JP2023140685A - Hydrogen gas leakage prevention device - Google Patents

Hydrogen gas leakage prevention device Download PDF

Info

Publication number
JP2023140685A
JP2023140685A JP2022046653A JP2022046653A JP2023140685A JP 2023140685 A JP2023140685 A JP 2023140685A JP 2022046653 A JP2022046653 A JP 2022046653A JP 2022046653 A JP2022046653 A JP 2022046653A JP 2023140685 A JP2023140685 A JP 2023140685A
Authority
JP
Japan
Prior art keywords
hydrogen gas
fuel cell
cell vehicle
collision
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022046653A
Other languages
Japanese (ja)
Inventor
雅万 上田
Masakazu Ueda
裕之 村岡
Hiroyuki Muraoka
駿 希代
Shun Kidai
壮了 大古
Akinori Oko
泰史 深石
Yasushi Fukaishi
智久 梅澤
Tomohisa Umezawa
豊 沢田
Yutaka Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyota Motor Corp
Original Assignee
Hino Motors Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyota Motor Corp filed Critical Hino Motors Ltd
Priority to JP2022046653A priority Critical patent/JP2023140685A/en
Publication of JP2023140685A publication Critical patent/JP2023140685A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Body Structure For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

To reduce hydrogen gas leakage while reducing cutoff of unnecessary hydrogen gas at collision in a fuel-cell vehicle in which a tank is arranged outside a side member in a longitudinal direction of the fuel-cell vehicle.SOLUTION: A hydrogen gas leakage prevention device 1 comprises a pair of side members 3 arranged apart from each other in a longitudinal direction of a fuel cell vehicle 100 while extending in a cross direction of the vehicle 100, and a hydrogen gas storage tank 10 arranged outside the side member 3 in a longitudinal direction of the vehicle 100. In this device, the hydrogen gas circulation from the tank 10 to a pipeline 20 is cut off by a cutoff valve 50 when collision of the vehicle 100 is detected by a collision detection sensor 40 arranged outside the pipeline 20, through which the hydrogen gas in the tank 10 circulates, in the longitudinal direction of the vehicle 100. Thereby, leakage of hydrogen gas can be reduced at the time of collision while reducing cutoff of unnecessary hydrogen gas.SELECTED DRAWING: Figure 3

Description

本発明は、水素ガス漏洩防止装置に関する。 The present invention relates to a hydrogen gas leak prevention device.

燃料電池自動車(FCEV:Fuel CellElectric Vehicle)に重度の衝突が発生した場合には、水素ガスの漏洩を防ぐために、タンクから配管への水素ガスの流通の遮断が必要である。一方、燃料電池自動車の走行が可能な程度の軽度の衝突等が発生した場合に、水素タンクから配管への水素ガスの流通を遮断してしまうと、燃料電池自動車が走行不可能となり、燃料電池自動車のユーザ及び燃料電池自動車の周囲の交通に影響を与える。そこで、衝突時に不要な水素ガスの遮断を低減しつつ水素ガスの漏洩を低減できる技術が望まれている。 If a severe collision occurs in a fuel cell electric vehicle (FCEV), it is necessary to shut off the flow of hydrogen gas from the tank to the piping in order to prevent hydrogen gas from leaking. On the other hand, in the event of a minor collision that allows the fuel cell vehicle to run, if the flow of hydrogen gas from the hydrogen tank to the piping is cut off, the fuel cell vehicle will be unable to run, and the fuel cell vehicle will Affects vehicle users and traffic around the fuel cell vehicle. Therefore, there is a need for a technology that can reduce hydrogen gas leakage while reducing unnecessary hydrogen gas interruption during a collision.

例えば、特許文献1には、燃料電池自動車が乗用車である場合に、衝突時に水素ガスの漏洩を低減する技術が開示されている。特許文献1の燃料電池自動車では、燃料電池自動車の前後方向に延在しつつ燃料電池自動車の左右方向に互いに離間して配置された一対のサイドメンバの間にタンクが配置されている。特許文献1の燃料電池自動車では、既存のGセンサにより所定の加速度が検出されたときに、タンクから配管への水素ガスの流通を遮断する遮断弁を備えている。 For example, Patent Document 1 discloses a technique for reducing leakage of hydrogen gas during a collision when the fuel cell vehicle is a passenger car. In the fuel cell vehicle of Patent Document 1, a tank is disposed between a pair of side members that extend in the front-rear direction of the fuel cell vehicle and are spaced apart from each other in the left-right direction of the fuel cell vehicle. The fuel cell vehicle disclosed in Patent Document 1 includes a cutoff valve that cuts off the flow of hydrogen gas from the tank to the piping when a predetermined acceleration is detected by the existing G sensor.

特開2004‐82793号公報Japanese Patent Application Publication No. 2004-82793

ところで、上記のような技術において、燃料電池自動車が乗用車である場合には、タンク及び配管は、衝突の影響が小さいサイドメンバの間に配置されている。一方、燃料電池自動車がトラック等である場合には、ラダーフレームにおけるサイドメンバよりも燃料電池自動車の左右方向の外側にタンクが配置されるため、燃料電池自動車が乗用車等に側面衝突された際の衝突された位置とタンクの位置とが近く、衝突の影響が大きい。したがって、サイドメンバよりも燃料電池自動車の左右方向の外側にタンクが配置された燃料電池自動車においても、衝突時に不要な水素ガスの遮断を低減しつつ水素ガスの漏洩を低減できる技術が望まれている。 By the way, in the above-mentioned technology, when the fuel cell vehicle is a passenger car, the tank and piping are arranged between side members that are less affected by a collision. On the other hand, when the fuel cell vehicle is a truck or the like, the tank is placed outside the side members of the ladder frame in the left-right direction of the fuel cell vehicle, so when the fuel cell vehicle is in a side collision with a passenger car, etc. The location of the collision is close to the tank, and the impact of the collision is large. Therefore, even in fuel cell vehicles in which the tank is placed outside the side members in the left-right direction of the fuel cell vehicle, there is a need for technology that can reduce hydrogen gas leakage while reducing unnecessary hydrogen gas cutoff in the event of a collision. There is.

