JP2023139504A - Hydraulic composition and its application - Google Patents
Hydraulic composition and its application Download PDFInfo
- Publication number
- JP2023139504A JP2023139504A JP2022045067A JP2022045067A JP2023139504A JP 2023139504 A JP2023139504 A JP 2023139504A JP 2022045067 A JP2022045067 A JP 2022045067A JP 2022045067 A JP2022045067 A JP 2022045067A JP 2023139504 A JP2023139504 A JP 2023139504A
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic composition
- composition according
- magnesium oxide
- curing
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 92
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 44
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims abstract description 23
- 239000001095 magnesium carbonate Substances 0.000 claims abstract description 23
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims abstract description 23
- -1 silicate compound Chemical class 0.000 claims abstract description 23
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 19
- 239000010456 wollastonite Substances 0.000 claims description 15
- 229910052882 wollastonite Inorganic materials 0.000 claims description 15
- 239000000049 pigment Substances 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 9
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052845 zircon Inorganic materials 0.000 claims description 9
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 9
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- 238000013329 compounding Methods 0.000 claims description 5
- 239000002270 dispersing agent Substances 0.000 claims description 5
- 238000009736 wetting Methods 0.000 claims description 5
- 239000000080 wetting agent Substances 0.000 claims description 5
- 229910021485 fumed silica Inorganic materials 0.000 claims description 4
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims 1
- 239000004568 cement Substances 0.000 abstract description 13
- 239000004566 building material Substances 0.000 abstract description 6
- 150000002681 magnesium compounds Chemical class 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 40
- 235000012245 magnesium oxide Nutrition 0.000 description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 238000012360 testing method Methods 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 239000004567 concrete Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 150000004760 silicates Chemical class 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000007605 air drying Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000013001 point bending Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052623 talc Inorganic materials 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000004721 Polyphenylene oxide Chemical class 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000006253 efflorescence Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000009408 flooring Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000570 polyether Chemical class 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 238000004438 BET method Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000012669 compression test Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000004815 dispersion polymer Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000001023 inorganic pigment Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052622 kaolinite Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 206010037844 rash Diseases 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001296 polysiloxane Chemical class 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 230000035900 sweating Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- WZSFTHVIIGGDOI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3-[2-methyl-3-[(4,5,6,7-tetrachloro-3-oxoisoindol-1-yl)amino]anilino]isoindol-1-one Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C2=C1C(NC1=CC=CC(NC=3C4=C(C(=C(Cl)C(Cl)=C4Cl)Cl)C(=O)N=3)=C1C)=NC2=O WZSFTHVIIGGDOI-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical class NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- LTGPFZWZZNUIIK-LURJTMIESA-N Lysol Chemical compound NCCCC[C@H](N)CO LTGPFZWZZNUIIK-LURJTMIESA-N 0.000 description 1
- 229910019440 Mg(OH) Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000907663 Siproeta stelenes Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- AOADSHDCARXSGL-ZMIIQOOPSA-M alkali blue 4B Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC2=CC=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C2=CC=CC=C2)=CC=C1N.[Na+] AOADSHDCARXSGL-ZMIIQOOPSA-M 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical class O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- NNBFNNNWANBMTI-UHFFFAOYSA-M brilliant green Chemical compound OS([O-])(=O)=O.C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 NNBFNNNWANBMTI-UHFFFAOYSA-M 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000011928 denatured alcohol Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- RUYJNKYXOHIGPH-UHFFFAOYSA-N dialuminum;trioxido(trioxidosilyloxy)silane Chemical compound [Al+3].[Al+3].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] RUYJNKYXOHIGPH-UHFFFAOYSA-N 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002401 polyacrylamide Chemical class 0.000 description 1
- 229920000642 polymer Chemical class 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 125000005624 silicic acid group Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001059 synthetic polymer Chemical class 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Floor Finish (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
特許法第30条第2項適用申請有り 令和4年3月1日東京国際展示場で開催された第28回建築・建材展2022で公開Application for application of Article 30, Paragraph 2 of the Patent Act Published at the 28th Architecture and Building Materials Exhibition 2022 held at the Tokyo International Exhibition Center on March 1, 2020
本発明は、床面や壁面に使用する水硬性組成物およびその用途に関するものである。 The present invention relates to a hydraulic composition for use on floors and walls, and its uses.
無機質系の床仕上げや壁仕上げの材料としては、ポルトランド系セメントを主原料としたものが一般的に使用されているが(特許文献1)、これらは物理的強度面には優れているが以下のような欠点があることが知られている。
・白色やパステル色系の明度の高い仕上げは難しい。
・硬化収縮によるひび割れしやすい。
・施工後炭酸ガスの接触により白華現象を生じやすい。
As inorganic floor finishing and wall finishing materials, materials based on Portland cement are generally used (Patent Document 1), but although these have excellent physical strength, It is known to have the following drawbacks.
・Highly bright finishes such as white or pastel colors are difficult to achieve.
・Easy to crack due to curing shrinkage.
・Efflorescence is likely to occur due to contact with carbon dioxide gas after construction.
また、マグネシウム化合物を使用した建築材料としては、1970~1980年代に塩基性炭酸マグネシウムを利用したものが知られているが(特許文献2)、以下のような欠点がある。
・加熱工程が必要であり、建築現場で硬化前の材料を塗布して硬化させることは出来ない。
・強度も乏しく、床面への適用は困難。
Further, as a building material using a magnesium compound, one using basic magnesium carbonate was known in the 1970s to 1980s (Patent Document 2), but it has the following drawbacks.
・A heating process is required, and uncured material cannot be applied and cured at the construction site.
・Difficult to apply to floors due to poor strength.
更に、マグネシアを使用したマグネシアセメント系材料が古くから在り、昨今の特許技術で床材として使用されているが(特許文献3)、以下のような欠点がある。
・含有する塩化マグネシウムの影響により、金属製の建築資材を酸化腐食させることがある。
Furthermore, magnesia cement-based materials using magnesia have existed for a long time and are used as flooring materials with recent patent technology (Patent Document 3), but they have the following drawbacks.
- Due to the influence of the magnesium chloride it contains, metal building materials may be oxidized and corroded.
本発明の課題は、従来のポルトランド系セメント、マグネシウム化合物またはマグネシア系セメントを用いた建築材料の問題点を解決することである。 The object of the present invention is to solve the problems of conventional building materials using Portland cement, magnesium compounds or magnesia cement.
本発明者らは、上記課題を解決するために鋭意研究した結果、酸化マグネシウム、炭酸マグネシウム、半水石膏、ケイ酸塩化合物を組み合わせることにより、上記問題点が生じないことを見出し、本発明を完成させた。 As a result of intensive research to solve the above problems, the present inventors found that the above problems did not occur by combining magnesium oxide, magnesium carbonate, gypsum hemihydrate, and silicate compounds, and the present invention has been developed. Completed.
すなわち、本発明は、以下の通りにものである。
(1)酸化マグネシウム、炭酸マグネシウム、半水石膏、ケイ酸塩化合物を含有することを特徴とする水硬性組成物。
(2)上記水硬性組成物と水を混練した混練物を硬化させて得られる硬化体。
(3)上記水硬性組成物と水を混練した混練物を型枠に流し込んだ後、硬化させて得られる成形体。
(4)上記水硬性組成物と水を混練した混練物を床面に塗布した後、硬化させることを特徴とする床の施工方法。
(5)上記水硬性組成物と水を混練した混練物を壁面に塗布した後、硬化させることを特徴とする壁の施工方法。
(6)上記水硬性組成物と水を混練した混練物を型枠に流し込んだ後、硬化させることを特徴とする成形体の製造方法。
(7)上記成形体を床面に貼り付けることを特徴とする床の施工方法。
(8)上記成形体を壁面に貼り付けることを特徴とする壁の施工方法。
That is, the present invention is as follows.
(1) A hydraulic composition characterized by containing magnesium oxide, magnesium carbonate, gypsum hemihydrate, and a silicate compound.
(2) A cured product obtained by curing a kneaded product obtained by kneading the above-mentioned hydraulic composition and water.
