JP2023143804A - Member for heat exchanger, heat exchanger, indoor unit for air conditioner, outdoor unit for air conditioner, refrigerator, and washer with dryer - Google Patents

Member for heat exchanger, heat exchanger, indoor unit for air conditioner, outdoor unit for air conditioner, refrigerator, and washer with dryer Download PDF

Info

Publication number
JP2023143804A
JP2023143804A JP2023041675A JP2023041675A JP2023143804A JP 2023143804 A JP2023143804 A JP 2023143804A JP 2023041675 A JP2023041675 A JP 2023041675A JP 2023041675 A JP2023041675 A JP 2023041675A JP 2023143804 A JP2023143804 A JP 2023143804A
Authority
JP
Japan
Prior art keywords
heat exchanger
air conditioner
oxide film
metal
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023041675A
Other languages
Japanese (ja)
Inventor
秀春 田島
Hideharu Tajima
正人 小西
Masato Konishi
絵美 多湖
Emi Tako
相宰 金
Sosai Kin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAICHI SPECIAL STEEL CO Ltd
Original Assignee
YAMAICHI SPECIAL STEEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAICHI SPECIAL STEEL CO Ltd filed Critical YAMAICHI SPECIAL STEEL CO Ltd
Publication of JP2023143804A publication Critical patent/JP2023143804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To realize a member for a heat exchanger with high efficiency while imparting characteristics not found in a metal itself with a coating with excellent heat transfer to a metal surface.SOLUTION: A fin 112 is made of metal, and has a carbon nanotube-containing oxide film 112B having a thread-like structure 112C on a surface of the metal when a cross section of the surface of the metal is observed with a scanning transmission electron microscope (STEM). The carbon nanotube-containing oxide film 112B contains carbon nanotubes in a direction in which a thermal diffusivity in a film thickness direction is higher than a thermal diffusivity in a film surface direction of the carbon nanotube-containing oxide film 112B.SELECTED DRAWING: Figure 3

Description

本発明は、金属表面にこの金属固有の特性以外の特性が付与されている熱交換器用部材及びこの部材を含む機器に関する。 The present invention relates to a heat exchanger member whose metal surface has properties other than those unique to the metal, and to equipment including this member.

空調機の稼働時に室内機及び室外機に設けられている熱交換器の熱交換フィン表面に結露や着霜が発生する。この熱交換フィン表面の結露や着霜は、送風効率の低下や、熱交換性の低下、それらに伴う空気調和機自体の消費電力の増加等、悪影響を及ぼす。近年、空気調和分野において、この熱交換フィン表面の結露や着霜に対する対策として親水化を付与することにより、送風効率の低下や、熱交換性の低下を抑制し、空気調和機自体の消費電力を低減する技術が盛んに検討されている。このような技術は、例えば特許文献1に開示されている。 When an air conditioner is in operation, condensation or frost forms on the surfaces of the heat exchange fins of the heat exchangers provided in the indoor and outdoor units. This dew condensation and frost formation on the surface of the heat exchange fins has negative effects such as a decrease in air blowing efficiency, a decrease in heat exchange performance, and an accompanying increase in power consumption of the air conditioner itself. In recent years, in the air conditioning field, the heat exchange fin surface has been made hydrophilic to prevent dew condensation and frost formation, thereby suppressing the decline in air blowing efficiency and heat exchange performance, and reducing the power consumption of the air conditioner itself. Technologies to reduce this are being actively studied. Such a technique is disclosed in Patent Document 1, for example.

特許文献1には、アクリル系樹脂(ポリアクリル酸系、アクリルアミノ系、アクリルアミド系等)、セルロース系樹脂、ポリビニルアルコール系樹脂、アミド系樹脂、アミノ系樹脂等からなる親水性樹脂塗膜を熱交換器の熱交換フィン表面に形成することによって、熱交換フィンに発生する結露による通風抵抗の増大を抑制する方法が記載されている。 Patent Document 1 describes that a hydrophilic resin coating film made of acrylic resin (polyacrylic acid, acrylamino, acrylamide, etc.), cellulose resin, polyvinyl alcohol resin, amide resin, amino resin, etc. is heated. This document describes a method of suppressing an increase in ventilation resistance due to dew condensation generated on the heat exchange fins by forming them on the surfaces of the heat exchange fins of the exchanger.

特開平5-322469号公報Japanese Patent Application Publication No. 5-322469

しかしながら、特許文献1の技術では、熱交換器の熱交換フィンの一般的な材料であるアルミニウムや、その表面に自然に形成されている酸化アルミニウムよりも、著しく熱伝導性の低いアクリル系樹脂(酸化アルミニウムの熱伝統率の1/180程度)などの有機樹脂や、同じく親水性塗膜に用いられるシリカ粒子(酸化アルミニウムの熱伝統率の1/20程度)やゼオライト(酸化アルミニウムの熱伝統率の1/180程度)等のセラミック材料を用いている。このため、空調機の消費電力増加の対策であるはずの親水性塗膜の組成物自体が、結露等が発生しない環境で空調機を稼働させる際には空調機の消費電力を増加させるという問題があった。 However, in the technology of Patent Document 1, acrylic resin (acrylic resin) has significantly lower thermal conductivity than aluminum, which is a common material for heat exchange fins of heat exchangers, or aluminum oxide, which is naturally formed on its surface. organic resins such as silica particles (approximately 1/20 of aluminum oxide's thermal conductivity), silica particles (approximately 1/20 of aluminum oxide's thermal conductivity), and zeolites (aluminum oxide's thermal conductivity of (approximately 1/180 of For this reason, the composition of the hydrophilic coating itself, which is supposed to be a measure against the increase in power consumption of air conditioners, has the problem of increasing the power consumption of air conditioners when the air conditioners are operated in environments where condensation does not occur. was there.