そこで本発明は、サイドメンバよりも燃料電池自動車の左右方向の外側に水素ガスを貯蔵するタンクが配置されている燃料電池自動車において、衝突時に不要な水素ガスの遮断を低減しつつ水素ガスの漏洩を低減できる水素ガス漏洩防止装置を提供することを目的とする。 Accordingly, the present invention aims to reduce hydrogen gas leakage while reducing unnecessary cutoff of hydrogen gas in the event of a collision in a fuel cell vehicle in which a tank for storing hydrogen gas is placed outside the side members in the left and right direction of the fuel cell vehicle. The purpose of the present invention is to provide a hydrogen gas leak prevention device that can reduce hydrogen gas leakage.

本発明は、燃料電池自動車の前後方向に延在しつつ燃料電池自動車の左右方向に互いに離間して配置された一対のサイドメンバと、サイドメンバよりも燃料電池自動車の左右方向の外側に配置され、水素ガスを貯蔵するタンクと、タンクの水素ガスが流通する配管よりも燃料電池自動車の左右方向の外側に配置され、燃料電池自動車の衝突を検知する衝突検知センサと、衝突検知センサが燃料電池自動車の衝突を検知したときに、タンクから配管への水素ガスの流通を遮断する遮断弁とを備えた水素ガス漏洩防止装置である。 The present invention includes a pair of side members that extend in the front-rear direction of the fuel cell vehicle and are spaced apart from each other in the left-right direction of the fuel cell vehicle, and a pair of side members that are arranged outside the side members in the left-right direction of the fuel cell vehicle. , a tank that stores hydrogen gas, a collision detection sensor that is placed outside the fuel cell vehicle in the left-right direction from the piping through which the hydrogen gas in the tank flows, and that detects a collision of the fuel cell vehicle; This hydrogen gas leak prevention device includes a shutoff valve that shuts off the flow of hydrogen gas from the tank to the piping when a car collision is detected.

この構成によれば、燃料電池自動車の前後方向に延在しつつ燃料電池自動車の左右方向に互いに離間して配置された一対のサイドメンバと、サイドメンバよりも燃料電池自動車の左右方向の外側に配置され、水素ガスを貯蔵するタンクとを備えた水素ガス漏洩防止装置において、タンクの水素ガスが流通する配管よりも燃料電池自動車の左右方向の外側に配置された衝突検知センサによって燃料電池自動車の衝突が検知されたときに、遮断弁によりタンクから配管への水素ガスの流通が遮断されるため、サイドメンバよりも燃料電池自動車の左右方向の外側に水素ガスを貯蔵するタンクが配置されている燃料電池自動車において、衝突時に不要な水素ガスの遮断を低減しつつ水素ガスの漏洩を低減できる。 According to this configuration, the pair of side members extend in the front-rear direction of the fuel cell vehicle and are spaced apart from each other in the left-right direction of the fuel cell vehicle; In a hydrogen gas leak prevention device equipped with a hydrogen gas leakage prevention tank that stores hydrogen gas, a collision detection sensor that is placed outside the fuel cell vehicle in the left-right direction from the piping through which the hydrogen gas in the tank flows detects the occurrence of a fuel cell vehicle. When a collision is detected, a shutoff valve shuts off the flow of hydrogen gas from the tank to the piping, so the tank that stores hydrogen gas is placed outside the side members in the left-right direction of the fuel cell vehicle. In a fuel cell vehicle, leakage of hydrogen gas can be reduced while reducing unnecessary cutoff of hydrogen gas at the time of a collision.

この場合、衝突検知センサよりも燃料電池自動車の左右方向の外側に配置され、外力に応じて塑性変形する塑性変形部材をさらに備えることが好適である。 In this case, it is preferable to further include a plastically deformable member that is disposed outside the collision detection sensor in the left-right direction of the fuel cell vehicle and that plastically deforms in response to external force.

この構成によれば、衝突検知センサよりも燃料電池自動車の左右方向の外側に配置された塑性変形部材が外力に応じて塑性変形する。このため、塑性変形部材の塑性変形が小さい軽度の衝突時には、塑性変形部材よりも燃料電池自動車の左右方向の内側に配置された衝突検知センサは燃料電池自動車の衝突を検知せず、遮断弁はタンクから配管への水素ガスの流通を遮断しないため、軽度の衝突時に不要な水素ガスの遮断を低減できる。一方、塑性変形部材の塑性変形が大きい重度の衝突時には、塑性変形部材よりも燃料電池自動車の左右方向の内側に配置された衝突検知センサは大きく塑性変形した塑性変形部材を介して燃料電池自動車の衝突を検出し、遮断弁はタンクから配管への水素ガスの流通を遮断するため、重度の衝突時に水素ガスの漏洩を低減できる。 According to this configuration, the plastically deformable member disposed outside the collision detection sensor in the left-right direction of the fuel cell vehicle plastically deforms in response to external force. Therefore, in the event of a mild collision where the plastic deformation of the plastically deformable member is small, the collision detection sensor placed inside the fuel cell vehicle in the left-right direction from the plastically deformable member will not detect the collision of the fuel cell vehicle, and the shutoff valve will close. Since the flow of hydrogen gas from the tank to the piping is not interrupted, unnecessary interruptions of hydrogen gas can be reduced in the event of a minor collision. On the other hand, in the event of a severe collision in which the plastically deformed member is largely plastically deformed, a collision detection sensor placed inside the fuel cell vehicle in the left-right direction than the plastically deformed member detects the collision of the fuel cell vehicle via the plastically deformed member. A collision is detected and the shutoff valve shuts off the flow of hydrogen gas from the tank to the piping, reducing hydrogen gas leakage in the event of a severe collision.

この場合、タンクを支持するタンク支持部材をさらに備え、塑性変形部材は、タンク支持部材に比べて小さい外力により塑性変形することが好適である。 In this case, it is preferable that the tank support member for supporting the tank is further provided, and the plastically deformable member is plastically deformed by a smaller external force than the tank support member.