(3) A molded article obtained by pouring a kneaded mixture of the above-mentioned hydraulic composition and water into a mold and then curing the mixture.
(4) A method for constructing a floor, which comprises applying a kneaded mixture of the above-mentioned hydraulic composition and water onto a floor surface and then curing the mixture.
(5) A method for constructing a wall, which comprises applying a kneaded mixture of the above-mentioned hydraulic composition and water to a wall surface and then curing the mixture.
(6) A method for producing a molded article, which comprises pouring a kneaded mixture of the above-mentioned hydraulic composition and water into a mold, and then curing the mixture.
(7) A method for constructing a floor, which comprises adhering the molded body to a floor surface.
(8) A method for constructing a wall, which comprises attaching the molded body to a wall surface.
本発明の水硬性組成物は、反応性に優れており、雰囲気温度5℃~35℃において、適当な可使時間が確保出来ると同時に硬化速度も速いことから、翌日の硬度も高く床仕上げ材として適性がある。 The hydraulic composition of the present invention has excellent reactivity and can secure an appropriate pot life at an ambient temperature of 5°C to 35°C, and at the same time has a fast curing speed, so it has high hardness the next day and is suitable for floor finishing materials. It is suitable as
また、本発明の水硬性組成物は、従来のポルトランドセメントおよびアルミナセメントを硬化ベースとしている材料における下記の課題(問題点)が解決できる。
・白色やパステル色系の明度の高い仕上げが出来る。
従来のポルトランドセメントやアルミナセメントを使用した材料は、それ自体が灰色を呈していることから、この配合物に白顔料を混合しても純白色や明度の高いパステル色にすることは出来ない。一方、本発明品は、主原料である酸化マグネシウム、炭酸マグネシウム、半水石膏は、全て明度の高い白色物である。実際に床仕上げ材などの製品にする際に、これら主原料に珪砂等の骨材が配合された場合にも白色度が大きく損なわれることは無く、白色やパステル系色の硬化物を容易に得ることができる。
Further, the hydraulic composition of the present invention can solve the following problems (problems) in conventional materials using Portland cement and alumina cement as hardening bases.
・Available for high brightness finishes in white and pastel colors.
Conventional materials using Portland cement or alumina cement are gray in themselves, so even if white pigment is mixed into this compound, it is not possible to create pure white or bright pastel colors. On the other hand, in the product of the present invention, the main raw materials, magnesium oxide, magnesium carbonate, and gypsum hemihydrate, are all white substances with high brightness. When actually making products such as floor finishing materials, even if aggregates such as silica sand are added to these main raw materials, the whiteness will not be significantly impaired and it will be easy to produce white or pastel-colored cured products. Obtainable.
・硬化収縮によるひび割れを生じにくい。
主原料である酸化マグネシウム、炭酸マグネシウム、半水石膏、水からなる組成物は速やかに水硬反応が進行すると共に、半水石膏の結晶成長が同時に進行し硬化に伴う体積収縮を抑制する作用があり、硬化物にひび割れを生じにくい性質が得られる。
- Less likely to cause cracks due to curing shrinkage.
In the composition consisting of the main raw materials, magnesium oxide, magnesium carbonate, gypsum hemihydrate, and water, the hydraulic reaction proceeds rapidly, and the crystal growth of gypsum hemihydrate proceeds at the same time, which has the effect of suppressing the volumetric shrinkage associated with hardening. This makes the cured product less prone to cracking.
・施工後、炭酸ガスの接触により白華現象を生じない。
従来のポルトランドセメントやアルミナセメントを使用した材料は、その硬化物中に多量の水酸化カルシウムが生成され、それが硬化物内部から表面に移行してくると、大気中の二酸化炭酸との反応により炭酸カルシウムを生成して白華現象が生じる。一方、本発明品はマグネシウム系原料であるためにこのような白華する物質を生成しない。
・After construction, no efflorescence occurs due to contact with carbon dioxide gas.
In conventional materials using Portland cement and alumina cement, a large amount of calcium hydroxide is generated in the hardened material, and when it migrates from the inside of the hardened material to the surface, it reacts with carbon dioxide in the atmosphere. Calcium carbonate is produced and efflorescence occurs. On the other hand, since the product of the present invention is a magnesium-based raw material, it does not produce such an efflorescent substance.
・アンモニアの発生がない。
従来のコンクリートやモルタルは、その配合物中の窒化物に由来してアンモニアが発生することが知られており、アンモニアが美術館や博物館の所蔵品の劣化を促進させるため、アンモニア対策が必要な施設においては、コンクリート表面をコーティング処理する等の対策が求められる。本発明品は窒化物は配合されず、アンモニア発生は起こらないため、コンクリート表面の仕上げ材としての適性がある。
・No ammonia is generated.
Conventional concrete and mortar are known to generate ammonia due to the nitrides in their compounds, and ammonia accelerates the deterioration of art museums and museum collections, so facilities that require ammonia countermeasures. In such cases, measures such as coating the concrete surface are required. The product of the present invention does not contain nitrides and does not generate ammonia, so it is suitable as a finishing material for concrete surfaces.
更に、本発明の水硬性組成物は、マグネシアセメントセメント系床仕上げ材においては、その一主成分である塩化マグネシウムの影響により、表面に水を呼ぶことによる汗かき現象の発生、また金属面の腐食に対する保護プライマーなどの対処が必要になるが、本開発材料においてはこれらの現象は生じないため、面倒な対処が不要である。 Furthermore, the hydraulic composition of the present invention, in magnesia-cement-based floor finishing materials, has the effect of attracting water to the surface due to the influence of magnesium chloride, which is one of its main components, and also reduces the sweating phenomenon on metal surfaces. Although it is necessary to take measures such as a protective primer against corrosion, these phenomena do not occur with the developed material, so there is no need for troublesome measures.
従って、本発明の水硬性組成物は、床面や壁面の仕上げや、タイル等の成形体の製造等に好適である。 Therefore, the hydraulic composition of the present invention is suitable for finishing floors and walls, manufacturing molded objects such as tiles, and the like.
本発明の水硬性組成物は、酸化マグネシウム、炭酸マグネシウム、半水石膏、ケイ酸塩化合物を含有するものである。 The hydraulic composition of the present invention contains magnesium oxide, magnesium carbonate, gypsum hemihydrate, and a silicate compound.
上記酸化マグネシウムは、特に限定されないが、得られる水硬性組成物の可使時間や硬化物の強度等の物性の点から平均BET比表面積が5~25m2/gのものが好ましく、10~20m2/gのものがより好ましい。前記平均BET比表面積の酸化マグネシウムを用いる場合、この範囲の平均BET比表面積のものを単独で用いてもよいし、複数の平均BET比表面積のものを組み合わせてこの範囲にしたものを用いてもよい。また、酸化マグネシウムの平均粒子径は特に限定されないが、例えば、1.0~6.0μm、好ましくは3.0~4.5μmである。なお、このような酸化マグネシウムは、市販されている酸化マグネシウムのBET比表面積や平均粒子径を実際に測定し、そこから上記条件にあう酸化マグネシウムを選択し、適宜組み合わせて用いればよい。具体的にこのような酸化マグネシウムは、神島化学工業(株)、赤穂化成工業(株)、タテホ化学工業(株)、協和化学工業(株)等から入手することができる。 The above-mentioned magnesium oxide is not particularly limited, but from the viewpoint of physical properties such as the pot life of the obtained hydraulic composition and the strength of the cured product, it is preferable that the magnesium oxide has an average BET specific surface area of 5 to 25 m 2 /g, and 10 to 20 m 2 /g. 2 /g is more preferable. When using magnesium oxide having the above average BET specific surface area, one with an average BET specific surface area within this range may be used alone, or one with an average BET specific surface area within this range may be used in combination. good. Further, the average particle diameter of magnesium oxide is not particularly limited, but is, for example, 1.0 to 6.0 μm, preferably 3.0 to 4.5 μm. Note that such magnesium oxide may be used by actually measuring the BET specific surface area and average particle diameter of commercially available magnesium oxide, selecting magnesium oxides that meet the above conditions from there, and using them in appropriate combinations. Specifically, such magnesium oxide can be obtained from Kamishima Chemical Industry Co., Ltd., Ako Chemical Industry Co., Ltd., Tateho Chemical Industry Co., Ltd., Kyowa Chemical Industry Co., Ltd., and the like.