また、接触角が小さくなるだけの親水化技術では、実際の結露によって生じる水滴が付着したまま滑落せず、ついには通風抵抗になるという問題もあった。 In addition, with hydrophilic technology that only reduces the contact angle, there is a problem in that water droplets generated by actual dew condensation remain attached and do not slide off, resulting in ventilation resistance.

更に、特許文献1の手法では、例えば空調機における室内機の場合、外気温と求められる室温の温度差がさらに大きくなるため、より消費電力が高くなる暖房運転時では、全く効果を発揮できないという問題があった。 Furthermore, in the case of an indoor unit in an air conditioner, for example, the method of Patent Document 1 is not effective at all during heating operation, where power consumption is higher, because the temperature difference between the outside temperature and the required room temperature becomes even larger. There was a problem.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、熱交換器や熱交換器の熱交換フィンを形成している金属表面に、空気との熱伝達率(単層流時の熱伝達率)に優れる被膜で金属自体にはない特性を付与し、高効率な熱交換機用部材、熱交換器、空気調和機用室内機、空気調和機用室外機、冷蔵庫、及び乾燥機付き洗濯機を実現することである。 The present invention has been made in view of the above problems, and its purpose is to improve the heat transfer coefficient (single layer) with air on the metal surface forming the heat exchanger or the heat exchange fins of the heat exchanger. A coating with excellent heat transfer coefficient (during flow) that provides properties not found in metal itself, and is used in highly efficient heat exchanger components, heat exchangers, indoor units for air conditioners, outdoor units for air conditioners, refrigerators, and The aim is to realize a washing machine with a dryer.

上記の課題を解決するために、本発明の熱交換器用部材は、金属からなる熱交換器用部材であって、前記金属の表面の断面を走査透過電子顕微鏡(STEM)で観察した場合、前記金属の表面に糸状に見える構造を有する金属酸化膜を有し、前記金属酸化膜には、前記金属酸化膜の膜面方向の熱拡散率より、膜厚方向の熱拡散率が高まる方向にカーボンナノチューブが含有されている。 In order to solve the above problems, the heat exchanger member of the present invention is a heat exchanger member made of metal, and when a cross section of the surface of the metal is observed with a scanning transmission electron microscope (STEM), the metal has a metal oxide film having a thread-like structure on the surface of the metal oxide film, and carbon nanotubes are arranged in a direction in which the thermal diffusivity in the film thickness direction is higher than the thermal diffusivity in the film surface direction of the metal oxide film. Contains.

本発明の熱交換器用部材は、冷却時のみならず加熱時においても熱交換器用部材に熱交換器の熱交換効率が向上する機能を付加できる効果を奏する。 The heat exchanger member of the present invention has the effect of adding a function to the heat exchanger member that improves the heat exchange efficiency of the heat exchanger not only during cooling but also during heating.

本発明の実施形態1に係る熱交換器用部材を用いた空気調和機の室内機を示す斜視図である。1 is a perspective view showing an indoor unit of an air conditioner using a heat exchanger member according to Embodiment 1 of the present invention. 本発明の実施形態1に係る熱交換器用部材を示す図である。It is a figure showing the member for heat exchangers concerning Embodiment 1 of the present invention. 図2の矢視a-a断面を示す模式図である。FIG. 3 is a schematic diagram showing a cross section taken along the line aa in FIG. 2; 本発明の実施形態1に係る熱交換器用部材の表面のSTEM断面である。1 is a STEM cross section of the surface of a heat exchanger member according to Embodiment 1 of the present invention. 本発明の実施形態1を作製するための設備を示す図である。FIG. 1 is a diagram showing equipment for manufacturing Embodiment 1 of the present invention. 本発明の実施形態1を作製するための負荷電解密度のタイムチャートを示す図である。FIG. 3 is a diagram showing a time chart of load electrolytic density for manufacturing Embodiment 1 of the present invention. 熱伝達率測定器(横浜国立大学 西野耕一教授監修)を示す模式図である。It is a schematic diagram showing a heat transfer coefficient measuring device (supervised by Professor Koichi Nishino of Yokohama National University). 熱伝達率及び空気抵抗測定器(横浜国立大学 西野耕一教授監修)を示す模式図である。It is a schematic diagram showing a heat transfer coefficient and air resistance measuring device (supervised by Professor Koichi Nishino, Yokohama National University). フィン112におけるヌセルト数のレイノルズ数依存性を示す図である。5 is a diagram showing the dependence of the Nusselt number on the Reynolds number in the fin 112. FIG. フィン112における管摩擦係数のレイノルズ数依存性を示す図である。FIG. 3 is a diagram showing the dependence of the pipe friction coefficient on the Reynolds number in the fin 112.