この構成によれば、塑性変形部材は、タンクを支持するタンク支持部材に比べて小さい外力により塑性変形するため、重度の衝突時にタンクを支持するタンク支持部材が変形して配管が損傷する前に、塑性変形部材が塑性変形し、衝突検知センサは塑性変形した塑性変形部材を介して燃料電池自動車の衝突を検知し、遮断弁はタンクから配管への水素ガスの流通を遮断するため、水素ガスの漏洩をより効果的に低減できる。 According to this configuration, the plastically deformable member is plastically deformed by a smaller external force than the tank support member that supports the tank, so in the event of a severe collision, the tank support member that supports the tank is deformed and the piping is damaged. , the plastically deformed member is plastically deformed, the collision detection sensor detects a collision of the fuel cell vehicle via the plastically deformed member, and the shutoff valve shuts off the flow of hydrogen gas from the tank to the piping. leakage can be reduced more effectively.

また、遮断弁は、タンクの水素ガスの流出口と配管との連結部に配置されていることが好適である。 Further, it is preferable that the shutoff valve is disposed at a connection between the hydrogen gas outlet of the tank and the piping.

この構成によれば、遮断弁は、タンクの水素ガスの流出口と配管との連結部に配置されているため、衝突時の配管の損傷の影響を低減でき、水素ガスの漏洩をさらに低減できる。 According to this configuration, the shutoff valve is placed at the connection between the hydrogen gas outlet of the tank and the piping, so it is possible to reduce the effects of damage to the piping in the event of a collision, and further reduce the leakage of hydrogen gas. .

本発明の水素ガス漏洩防止装置によれば、サイドメンバよりも燃料電池自動車の左右方向の外側に水素ガスを貯蔵するタンクが配置されている燃料電池自動車において、衝突時に不要な水素ガスの遮断を低減しつつ水素ガスの漏洩を低減できる。 According to the hydrogen gas leak prevention device of the present invention, in a fuel cell vehicle in which a tank for storing hydrogen gas is arranged outside the side member in the left-right direction of the fuel cell vehicle, unnecessary hydrogen gas can be cut off in the event of a collision. It is possible to reduce leakage of hydrogen gas while reducing the amount of hydrogen gas.

(A)は実施形態に係る水素ガス漏洩防止装置を搭載した燃料電池自動車タンクの配置を示す平面図であり、(B)は(A)の側面図である。(A) is a plan view showing the arrangement of a fuel cell vehicle tank equipped with a hydrogen gas leak prevention device according to an embodiment, and (B) is a side view of (A). 図1(A)の詳細を示す平面図である。FIG. 2 is a plan view showing details of FIG. 1(A). 実施形態に係る水素ガス漏洩防止装置を示す正面図である。FIG. 1 is a front view showing a hydrogen gas leak prevention device according to an embodiment. (A)は実施形態に係る水素ガス漏洩防止装置を搭載した燃料電池自動車に軽度の衝突が生じたときの正面図であり、(B)は(A)の状態の衝突検知センサが検出した値の変化を示すグラフであり、(C)は実施形態に係る水素ガス漏洩防止装置を搭載した燃料電池自動車に重度の衝突が生じたときの正面図であり、(D)は(C)の状態の衝突検知センサが検出した値の変化を示すグラフである。(A) is a front view when a minor collision occurs in a fuel cell vehicle equipped with the hydrogen gas leak prevention device according to the embodiment, and (B) is a value detected by the collision detection sensor in the state of (A). (C) is a front view when a severe collision occurs in a fuel cell vehicle equipped with the hydrogen gas leak prevention device according to the embodiment, and (D) is a graph showing changes in the state of (C). 3 is a graph showing changes in values detected by the collision detection sensor of FIG.

以下、本発明の実施形態に係る水素ガス漏洩防止装置について、図面を用いて詳細に説明する。図1(A)、図1(B)及び図2に示されるように、本実施形態の水素ガス漏洩防止装置1は、トラック、ピックアップトラック等の貨物自動車及びバス車両である燃料電池自動車(FCEV:Fuel Cell Electric Vehicle)100に搭載される。燃料電池自動車100は、水素と酸素とを化学反応させて発電し、発電された電力で電動機を動かし走行する。 Hereinafter, a hydrogen gas leak prevention device according to an embodiment of the present invention will be described in detail using the drawings. As shown in FIGS. 1(A), 1(B), and 2, the hydrogen gas leak prevention device 1 of the present embodiment is applied to fuel cell vehicles (FCEVs), which are freight vehicles such as trucks and pickup trucks, and bus vehicles. :Fuel Cell Electric Vehicle)100. The fuel cell vehicle 100 generates power by chemically reacting hydrogen and oxygen, and uses the generated power to drive an electric motor.

燃料電池自動車100の骨格はラダーフレーム2により構成されている。ラダーフレーム2は、燃料電池自動車100の前後方向に延在しつつ燃料電池自動車100の左右方向に互いに離間して配置された一対のサイドメンバ3と、一対のサイドメンバ3の間で燃料電池自動車100の左右方向に延在し、一対のサイドメンバ3を連結する複数のクロスメンバ4とを備える。 The skeleton of the fuel cell vehicle 100 is composed of a ladder frame 2. The ladder frame 2 is arranged between a pair of side members 3 extending in the front-rear direction of the fuel cell vehicle 100 and spaced apart from each other in the left-right direction of the fuel cell vehicle 100; It includes a plurality of cross members 4 that extend in the left-right direction of 100 and connect a pair of side members 3.

燃料電池自動車100は、サイドメンバ3よりも燃料電池自動車100の左右方向の外側に配置され、発電のための水素ガスを貯蔵する複数のタンク10を備える。タンク10は、その長手方向を燃料電池自動車100の前後方向と平行にして、サイドメンバ3の延在方向に沿って、荷台の床下に配置されている。図1(B)の例では、燃料電池自動車100は、キャビンと荷台との間にタンク10´を備える。タンク10´は、その長手方向を燃料電池自動車100の左右方向に平行にして配置されている。 The fuel cell vehicle 100 is disposed outside the side member 3 in the left-right direction of the fuel cell vehicle 100, and includes a plurality of tanks 10 for storing hydrogen gas for power generation. The tank 10 is arranged under the floor of the loading platform along the extending direction of the side member 3, with its longitudinal direction parallel to the front-rear direction of the fuel cell vehicle 100. In the example of FIG. 1(B), the fuel cell vehicle 100 includes a tank 10' between the cabin and the cargo platform. The tank 10' is arranged with its longitudinal direction parallel to the left-right direction of the fuel cell vehicle 100.