なお、酸化マグネシウムのBET比表面積は、JIS R1626(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)に準じ、流動式比表面積自動測定装置(フローソーブ2300型:(株)島津製作所製)を用いて測定される値である。また、酸化マグネシウムの平均BET比表面積は、BET比表面積の異なる酸化マグネシウムの2種以上を混合した後、この混合物のBET比表面積を上記気体吸着BET法で測定した値のことをいう。更に、酸化マグネシウムの平均粒子径は、予め分散媒(変性アルコール)に試料を入れて、超音波分散装置(UD-201:(株)日本精機製作所製)を用いて試料を3分間分散後に、マイクロトラック粒度分布計(model HRA型:日機装(株)製)で測定される値の平均値である。 The BET specific surface area of magnesium oxide was measured using a flow-type specific surface area automatic measuring device (Flowsorb 2300 model: manufactured by Shimadzu Corporation) in accordance with JIS R1626 (method for measuring the specific surface area of fine ceramic powder using the gas adsorption BET method). ) is the value measured using Further, the average BET specific surface area of magnesium oxide refers to a value obtained by mixing two or more types of magnesium oxides having different BET specific surface areas, and then measuring the BET specific surface area of the mixture using the above gas adsorption BET method. Furthermore, the average particle diameter of magnesium oxide can be determined by placing the sample in a dispersion medium (denatured alcohol) in advance and dispersing the sample for 3 minutes using an ultrasonic dispersion device (UD-201: manufactured by Nippon Seiki Seisakusho Co., Ltd.). This is the average value of the values measured with a Microtrac particle size distribution analyzer (model HRA type: manufactured by Nikkiso Co., Ltd.).
本発明の水硬性組成物における酸化マグネシウムの含有量は、特に限定されないが、例えば、30~60質量%(以下、単位「%」という)、好ましくは35~50%である。 The content of magnesium oxide in the hydraulic composition of the present invention is not particularly limited, but is, for example, 30 to 60% by mass (hereinafter referred to as "%"), preferably 35 to 50%.
上記炭酸マグネシウムは、特に限定されないが、塩基性炭酸マグネシウムであることが好ましい。塩基性炭酸マグネシウムは一般的に下記式
<式>
mMgCO3・Mg(OH)2・nH2O
(ここで、m=3~5、n=3~7)
で表されるが、好ましくは4MgCO3・Mg(OH)2・4H2Oが主成分のものである。また、塩基性炭酸マグネシウムの平均BET比表面積は、特に限定されないが、例えば、10~60m2/g、好ましくは20~50m2/gである。なお、上記平均BET比表面積の塩基性炭酸マグネシウムとしては、この範囲の平均BET比表面積のものを用いてもよいし、複数の平均BET比表面積のものを組み合わせてこの範囲にしたものを用いてもよい。また、塩基性炭酸マグネシウムの平均粒子径は、特に限定されないが、0.5~100μm、好ましくは5~20μmである。塩基性炭酸マグネシウムの平均BET比表面積や、平均粒子径は酸化マグネシウムと同様にして測定することができる。
The above magnesium carbonate is not particularly limited, but is preferably basic magnesium carbonate. Basic magnesium carbonate is generally expressed by the following formula:
mMgCO3.Mg ( OH ) 2.nH2O
(Here, m=3-5, n=3-7)
It is preferably expressed as 4MgCO 3 .Mg(OH) 2 .4H 2 O as the main component. Further, the average BET specific surface area of basic magnesium carbonate is not particularly limited, but is, for example, 10 to 60 m 2 /g, preferably 20 to 50 m 2 /g. As the basic magnesium carbonate having the above average BET specific surface area, one with an average BET specific surface area within this range may be used, or one with an average BET specific surface area within this range may be used by combining a plurality of average BET specific surface areas. Good too. Furthermore, the average particle diameter of basic magnesium carbonate is not particularly limited, but is 0.5 to 100 μm, preferably 5 to 20 μm. The average BET specific surface area and average particle diameter of basic magnesium carbonate can be measured in the same manner as magnesium oxide.
本発明の水硬性組成物における酸化マグネシウムと炭酸マグネシウムの質量比は、特に限定されないが、例えば、3~10:1、好ましくは5~9:1である。 The mass ratio of magnesium oxide to magnesium carbonate in the hydraulic composition of the present invention is not particularly limited, but is, for example, 3 to 10:1, preferably 5 to 9:1.
上記半水石膏は、焼石膏ともよばれるものであり、CaSO4・1/2H2Oで表されるものである。この半水石膏にはα型とβ型が知られているが、どちらか一方または両方の型を用いてもよい。 The above-mentioned gypsum hemihydrate is also called calcined gypsum and is represented by CaSO 4 1/2H 2 O. Alpha-type and β-type are known for this hemihydrate gypsum, but either one or both types may be used.
本発明の水硬性組成物における半水石膏の含有量は、特に限定されないが、得られる水硬性組成物の可使時間や硬化物の強度等の物性の点から、例えば、酸化マグネシウムの質量に対して、6~25%、好ましくは8~20%である。 The content of gypsum hemihydrate in the hydraulic composition of the present invention is not particularly limited, but from the viewpoint of physical properties such as pot life of the resulting hydraulic composition and strength of the cured product, the content of gypsum hemihydrate is, for example, based on the mass of magnesium oxide. In contrast, it is 6 to 25%, preferably 8 to 20%.
上記ケイ酸塩化合物は、特に限定されないが、例えば、ウォラストナイト、カオリナイト、メタカオリン、ジルコン、タルク、マイカ、乾式シリカなどが挙げられる。これらケイ酸塩化合物の中でも、ウォラストナイトと、ウォラストナイト以外のケイ酸塩化合物の1種または2種以上の組み合わせが好ましく、ウォラストナイトと、メタカオリン、ジルコン、乾式シリカからなる群から選ばれる1種または2種以上の組み合わせがより好ましい。ウォラストナイトは、天然の無機鉱物である珪灰石を微粉化したもので、CaSiO3で表される。このウォラストナイトは、ケイ酸成分を保有し、結晶構造が針状であるため、硬化物組織の寸法安定性効果も期待できるためこれを必須とすることが好ましい。カオリナイトは、天然の高陵石を微粉化したもので、Al4Si4O10(OH)8で表される。メタカオリンは、半焼成カオリンとも呼ばれ、無水ケイ酸アルミニウム、Al2O3・2SiO2で表される。このメタカオリンは、カオリナイトを700~900℃で加熱焼成して製造される。ジルコン(ケイ酸ジルコニウム)は、ジルコニウムのケイ酸塩鉱物であり、ZrSiO4で表される。このジルコンとしては、粉砕して粒子径50μm以下のものを使用することが好ましく、例えばジルコン、ジルコンフラワーの商品名で市販されている。タルクは、水酸化マグネシウムとケイ酸塩から成る鉱物で滑石とも呼ばれ、Mg3Si4O10(OH)2で表される。マイカは、和名は雲母と呼ばれ、ケイ素、アルミニウム、マグネシウム、カリウムなどから成り、結晶構造が鱗片状をなしているのが特徴であるケイ酸塩鉱物である。乾式シリカは、フュームドシリカとも呼ばれ、SiO2で表される。この乾式シリカは、一次粒子径は50nm以下と小さく、複数の粒子が数珠状に繋がり非常に嵩高い凝集体を形成しており、配合量は極少量で効果が期待できる。 The silicate compound is not particularly limited, and examples thereof include wollastonite, kaolinite, metakaolin, zircon, talc, mica, and pyrogenic silica. Among these silicate compounds, preferred is wollastonite and one or more combinations of silicate compounds other than wollastonite, selected from the group consisting of wollastonite, metakaolin, zircon, and pyrogenic silica. More preferably, one kind or a combination of two or more kinds thereof are used. Wollastonite is made by pulverizing wollastonite, which is a natural inorganic mineral, and is represented by CaSiO 3 . Since this wollastonite contains a silicic acid component and has an acicular crystal structure, it can also be expected to have an effect on the dimensional stability of the structure of the cured product, so it is preferable to make it essential. Kaolinite is a fine powder of natural koryo stone, and is represented by Al 4 Si 4 O 10 (OH) 8 . Metakaolin is also called semi-calcined kaolin and is represented by anhydrous aluminum silicate, Al 2 O 3 .2SiO 2 . This metakaolin is produced by heating and calcining kaolinite at 700 to 900°C. Zircon (zirconium silicate) is a silicate mineral of zirconium and is represented by ZrSiO4 . As this zircon, it is preferable to use a pulverized zircon with a particle size of 50 μm or less, and is commercially available, for example, under the trade names of zircon and zircon flour. Talc is a mineral consisting of magnesium hydroxide and silicate, also called talc, and is represented by Mg 3 Si 4 O 10 (OH) 2 . Mica, whose Japanese name is mica, is a silicate mineral consisting of silicon, aluminum, magnesium, potassium, etc., and characterized by its scaly crystal structure. Dry silica is also called fumed silica and is represented by SiO2 . This dry process silica has a small primary particle size of 50 nm or less, and a plurality of particles are connected in a beaded shape to form a very bulky aggregate, and an effect can be expected with a very small amount of blending.