〔実施形態1〕
以下に、本発明の実施形態について、図1~図7に基づいて説明する。
[Embodiment 1]
Embodiments of the present invention will be described below based on FIGS. 1 to 7.

<部材が組み込まれた空気調和機の室内機の構成>
図1は、空気調和機の室内機100のカットモデルを示す図である。空気調和機の室内機100は、熱交換器110、エアフィルター120、送風ファン130、ドレンパン140、筐体150と図示しない制御部や駆動部等からなる。
<Configuration of indoor unit of air conditioner with built-in components>
FIG. 1 is a diagram showing a cut model of an indoor unit 100 of an air conditioner. The indoor unit 100 of the air conditioner includes a heat exchanger 110, an air filter 120, a blower fan 130, a drain pan 140, a casing 150, and a control section and a drive section (not shown).

熱交換器110は冷媒配管111とフィン112からなる。本発明の熱交換器用部材は、熱交換器110(冷媒配管111及びフィン112)を構成する部材を意味する。以降の説明では、熱交換器用部材はフィン112を構成する部材として説明する。 Heat exchanger 110 consists of refrigerant piping 111 and fins 112. The heat exchanger member of the present invention means a member that constitutes the heat exchanger 110 (refrigerant piping 111 and fins 112). In the following description, the heat exchanger member will be described as a member constituting the fins 112.

<部材の構成>
図2及び図2のa-a断面図である図3は、本発明の熱交換器用部材の具体的例である熱交換器110を構成するフィン112を示す図である。図3に示すように、フィン112は、表面の断面をSTEMで観察した場合、フィン112を形成する主要材料(アルミニウム、銅等)からなる金属素地112A上に糸状に見える構造112Cが設けられたカーボンナノチューブ含有酸化膜112Bを備えている。この構造112Cを有するカーボンナノチューブ含有酸化膜112Bは、金属酸化膜の膜面方向の熱拡散率より、膜厚方向の熱拡散率が高まる方向にカーボンナノチューブが含有されている金属酸化膜であり、冷却時のみならず加熱時においても熱交換器110の熱交換効率が向上する機能を付与する。
<Component configuration>
FIG. 2 and FIG. 3, which is a cross-sectional view taken along the line aa in FIG. 2, are diagrams showing fins 112 constituting the heat exchanger 110, which is a specific example of the heat exchanger member of the present invention. As shown in FIG. 3, when the cross section of the surface of the fin 112 is observed using STEM, a structure 112C that looks like a string is provided on a metal base 112A made of the main material (aluminum, copper, etc.) that forms the fin 112. A carbon nanotube-containing oxide film 112B is provided. The carbon nanotube-containing oxide film 112B having this structure 112C is a metal oxide film in which carbon nanotubes are contained in a direction in which the thermal diffusivity in the film thickness direction is higher than the thermal diffusivity in the film surface direction of the metal oxide film, A function is provided to improve the heat exchange efficiency of the heat exchanger 110 not only during cooling but also during heating.

なお、一般に熱伝達率は物性値ではなく、フィン112の表面を流れる流体の流れに影響を及ぼすような数百μm以上の高低差がある凹凸がなければ、結露等の流体の状態変化が生じない場合においては、熱伝達率は不変とされている(物理学上の常識)。しかしながら、上記構造により空気とフィン112の熱伝達率が向上することは、アカデミックレベルでも確認されている事実であるが原因は不明である。ただし、上記構造によりフィン112の熱伝達率が向上することは、極めて熱伝導率の高いカーボンナノチューブが、膜面方向より膜厚方向に熱拡散率が高まる方向に配置されることで、表面に局部的な温度分布が生じることで局部的な対流が生じことによるものと思われる。 Generally, the heat transfer coefficient is not a physical property value, and unless there are irregularities with a height difference of several hundred μm or more that would affect the flow of fluid flowing on the surface of the fins 112, changes in the state of the fluid such as dew condensation will occur. In the case where there is no heat transfer coefficient, it is assumed that the heat transfer coefficient remains unchanged (common sense in physics). However, although it has been confirmed at an academic level that the above structure improves the heat transfer coefficient between the air and the fins 112, the cause is unknown. However, the heat transfer coefficient of the fins 112 is improved by the above structure because the carbon nanotubes, which have extremely high thermal conductivity, are arranged in a direction where the thermal diffusivity increases in the film thickness direction rather than in the film surface direction. This is thought to be due to localized convection caused by localized temperature distribution.

フィン112は、圧延アルミニウム板、又は圧延銅板からなる。フィン112の厚さは0.05~0.50mmであれば良い。さらに、このフィン112の厚さは、熱交換機として構成した際に、同じ体積の熱交換器で、フィン112より表面積を広くできるように、0.05~0.20mmが好ましい。大きさは、使用目的に応じて適宜決定される。 The fins 112 are made of a rolled aluminum plate or a rolled copper plate. The thickness of the fins 112 may be 0.05 to 0.50 mm. Further, the thickness of the fins 112 is preferably 0.05 to 0.20 mm so that when configured as a heat exchanger, the surface area can be made larger than that of the fins 112 in a heat exchanger having the same volume. The size is appropriately determined depending on the purpose of use.