図2に示されるように、燃料電池自動車100は、タンク10を支持するタンク支持部材30を備える。タンク支持部材30は、タンク10の長手方向の端部を支持するネックマウント部31を有する。図3に示されるように、タンク10は、長手方向の端部にタンク10の水素ガスの流出口11を有する。タンク10には、タンク10に貯蔵された水素ガスが流通する配管20が連結されている。 As shown in FIG. 2, the fuel cell vehicle 100 includes a tank support member 30 that supports the tank 10. The tank support member 30 has a neck mount part 31 that supports the longitudinal end of the tank 10. As shown in FIG. 3, the tank 10 has a hydrogen gas outlet 11 at a longitudinal end thereof. A pipe 20 through which hydrogen gas stored in the tank 10 flows is connected to the tank 10 .

図3に示されるように、水素ガス漏洩防止装置1は、上記のサイドメンバ3及びタンク10に加えて、燃料電池自動車100の衝突を検知する衝突検知センサ40を備えている。衝突検知センサ40は、タンク10の水素ガスが流通する配管20よりも燃料電池自動車100の左右方向の外側に配置されている。図3の例では、衝突検知センサ40は、タンク10を下方から支持するタンク支持部材30における燃料電池自動車100の左右方向の外側の端部の下面に設置されている。 As shown in FIG. 3, the hydrogen gas leak prevention device 1 includes, in addition to the side member 3 and tank 10 described above, a collision detection sensor 40 that detects a collision of the fuel cell vehicle 100. The collision detection sensor 40 is arranged outside the fuel cell vehicle 100 in the left-right direction with respect to the pipe 20 through which the hydrogen gas of the tank 10 flows. In the example of FIG. 3, the collision detection sensor 40 is installed on the lower surface of the outer end of the fuel cell vehicle 100 in the left-right direction of the tank support member 30 that supports the tank 10 from below.

例えば、衝突検知センサ40は、衝突検知センサ40が検出した値が閾値を超える値を検知したときに、燃料電池自動車100の衝突を検知する。衝突検知センサ40が検出する値には、衝突検知センサ40の加速度、一定区間時間での速度の変化量が含まれる。また、衝突検知センサ40が検出する値には、衝突検知センサ40に加わった衝撃及び外力が含まれる。衝突検知センサ40が衝突検知センサ40に加わった外力を検出する場合には、衝突検知センサ40は、単に衝突検知センサ40に加わった外力の有無(オン及びオフ)を検出し、衝突検知センサ40に外力が加わったことを検出したときに(オンのときに)、燃料電池自動車100の衝突を検知してもよい。 For example, the collision detection sensor 40 detects a collision of the fuel cell vehicle 100 when the value detected by the collision detection sensor 40 exceeds a threshold value. The value detected by the collision detection sensor 40 includes the acceleration of the collision detection sensor 40 and the amount of change in speed in a certain period of time. Further, the value detected by the collision detection sensor 40 includes the impact and external force applied to the collision detection sensor 40. When the collision detection sensor 40 detects an external force applied to the collision detection sensor 40, the collision detection sensor 40 simply detects the presence or absence (on and off) of the external force applied to the collision detection sensor 40, and the collision detection sensor 40 A collision of the fuel cell vehicle 100 may be detected when it is detected that an external force is applied to the fuel cell vehicle 100 (when it is turned on).

水素ガス漏洩防止装置1は、衝突検知センサ40が燃料電池自動車100の衝突を検知したときに、タンク10から配管20への水素ガスの流通を遮断する遮断弁50を備えている。遮断弁50は、タンク10の水素ガスの流出口11と配管20との連結部に配置されている。遮断弁50は、例えば、電磁弁である。 The hydrogen gas leak prevention device 1 includes a cutoff valve 50 that cuts off the flow of hydrogen gas from the tank 10 to the pipe 20 when the collision detection sensor 40 detects a collision of the fuel cell vehicle 100. The cutoff valve 50 is arranged at a connection between the hydrogen gas outlet 11 of the tank 10 and the pipe 20. The cutoff valve 50 is, for example, a solenoid valve.

遮断弁50がタンク10から配管20への水素ガスの流通を遮断する衝突検知センサ40の閾値は、水素ガスの流通を遮断するべき衝突の被害の度合に応じて適宜設定される。しかし、衝突検知センサ40の閾値は仕様上の都合で変更不可能である場合がある。そこで、本実施形態では、衝突検知センサ40への入力を衝突検知センサ40の周辺の構造により調整することでも、水素ガスの流通を遮断するべき衝突の被害の度合が調整される。 The threshold value of the collision detection sensor 40 at which the cutoff valve 50 shuts off the flow of hydrogen gas from the tank 10 to the pipe 20 is appropriately set according to the degree of damage caused by the collision at which the flow of hydrogen gas should be cut off. However, the threshold value of the collision detection sensor 40 may not be changeable due to specifications. Therefore, in this embodiment, the degree of damage caused by a collision that should interrupt the flow of hydrogen gas is also adjusted by adjusting the input to the collision detection sensor 40 by the structure around the collision detection sensor 40.

水素ガス漏洩防止装置1は、衝突検知センサ40よりも燃料電池自動車100の左右方向の外側に配置され、外力に応じて塑性変形する塑性変形部材60を備える。水素ガス漏洩防止装置1は、タンク10を支持する上記のタンク支持部材30をさらに備え、塑性変形部材60は、タンク支持部材30に比べて小さい外力により塑性変形する。 The hydrogen gas leak prevention device 1 is disposed outside the collision detection sensor 40 in the left-right direction of the fuel cell vehicle 100, and includes a plastically deformable member 60 that plastically deforms in response to external force. The hydrogen gas leak prevention device 1 further includes the tank support member 30 described above that supports the tank 10 , and the plastically deformable member 60 is plastically deformed by a smaller external force than the tank support member 30 .