本発明の水硬性組成物におけるケイ酸塩化合物の含有量は、特に限定されないが、得られる水硬性組成物の可使時間や硬化物の強度等の物性の点から、例えば、酸化マグネシウムの質量に対して、0.1~30%、好ましくは0.2~25%である。特にケイ酸塩化合物が乾式シリカを含む場合、乾式シリカは嵩高く、含有量が多くなると材料の粘性が高くなり過ぎるため、乾式シリカの含有量は酸化マグネシウムの質量に対して3%以下と低くすることが好ましい。ウォラストナイトは、針状形状ではあるが材料の粘性に与える影響は少なく、酸化マグネシウムの質量に対して30%程度まで配合することが可能であり、寸法安定性を高めるのに有効である。なお、ケイ酸塩化合物として、ウォラストナイトと、ウォラストナイト以外のケイ酸塩化合物の1種または2種以上の組み合わせて用いる場合、ウォラストナイトとウォラストナイト以外のケイ酸塩化合物の質量比は1:0.01~1、好ましくは1:0.01~0.8である。 The content of the silicate compound in the hydraulic composition of the present invention is not particularly limited, but from the viewpoint of physical properties such as pot life of the resulting hydraulic composition and strength of the cured product, for example, 0.1 to 30%, preferably 0.2 to 25%. Especially when the silicate compound contains dry silica, the content of dry silica is as low as 3% or less based on the mass of magnesium oxide, because dry silica is bulky and the viscosity of the material becomes too high when the content is high. It is preferable to do so. Although wollastonite has an acicular shape, it has little effect on the viscosity of the material, and can be blended in an amount of up to about 30% based on the mass of magnesium oxide, which is effective for increasing dimensional stability. In addition, when using wollastonite and one or more types of silicate compounds other than wollastonite in combination as the silicate compound, the mass of wollastonite and silicate compounds other than wollastonite The ratio is 1:0.01-1, preferably 1:0.01-0.8.
本発明の水硬性組成物には、上記必須成分の他に、更に、充填剤、顔料、減水剤、消泡剤、湿潤分散剤、粘性調整剤、ダレ防止剤、水性樹脂、骨材からなる群から選ばれる配合剤の1種または2種以上を含有させてもよい。これらの配合剤は、基本的には本発明の水硬性組成物の用途に合わせた量で適宜配合すればよい。 In addition to the above-mentioned essential components, the hydraulic composition of the present invention further comprises a filler, a pigment, a water reducing agent, an antifoaming agent, a wetting and dispersing agent, a viscosity modifier, an anti-sag agent, an aqueous resin, and an aggregate. One or more types of compounding agents selected from the group may be included. Basically, these compounding agents may be appropriately blended in amounts suited to the intended use of the hydraulic composition of the present invention.
上記充填剤としては、作業性における粘性の調整、硬化物の強度物性、増量材としての役割があり、例えば、炭酸カルシウム、シリカ粉、硅砂、バライト紛等が挙げられる。また、本発明の水硬性組成物における充填剤の含有量は特に限定されないが、例えば、10%以上、好ましくは20~70%、より好ましくは30~60%である。 The above-mentioned filler has the role of adjusting viscosity in workability, providing strength and physical properties of the cured product, and acting as a filler, and includes, for example, calcium carbonate, silica powder, silica sand, barite powder, and the like. Further, the content of the filler in the hydraulic composition of the present invention is not particularly limited, but is, for example, 10% or more, preferably 20 to 70%, and more preferably 30 to 60%.
上記顔料としては、例えば、無機顔料、有機顔料、特殊顔料等が挙げられる。具体的な無機顔料としては、赤土、黄土、緑土、孔雀石、胡粉、黒鉛等の天然鉱物顔料、紺青、亜鉛華、コバルト青、エメラルド緑、ビリジャン、チタン白、酸化鉄等の合成無機顔料が挙げられる。具体的な有機顔料としては、アルカリブルー、リゾールレッド、カーミン6B、ジスアゾエロー、フタロシアニンブルー、キナクリドンレッド、イソインドリノンエロー等が挙げられる。具体的な特殊顔料としては、蛍光顔料、金属粉顔料、パール顔料、示温顔料、窯業用顔料等が挙げられる。また、本発明の水硬性組成物における顔料の含有量は特に限定されないが、例えば、0.1%以上、好ましくは0.2~2.0%、より好ましくは0.4~1.5%である。 Examples of the pigments include inorganic pigments, organic pigments, special pigments, and the like. Specific inorganic pigments include natural mineral pigments such as red clay, loess, green clay, malachite, chalk powder, and graphite, and synthetic inorganic pigments such as navy blue, zinc white, cobalt blue, emerald green, viridian, titanium white, and iron oxide. can be mentioned. Specific organic pigments include alkali blue, Lysol red, carmine 6B, disazo yellow, phthalocyanine blue, quinacridone red, isoindolinone yellow, and the like. Specific examples of special pigments include fluorescent pigments, metal powder pigments, pearl pigments, temperature-indicating pigments, and ceramic pigments. Further, the pigment content in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.1% or more, preferably 0.2 to 2.0%, more preferably 0.4 to 1.5%. It is.
上記減水剤としては、例えば、AE剤、減水剤・AE減水剤、高性能減水剤、高性能AE減水剤等が挙げられる。また、本発明の水硬性組成物における減水剤の含有量は特に限定されないが、例えば、0.05%以上、好ましくは0.1~1.5%、より好ましくは0.2~1.0%である。 Examples of the water reducing agent include AE agents, water reducing agents/AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, and the like. Further, the content of the water reducing agent in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.05% or more, preferably 0.1 to 1.5%, more preferably 0.2 to 1.0%. %.
上記消泡剤としては、例えば、鉱物油系化合物、ポリエーテル系化合物、シリコーン系化合物等が挙げられる。また、これら消泡剤は粉体であってもよい。更に、本発明の水硬性組成物における消泡剤の含有量は特に限定されないが、例えば、0.01%以上、好ましくは0.05~2.0%、より好ましくは0.1~1.5%である。 Examples of the antifoaming agent include mineral oil compounds, polyether compounds, silicone compounds, and the like. Further, these antifoaming agents may be in the form of powder. Further, the content of the antifoaming agent in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.01% or more, preferably 0.05 to 2.0%, more preferably 0.1 to 1.0%. It is 5%.