カーボンナノチューブ含有酸化膜112Bは、カーボンナノチューブが含有された金属素地材料と同じ又は同様の金属の酸化物であり、少なくとも表面の一部に断面をSTEMで観察した場合、糸状に見える構造(以降、糸状構造という)112Cとなっている。このカーボンナノチューブ含有酸化膜112Bの膜厚は30nm~1500nmであれば良い。さらに、このカーボンナノチューブ含有酸化膜112Bの膜厚は、含有される炭素類の熱伝導性を活用し、耐食性を向上させるために、100nm~1000nmが好ましい。このカーボンナノチューブ含有酸化膜112Bに含有される炭素成分の含有比率は、表面(金属素地112Aと接触する面の反対面)から3nm~5nmの地点で3at%~50at%であれば良い。さらに、このカーボンナノチューブ含有酸化膜112Bに含有される炭素の含有比率は、カーボンナノチューブが含有されたことによって付与される特性を備えさせ、且つ皮膜の強度を保つために、表面から3nm~5nmの地点で5at%~40at%が好ましい。 The carbon nanotube-containing oxide film 112B is an oxide of the same or similar metal as the metal base material containing the carbon nanotubes, and when a cross section of at least a part of the surface is observed by STEM, it has a structure that appears thread-like (hereinafter referred to as It has a thread-like structure) 112C. The thickness of this carbon nanotube-containing oxide film 112B may be 30 nm to 1500 nm. Further, the thickness of the carbon nanotube-containing oxide film 112B is preferably 100 nm to 1000 nm in order to utilize the thermal conductivity of the carbon contained therein and improve corrosion resistance. The content ratio of the carbon component contained in this carbon nanotube-containing oxide film 112B may be 3 at % to 50 at % at a point 3 nm to 5 nm from the surface (the surface opposite to the surface in contact with the metal base 112A). Furthermore, the content ratio of carbon contained in this carbon nanotube-containing oxide film 112B is set such that the carbon nanotube-containing oxide film 112B has the characteristics imparted by the inclusion of carbon nanotubes and maintains the strength of the film. 5 at% to 40 at% at the point is preferable.

カーボンナノチューブ含有酸化膜112Bに含有されるカーボンナノチューブは、シングルウォールカーボンナノチューブが膜厚方向の熱拡散率を高めて、より空気との熱伝達率を向上させるために好ましい。 The carbon nanotubes contained in the carbon nanotube-containing oxide film 112B are preferably single-walled carbon nanotubes because they increase the thermal diffusivity in the film thickness direction and further improve the heat transfer coefficient with air.

なお、マルチウォールカーボンナノチューブやシングルウォールカーボンナノチューブなどは高価であるが、これらが含有されるシングルウォールカーボンナノチューブ含有酸化膜112Bは、いわゆるコーティングに比較して、極めて薄いため、実際に含有される量自体が非常に少なくなるのでコストの面でも優れている。 Although multi-wall carbon nanotubes and single-wall carbon nanotubes are expensive, the single-wall carbon nanotube-containing oxide film 112B in which they are contained is extremely thin compared to so-called coatings, so the amount actually contained is It is also advantageous in terms of cost since the amount itself is very small.

以下に、図5~図6に基づき実施形態1に係る実施例を説明する。実施例におけるフィン112は、60mm×60mm×0.5mmのアルミニウム板から作製される。このアルミニウム板(金属素地112A)の表面に、糸状構造112Cであり、且つ膜面方向の熱拡散率より、膜厚方向の熱拡散率が高まる方向にカーボンナノチューブが含有されている酸化膜112Bを設けるために以下の処理を行った。 An example according to the first embodiment will be described below based on FIGS. 5 and 6. The fins 112 in the example are made from an aluminum plate measuring 60 mm x 60 mm x 0.5 mm. An oxide film 112B having a thread-like structure 112C and containing carbon nanotubes in a direction in which the thermal diffusivity in the film thickness direction is higher than that in the film surface direction is formed on the surface of this aluminum plate (metal base 112A). In order to provide this, the following processing was performed.

先ず、このアルミニウム板(金属素地112A)を、純度99.5%のエタノールにて超音波洗浄(洗浄時間:5分)する。その後、処理液301が入った浴槽300に、図5に示すように、電気回路400に接続したアルミニウム板(金属素地112A)と、電気回路400に接続したSUS304製電極404、405とを浸漬する。浴槽300内の処理液301は、水酸化ナトリウム、0.2%のカーボンナノチューブ分散液、及び伝導率調整剤を、それぞれ濃度1.7g/l、1.64ml/l、0.44g/lとなるように精製水に添加することでなり、液温は室温(20~30℃)である。 First, this aluminum plate (metal base 112A) is ultrasonically cleaned with 99.5% purity ethanol (cleaning time: 5 minutes). Thereafter, as shown in FIG. 5, the aluminum plate (metal base 112A) connected to the electric circuit 400 and the SUS304 electrodes 404 and 405 connected to the electric circuit 400 are immersed in the bath 300 containing the treatment liquid 301. . The treatment liquid 301 in the bathtub 300 contains sodium hydroxide, a 0.2% carbon nanotube dispersion, and a conductivity modifier at concentrations of 1.7 g/l, 1.64 ml/l, and 0.44 g/l, respectively. It is added to purified water so that the liquid temperature is room temperature (20 to 30°C).

