮像装置を移動させる処理と、
を実行させる建設支援プログラム。
なお、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込み記載されているものとし、必要に応じて本発明の基礎ないし一部として用いることが出来るものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択(部分的削除を含む)が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。さらに、上記引用した文献の各開示事項は、必要に応じ、本発明の趣旨に則り、本発明の開示の一部として、その一部又は全部を、本書の記載事項と組み合わせて用いることも、本願の開示事項に含まれるものと、みなされる。
10 :建設支援システム
100 :移動撮像装置
110 :RGBカメラ
120 :3Dセンサ
130 :データ送信部
140 :データ受信部
150 :駆動部
200 :制御装置
201 :測定データ取得部
202 :3Dマップ記憶部
210 :3Dマップ作成部
220 :撮像モード提示部
230 :位置決定部
240 :移動撮像装置制御部
251 :建設機器情報取得部
252 :作業位置取得部
253 :作業量計測部
254 :シミュレーション部

Claims (8)

  1. 建設現場において3次元に移動可能な移動撮像装置と、前記移動撮像装置を制御する制御装置とを含み、
    前記制御装置が、
    前記建設現場の3Dマップを作成する3Dマップ作成部と、
    前記移動撮像装置による撮像モードの選択肢をユーザに対して提示する撮像モード提示部と、
    前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する位置決定部と、
    決定された位置へ前記移動撮像装置を移動させる移動撮像装置制御部と、
    を備える、
    建設支援システム。
  2. 前記制御装置が、前記移動撮像装置によるライブ撮像画像をユーザに対して提供しつつ、決定された位置へ前記移動撮像装置を移動させる、請求項1に記載の建設支援システム。
  3. 前記移動撮像装置が自己と対象物との間の距離を測定するための3Dセンサを備え、
    前記3Dマップ作成部が、3Dセンサによる測定データに基づいて3Dマップを作成する、請求項1又は2に記載の建設支援システム。
  4. 前記制御装置が、
    3Dマップ上の作業位置を取得する作業位置取得部と、
    3Dマップ上の建設機器の位置と、前記作業位置との間の距離を計測して計測された距離をユーザに対して提示する計測部と、
    を更に有する、請求項1~3のいずれか1項に記載の建設支援システム。
  5. 前記計測部が、移動撮像装置及び/又は建設機器の3Dマップ上の位置を過去と現在と比較することで、建設機器の走行ルート、走行距離、実働時間、待機時間を計測し、計測された情報をユーザに対して提示する、請求項4に記載の建設支援システム。
  6. 前記制御装置が、
    3Dマップ上でシミュレーションを行うシミュレーション部、
    を更に備える、請求項1~5のいずれか1項に記載の建設支援システム。
  7. 建設現場において3次元に移動可能な移動撮像装置を制御する制御装置により実行される、
    前記建設現場の3Dマップを作成するステップと、
    前記移動撮像装置による撮像モードの選択肢をユーザに対して提示するステップと、
    前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定するステップと、
    決定された位置へ前記移動撮像装置を移動させるステップと、
    を含む建設支援方法。
  8. 建設現場において3次元に移動可能な移動撮像装置を制御する制御装置としてのコンピュータに、
    前記建設現場の3Dマップを作成する処理と、
    前記移動撮像装置による撮像モードの選択肢をユーザに対して提示する処理と、
    前記ユーザによって選択された撮像モードでの撮像を行うために前記移動撮像装置が居るべき位置を3Dマップ上の建設機器の位置に基づいて3Dマップ上で決定する処理と、
    決定された位置へ前記移動撮像装置を移動させる処理と、
    を実行させる建設支援プログラム。
JP2022051536A 2022-03-28 2022-03-28 建設支援システム、建設支援方法及び建設支援プログラム Pending JP2023144522A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022051536A JP2023144522A (ja) 2022-03-28 2022-03-28 建設支援システム、建設支援方法及び建設支援プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022051536A JP2023144522A (ja) 2022-03-28 2022-03-28 建設支援システム、建設支援方法及び建設支援プログラム

Publications (1)

Publication Number Publication Date
JP2023144522A true JP2023144522A (ja) 2023-10-11

Family

ID=88253145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022051536A Pending JP2023144522A (ja) 2022-03-28 2022-03-28 建設支援システム、建設支援方法及び建設支援プログラム

Country Status (1)

Country Link
JP (1) JP2023144522A (ja)

Similar Documents

Publication Publication Date Title
US11927960B2 (en) Control device, control method, and computer program
US10921771B2 (en) Method and device for planning and/or controlling and/or simulating the operation of a construction machine
US11548768B2 (en) Remote control device for crane, construction machine, and/or industrial truck
CN108432234B (zh) 终端装置、控制装置、数据统合装置、作业车辆、拍摄系统以及拍摄方法
US9239892B2 (en) X-ray vision for buildings
US11122209B2 (en) Three-dimensional shape estimation method, three-dimensional shape estimation system, flying object, program and recording medium
JP7272825B2 (ja) ロボットシステム
CN114747208A (zh) 作业支援服务器、作业支援方法及作业支援系统
JP6699944B2 (ja) 表示システム
CN113677412A (zh) 信息处理装置、信息处理方法和程序
JP2023144522A (ja) 建設支援システム、建設支援方法及び建設支援プログラム
JP6368503B2 (ja) 障害物監視システム及びプログラム
US20230023778A1 (en) Work assisting server and work assisting system
TWI750821B (zh) 基於光通訊裝置的導航方法、系統、設備及介質
JP2015182672A (ja) 虚像表示装置、制御方法、プログラム、及び記憶媒体
JP7392422B2 (ja) 作業支援サーバおよび作業支援システム
JP6101033B2 (ja) 測設支援装置、測設支援方法、及びプログラム
JP6101032B2 (ja) 測設支援装置、測設支援方法、及びプログラム
KR20200124899A (ko) 시설물 점검 장치 및 방법
US20230205198A1 (en) Information processing apparatus, route generation system, route generating method, and non-transitory recording medium
KR102279247B1 (ko) 증강 현실 방법을 이용하여 장비를 원격 제어하는 가상 현실 구현 장치 및 그 방법 및 이를 이용한 관리 시스템
US20240118703A1 (en) Display apparatus, communication system, display control method, and recording medium
US20210107515A1 (en) Systems and methods for visualizing a route of a vehicle
KR20190074466A (ko) 3차원 원격 제어 장치 및 방법
KR20170088470A (ko) 표시 영상에 기반한 제어 시스템 및 장치