上記湿潤分散剤であれば、例えば、アニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物等が挙げられる。具体的な湿潤分散剤としては、脂肪族多価カルボン酸系化合物、アミノアマイド系化合物、リン酸エステル系化合物、非イオン系化合物、アクリル系重合物、ポリエーテル燐酸エステル系化合物等が挙げられる。また、本発明の水硬性組成物における湿潤分散剤の含有量は特に限定されないが、例えば、0.01%以上、好ましくは0.02~1.0%、より好ましくは0.03~0.5%である。 Examples of the above-mentioned wetting and dispersing agents include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds. Specific wetting and dispersing agents include aliphatic polycarboxylic acid compounds, aminoamide compounds, phosphate ester compounds, nonionic compounds, acrylic polymers, polyether phosphate ester compounds, and the like. Further, the content of the wetting and dispersing agent in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.01% or more, preferably 0.02 to 1.0%, more preferably 0.03 to 0.0%. It is 5%.
粘性調整剤としては、例えば、ウレタン変性ポリエーテル系化合物、アクリル系重合物、アマイド系化合物、ポリエーテル燐酸エステル系化合物、水添ひまし油系化合物、フュームドシリカ系化合物、ベントナイト系化合物、層状ケイ酸塩系化合物等が挙げられる。また、本発明の水硬性組成物における粘性調整剤の含有量は特に限定されないが、例えば、0.01%以上、好ましくは0.02~1.0%、より好ましくは0.03~0.5%である。 Examples of viscosity modifiers include urethane-modified polyether compounds, acrylic polymers, amide compounds, polyether phosphate compounds, hydrogenated castor oil compounds, fumed silica compounds, bentonite compounds, and layered silicic acids. Examples include salt compounds. Further, the content of the viscosity modifier in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.01% or more, preferably 0.02 to 1.0%, more preferably 0.03 to 0.0%. It is 5%.
ダレ防止剤としては、例えば、セルロース系化合物、スターチエステル系化合物、ポリアクリルアミド系化合物、合成ポリマー系化合物等が挙げられる。また、本発明の水硬性組成物におけるダレ防止剤の含有量は特に限定されないが、例えば、0.01%以上、好ましくは0.02~1.0%、より好ましくは0.03~0.5%である。 Examples of the anti-sagging agent include cellulose compounds, starch ester compounds, polyacrylamide compounds, and synthetic polymer compounds. Further, the content of the anti-sagging agent in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.01% or more, preferably 0.02 to 1.0%, more preferably 0.03 to 0.0%. It is 5%.
水性樹脂としては、例えば、再乳化形粉末樹脂、ポリマーディスパージョン等が挙げられる。再乳化形粉末樹脂としては、アクリル系樹脂、酢酸ビニル系樹脂、エチレン-酢酸ビニル共重合樹脂等が挙げられる。また、ポリマーディスパージョンとしては、スチレンブタジエンゴム系ラテックス、アクリル酸エステル系エマルション、エチレン-酢酸ビニル系エマルション等が挙げられる。なお、ポリマーディスパージョンは水性樹脂を水に分散させたものであるため、配合する場合には、別途後記した水と共に含有させればよい。更に、本発明の水硬性組成物における水性樹脂の含有量は特に限定されないが、例えば、0.5%以上、好ましくは1.0~10.0%、より好ましくは2.0~6.0%である。 Examples of the aqueous resin include re-emulsified powder resin, polymer dispersion, and the like. Examples of re-emulsified powder resins include acrylic resins, vinyl acetate resins, ethylene-vinyl acetate copolymer resins, and the like. Examples of the polymer dispersion include styrene-butadiene rubber latex, acrylic ester emulsion, and ethylene-vinyl acetate emulsion. In addition, since the polymer dispersion is a dispersion of an aqueous resin in water, when it is blended, it may be contained together with water, which will be described separately later. Further, the content of the aqueous resin in the hydraulic composition of the present invention is not particularly limited, but is, for example, 0.5% or more, preferably 1.0 to 10.0%, more preferably 2.0 to 6.0%. %.
骨材としては、例えば、砂利、砕石、人工骨材、磁鉄鉱、重晶石、鉄片、膨張スラグ、パーライト等が挙げられる。また、本発明の水硬性組成物における骨材の含有量は特に限定されないが、例えば、本発明の水硬性組成物100質量部に対して5質量部以上、好ましくは10~100質量部、より好ましくは20~80質量部である。 Examples of the aggregate include gravel, crushed stone, artificial aggregate, magnetite, barite, iron pieces, expanded slag, and pearlite. Further, the content of aggregate in the hydraulic composition of the present invention is not particularly limited, but for example, it may be 5 parts by mass or more, preferably 10 to 100 parts by mass, or more, based on 100 parts by mass of the hydraulic composition of the present invention. Preferably it is 20 to 80 parts by mass.
本発明の水硬性組成物のより好ましい態様として、以下の成分を含有するもの、特に好ましい態様としては以下の成分からなるものが挙げられる。
(組成1)
酸化マグネシウム 30~55質量部
炭酸マグネシウム 3~15質量部
半水石膏 3~10質量部
ケイ酸塩化合物 0.1~30質量部
充填材 20~50質量部
充填剤以外の配合剤 0.5~ 5質量部
(組成2)
酸化マグネシウム 30~55質量部
炭酸マグネシウム 3~15質量部
半水石膏 3~10質量部
ケイ酸塩化合物 0.1~30質量部
ウォラストナイトとウォラストナイト以外のケイ酸塩化合物の質量比
=1:0.01~1
充填材 20~50質量部
充填剤以外の配合剤 0.5~ 5質量部
A more preferred embodiment of the hydraulic composition of the present invention includes one containing the following components, and a particularly preferred embodiment includes one comprising the following components.
(Composition 1)
Magnesium oxide 30-55 parts by mass Magnesium carbonate 3-15 parts by mass Gypsum hemihydrate 3-10 parts by mass Silicate compound 0.1-30 parts by mass Filler 20-50 parts by mass Compounding agents other than filler 0.5- 5 parts by mass (composition 2)
Magnesium oxide 30-55 parts by mass Magnesium carbonate 3-15 parts by mass Gypsum hemihydrate 3-10 parts by mass Silicate compound 0.1-30 parts by mass Mass ratio of wollastonite and silicate compounds other than wollastonite = 1:0.01~1
Filler: 20 to 50 parts by mass Compounding agents other than filler: 0.5 to 5 parts by mass
以上説明した本発明の水硬性組成物は、これと水を混練して混練物とすることができる。混練物を調製する方法は特に限定されないが、例えば、本発明の水硬性成物に水を添加して混練して混練物を調製する方法等が挙げられる。また、混練物における水の含有量は、硬化反応が十分に起きる量であれば特に限定されないが、酸化マグネシウム、炭酸マグネシウム、半水石膏、ケイ酸塩化合物の合計質量:水の質量比が1:0.5~1.0、好ましくは1:0.6~0.9となる量である。 The hydraulic composition of the present invention explained above can be kneaded with water to form a kneaded product. The method for preparing the kneaded product is not particularly limited, but examples thereof include a method in which water is added to the hydraulic composition of the present invention and kneaded to prepare a kneaded product. The content of water in the kneaded material is not particularly limited as long as it is enough to cause a hardening reaction, but the total mass ratio of water to the total mass of magnesium oxide, magnesium carbonate, gypsum hemihydrate, and silicate compound is 1. :0.5 to 1.0, preferably 1:0.6 to 0.9.
上記混練物は、床面、壁面等に塗布して硬化させて硬化体とすることができ、また、型枠中で硬化させれば成形体とすることができる。硬化は常温(5~35℃)で行うことができる。また、この混練物は、適度な硬化反応時間、例えば、15~30分程度の可使時間と、15~30時間程度の硬化時間を有するものである。なお、可使時間は、実施例に記載の方法で測定されるものであり、硬化時間は施工された混錬物の上に人が乗れる時間の目安である。 The above-mentioned kneaded product can be applied to a floor surface, wall surface, etc. and cured to form a cured product, or can be cured in a mold to form a molded product. Curing can be performed at room temperature (5 to 35°C). Further, this kneaded product has an appropriate curing reaction time, for example, a pot life of about 15 to 30 minutes and a curing time of about 15 to 30 hours. Note that the pot life is measured by the method described in Examples, and the curing time is a measure of the time a person can stand on the applied kneaded product.