その後、図5に示す矢印の方向に電流が流れる場合を+方向の電圧とした場合、図6に示すようなパターンで、整流器401と整流器402と切り替えスイッチ403により、アルミ板に電圧を負荷した。 After that, when the current flowing in the direction of the arrow shown in FIG. 5 is defined as a positive voltage, a voltage is applied to the aluminum plate using the rectifier 401, the rectifier 402, and the changeover switch 403 in the pattern shown in FIG. .

次に精製水にて超音波洗浄(洗浄時間:5分)する。更に98℃の熱水に15分に浸漬することでアルミニウム板表面の酸化アルミニウムを水和し、最後にエアブローで乾燥させる。このようにして、アルミニウム板(金属素地112A)の表面に糸状構造112Cであり、且つ膜面方向の熱拡散率より、膜厚方向の熱拡散率が高まる方向にカーボンナノチューブが含有されている酸化アルミニウム膜を設け、フィン112とした。 Next, perform ultrasonic cleaning with purified water (cleaning time: 5 minutes). The aluminum plate is further immersed in hot water at 98°C for 15 minutes to hydrate the aluminum oxide on the surface of the aluminum plate, and finally dried with air blow. In this way, an oxidized carbon nanotube is formed which has a thread-like structure 112C on the surface of the aluminum plate (metal base 112A), and which contains carbon nanotubes in a direction in which the thermal diffusivity in the film thickness direction is higher than that in the film surface direction. An aluminum film was provided to form the fin 112.

<実証試験>
ここで、前述した結露・着霜対策以外の本質的に空調機における熱交換器を構成するフィンで求められている特性について説明する。空調機における熱交換器では、多数の熱交換のためのフィンが、極狭い隙間を開けて配列されている。そして、上記フィンの間の空気がファン等により流動し、フィンと流動する空気との間で熱の伝達が行われる。そのため、空気とファンとの間の熱伝達率は当然ながら熱交換効率に直結する。
<Demonstration test>
Here, the characteristics required of the fins that essentially constitute the heat exchanger in the air conditioner, other than the measures against dew condensation and frost formation described above, will be explained. In a heat exchanger in an air conditioner, a large number of fins for heat exchange are arranged with extremely narrow gaps between them. Then, the air between the fins is caused to flow by a fan or the like, and heat is transferred between the fins and the flowing air. Therefore, the heat transfer coefficient between the air and the fan is naturally directly linked to the heat exchange efficiency.

しかしながら、熱伝達率は物性値ではないため、熱伝達率自体を変更することはできず、フィンの枚数を増やしたり、より空気と触れる形状に変更したりすることが一般的であるが、コスト増やフィン部の圧力損失増加を招きファンの消費電力が増加するため、空調の消費電力低減は、現状では限界にきている。そのため、本質的に熱交換率を向上できるフィンと空気の間の熱伝達率向上が望まれていた。 However, since heat transfer coefficient is not a physical property value, it is not possible to change the heat transfer coefficient itself, and it is common to increase the number of fins or change the shape to make them more in contact with air, but this is costly. At present, reductions in the power consumption of air conditioners have reached their limits, as the power consumption of the fan increases due to the increase in pressure loss at the fins. Therefore, it has been desired to improve the heat transfer coefficient between the fins and the air, which can essentially improve the heat exchange coefficient.

本発明の熱交換を構成するフィン112は、その詳細なメカニズムは不明であるが、単層流状態の空気との熱伝達率が向上する。
上記を確認するため、図7に示す熱伝達率測定器500(横浜国立大学 西野耕一教授監修)を用いて、上記フィン112(処理済みアルミ板)と、未処理のアルミ板、銅板、銀メッキ付きアルミ板を測定した(全て同一サイズ)。結果を表1に示す。
Although the detailed mechanism of the fins 112 constituting the heat exchange of the present invention is unknown, the heat transfer coefficient with air in a single layer flow state is improved.
In order to confirm the above, using a heat transfer coefficient measuring device 500 (supervised by Professor Koichi Nishino, Yokohama National University) shown in FIG. We measured aluminum plates with aluminum plates (all of the same size). The results are shown in Table 1.

なお、熱伝達率の測定は、以下の方法で測定する。
図7に示す試験板取付位置520に測定対象(フィン112(処理済みアルミ板)、未処理のアルミ板、銅板、銀メッキ付きアルミ板)をステンレスブロック510の接触する側に熱伝導グリース塗布して取り付けた後、ステンレスブロック510の内部に設けられたヒーター511に所定の電流を流し、且つ各試験板に小型ファン541、542稼働させて風を吹き付ける。その後放置し、十分に時間がたって定常状態になってから、熱電対512~519の熱電対により測定される各部の温度より、測定対象に与えられる熱流束を算出し、測定対象の熱伝達率を導出する。
Note that the heat transfer coefficient is measured by the following method.
The measurement target (fin 112 (treated aluminum plate), untreated aluminum plate, copper plate, silver-plated aluminum plate) is applied to the test plate mounting position 520 shown in FIG. 7 on the contact side of the stainless steel block 510. After the stainless steel block 510 is installed, a predetermined current is applied to the heater 511 provided inside the stainless steel block 510, and small fans 541 and 542 are operated to blow air onto each test plate. After that, the heat flux imparted to the measurement object is calculated from the temperature of each part measured by the thermocouples 512 to 519 after a sufficient period of time has passed and the steady state is reached, and the heat transfer coefficient of the measurement object is calculated. Derive.