塑性変形部材60がどの程度の外力で塑性変形するかについては、例えば、図2及び3に示されるような衝突物200を模した移動式変形バリヤ(MDB:MovingDeformable Barrier)による試験において、移動式変形バリヤの衝突瞬間の速度により、塑性変形部材60の強度の調整がなされているものとする。 The extent to which the plastically deformable member 60 is plastically deformed can be determined by, for example, a test using a moving deformable barrier (MDB) imitating the colliding object 200 as shown in FIGS. 2 and 3. It is assumed that the strength of the plastically deformable member 60 is adjusted based on the speed at the moment of collision of the deformable barrier.

具体的には、例えば、衝突時に配管20の損傷が生じず、燃料電池自動車100が走行可能な軽度の衝突時には、塑性変形部材60が局部的に折れることのないような強度に塑性変形部材60の強度は調整されている。一方、例えば、衝突時に配管20の損傷が生じ、水素ガスの漏洩が生じる重度の衝突時には、塑性変形部材60が衝突検知センサ40を押す程度の狙いの位置で塑性変形するような強度に塑性変形部材60の強度は調整されている。 Specifically, for example, the plastically deformable member 60 has such strength that the plastically deformable member 60 does not locally break during a mild collision in which the pipe 20 is not damaged during a collision and the fuel cell vehicle 100 can travel. The intensity has been adjusted. On the other hand, for example, in the event of a severe collision in which the piping 20 is damaged during a collision and hydrogen gas leaks, the plastic deformation member 60 will be plastically deformed to such a strength that it will be plastically deformed at a targeted position that pushes the collision detection sensor 40. The strength of member 60 is adjusted.

上述したように、燃料電池自動車の重度の衝突が発生した場合には、水素ガスの流通の遮断が必要である。一方、燃料電池自動車の走行が可能な程度の軽度の衝突等が発生した場合に、水素ガスの流通を遮断してしまうと、燃料電池自動車が走行不可能となり、燃料電池自動車のユーザ及び燃料電池自動車の周囲の交通に影響を与える。そのため、軽度の衝突時においては水素ガスの流通を遮断しない、即ち、センシングのオン及びオフの切り分けの技術が必要である。 As described above, when a severe collision of a fuel cell vehicle occurs, it is necessary to cut off the flow of hydrogen gas. On the other hand, in the event of a minor collision that allows the fuel cell vehicle to run, if the flow of hydrogen gas is cut off, the fuel cell vehicle will become unable to run, and the user of the fuel cell vehicle and the fuel cell Affects traffic around the car. Therefore, there is a need for a technology that does not interrupt the flow of hydrogen gas in the event of a minor collision, that is, a technology that can distinguish between on and off sensing.

軽度の衝突時における従来の技術でのセンシングのオン及びオフの切り分けは、以下の通りである。つまり、大型バス車両においては、タンク及び加速度センサを天井裏に搭載し、乗用車等に衝突されても影響が無いように配慮されている。乗用車においては、タンクは車両中央のサイドメンバの間に配置されている。加速度センサは、補助拘束装置(SRS:SupplementalRestraint System)のセンシングと共用することで、加速度センサの信号をECU(Electronic ControlUnit)でロジック演算するシステムが使用されている。タンク及び配管は衝突の影響が無い位置に配置されつつ、センシングは高度にオン及びオフの切り分けが可能なシステムが採用されている。 The conventional technology for determining whether sensing is on or off during a minor collision is as follows. That is, in a large bus vehicle, the tank and acceleration sensor are mounted in the ceiling so that there is no impact even if the bus is collided with a passenger car or the like. In passenger cars, the tank is located between the side members at the center of the vehicle. The acceleration sensor is shared with the sensing of the Supplemental Restraint System (SRS), and a system is used in which the signal of the acceleration sensor is subjected to logic calculations by an ECU (Electronic Control Unit). The tank and piping are placed in a location where they will not be affected by a collision, and a sensing system is used that allows for advanced on/off switching.

一方、トラック等の貨物自動車を燃料電池自動車100とする場合には、上述したように、ラダーフレーム2におけるサイドメンバ3よりも燃料電池自動車100の左右方向の外側にタンク10が配置されるため、燃料電池自動車100が乗用車等に側面衝突された際の衝突された位置とタンク10の位置とが近く、衝突の影響が大きい。したがって、衝突してくる乗用車等の速度によるセンシングのオン及びオフの切り分けがさらに重要となる。 On the other hand, when a freight vehicle such as a truck is used as the fuel cell vehicle 100, the tank 10 is arranged outside the side member 3 in the ladder frame 2 in the left-right direction of the fuel cell vehicle 100, as described above. When the fuel cell vehicle 100 is side-impacted by a passenger car or the like, the location of the collision is close to the location of the tank 10, and the impact of the collision is large. Therefore, it is even more important to determine whether sensing is on or off depending on the speed of the colliding passenger car or the like.

また、燃料電池自動車100がトラック等である場合には、タンク10が搭載される位置は、荷台の自由度及びキャビンの居住性等により限定的となる。さらに、燃料電池自動車100がトラック等である場合には、走行距離の問題から、必要な水素ガスの搭載量が多くなり、タンク10の本数も自ずと増える。上記のような従来の乗用車に使用されている高度なセンシングのシステムでは、タンク10のそれぞれに対して加速度センサを設置する必要があるため、加速度センサの数が多過ぎ、多大な新規開発の労力及びコストが必要となる。 Further, when the fuel cell vehicle 100 is a truck or the like, the position where the tank 10 is mounted is limited depending on the degree of freedom of the loading platform, the comfort of the cabin, etc. Furthermore, if the fuel cell vehicle 100 is a truck or the like, the required amount of hydrogen gas to be carried increases due to the mileage problem, and the number of tanks 10 naturally increases. In the advanced sensing system used in conventional passenger cars as described above, it is necessary to install an acceleration sensor for each tank 10, which results in an excessive number of acceleration sensors and a large amount of new development effort. and costs are required.