斯くして得られる硬化体や成形体は、次のような性質を有することが好ましい。寸法が70mm×20mm×厚み6.5mmの試験体(成形体)の3点曲げ試験が、気乾養生日数30日後で15MPa以上である。また、気乾養生30日後に7日間水中浸漬直後の3点曲げ強度が9MPa以上である。更に、寸法が12.5mm×12.5mm×高さ25.0mmの試験体(成形体)の圧縮強度が、気乾養生日数30日後で30MPa以上である。更に、コンクリート板状に3mmの厚みで塗布し、20℃で30日養生した試験体(硬化体)の接着性が2.0N/mm2以上、耐衝撃性が5回以上である。なお、3点曲げ試験、曲げ強度、圧縮強度、接着性、耐衝撃性は、実施例に記載の方法で行われるものである。また、上記硬化体や成形体は本発明の効果に記載した物性も有する。 The cured product or molded product thus obtained preferably has the following properties. A three-point bending test of a test body (molded body) with dimensions of 70 mm x 20 mm x thickness 6.5 mm is 15 MPa or more after 30 days of air drying. Moreover, the three-point bending strength immediately after immersion in water for 7 days after 30 days of air-drying is 9 MPa or more. Furthermore, the compressive strength of the test body (molded body) with dimensions of 12.5 mm x 12.5 mm x height 25.0 mm is 30 MPa or more after 30 days of air drying. Furthermore, a test specimen (hardened product) applied to a concrete plate with a thickness of 3 mm and cured at 20° C. for 30 days had an adhesion of 2.0 N/mm 2 or more and an impact resistance of 5 times or more. Note that the three-point bending test, bending strength, compressive strength, adhesiveness, and impact resistance were conducted by the methods described in Examples. Further, the above-mentioned cured product and molded product also have the physical properties described in the effects of the present invention.
上記硬化体は、従来のセメント組成物の硬化物と同様に塗り床材、着色骨材やガラス片を混入させ、硬化後に研ぎ出しを行うテラゾー工法、塗り床用の下地処理材、防水材用の下地処理材、コンクリート構造物の補修材、内外装壁用塗材等の用途に用いることができる。また、成形体は内外装用タイル、建材用ボード等の用途に用いることができる。 The above-mentioned hardened product is used in the terrazzo construction method, in which painted floor materials, colored aggregates and glass pieces are mixed in and polished after hardening, as well as the hardened products of conventional cement compositions, as base treatment materials for painted floors, and as waterproof materials. It can be used as a base preparation material, a repair material for concrete structures, a coating material for interior and exterior walls, etc. Furthermore, the molded product can be used for interior and exterior tiles, boards for building materials, and the like.
本発明においては、これら用途の中でも従来のマグネシアセメント系硬化物の湿気および水分との接触による強度低下や、表面に水分を呼ぶことによる汗かき現象の発生、また、長時間にわたる経時的な膨張性等の問題を解決し、速硬性や施工性にも優れるため塗り床材に用いることが好ましい。 In the present invention, among these uses, conventional magnesia cement-based cured materials can reduce strength due to moisture and contact with moisture, sweating phenomenon due to moisture being attracted to the surface, and expansion over a long period of time. It is preferable to use it for floor coatings because it solves problems such as hardness and has excellent quick hardening and workability.
上記硬化体を塗り床材に用いる場合、その施工方法は、特に限定されず、本発明の水硬性組成物を含有する混練物を床面に塗布し、硬化させるだけでよい。上記混練物を床面に塗布する方法は特に限定されず、例えば、金鏝やレーキ等でよい。また、上記混練物を床面に塗布する前には、下地面の研磨による目粗し処理、下地に凹凸がある場合の平滑化処理、下地との接着性向上のためにプライマー塗布等を行ってもよい。また、上記混練物を下地の状況に応じて1回または複数回塗布して硬化させた後は、トップコート処理、シーラー処理等を行ってもよい。 When the above-mentioned cured product is used as a coating floor material, the method of application is not particularly limited, and it is sufficient to simply apply a kneaded product containing the hydraulic composition of the present invention to the floor surface and harden it. The method of applying the kneaded material to the floor surface is not particularly limited, and may be, for example, a trowel, a rake, or the like. In addition, before applying the above-mentioned kneaded product to the floor surface, roughening treatment is performed by polishing the base surface, smoothing treatment if the base surface is uneven, and application of a primer to improve adhesion to the base surface. It's okay. Further, after the kneaded material is applied once or multiple times depending on the condition of the base and cured, a top coat treatment, a sealer treatment, etc. may be performed.
上記硬化体を塗り床材に用いた場合には、耐荷重性(普通ポルトランドセメント系や早強セメント系の床材と同等以上の圧縮強度を有しているため、フォークリフトや無人搬送車(AGV)等の重車両の走行に対しても耐久性に優れる)、耐衝撃性(重量物や金属工具等の落下衝撃にも耐久できる)、耐摩耗性(表面硬度が高いため、重車両の頻繁な走行や、パレットの引き擦り等に対する耐摩耗性に優れる)、クラック抑制(一般的なセメント系硬化体においては硬化収縮によるひび割れが生じるが、本発明では硬化反応の過程で収縮が抑制されており、ひび割れが起こりがたい)、白色度が高い(主原料であるマグネシアは白色度が高いものであり、体質顔料として、シリカ、炭酸カルシウム、タルク等の色調に影響を与えないものを用いれば、普通ポルトランドセメントを硬化主成分とした硬化物よりも白色度が高い硬化物となる)等の効果を得ることが出来る。標準厚み3mmであるが、粒径の大きな骨材を配合することで一度に20mm以上の厚塗りも可能である。 When the above-mentioned hardened product is used as a coating floor material, it has a load-bearing capacity (compressive strength equal to or higher than that of ordinary Portland cement-based or early-strength cement-based flooring materials), so it can be used for forklifts, automated guided vehicles (AGVs), etc. ), impact resistance (can withstand the impact of dropping heavy objects and metal tools, etc.), and abrasion resistance (because of its high surface hardness, it is highly durable even when driven by heavy vehicles). Excellent abrasion resistance against rough running and pallet scraping), crack suppression (general cement-based hardened materials produce cracks due to curing shrinkage, but in the present invention, shrinkage is suppressed during the curing reaction process). (magnesia, which is the main raw material, has a high degree of whiteness, and if an extender pigment such as silica, calcium carbonate, or talc that does not affect the color tone is used), it has a high degree of whiteness. , the resulting cured product has a higher degree of whiteness than a cured product containing ordinary Portland cement as the main curing component). The standard thickness is 3 mm, but by adding aggregate with a large particle size, it is possible to coat it thicker than 20 mm at a time.
更に、上記硬化体は、店舗、大型商業施設、工場等の塗り床材としての適用だけでなく、損傷、欠損、不陸がある床面の下地処理材、擁壁、橋脚、トンネル等のコンクリート構造物の補修材、内装壁面の仕上げ材、外壁用仕上げ材等の施工現場で硬化させて使用する用途や、内外装用の壁材、床材用途向けの成形タイル等の成形体として使用するのに好適である。 Furthermore, the above-mentioned hardened product can be used not only as a flooring material for stores, large commercial facilities, factories, etc., but also as a base treatment material for damaged, chipped, or uneven floors, and as a concrete material for retaining walls, bridge piers, tunnels, etc. It can be used as a repair material for structures, interior wall finishing materials, exterior wall finishing materials, etc. by curing at construction sites, and as molded objects such as molded tiles for interior and exterior wall materials and flooring applications. suitable for
以下、本発明の実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、実施例の各組成において同じ成分名のものは同じものを使用している。 EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples at all. In addition, in each composition of Examples, those having the same component name are used.