表1より、一般的に言われているように熱伝達率は銅や銀などの熱伝導率が高いものに変更したとしても変わらず、微細な凹凸で表面積が増加しても、変わらないことが分かる(測定誤差範囲)。一方、フィン112は、誤差範囲を超えて熱伝達率が増加しており、明確に熱伝達率が向上していることが分かる。よって、本発明に係るフィン112は、本質的に熱交換器の熱交換率を向上できるという効果を奏する。 From Table 1, it is generally said that the heat transfer coefficient does not change even if the material has a high thermal conductivity such as copper or silver, and even if the surface area increases due to minute irregularities. (measurement error range). On the other hand, the heat transfer coefficient of the fins 112 has increased beyond the error range, and it can be seen that the heat transfer coefficient has clearly improved. Therefore, the fins 112 according to the present invention essentially have the effect of improving the heat exchange efficiency of the heat exchanger.

なお、フィン112にはRaman分析、及びXPS解析によるデプスプロファイルにて酸化膜112B中にカーボンナノチューブ(熱拡散率が非常に高い)が添加されていることが確認されている。さらに上記フィン112の熱拡散率を、周期加熱放射測温法を用いた株式会社ベテル製の測定器にて測定したところ、酸化膜112Bの厚さ方向の熱拡散率は102×10-62/sであり、膜面方向の熱拡散率は90×10-62/sであった。また、未処理のアルミの熱拡散率は、膜厚方向・膜面方向共に、94×10-62/sであった。つまり、金属酸化膜の膜面方向の熱拡散率より、膜厚方向の熱拡散率が高まる方向にカーボンナノチューブが含有されていることになり、これにより、熱伝達率が向上したものと考えられる。 In addition, it has been confirmed that carbon nanotubes (having a very high thermal diffusivity) are added to the oxide film 112B of the fin 112 based on the depth profile obtained by Raman analysis and XPS analysis. Furthermore, when the thermal diffusivity of the fin 112 was measured using a measuring device manufactured by Bethel Co., Ltd. using a periodic heating radiation thermometry method, the thermal diffusivity in the thickness direction of the oxide film 112B was 102×10 −6 m. 2 /s, and the thermal diffusivity in the film surface direction was 90×10 −6 m 2 /s. Further, the thermal diffusivity of untreated aluminum was 94×10 −6 m 2 /s in both the film thickness direction and the film surface direction. In other words, carbon nanotubes are contained in a direction where the thermal diffusivity in the film thickness direction is higher than the thermal diffusivity in the film surface direction of the metal oxide film, which is thought to improve the heat transfer coefficient. .

なお、本実施例では、表面に糸状構造112Cを有するカーボンナノチューブ含有酸化膜112Bを形成するために、上記条件での湿式での電解処理を用いたが、これに限られるものではなく、他の条件や他の処理法(カーボンナノチューブを含有した金属酸化物ターゲットを用いたスパッタやゾルゲル法等)により、形成しても良い。ただし、湿式での電解処理は、他の処理法よりコストの点で優れる。 In this example, wet electrolytic treatment under the above conditions was used to form the carbon nanotube-containing oxide film 112B having a thread-like structure 112C on the surface, but the present invention is not limited to this. It may be formed under different conditions or other processing methods (such as sputtering or sol-gel method using a metal oxide target containing carbon nanotubes). However, wet electrolytic treatment is superior to other treatment methods in terms of cost.

このように、本発明のフィン112は、従来の親水コート形成による親水処理に比較して、熱伝達率が向上し、冷暖房時共に熱交換器の熱交換率を改善できるという効果を奏する。 As described above, the fins 112 of the present invention have an effect that the heat transfer coefficient is improved compared to the conventional hydrophilic treatment by forming a hydrophilic coat, and the heat exchange coefficient of the heat exchanger can be improved both during cooling and heating.

また、本発明の実施形態1は、フィン112に限られるものではなく、例えば、銅製のラジエーター用冷却水配管や、パワーデバイスを冷却するための水冷ジャケット構成する部材であっても良く、いずれの場合も、フィン112と同様の効果を奏する。また、カーボンナノチューブ含有酸化膜112Bは部材の耐食性を向上させるという効果も奏する。 Furthermore, the first embodiment of the present invention is not limited to the fins 112, and may be, for example, a member constituting a cooling water pipe for a copper radiator or a water cooling jacket for cooling a power device. In this case, the same effect as the fin 112 is achieved. Further, the carbon nanotube-containing oxide film 112B also has the effect of improving the corrosion resistance of the member.

また、上記フィン112等の部材で構成される熱交換器は、フィン112と同様の効果を奏する。 Further, a heat exchanger made of members such as the fins 112 has the same effects as the fins 112.

さらに、フィン112等の部材で構成された熱交換器が設けられている空気調和機用室内機や空気調和機用室外機や冷蔵庫や乾燥機付き洗濯機も、フィン112と同様の効果を奏することは明らかであるので、結果的に消費電力が低減できるという効果を奏する。 Furthermore, an indoor unit for an air conditioner, an outdoor unit for an air conditioner, a refrigerator, or a washing machine with a dryer, which is provided with a heat exchanger made of members such as the fins 112, also exhibits the same effect as the fins 112. Since this is obvious, the effect is that power consumption can be reduced as a result.