一方、本実施形態によれば、燃料電池自動車100の前後方向に延在しつつ燃料電池自動車100の左右方向に互いに離間して配置された一対のサイドメンバ3と、サイドメンバ3よりも燃料電池自動車100の左右方向の外側に配置され、水素ガスを貯蔵するタンク10とを備えた水素ガス漏洩防止装置1において、タンク10の水素ガスが流通する配管20よりも燃料電池自動車100の左右方向の外側に配置された衝突検知センサ40によって燃料電池自動車100の衝突が検出されたときに、遮断弁50によりタンク10から配管20への水素ガスの流通が遮断される。 On the other hand, according to the present embodiment, the pair of side members 3 extend in the front-rear direction of the fuel cell vehicle 100 and are spaced apart from each other in the left-right direction of the fuel cell vehicle 100; In the hydrogen gas leak prevention device 1 which is disposed outside the vehicle 100 in the left-right direction and includes a tank 10 for storing hydrogen gas, the hydrogen gas leak prevention device 1 is located outside the fuel cell vehicle 100 in the left-right direction than the pipe 20 through which the hydrogen gas of the tank 10 flows. When a collision of the fuel cell vehicle 100 is detected by the collision detection sensor 40 disposed on the outside, the flow of hydrogen gas from the tank 10 to the pipe 20 is shut off by the shutoff valve 50.

つまり、本実施形態では、水素ガスが最も漏れやすい配管20に外力が入力される前に水素ガスの流通を遮断するために、配管20よりも燃料電池自動車100の左右方向の外側に衝突検知センサ40が配置される。そのため、サイドメンバ3よりも燃料電池自動車100の左右方向の外側に水素ガスを貯蔵するタンク10が配置されている燃料電池自動車100において、衝突時に不要な水素ガスの遮断を低減しつつ水素ガスの漏洩を低減できる。 That is, in this embodiment, in order to cut off the flow of hydrogen gas before an external force is input to the pipe 20 where hydrogen gas is most likely to leak, the collision detection sensor is placed outside the pipe 20 in the left-right direction of the fuel cell vehicle 100. 40 are placed. Therefore, in the fuel cell vehicle 100 in which the tank 10 for storing hydrogen gas is arranged outside the side member 3 in the left-right direction of the fuel cell vehicle 100, it is possible to reduce the unnecessary cutoff of hydrogen gas in the event of a collision, and to store the hydrogen gas. Leakage can be reduced.

ここで、衝突検知センサ40の閾値は仕様上の都合で変更不可能である場合があるため、本実施形態では、衝突検知センサ40への入力を衝突検知センサ40の周辺の構造により調整することでも、水素ガスの流通を遮断するべき衝突の被害の度合が調整される。 Here, since the threshold value of the collision detection sensor 40 may not be changeable due to specifications, in this embodiment, the input to the collision detection sensor 40 is adjusted by the structure around the collision detection sensor 40. However, the degree of damage caused by a collision that would cut off the flow of hydrogen gas is adjusted.

衝突物200が比較的に低い速度で衝突し、衝突時に配管20の損傷が生じず、燃料電池自動車100が走行可能な程度の衝突を軽度の衝突とする。軽度の衝突では、水素ガスの流通を遮断すると、燃料電池自動車100のユーザ及び燃料電池自動車100の周囲の交通に影響を与える。そのため、軽度の衝突では、衝突検知センサ40は閾値を超える値を検出せず、燃料電池自動車100の衝突を検知しないことが重要である。 A collision in which the colliding object 200 collides at a relatively low speed, the piping 20 is not damaged at the time of collision, and the fuel cell vehicle 100 can travel is defined as a mild collision. In a minor collision, cutting off the flow of hydrogen gas will affect the user of the fuel cell vehicle 100 and the traffic around the fuel cell vehicle 100 . Therefore, in the case of a minor collision, it is important that the collision detection sensor 40 does not detect a value exceeding the threshold value and does not detect a collision of the fuel cell vehicle 100.

一方、例えば、衝突時に配管20の損傷が生じ、水素ガスの漏洩が生じる程度の衝突を重度の衝突とする。重度の衝突では、水素ガスの漏洩を防ぐために、タンク10から配管20への水素ガスの流通の遮断が必要である。そのため、重度の衝突では、衝突検知センサ40は閾値を超える値を検出し、燃料電池自動車100の衝突を検知することが重要である。 On the other hand, for example, a collision in which the piping 20 is damaged and hydrogen gas leaks during the collision is defined as a severe collision. In severe collisions, it is necessary to shut off the flow of hydrogen gas from tank 10 to piping 20 to prevent hydrogen gas leakage. Therefore, in a severe collision, it is important that the collision detection sensor 40 detects a value exceeding the threshold value and detects the collision of the fuel cell vehicle 100.

本実施形態によれば、衝突検知センサ40よりも燃料電池自動車100の左右方向の外側に配置された塑性変形部材60が外力に応じて塑性変形する。このため、図4(A)及び図4(B)に示されるように、衝突物200のよる衝突時において、塑性変形部材60の塑性変形が小さい軽度の衝突時には、塑性変形部材60よりも燃料電池自動車100の左右方向の内側に配置された衝突検知センサ40は閾値を超える値を検出せず、遮断弁50はタンク10から配管20への水素ガスの流通を遮断しないため、軽度の衝突時に不要な水素ガスの遮断を低減できる。 According to this embodiment, the plastically deformable member 60 disposed outside the collision detection sensor 40 in the left-right direction of the fuel cell vehicle 100 plastically deforms in response to external force. Therefore, as shown in FIGS. 4(A) and 4(B), in a mild collision caused by the collision object 200, when the plastic deformation of the plastic deformation member 60 is small, the fuel The collision detection sensor 40 disposed inside the battery vehicle 100 in the left-right direction does not detect a value exceeding the threshold value, and the cutoff valve 50 does not shut off the flow of hydrogen gas from the tank 10 to the pipe 20, so in the event of a minor collision. Unnecessary cutoff of hydrogen gas can be reduced.

つまり、上記のように、衝突時に配管20の損傷が生じず、燃料電池自動車100が走行可能な軽度の衝突時には、塑性変形部材60が局部的に折れることのないような強度に塑性変形部材60の強度は調整されているため、衝突検知センサ40は閾値を超える値を検出せず、水素ガスの流通は遮断されず、燃料電池自動車100は走行できるため、燃料電池自動車100は路肩等に安全に退避し、燃料電池自動車100のユーザ及び燃料電池自動車100の周囲の交通への影響を最小限に抑えることが可能になる。 That is, as described above, the plastic deformation member 60 has such strength that the plastic deformation member 60 does not locally break during a mild collision in which the pipe 20 is not damaged during a collision and the fuel cell vehicle 100 can travel. Since the strength of the collision detection sensor 40 is adjusted, the collision detection sensor 40 does not detect a value exceeding the threshold value, the flow of hydrogen gas is not interrupted, and the fuel cell vehicle 100 can run, so the fuel cell vehicle 100 can safely be placed on the road shoulder, etc. This makes it possible to minimize the impact on the user of the fuel cell vehicle 100 and the traffic around the fuel cell vehicle 100.

一方、図4(C)及び図4(D)に示されるように、塑性変形部材60の塑性変形が大きい重度の衝突時には、塑性変形部材60よりも燃料電池自動車100の左右方向の内側に配置された衝突検知センサ40は大きく塑性変形した塑性変形部材60を介して閾値を超える値を検出し、遮断弁50はタンク10から配管20への水素ガスの流通を遮断するため、重度の衝突時に水素ガスの漏洩を低減できる。 On the other hand, as shown in FIG. 4(C) and FIG. 4(D), in the case of a severe collision in which the plastically deformable member 60 is largely plastically deformed, the plastically deformable member 60 is placed inside the fuel cell vehicle 100 in the left-right direction. The collision detection sensor 40 detects a value exceeding the threshold value via the plastically deformed member 60 that has been largely plastically deformed, and the cutoff valve 50 shuts off the flow of hydrogen gas from the tank 10 to the pipe 20. Leakage of hydrogen gas can be reduced.

つまり、上記のように、衝突時に配管20の損傷が生じ、水素ガスの漏洩が生じる重度の衝突時には、塑性変形部材60が衝突検知センサ40を押す程度の狙いの位置で塑性変形するような強度に塑性変形部材60の強度は調整されているため、塑性変形部材60が狙いの位置で塑性変形することで衝突検知センサ40は塑性変形部材60に直接に押されることになる。 In other words, as described above, in the event of a severe collision in which the piping 20 is damaged and hydrogen gas leaks, the strength is such that the plastically deformable member 60 is plastically deformed at a targeted position that pushes the collision detection sensor 40. Since the strength of the plastically deformable member 60 is adjusted, the collision detection sensor 40 is directly pushed by the plastically deformable member 60 as the plastically deformable member 60 plastically deforms at the targeted position.

そのため、衝突検知センサ40の検出した値が増加し、衝突検知センサ40の検出した値が閾値を超えたときに衝突が検知され、配管20が損傷を受ける前に、遮断弁50はタンク10から配管20への水素ガスの流通の遮断を開始する。そのため、仮にその後の衝突が進行し、配管20に損傷があったとしても、水素ガスの漏洩は最小限に留まり、燃料電池自動車100のユーザ及び燃料電池自動車100の周囲の交通への影響を最小限に抑えることが可能になる。 Therefore, the value detected by the collision detection sensor 40 increases, and when the value detected by the collision detection sensor 40 exceeds the threshold value, a collision is detected and the cutoff valve 50 closes the tank 10 before the piping 20 is damaged. The flow of hydrogen gas to the pipe 20 is started to be cut off. Therefore, even if the subsequent collision progresses and the piping 20 is damaged, the leakage of hydrogen gas will be kept to a minimum, and the impact on the user of the fuel cell vehicle 100 and the traffic around the fuel cell vehicle 100 will be minimized. It is possible to keep it to a minimum.

また、本実施形態によれば、塑性変形部材60は、タンク10を支持するタンク支持部材30に比べて小さい外力により塑性変形するため、重度の衝突時にタンク10を支持するタンク支持部材30が変形して配管20が損傷する前に、塑性変形部材60が塑性変形し、衝突検知センサ40は塑性変形した塑性変形部材60を介して閾値を超える値を検出し、遮断弁50はタンク10から配管20への水素ガスの流通を遮断するため、水素ガスの漏洩をより効果的に低減できる。 Furthermore, according to the present embodiment, the plastically deformable member 60 is plastically deformed by an external force that is smaller than that of the tank support member 30 that supports the tank 10, so the tank support member 30 that supports the tank 10 is deformed in the event of a severe collision. Before the piping 20 is damaged, the plastically deformed member 60 is plastically deformed, the collision detection sensor 40 detects a value exceeding the threshold value via the plastically deformed plastically deformed member 60, and the shutoff valve 50 deforms the piping from the tank 10. Since the flow of hydrogen gas to 20 is blocked, leakage of hydrogen gas can be more effectively reduced.

また、本実施形態によれば、遮断弁50は、タンク10の水素ガスの流出口11と配管20との連結部に配置されているため、衝突時の配管20の損傷の影響を低減でき、水素ガスの漏洩をさらに低減できる。以上の本実施形態の水素ガス漏洩防止装置1は、タンク10の数が多くても、比較的に少ない衝突検知センサ40により単純な構成で実現でき、比較的に少ない労力及びコストで実現できる。 Furthermore, according to the present embodiment, the cutoff valve 50 is disposed at the connection between the hydrogen gas outlet 11 of the tank 10 and the pipe 20, so that the influence of damage to the pipe 20 in the event of a collision can be reduced. Leakage of hydrogen gas can be further reduced. The hydrogen gas leak prevention device 1 of this embodiment described above can be realized with a simple configuration using a relatively small number of collision detection sensors 40 even if there are many tanks 10, and can be realized with relatively little labor and cost.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく様々な形態で実施される。例えば、タンク10の配置及び個数、配管20の配置及び形状、並びに塑性変形部材60の形状及び材質は、適宜変更される。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be implemented in various forms. For example, the arrangement and number of tanks 10, the arrangement and shape of piping 20, and the shape and material of plastically deformable member 60 are changed as appropriate.

1…水素ガス漏洩防止装置、2…ラダーフレーム、3…サイドメンバ、4…クロスメンバ、10,10´…タンク、11…流出口、20…配管、30…タンク支持部材、31…ネックマウント部、40…衝突検知センサ、50…遮断弁、60…塑性変形部材、100…燃料電池自動車、200…衝突物。 DESCRIPTION OF SYMBOLS 1... Hydrogen gas leak prevention device, 2... Ladder frame, 3... Side member, 4... Cross member, 10, 10'... Tank, 11... Outlet, 20... Piping, 30... Tank support member, 31... Neck mount part , 40... Collision detection sensor, 50... Shutoff valve, 60... Plastic deformation member, 100... Fuel cell vehicle, 200... Collision object.

Claims (4)

燃料電池自動車の前後方向に延在しつつ前記燃料電池自動車の左右方向に互いに離間して配置された一対のサイドメンバと、
前記サイドメンバよりも前記燃料電池自動車の左右方向の外側に配置され、水素ガスを貯蔵するタンクと、
前記タンクの前記水素ガスが流通する配管よりも前記燃料電池自動車の左右方向の外側に配置され、前記燃料電池自動車の衝突を検知する衝突検知センサと、
前記衝突検知センサが前記燃料電池自動車の衝突を検知したときに、前記タンクから前記配管への前記水素ガスの流通を遮断する遮断弁と、
を備えた水素ガス漏洩防止装置。
a pair of side members extending in the front-rear direction of the fuel cell vehicle and spaced apart from each other in the left-right direction of the fuel cell vehicle;
a tank that stores hydrogen gas and is located outside the side member in the left-right direction of the fuel cell vehicle;
a collision detection sensor that is arranged outside the fuel cell vehicle in the left-right direction of the pipe through which the hydrogen gas of the tank flows, and that detects a collision of the fuel cell vehicle;
a shutoff valve that shuts off the flow of the hydrogen gas from the tank to the piping when the collision detection sensor detects a collision of the fuel cell vehicle;
Hydrogen gas leak prevention device equipped with
前記衝突検知センサよりも前記燃料電池自動車の左右方向の外側に配置され、外力に応じて塑性変形する塑性変形部材をさらに備えた、請求項1に記載の水素ガス漏洩防止装置。 The hydrogen gas leak prevention device according to claim 1, further comprising a plastically deformable member that is disposed outside the collision detection sensor in the left-right direction of the fuel cell vehicle and that plastically deforms in response to external force. 前記タンクを支持するタンク支持部材をさらに備え、
前記塑性変形部材は、前記タンク支持部材に比べて小さい外力により塑性変形する、請求項2に記載の水素ガス漏洩防止装置。
further comprising a tank support member that supports the tank,
The hydrogen gas leak prevention device according to claim 2, wherein the plastically deformable member is plastically deformed by a smaller external force than the tank support member.
前記遮断弁は、前記タンクの前記水素ガスの流出口と前記配管との連結部に配置されている、請求項1~3のいずれか1項に記載の水素ガス漏洩防止装置。 The hydrogen gas leak prevention device according to any one of claims 1 to 3, wherein the cutoff valve is disposed at a connection between the hydrogen gas outlet of the tank and the piping.
JP2022046653A 2022-03-23 2022-03-23 Hydrogen gas leakage prevention device Pending JP2023140685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022046653A JP2023140685A (en) 2022-03-23 2022-03-23 Hydrogen gas leakage prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022046653A JP2023140685A (en) 2022-03-23 2022-03-23 Hydrogen gas leakage prevention device

Publications (1)

Publication Number Publication Date
JP2023140685A true JP2023140685A (en) 2023-10-05

Family

ID=88206460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046653A Pending JP2023140685A (en) 2022-03-23 2022-03-23 Hydrogen gas leakage prevention device

Country Status (1)

Country Link
JP (1) JP2023140685A (en)

Similar Documents

Publication Publication Date Title
JP4549826B2 (en) Fuel cell vehicle
JP4946684B2 (en) Moving body
EP3640095B1 (en) Multi-frontal airbag for vehicle and airbag deployment system using the same
JP5251905B2 (en) Side collision determination device for vehicle and high-voltage power cutoff device
EP1683698B1 (en) Vehicle collision safety system
US20050184495A1 (en) Safety system for use in a vehicle
US9908496B2 (en) Front airbag for vehicle and method of controlling the same
JP2013082298A (en) Vehicle collision safety device
US20110231067A1 (en) Collision determination system, occupant restraint system, and vehicle
US20080156809A1 (en) Vehicle And Method Of Mounting Gas Fuel Tank
CN102806881A (en) Collision detecting device for vehicle and occupant protection system having the same
JP7202331B2 (en) fuel cell car
JP2005299865A (en) Method and system for protecting hydrogen storage tank
CN103863234A (en) Vehicle-occupant protection system
US7386384B2 (en) System and method for predicting a vehicle rollover
JP2023140685A (en) Hydrogen gas leakage prevention device
US6536401B2 (en) Fuel cutoff switch system
US11535182B2 (en) Vehicle bumper assembly
JP2009073207A (en) Airbag control device and occupant crash protection system
CN105752015A (en) Automobile safety airbag control system
JP5915828B2 (en) Vehicle control device
CN115095430B (en) Control method and device for hydrogen fuel automobile, hydrogen fuel automobile and storage medium
Justen et al. The Safety Concept of the Mercedes-Benz GLC F-Cell
JP2006027503A (en) Safety device for vehicle
KR0162072B1 (en) Fuel auto-returning device at a car accident