実 施 例 1
水硬性組成物、成形体および硬化体の物性:
表1に記載の成分を含有する水硬性組成物と水とを混合して混練物を調製した。これらの混練物について以下に基づいて可使時間判定、混練物を型枠に入れて硬化させて得られる成形体の強度判定測定および混練物を硬化させて得られる硬化体のひび割れ性判定を行った。それらの結果も表1に記載した。
Implementation example 1
Physical properties of hydraulic composition, molded body and cured body:
A kneaded product was prepared by mixing a hydraulic composition containing the components listed in Table 1 with water. For these kneaded products, we determined the pot life based on the following, measured the strength of the molded product obtained by putting the kneaded product into a mold and hardened it, and evaluated the cracking property of the cured product obtained by curing the kneaded product. Ta. The results are also listed in Table 1.
表1に記載の成分のうち、酸化マグネシウムは、まず、市販の酸化マグネシウムの3種類(神島化学工業(株)製 スターマグP:BET比表面積1~5m2/g、同社製 スターマグU:同90~110m2/g、赤穂化成工業(株)製 AM-2:同5~10m2/g)の平均BET比表面積を以下の方法で測定した。その後、それらを適宜混合して各平均BET比表面積の酸化マグネシウムを調整した。 Among the components listed in Table 1, magnesium oxide was first prepared using three types of commercially available magnesium oxide (Star Mag P manufactured by Kamishima Chemical Co., Ltd.: BET specific surface area 1 to 5 m 2 /g, Star Mag U manufactured by Kamishima Chemical Co., Ltd.: BET specific surface area 1 to 5 m 2 /g; The average BET specific surface area of AM-2 (manufactured by Ako Kasei Kogyo Co., Ltd.: 5 to 10 m 2 / g) was measured by the following method. Thereafter, they were appropriately mixed to prepare magnesium oxide having each average BET specific surface area.
<平均BET比表面積測定方法>
平均BET比表面積は、JIS R 1626(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)に準じ、流動式比表面積自動測定装置(フローソーブ2300型:(株)島津製作所製)を用いて測定した。
<Average BET specific surface area measurement method>
The average BET specific surface area was measured according to JIS R 1626 (method for measuring specific surface area of fine ceramic powder by gas adsorption BET method) using a flow-type specific surface area automatic measuring device (Flowsorb 2300 model: manufactured by Shimadzu Corporation). It was measured using
<可使時間判定方法>
温度20℃の室内で、水硬性組成物に水を加えて2分間撹拌混合した直後を起点として、粘度が20,000mPa・sを超えるまでの時間を測定した。なお、粘度の測定は、JIS Z 8803 (液体の粘度測定方法)に準じ、BH型回転粘度計 モデルBHII(東機産業(株)製)を使用して、回転数20rpmで行った。
<Method for determining pot life>
Immediately after adding water to the hydraulic composition and stirring and mixing for 2 minutes in a room at a temperature of 20° C., the time until the viscosity exceeded 20,000 mPa·s was measured. The viscosity was measured according to JIS Z 8803 (liquid viscosity measurement method) using a BH rotational viscometer model BHII (manufactured by Toki Sangyo Co., Ltd.) at a rotation speed of 20 rpm.
<硬化物強度定方法>
温度20℃の室内で、水硬性組成物に規定量の水を加えて2分間撹拌混合した混練物をシリコーンゴム製の型枠に、混練物の厚みが約7mmなるように流し込み平坦な場所に静置した。養生5日後に型枠から硬化した成形体を脱型し、寸法が70mm×20mm×厚み6.5mmになるように成形した成形体を得た。更に成形体を気中で25日間静置して気乾養生日数が合計30日後に水中に浸漬し、7日間経過後に水中から取出しその直後に3点曲げ試験を行い3点曲げ強度を求めた。
<Method for determining strength of cured product>
In a room at a temperature of 20°C, add a specified amount of water to the hydraulic composition and stir and mix for 2 minutes. Pour the kneaded product into a silicone rubber mold so that the thickness of the kneaded product is about 7 mm, and place it on a flat place. I left it still. After 5 days of curing, the cured molded body was removed from the mold to obtain a molded body having dimensions of 70 mm x 20 mm x thickness 6.5 mm. Furthermore, the molded body was left in the air for 25 days, and after a total of 30 days of air drying, it was immersed in water, and after 7 days, it was taken out of the water, and immediately after that, a 3-point bending test was performed to determine the 3-point bending strength. .
(試験条件)
試験機:株式会社島津製作所製 オートグラフ 型式AG-50kNXplus
試験速度:1mm/min
支点間距離L:50mm
圧子の半径:5mm
支持台の半径:5mm
(Test condition)
Testing machine: Autograph model AG-50kNXplus manufactured by Shimadzu Corporation
Test speed: 1mm/min
Distance between fulcrums L: 50mm
Indenter radius: 5mm
Support stand radius: 5mm
(計算式)
σ=(3FL)/(2bh2)
σ:曲げ強度(MPa)
F:破壊時荷重(N)
L:支点間距離(mm)
b:試験片幅(mm)
h:試験片厚さ(mm)
(a formula)
σ=(3FL)/(2bh 2 )
σ: Bending strength (MPa)
F: Load at failure (N)
L: Distance between fulcrums (mm)
b: Test piece width (mm)
h: Test piece thickness (mm)
<ひび割れ性判定>
寸法が450mm×450mmのフレキシブルボードにサイデン化学(株)製の水性樹脂AD-8521(アクリル・スチレンエマルション)をプライマーとして塗布し乾燥させたものを下地板とした。温度20℃の室内で、この下地板の上に水硬性組成物に規定量の水を加えて2分間撹拌混合した混練物を全面が厚み3mmになるように均一に塗布して硬化体を得た。これをそのまま静置して30日経過後に目視観察を行い、硬化体のひび割れの有無を判定した。
<Crackability judgment>
A base board was prepared by coating a flexible board with dimensions of 450 mm x 450 mm with a water-based resin AD-8521 (acrylic styrene emulsion) manufactured by Saiden Chemical Co., Ltd. as a primer and drying it. In a room at a temperature of 20°C, a predetermined amount of water was added to the hydraulic composition and mixed with stirring for 2 minutes, and then a mixture was uniformly applied to the entire surface to a thickness of 3 mm to obtain a cured product. Ta. This was allowed to stand as it was, and after 30 days had elapsed, visual observation was performed to determine the presence or absence of cracks in the cured product.
組成9は、半水石膏が酸化マグネシウムの質量に対して5.0%であり、ひび割れの発生が確認されたが、組成1~8および組成10は半水石膏が酸化マグネシウムの質量に対して12.5~30.0%であり、ひび割れの発生は確認されなかった。特に組成2、3、6、7は、酸化マグネシウムの平均BET比表面積が5~25m2/gの範囲にあり、更に酸化マグネシウムと炭酸マグネシウムに質量比が3~10:1の範囲にあり、可使時間と硬化物強度のバランスがとれていた。 In composition 9, gypsum hemihydrate accounts for 5.0% of the mass of magnesium oxide, and the occurrence of cracks was confirmed, but in compositions 1 to 8 and composition 10, gypsum hemihydrate accounts for 5.0% of the mass of magnesium oxide. It was 12.5 to 30.0%, and no cracks were observed. In particular, in compositions 2, 3, 6, and 7, the average BET specific surface area of magnesium oxide is in the range of 5 to 25 m 2 /g, and the mass ratio of magnesium oxide to magnesium carbonate is in the range of 3 to 10:1, The pot life and the strength of the cured product were well balanced.
実 施 例 2
水硬性組成物および成形体の物性:
表2に記載の成分を含有する水硬性組成物と水とを混合して混練物を調製した。これらの混練物について実施例1と同様に可使時間判定、成形体の強度判定測定および硬化体のひび割れ性判定を行った。それらの結果も表2に記載した。
Implementation example 2
Physical properties of hydraulic composition and molded object:
A kneaded product was prepared by mixing a hydraulic composition containing the components listed in Table 2 with water. These kneaded products were evaluated in the same manner as in Example 1 to determine the pot life, the strength of the molded product, and the cracking property of the cured product. The results are also listed in Table 2.