<実証試験2>
また、本発明の熱交換を構成するフィン112は、その詳細なメカニズムは不明であるが、空気抵抗を増加させることなく単層流状態の空気との熱伝達率が向上する。
上記を確認するため、図8に示す熱伝達率測定器600(横浜国立大学 西野耕一教授監修)の流路の一部として、上記フィン112(処理済みアルミ板)を4枚組み合わせることで、角パイプとした試供体1、または、未処理のアルミ板を4枚組み合わせることで、角パイプとした試供体2をセットし、図のように流路の川上から流量を変えながら空気を流し、同時に試供体に、通電することで流れる空気に熱が伝達される状況を作り、各部の温度を熱電対により測定すると共に、図8に示すように、流路の上流と下流の圧力差を微差圧計にて測定することで、熱伝達率の無次元化数であるヌセルト数と管摩擦係数(管内における空気抵抗(圧力損失)の無次元化数)をレイノルズ数(流れの状態を表わす無次元数)毎に導出した。結果を図9、10に示す。
<Demonstration test 2>
Further, although the detailed mechanism of the fins 112 constituting the heat exchange of the present invention is unknown, the heat transfer coefficient with air in a single-layer flow state is improved without increasing air resistance.
In order to confirm the above, as part of the flow path of the heat transfer coefficient measuring device 600 (supervised by Professor Koichi Nishino, Yokohama National University) shown in FIG. Set sample 1 as a pipe, or sample 2 as a square pipe by combining four untreated aluminum plates, and let air flow from upstream of the channel at varying flow rates as shown in the figure. By energizing the sample, we created a situation in which heat was transferred to the flowing air, and measured the temperature of each part with thermocouples.As shown in Figure 8, we created a situation in which heat was transferred to the flowing air, and as shown in Figure 8, we measured the slight difference in pressure between the upstream and downstream sides of the flow path. By measuring with a pressure gauge, the Nusselt number, which is a dimensionless number of the heat transfer coefficient, and the pipe friction coefficient (the dimensionless number of air resistance (pressure loss) in the pipe) can be converted to the Reynolds number (a dimensionless number that expresses the state of flow). number). The results are shown in Figures 9 and 10.

図9、10より、学術的に言われているように変わらないといわれている熱伝達率が、空気抵抗を増加させることなく測定のバラツキの範囲を超えて向上していることが分かる。よって、例えばフィンに切り欠きを設けて、空気抵抗を増加させることで熱伝達率を向上させる空気抵抗増大に伴うファン用モーターの消費電力増大とトレードオフとなるような手法と根本的に異なり、本発明に係るフィン112は、本質的に熱交換器の熱交換率を向上できるという効果を奏する。 From FIGS. 9 and 10, it can be seen that the heat transfer coefficient, which is academically said to remain unchanged, has been improved beyond the range of measurement variation without increasing air resistance. This is fundamentally different from, for example, a method in which notches are provided in the fins to increase air resistance and thereby improve the heat transfer coefficient, which creates a trade-off with the increase in power consumption of the fan motor due to the increase in air resistance. The fins 112 according to the present invention essentially have the effect of improving the heat exchange efficiency of the heat exchanger.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.

本発明は、通風により空気との熱交換を行う熱交換器用部材に利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized for the member for heat exchangers which performs heat exchange with air by ventilation.

100…空気調和機の室内機
112…フィン
112A…金属素地
112B…カーボンナノチューブ含有酸化膜(金属酸化膜)
112C…糸状構造
300…浴槽
400…電気回路
100... Indoor unit of air conditioner 112... Fin 112A... Metal base 112B... Carbon nanotube-containing oxide film (metal oxide film)
112C... Thread-like structure 300... Bathtub 400... Electric circuit

Claims (14)

金属からなる熱交換器用部材であって、
前記金属の表面の断面を走査透過電子顕微鏡(STEM)で観察した場合、前記金属の表面に糸状に見える構造を有する金属酸化膜を有し、
前記金属酸化膜には、前記金属酸化膜の膜面方向の熱拡散率より、膜厚方向の熱拡散率が高まる方向にカーボンナノチューブが含有されていることを特徴とする熱交換器用部材。
A heat exchanger member made of metal,
When a cross section of the surface of the metal is observed with a scanning transmission electron microscope (STEM), the surface of the metal has a metal oxide film having a structure that looks like a thread,
A member for a heat exchanger, characterized in that the metal oxide film contains carbon nanotubes in a direction in which the thermal diffusivity in the film thickness direction is higher than the thermal diffusivity in the film surface direction of the metal oxide film.
前記金属酸化膜の表面から3nm~5nmの範囲に含有されている炭素の含有比率が3at%以上50at%以下あることを特徴とする請求項1に記載の熱交換器用部材。 The heat exchanger member according to claim 1, wherein the content ratio of carbon contained within a range of 3 nm to 5 nm from the surface of the metal oxide film is 3 at% or more and 50 at% or less. 上記金属酸化膜の厚さが30nm以上1500nm以下であることを特徴とする請求項1に記載の熱交換器用部材。 The heat exchanger member according to claim 1, wherein the metal oxide film has a thickness of 30 nm or more and 1500 nm or less. 上記カーボンナノチューブがシングルウォールカーボンナノチューブであることを特徴とする請求項1に記載の熱交換器用部材。 The heat exchanger member according to claim 1, wherein the carbon nanotube is a single-wall carbon nanotube. 請求項1から請求項4のいずれか一項に記載の熱交換器用部材からなる熱交換フィンが設けられていることを特徴とする熱交換器。 A heat exchanger comprising heat exchange fins made of the heat exchanger member according to any one of claims 1 to 4. 請求項1から請求項4のいずれか一項に記載の熱交換器用部材からなる熱交換器用冷媒管が設けられていることを特徴とする熱交換器。 A heat exchanger comprising a heat exchanger refrigerant tube made of the heat exchanger member according to any one of claims 1 to 4. 請求項5に記載の熱交換器が設けられていることを特徴とする空気調和機用室内機。 An indoor unit for an air conditioner, comprising the heat exchanger according to claim 5. 請求項6に記載の熱交換器が設けられていることを特徴とする空気調和機用室内機。 An indoor unit for an air conditioner, comprising the heat exchanger according to claim 6. 請求項5に記載の熱交換器が設けられていることを特徴とする空気調和機用室外機。 An outdoor unit for an air conditioner, comprising the heat exchanger according to claim 5. 請求項6に記載の熱交換器が設けられていることを特徴とする空気調和機用室外機。 An outdoor unit for an air conditioner, comprising the heat exchanger according to claim 6. 請求項5に記載の熱交換器が設けられていることを特徴とする冷蔵庫。 A refrigerator comprising the heat exchanger according to claim 5. 請求項6に記載の熱交換器が設けられていることを特徴とする冷蔵庫。 A refrigerator comprising the heat exchanger according to claim 6. 請求項5に記載の熱交換器が設けられていることを特徴とする乾燥機付き洗濯機。 A washing machine with a dryer, characterized in that the heat exchanger according to claim 5 is provided. 請求項6に記載の熱交換器が設けられていることを特徴とする乾燥機付き洗濯機。 A washing machine with a dryer, characterized in that the heat exchanger according to claim 6 is provided.
JP2023041675A 2022-03-25 2023-03-16 Member for heat exchanger, heat exchanger, indoor unit for air conditioner, outdoor unit for air conditioner, refrigerator, and washer with dryer Pending JP2023143804A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049664 2022-03-25
JP2022049664 2022-03-25

Publications (1)

Publication Number Publication Date
JP2023143804A true JP2023143804A (en) 2023-10-06

Family

ID=88220061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023041675A Pending JP2023143804A (en) 2022-03-25 2023-03-16 Member for heat exchanger, heat exchanger, indoor unit for air conditioner, outdoor unit for air conditioner, refrigerator, and washer with dryer

Country Status (1)

Country Link
JP (1) JP2023143804A (en)

Similar Documents

Publication Publication Date Title
Chen et al. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity
Pu et al. Experimental study of cyclic frosting and defrosting on microchannel heat exchangers with different coatings
Wen et al. Development and experimental study of a novel plate dehumidifier made of anodized aluminum
JPH03259975A (en) Water-repellent coating composition and heat exchanger coated therewith
JPH0493597A (en) Water repellent coating composition and heat exchanger coated with water repellant coating composition
Hermes Thermodynamic design of condensers and evaporators: Formulation and applications
Min et al. Hydrophilic treatment and performance evaluation of copper finned tube evaporators
Muneeshwaran et al. Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating
Firouzfar et al. Investigation of heat pipe heat exchanger effectiveness and energy saving in air conditioning systems using silver nanofluid
Firouzfar et al. Application of heat pipe heat exchangers in heating, ventilation and air conditioning (HVAC) systems
JP2023143804A (en) Member for heat exchanger, heat exchanger, indoor unit for air conditioner, outdoor unit for air conditioner, refrigerator, and washer with dryer
Kim et al. Plasma hydrophilic surface treatment for dehumidifying heat exchangers
WO2014184964A1 (en) Heat exchanger
JP3690527B2 (en) Manufacturing method of heat exchange system
JP2019167622A (en) Metallic member, heat exchanger, air conditioner and refrigerator
JP7373227B2 (en) Heat exchanger parts, heat exchangers, indoor units for air conditioners, outdoor units for air conditioners, and refrigerators
WO2022196497A1 (en) Heat exchanger member, heat exchanger, air conditioner indoor unit, air conditioner outdoor unit, and refrigerator
Hu et al. Air side performance of fin-and-tube heat exchangers with a hydrophilic layer under low-temperature frost-free conditions
Liu et al. The Impact of Fin Surface Wettability on the Performance of Dehumidifying Heat Exchangers.
JP2020002274A (en) Hydrophilic coating, hydrophilic coated film, aluminum fin material for heat exchanger excellent in hydrophilicity, and heat exchanger
JPH03244680A (en) Water-repellent coating composition and heat exchanger using water repellent-coating composition
Chua et al. A model to study the effects of different control strategies on space humidity during part-load conditions
US20050175769A1 (en) Heat transfer method and heat exchange system between solid and fluid
JP2507119B2 (en) Water-repellent coating composition and heat exchanger coated with the water-repellent coating composition
Ahmad et al. Simplified model and performance analysis for radiant cooling panel with serpentine tube arrangement and thin insulation layer for moisture control in tropical climate