組成11はケイ酸塩化合物の配合が無く硬化物強度が低いのに対し、組成12~17はケイ酸塩化合物が1種または2種以上を酸化マグネシウムの質量に対して、0.75~25.0%配合されており、硬化物強度が9MPa以上を示した。 Composition 11 does not contain a silicate compound and has a low cured product strength, whereas compositions 12 to 17 contain one or more silicate compounds in a ratio of 0.75 to 25% by weight of magnesium oxide. 0%, and the strength of the cured product was 9 MPa or more.
実 施 例 3
成形体の物性:
表3に記載の成分を含有する水硬性組成物と水とを混合して混練物を調製した後、実施例1に示した同様の方法で成形体を作製した。これを温度20℃の環境で、気乾養生日数10日、20日、30日、50日、100日後における3点曲げ強度試験を実施例1と同様に行い、曲げ強度を測定した。その結果を表4に示した。
Implementation example 3
Physical properties of molded body:
A hydraulic composition containing the components listed in Table 3 was mixed with water to prepare a kneaded product, and then a molded product was produced in the same manner as in Example 1. This was subjected to a three-point bending strength test in the same manner as in Example 1 after 10, 20, 30, 50, and 100 days of air-drying in an environment at a temperature of 20° C., and the bending strength was measured. The results are shown in Table 4.
また、上記混練物をシリコーン製型枠に注型した後硬化させ、寸法12.5mm×12.5mm×高さ25.0mmの成形体を作製した。気乾養生日数10日、20日、30日、50日、100日後における圧縮試験を以下の方法で行い、圧縮強度を測定した。その結果を表4に示した。 Further, the above-mentioned kneaded product was cast into a silicone mold and then cured to produce a molded product with dimensions of 12.5 mm x 12.5 mm x 25.0 mm in height. Compression tests were conducted in the following manner after 10, 20, 30, 50, and 100 days of air-drying, and the compressive strength was measured. The results are shown in Table 4.
<圧縮試験>
(圧縮試験条件)
試験機:株式会社島津製作所製 オートグラフ 型式AG-50kNXplus
試験速度:1mm/min
<Compression test>
(Compression test conditions)
Testing machine: Autograph model AG-50kNXplus manufactured by Shimadzu Corporation
Test speed: 1mm/min
(計算式)
σ=F/A
σ:圧縮強度(MPa)
F:降伏点荷重(N)
A:応力をかける前の試験片の断面積
(a formula)
σ=F/A
σ: Compressive strength (MPa)
F: Yield point load (N)
A: Cross-sectional area of the test piece before applying stress
成形体の曲げ強度、圧縮強度共に養生日数の経過に伴い強度が緩やかに向上していることが確認できた。 It was confirmed that both the bending strength and the compressive strength of the molded body gradually improved as the curing days progressed.
実 施 例 4
水硬性組成物の硬化体の物性:
縦300mm×横300mm×厚み50mmのコンクリート板を水平に設置し、その表面をサンドペーパーを使用して脆弱な表層を除去した後に、サイデン化学(株)製の水性樹脂AD-8521(アクリル・スチレンエマルション)をプライマーとして塗布し乾燥させた。乾燥後その上に3mmの厚さになるように実施例3と同様の混練物を塗布し、硬化体とした。これについて20℃・30日間の養生を行った後、これを試験体(下地がコンクリート、上面が硬化体)として、表5に記載の試験を行った。その結果も表5に示した。
Implementation example 4
Physical properties of cured product of hydraulic composition:
A concrete plate measuring 300 mm long x 300 mm wide x 50 mm thick was installed horizontally, and its surface was sandpapered to remove the fragile surface layer. Emulsion) was applied as a primer and allowed to dry. After drying, the same kneaded material as in Example 3 was applied thereon to a thickness of 3 mm to obtain a cured product. After curing this at 20° C. for 30 days, the test described in Table 5 was conducted using this as a test specimen (base is concrete, upper surface is hardened). The results are also shown in Table 5.
硬化体の接着性は良好であった。また、硬化体の耐衝撃性も、良好な結果を示した。 The adhesiveness of the cured product was good. The impact resistance of the cured product also showed good results.
実 施 例 5
水硬性組成物の鉄材への影響:
実施例3と同様の混練物を作製し、これを縦100mm×横50mmのプラスチック製容器の中に、約5mmの深さになるように流し込み、その中にサイズ20mm×50mm×厚み2mmの鉄板を垂直になるように設置した。その状態で7日間静置した後の状態を目視観察したところ変色等の変化は認められなかった。
Implementation example 5
Effect of hydraulic composition on iron materials:
A kneaded product similar to that in Example 3 was prepared and poured into a plastic container measuring 100 mm long x 50 mm wide to a depth of approximately 5 mm, and an iron plate 20 mm x 50 mm x 2 mm thick was placed in the container. was installed vertically. When the condition was visually observed after being allowed to stand still for 7 days, no changes such as discoloration were observed.
本発明の水硬性組成物は、従来のセメント組成物と同様に各種の用途に用いることができる。
以 上
The hydraulic composition of the present invention can be used for various purposes like conventional cement compositions.
that's all
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022045067A JP7130291B1 (en) | 2022-03-22 | 2022-03-22 | Hydraulic composition and its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022045067A JP7130291B1 (en) | 2022-03-22 | 2022-03-22 | Hydraulic composition and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7130291B1 JP7130291B1 (en) | 2022-09-05 |
JP2023139504A true JP2023139504A (en) | 2023-10-04 |
Family
ID=83152213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022045067A Active JP7130291B1 (en) | 2022-03-22 | 2022-03-22 | Hydraulic composition and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7130291B1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5114795A (en) * | 1974-07-24 | 1976-02-05 | Okura Industrial Co Ltd | Keiryokafunenbanno seizohoho |
JPS533419A (en) * | 1976-06-30 | 1978-01-13 | Nippon Hardboard | Production of magnesium carbonate board |
JP4532932B2 (en) * | 2004-02-25 | 2010-08-25 | 株式会社アースエンジニアリング | Architectural interior materials |
US8496751B2 (en) * | 2008-06-26 | 2013-07-30 | Calix Ltd | Binder composition |
JP2010201320A (en) * | 2009-03-02 | 2010-09-16 | Okano Kosan Kk | Method of solidifying powder of waste gypsum board |
-
2022
- 2022-03-22 JP JP2022045067A patent/JP7130291B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7130291B1 (en) | 2022-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5505756B2 (en) | Hydraulic composition, flexible article, and method for producing flexible article | |
CA3124895C (en) | Highly water-resistant, flexible cementitious coating | |
JPS582254A (en) | One package inorganic binder composition | |
CN101544856A (en) | External wall putty | |
CA2391269C (en) | Structural finish | |
JP5891888B2 (en) | Construction method for concrete floor structures | |
IL30745A (en) | Cement compositions | |
US4125504A (en) | Cement additives comprising a polymer latex containing a styrene-acrylate-acrylamide interpolymer and a butadiene rubber | |
CN108359285A (en) | High-performance green waterproof rubber cement and preparation method thereof | |
CN110885226B (en) | Colored gypsum plastering mortar and preparation method thereof | |
JP5915303B2 (en) | Self-leveling material and slurry | |
JP7130291B1 (en) | Hydraulic composition and its use | |
KR101957938B1 (en) | Self-leveling floor mortar with improved fluidity and adhesion and Method of manufacturing thereof | |
US12006262B2 (en) | Plasticizer dedusting agents for joint compounds | |
JP2673233B2 (en) | Self-leveling composition and kit for producing the composition | |
JP5027079B2 (en) | Construction method of plate-shaped decorative material | |
JP6389312B1 (en) | Magnesia cement composition and use thereof | |
JPS6111980B2 (en) | ||
RU2181133C2 (en) | Universal gluing mastic (variants) | |
JP6135273B2 (en) | Paint composition | |
RU2351556C2 (en) | Modified component of magnesia cement | |
KR20060039068A (en) | Cement mortar for repairing and restoring surface of concrete structure | |
CN117965060A (en) | Lyme artistic paint and preparation method and application thereof | |
CN113831100A (en) | Multipurpose flexible rock mud and preparation method thereof | |
AU2001243960B2 (en) | Polymer modified inorganic coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220406 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220406 |
|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20220401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7130291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |