JP2023139479A - Load fluctuation responsive type water treatment system - Google Patents

Load fluctuation responsive type water treatment system Download PDF

Info

Publication number
JP2023139479A
JP2023139479A JP2022045037A JP2022045037A JP2023139479A JP 2023139479 A JP2023139479 A JP 2023139479A JP 2022045037 A JP2022045037 A JP 2022045037A JP 2022045037 A JP2022045037 A JP 2022045037A JP 2023139479 A JP2023139479 A JP 2023139479A
Authority
JP
Japan
Prior art keywords
water treatment
water
treatment system
series
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022045037A
Other languages
Japanese (ja)
Inventor
翔平 立花
Shohei Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2022045037A priority Critical patent/JP2023139479A/en
Publication of JP2023139479A publication Critical patent/JP2023139479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To provide a water treatment system which is responsive to load fluctuation in raw water.SOLUTION: A water treatment system 1 comprises two series of a first supply pipe 3A and a second supply pipe 3B, each series comprises first and second coagulation sedimentation tanks 5A, 5B, first and second relay tanks 6A, 6B, liquid feed pumps 7A, 7B, first and second neutralization tanks 8A, 8B, first and second biological treatment devices 9A, 9B, and a filtration raw water tank 10. A serial piping 14 is connected to the first supply pipe 3A on a downstream side of the liquid feed pump 7A, and this serial piping 14 communicates with a front stage of the second coagulation sedimentation tank 5B. Further, a branch piping 18 is connected to the second supply pipe 3B on a downstream side of the relay tank 6B, and merges with the first supply pipe 3A on an upstream side of the first neutralization tank 8A.SELECTED DRAWING: Figure 1

Description

本発明は、原水の負荷変動に対応した処理が可能な水処理システムに関する。 The present invention relates to a water treatment system that can process raw water in response to load fluctuations.

従来、各種産業向けの工場では、有機物を含有する排水は、標準活性汚泥法のように生物処理で処理して、有機物を低減した後排出されている。ここで、標準活性汚泥法は、有機排水を好気的に生物処理する生物処理法であり、この標準活性汚泥法では、各種の工場から排出される工業排水を、一旦バッファタンクに貯留し、このバッファタンクからの流出水を、例えば油水分離処理、凝集沈殿処理等の一次処理を行った後、続いて生物処理による二次処理を行ったりしている。 Conventionally, in factories for various industries, wastewater containing organic matter is treated with biological treatment such as the standard activated sludge method to reduce organic matter before being discharged. Here, the standard activated sludge method is a biological treatment method in which organic wastewater is aerobically treated biologically. In this standard activated sludge method, industrial wastewater discharged from various factories is temporarily stored in a buffer tank. The water flowing out from the buffer tank is subjected to primary treatment such as oil/water separation treatment or coagulation sedimentation treatment, and then to secondary treatment using biological treatment.

このような工場排水は、気象条件、季節による温度条件あるいは製造する商品の変更などによる排水(原水)水質の変動により、原水負荷が大きく変動することがある。このように原水負荷が大きく変動する工場においては、従来は高負荷用と低負荷用の排水処理設備を設け、原水の負荷が高いときと低いときとで異なる排水処理設備で処理していた。 The raw water load of such factory wastewater may vary greatly due to changes in the quality of the wastewater (raw water) due to weather conditions, seasonal temperature conditions, changes in manufactured products, etc. In factories where the raw water load fluctuates widely in this way, conventionally, wastewater treatment equipment was installed for high-load and low-load use, and different wastewater treatment equipment was used to treat when the raw water load was high and when it was low.

ところで、同一の水処理装置を複数備える水処理システムとして、特許文献1には、脱窒工程を二工程に分離し、硝化水に有機炭素源を注入して硝化水中のNOx-Nの一部を除去する第一の脱窒工程と、この第一の脱窒工程の処理水に有機炭素源の注入量を0~脱窒素菌の増殖に不足な量にしての残留NOx-Nを除去して脱窒素水を得る第二の脱窒工程をそれぞれ行う脱窒手段を2段直列に配列した水処理システムにおいて、第一の脱窒工程の脱窒手段と第二の脱窒工程の脱窒手段を交互に切替可能とした水処理システムが開示されている。 By the way, Patent Document 1 describes a water treatment system including a plurality of identical water treatment devices, in which the denitrification process is separated into two steps, and an organic carbon source is injected into the nitrified water to remove some of the NOx-N in the nitrified water. The first denitrification step removes residual NOx-N, and the amount of organic carbon source injected into the treated water of this first denitrification step is from 0 to an amount insufficient for the growth of denitrifying bacteria to remove residual NOx-N. In a water treatment system in which denitrification means are arranged in series in two stages, the denitrification means for the first denitrification step and the denitrification means for the second denitrification step each perform a second denitrification step to obtain denitrified water. A water treatment system is disclosed in which means can be alternately switched.

また、特許文献2には、複数のろ過器を備える水浄化システムにおいて、ろ過量によってろ過器を並列と直列に切替可能に構成したものが開示されている。 Further, Patent Document 2 discloses a water purification system including a plurality of filters in which the filters can be switched between parallel and series depending on the amount of filtration.

特公昭62-31638号公報Special Publication No. 62-31638 特開平10-43768号公報Japanese Patent Application Publication No. 10-43768

しかしながら、従来の高負荷用と低負荷用の排水処理設備を設けた排水処理システムでは、2種類の排水処理設備を設ける必要があるので設備コストがかさむだけでなく広い設置スペースを確保する必要がある、という問題点がある。また、低負荷の排水が流れる時は、高負荷排水処理設備は遊休設備となるなど、年間通して最大限の能力を発揮出来ないという問題点もある。 However, in conventional wastewater treatment systems that have wastewater treatment equipment for high-load and low-load use, it is necessary to install two types of wastewater treatment equipment, which not only increases equipment costs but also requires a large installation space. There is a problem. Another problem is that when low-load wastewater flows, high-load wastewater treatment equipment becomes idle, meaning that it cannot demonstrate its maximum capacity throughout the year.

そこで、特許文献1や特許文献2に記載されているように同種の装置を複数設けることで対応することが考えられるが、これらの技術は水質変動における課題を解決することを想定していないため、この技術をそのまま排水処理設備に対応させても排水の負荷変動に対応させることは困難である。 Therefore, it is possible to deal with this by installing multiple devices of the same type as described in Patent Document 1 and Patent Document 2, but these technologies are not designed to solve the problem of water quality fluctuations. Even if this technology is applied directly to wastewater treatment equipment, it is difficult to adapt it to changes in wastewater load.

本発明は、上記課題に鑑みてなされたものであり、原水の負荷変動に対応した処理が可能な水処理システムを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a water treatment system that can process raw water in response to load fluctuations.

上記目的に鑑み、本発明は第一に、原水を処理する複数の第一の水処理装置を少なくも備えた水処理システムであって、前記第一の水処理装置により原水を並列処理する並列配管と、該第一の水処理装置を直列に接続して直列処理する直列配管とが設けられており、前記並列配管と直列配管とを切り替える切替手段を備える、水処理システムを提供する(発明1)。 In view of the above object, the present invention first provides a water treatment system comprising at least a plurality of first water treatment devices that treat raw water, the first water treatment devices treating raw water in parallel. Provided is a water treatment system, which is provided with piping and a series piping that connects the first water treatment device in series and performs series treatment, and is provided with a switching means for switching between the parallel piping and the series piping (invention 1).

かかる発明(発明1)によれば、原水負荷に応じて第一の水処理装置を直列に運用するか、並列に運用するかの流路の切り替えを行い、高負荷原水流入時は第一の水処理装置どうしを直列に接続して運用する一方、低負荷原水流入時は並列で運用することで、原水の負荷の変動に対応して適切な処理を行うことができる。 According to this invention (invention 1), the flow path is switched between operating the first water treatment device in series or in parallel depending on the raw water load, and when high load raw water inflows, the first water treatment device is operated in series or in parallel. By connecting water treatment devices in series and operating them in parallel when low-load raw water flows in, it is possible to perform appropriate treatment in response to fluctuations in raw water load.

上記発明(発明1)においては、前記第一の水処理装置の後段に該第一の水処理装置と同数の第二の水処理装置を備えることが好ましい(発明2)。 In the above invention (invention 1), it is preferable that the same number of second water treatment devices as the first water treatment devices are provided downstream of the first water treatment device (invention 2).

上記発明(発明2)においては、前記第二の水処理装置が前記複数の第一の水処理装置の処理水をそれぞれ並列処理可能に設けられていることが好ましい(発明3)。 In the above invention (invention 2), it is preferable that the second water treatment device is provided so as to be able to process the treated water of the plurality of first water treatment devices in parallel, respectively (invention 3).

かかる発明(発明2,3)によれば、第一の水処理装置を直列あるいは並列のいずれで運用したとしても、この第一の水処理装置の処理水を前記第二の水処理装置でさらに処理することができる。 According to this invention (Inventions 2 and 3), even if the first water treatment device is operated in series or in parallel, the treated water of the first water treatment device is further processed in the second water treatment device. can be processed.

上記発明(発明2,3)においては、前記第一の水処理装置又は第二の水処理装置の処理水を処理する第三の水処理装置を備えることが好ましい(発明4)。 In the above inventions (Inventions 2 and 3), it is preferable to include a third water treatment device that processes the treated water of the first water treatment device or the second water treatment device (Invention 4).

かかる発明(発明4)によれば、第一の水処理装置、第二の水処理装置及び第三の水処理装置によりさらに高度処理が可能な水処理システムを構築することができる。 According to this invention (invention 4), it is possible to construct a water treatment system capable of more advanced treatment using the first water treatment device, the second water treatment device, and the third water treatment device.

上記発明(発明4)においては、前記第三の水処理装置が複数並列に設けられおり、前記第一の水処理装置が並列か直列接続かで第三の水処理装置の稼働数を切り替え可能となっていることが好ましい(発明5)。 In the above invention (invention 4), a plurality of the third water treatment devices are provided in parallel, and the number of operating third water treatment devices can be switched depending on whether the first water treatment devices are connected in parallel or in series. It is preferable that (Invention 5).

かかる発明(発明5)によれば、第一の水処理装置を直列接続あるいは並列のいずれで運用したとしても、この第一の水処理装置の処理水量に応じて、前記第三の水処理装置の稼働数を切り替えることで、第三の水処理装置を適正に運転することができる。 According to this invention (Invention 5), even if the first water treatment device is operated in series connection or in parallel, the third water treatment device By switching the number of operations, the third water treatment device can be operated appropriately.

上記発明(発明4,5)においては、前記第一の水処理装置が凝集沈殿装置であり、前記第二の水処理装置が中和槽であり、前記第三の水処理装置がろ過器であることが好ましい(発明6)。 In the above inventions (Inventions 4 and 5), the first water treatment device is a coagulation sedimentation device, the second water treatment device is a neutralization tank, and the third water treatment device is a filter. It is preferable that there be (Invention 6).

かかる発明(発明6)によれば、凝集沈殿装置は原水負荷が処理能力に大きく影響するので、凝集沈殿装置を並列処理する並列配管と、凝集沈殿装置間を直列に接続して直列処理する直列配管とを設けて、原水負荷に応じて並列配管と直列配管とを切り替えることにより、原水の処理を適正に行うことができる。 According to this invention (Invention 6), since the raw water load greatly affects the processing capacity of the coagulation sedimentation device, the parallel piping that processes the coagulation sedimentation devices in parallel, and the series connection that connects the coagulation sedimentation devices in series to process the series in series. By providing piping and switching between parallel piping and series piping according to the raw water load, raw water can be properly treated.

また、本発明は第二に、原水を処理する複数の異なる水処理装置が直列に接続された水処理系列を複数系列備えた水処理システムであって、前記一の水処理系列を構成する少なくとも一種の水処理装置の後段に他の水処理系列を構成する該水処理装置と同種の水処理装置の前段と連結する連結配管が設けられていて、該水処理装置を並列処理と直列処理とに切り換える切替手段を備える、水処理システムを提供する(発明7)。 Second, the present invention provides a water treatment system comprising a plurality of water treatment lines in which a plurality of different water treatment apparatuses for treating raw water are connected in series, wherein at least one water treatment line constitutes the first water treatment line. Connecting piping is provided at the downstream stage of one type of water treatment equipment to connect to the front stage of the same type of water treatment equipment constituting another water treatment system, and the water treatment equipment can be used for parallel processing or serial processing. Provided is a water treatment system comprising a switching means for switching to (Invention 7).

かかる発明(発明7)によれば、原水負荷に応じて、一の水処理系列を構成する少なくとも一種の水処理装置と他の水処理系列を構成する同種の水処理装置とを直列に運用するか、並列に運用するかの流路の切り替えを行い、高負荷原水流入時は直列で運用する一方、低負荷原水流入時は並列運用することで、原水の負荷の変動に対応して適切な処理を行うことができる。 According to this invention (Invention 7), at least one type of water treatment device constituting one water treatment system and the same type of water treatment device constituting another water treatment system are operated in series according to the raw water load. By switching the flow paths to either operate in parallel or in parallel, and operate in series when high-load raw water is flowing in, and in parallel when low-load raw water is flowing in, the appropriate flow path can be adjusted in response to fluctuations in the raw water load. can be processed.

上記発明(発明7)においては、前記連結配管が前段に接続された他の水処理系列の水処理装置の後段に、該他の水処理系列の水処理装置の処理水の一部を一の水処理系列の該水処理装置の後段に供給する分岐配管を備えることが好ましい(発明8)。 In the above invention (invention 7), a part of the treated water of the water treatment equipment of the other water treatment system is transferred to the downstream stage of the water treatment equipment of the other water treatment system to which the connecting pipe is connected to the front stage. It is preferable to provide a branch pipe for supplying the water treatment system to the latter stage of the water treatment device (Invention 8).

かかる発明(発明8)によれば、少なくとも一種の水処理装置と他の水処理系列を構成する同種の水処理装置とを直列に運用した後の処理水を各系列の後段の水処理装置で適正に処理することができる。 According to this invention (Invention 8), at least one type of water treatment device and the same type of water treatment device constituting another water treatment system are operated in series, and the treated water is then used in the water treatment device at the latter stage of each system. It can be disposed of appropriately.

本発明の水処理システムによれば、複数の第一の水処理装置により原水をそれぞれ処理する並列配管と、該第一の水処理装置を直列に接続して直列処理する直列配管とが切り替え可能となっているので、高負荷原水流入時は第一の水処理装置どうしを直列運用する一方、低負荷原水流入時は並列運用することで、原水の負荷の変動に対応して適切な処理を行うことができる。このような本発明により、原水負荷が大きく変動する工場設備においても水処理システムを複数設ける必要がなくなり、遊休設備削減によるイニシャルコストの低減や2系列設備の水槽共有化による設置スペースの削減などの効果が得られる。さらには、遊休設備削減により電力量や機器メンテナンス等のランニングコストを削減することができる、という効果も奏する。 According to the water treatment system of the present invention, it is possible to switch between parallel piping in which raw water is treated by a plurality of first water treatment devices, respectively, and series piping in which the first water treatment devices are connected in series and treated in series. Therefore, by operating the first water treatment equipment in series when high-load raw water inflows, and in parallel when low-load raw water inflows, appropriate treatment can be performed in response to fluctuations in the raw water load. It can be carried out. The present invention eliminates the need to install multiple water treatment systems even in factory equipment where the raw water load fluctuates greatly, and reduces initial costs by reducing idle equipment and reduces installation space by sharing water tanks between two lines of equipment. Effects can be obtained. Furthermore, by reducing idle equipment, running costs such as power consumption and equipment maintenance can be reduced.

本発明の一実施形態による水処理システムを示すフロー図である。FIG. 1 is a flow diagram illustrating a water treatment system according to an embodiment of the invention. 同実施形態における低負荷時の原水の処理を示すフロー図である。It is a flowchart which shows the processing of raw water at the time of low load in the same embodiment. 同実施形態における高負荷時の原水の処理を示すフロー図である。It is a flowchart which shows the processing of raw water at the time of high load in the same embodiment.

以下、本発明の水処理システムの一実施形態について添付図面を参照して説明する。 EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the water treatment system of this invention is described with reference to an accompanying drawing.

[水処理システム]
図1は本実施形態の水処理システムを示している。図1において水処理システム1は、原水槽2に2系列の並列配管としての第一の供給管3A及び第二の供給管3Bが接続していて、第一の供給管3A及び第二の供給管3Bの基端側には送液ポンプ4A,4Bをそれぞれ有する。これら各系列はそれぞれ第一の水処理装置としての第一及び第二の凝集沈殿槽5A,5B、第一及び第二の中継槽6A,6B、送液ポンプ7A,7B、第一及び第二の中和槽8A,8B、第二の水処理装置としての第一及び第二の生物処理装置9A,9B、ろ過原水槽10、送液ポンプ12A,12B,12C,12Dから連続する第三の水処理装置としての4台のろ過器、11A,11B,11C,11D及びろ過処理水槽13により構成されている。
[Water treatment system]
FIG. 1 shows the water treatment system of this embodiment. In FIG. 1, a water treatment system 1 includes a raw water tank 2 connected to a first supply pipe 3A and a second supply pipe 3B as two series of parallel pipes, and a first supply pipe 3A and a second supply pipe 3B. The tube 3B has liquid pumps 4A and 4B at its base end, respectively. Each of these series includes first and second coagulation sedimentation tanks 5A, 5B, first and second relay tanks 6A, 6B, liquid feeding pumps 7A, 7B, first and second Neutralization tanks 8A, 8B, first and second biological treatment devices 9A, 9B as second water treatment devices, filtration raw water tank 10, and a third continuous water pump 12A, 12B, 12C, 12D. It is composed of four filters 11A, 11B, 11C, 11D and a filtration treatment water tank 13 as a water treatment device.

第一の供給管3Aには送液ポンプ7Aの下流側に開閉バルブ15を備えた直列配管14が接続していて、この直列配管14は第二の供給管3Bの第二の凝集沈殿槽5Bの前段に連通している。そして、第一の供給管3Aの直列配管14の接続箇所よりも下流側と、第二の供給管3Bの直列配管14の連通箇所より上流側には、それぞれ開閉バルブ16,17が設けられている。これら開閉バルブ15,16,17を切替手段として、その開閉を制御することにより、第一及び第二の凝集沈殿槽5A,5Bを並列側と直列側とに切り替え可能となっている。 A series pipe 14 equipped with an on-off valve 15 is connected to the first supply pipe 3A on the downstream side of the liquid sending pump 7A, and this series pipe 14 is connected to the second coagulation sedimentation tank 5B of the second supply pipe 3B. It is connected to the front stage. Opening/closing valves 16 and 17 are provided downstream from the connection point of the series pipe 14 of the first supply pipe 3A and upstream of the communication point of the series pipe 14 of the second supply pipe 3B, respectively. There is. By controlling the opening and closing of these on-off valves 15, 16, and 17 as switching means, it is possible to switch the first and second coagulation-sedimentation tanks 5A and 5B between the parallel side and the series side.

また、第二の中継槽6Bの下流側には、開閉バルブ19を有する分岐配管18が接続されていて、この分岐配管18は、第一の中和槽8Aの上流側で第一の供給管3Aに合流している開閉バルブ19が設けられていて、第一の中和槽8Aの上流側で第一の供給管3Aに合流している。 Further, a branch pipe 18 having an on-off valve 19 is connected to the downstream side of the second relay tank 6B, and this branch pipe 18 is connected to the first supply pipe on the upstream side of the first neutralization tank 8A. An on-off valve 19 is provided which joins the supply pipe 3A, and joins the first supply pipe 3A on the upstream side of the first neutralization tank 8A.

なお、本実施形態の水処理システム1は、第一の供給管3Aに沿って直列に設けられた第一の凝集沈殿槽5A,第一の中継槽6A、送液ポンプ7A,第一の中和槽8A、第一の生物処理装置9Aからなる第一の水処理系列と、第二の供給管3Bに沿って直列に設けられた第二の凝集沈殿槽5B,第二の中継槽6B、送液ポンプ7B,第二の中和槽8B、第二の生物処理装置9Bからなる第二の水処理系列とからなり、第一の水処理系列の第一の凝集沈殿槽5A及び第一の中継槽6Aの後段に、同種の水処理装置である第二の凝集沈殿槽5B及び第二の中継槽6Bの前段に連結する連結配管14を設けたものであり、第一の凝集沈殿槽5A及び第一の中継槽6Aと、第二の凝集沈殿槽5B及び第二の中継槽6Bを並列側と直列側とを切り換る切替手段を備えるものと規定することもできる。 In addition, the water treatment system 1 of this embodiment includes a first coagulation sedimentation tank 5A, a first relay tank 6A, a liquid feeding pump 7A, and a first inner tank, which are provided in series along the first supply pipe 3A. A first water treatment system consisting of a Japanese tank 8A, a first biological treatment device 9A, a second coagulation sedimentation tank 5B, a second relay tank 6B, which were provided in series along the second supply pipe 3B, It consists of a second water treatment system consisting of a liquid sending pump 7B, a second neutralization tank 8B, and a second biological treatment device 9B. A connecting pipe 14 is provided downstream of the relay tank 6A and connected to a second coagulation sedimentation tank 5B and a front stage of the second relay tank 6B, which are water treatment devices of the same type, and the first coagulation sedimentation tank 5A It is also possible to specify that the first relay tank 6A, the second coagulation sedimentation tank 5B, and the second relay tank 6B are equipped with a switching means for switching between the parallel side and the series side.

[水処理システムの運転方法]
上述したような水処理システム1の運転方法について以下説明する。
[How to operate the water treatment system]
A method of operating the water treatment system 1 as described above will be described below.

(低負荷時の運転方法)
原水Wの負荷が低い場合には水処理システム1を並列運転する。すなわち、図2に示すように直列配管14の開閉バルブ15を閉鎖するとともに、分岐配管18の開閉バルブ19を閉鎖する。
(How to operate at low load)
When the load of raw water W is low, the water treatment system 1 is operated in parallel. That is, as shown in FIG. 2, the on-off valve 15 of the series pipe 14 is closed, and the on-off valve 19 of the branch pipe 18 is closed.

この状態で送液ポンプ4A,4Bを運転して原水Wを第一の供給管3A及び第一の供給管3Aにそれぞれ供給する。そして、第一の凝集沈殿槽5A,第二の凝集沈殿槽5Bで凝集剤や必要に応じて消泡剤を添加して凝集及び沈殿処理する。次に、第一の中継槽6A,第二の中継槽6Bを経由して、送液ポンプ7A,7Bにより第一の中和槽8A,第二の中和槽8Bに送り、ここで苛性ソーダ(NaOH)等のアルカリを添加するとともに攪拌してpH6.5~7.5程度に中和する。続いて、流動床型好気性生物処理槽などの第一の生物処理槽9A,第二の生物処理槽9Bで曝気しながら生物処理して、有機物などを分解する。 In this state, the liquid pumps 4A and 4B are operated to supply raw water W to the first supply pipe 3A and the first supply pipe 3A, respectively. Then, in the first coagulation-sedimentation tank 5A and the second coagulation-sedimentation tank 5B, a flocculant and, if necessary, an antifoaming agent are added to carry out flocculation and precipitation processing. Next, via the first relay tank 6A and the second relay tank 6B, the liquid is sent to the first neutralization tank 8A and the second neutralization tank 8B by the liquid sending pumps 7A and 7B, where the caustic soda ( Add an alkali such as NaOH) and stir to neutralize to pH 6.5 to 7.5. Next, biological treatment is performed while aeration is performed in a first biological treatment tank 9A and a second biological treatment tank 9B, such as a fluidized bed type aerobic biological treatment tank, to decompose organic matter.

こうして生物処理した第一の生物処理槽9A,第二の生物処理槽9Bの処理水(ろ過原水)W1をろ過原水槽10で受けて合流させる。このとき並列処理では原水Wの処理水量が後述する直列処理よりも多いので、ろ過原水槽10に付設した4台の送液ポンプのうち3台(12B,12C,12D)を運転して、3台のろ過器11B,11C,11Dにろ過原水W1を供給し、濁質成分を除去してろ過処理水W2とし、これをろ過処理水槽13に貯留することで原水(排水)Wを処理することができる。 The treated water (filtered raw water) W1 of the first biological treatment tank 9A and the second biological treatment tank 9B which have been subjected to the biological treatment in this way is received in the filtered raw water tank 10 and made to join together. At this time, in parallel processing, the amount of raw water W to be processed is larger than in serial processing, which will be described later. The filtered raw water W1 is supplied to the filters 11B, 11C, and 11D of the stand, and turbidity components are removed to obtain filtered water W2, which is stored in the filtered water tank 13 to treat the raw water (wastewater) W. I can do it.

このような低負荷時の運転方法では、第一の供給管3Aの系列と、第二の供給管3Bの系列とでそれぞれ独立して処理を行う。この並列運転時は、2系列の凝集沈殿槽5A,5Bで並行処理することで水処理システム1全体の処理水量を確保しつつ、安定的に放流レベルまで処理することが可能となる。そして、4台のろ過器11A,11B,11C,11Dは、常時3台稼働で1台を休止して逆洗などを行えばよく、この休止するろ過器は順次変更すればよい。 In such a low load operating method, the first supply pipe 3A series and the second supply pipe 3B series perform processing independently. During this parallel operation, by performing parallel treatment in the two series of coagulation sedimentation tanks 5A and 5B, it is possible to stably treat the water up to the discharge level while ensuring the amount of water to be treated in the entire water treatment system 1. The four filters 11A, 11B, 11C, and 11D may be operated at all times, and one may be stopped for backwashing or the like, and the filters to be stopped may be changed in sequence.

(高負荷時の運転方法)
原水負荷が高い場合には水処理システム1の第一及び第二の凝集沈殿槽5A,5Bを直列運転する。すなわち、図3に示すように直列配管14の開閉バルブ15を開成し、第一の供給管3Aの直列配管14の接続箇所よりも下流側の開閉バルブ16と第二の供給管3Bの直列配管14の連通箇所より上流側の開閉バルブ17を閉鎖するとともに分岐配管18の開閉バルブ19を開成する。
(How to operate under high load)
When the raw water load is high, the first and second coagulation sedimentation tanks 5A and 5B of the water treatment system 1 are operated in series. That is, as shown in FIG. 3, the on-off valve 15 of the series pipe 14 is opened, and the on-off valve 16 downstream of the connection point of the series pipe 14 of the first supply pipe 3A and the series pipe of the second supply pipe 3B are opened. The on-off valve 17 upstream of the communication point 14 is closed, and the on-off valve 19 of the branch pipe 18 is opened.

この状態で送液ポンプ4Bは停止した状態で、送液ポンプ4Aを運転し、原水Wを第一の供給管3Aにのみ供給する。そして、第一の凝集沈殿槽5Aで凝集剤や必要に応じて消泡剤を添加して凝集及び沈殿処理した後、第一の中継槽6Aから送液ポンプ7Aにより処理水を送給する。この処理水は、直列配管14を経由して第二の凝集沈殿槽5Bの前段に供給され、この第二の凝集沈殿槽5Bで凝集剤が添加されて再度凝集及び沈殿処理された後、第二の中継槽6Bから送液ポンプ7Bにより送液する。このとき、分岐配管18が開成しているので、この処理水は第二の中和槽8Bに送られるとともに、第一の中和槽8Aにも送られる。この第一の中和槽8A及び第二の中継槽6Bで苛性ソーダ(NaOH)等のアルカリを添加されてpH6.5~7.5程度に中和する。続いて、流動床型好気性生物処理槽などの第一の生物処理槽9A,第二の生物処理槽9Bで生物処理して、有機物などを分解する。 In this state, the liquid feed pump 4B is stopped, and the liquid feed pump 4A is operated to supply raw water W only to the first supply pipe 3A. After the first coagulation and sedimentation tank 5A adds a flocculant and, if necessary, an antifoaming agent to carry out flocculation and precipitation treatment, the treated water is fed from the first relay tank 6A by the liquid feed pump 7A. This treated water is supplied to the front stage of the second flocculating sedimentation tank 5B via the series piping 14, where a flocculant is added and the treated water is flocculated and sedimented again. The liquid is sent from the second relay tank 6B by the liquid sending pump 7B. At this time, since the branch pipe 18 is open, this treated water is sent to the second neutralization tank 8B and also to the first neutralization tank 8A. In this first neutralization tank 8A and second relay tank 6B, an alkali such as caustic soda (NaOH) is added to neutralize the pH to about 6.5 to 7.5. Subsequently, biological treatment is performed in a first biological treatment tank 9A and a second biological treatment tank 9B, such as a fluidized bed type aerobic biological treatment tank, to decompose organic matter.

こうして生物処理した第一の生物処理槽9A,第二の生物処理槽9Bの処理水(ろ過原水)W1をろ過原水槽10で受けて合流させる。このとき直列処理では原水Wの処理水量が少ないので、ろ過原水槽10に付設した4台の送液ポンプのうち2台(12C,12D)を運転して、2台のろ過器11C,11Dにろ過原水W1を供給して、濁質成分を除去してろ過処理水W2とし、これをろ過処理水槽13に貯留することで原水(排水)を処理することができる。 The treated water (filtered raw water) W1 of the first biological treatment tank 9A and the second biological treatment tank 9B which have been subjected to the biological treatment in this way is received in the filtered raw water tank 10 and made to join together. At this time, since the amount of raw water W to be processed is small in series processing, two of the four liquid sending pumps (12C, 12D) attached to the filtration raw water tank 10 are operated to feed the two filters 11C, 11D. The raw water (waste water) can be treated by supplying the filtered raw water W1, removing suspended matter components to obtain the filtered water W2, and storing this in the filtered water tank 13.

このような高負荷時の運転方法では、第一の供給管3Aの第一の凝集沈殿槽5Aで凝集沈殿処理を行った後、第二の供給管3Bの第二の凝集沈殿槽5Bで再度凝集沈殿処理を行うので、不純物を高度に凝集沈殿処理により除去することができる。2系列分の第一の凝集沈殿槽5A及び第二の凝集沈殿槽5Bで連続処理すること水処理システム1全体としての処理水量は並列運転に比して減少するが、高負荷排水も安定的に放流レベルまで処理することが可能となる。 In such a high load operation method, after coagulation and sedimentation is performed in the first flocculation and sedimentation tank 5A of the first supply pipe 3A, the process is carried out again in the second flocculation and sedimentation tank 5B of the second supply pipe 3B. Since the coagulation-sedimentation treatment is performed, impurities can be highly removed by the coagulation-sedimentation treatment. Continuous treatment in two series of first coagulation sedimentation tank 5A and second coagulation sedimentation tank 5B.Although the amount of treated water in the water treatment system 1 as a whole is reduced compared to parallel operation, high-load wastewater is also stable. It becomes possible to treat water up to the level of discharge.

また、並列運転時と直列運転時とでは、原水Wの処理水量は並列運転時の方が多く直列運転時の方が少ない一方、原水Wの負荷は並列運転時の方が低く直列運転時の方が高いので、これらを踏まえ直列運転・並列運転の切替に応じて、第一の凝集沈殿槽5A及び第二の凝集沈殿槽5Bでの各種薬品の添加量、第一の生物処理槽9A,第二の生物処理槽9BのpHを間欠タイマーで切り替えて、排水負荷に応じた各種薬品の注入量の設定を行えばよい。 Furthermore, when operating in parallel and in series, the amount of processed raw water W is higher in parallel operation and less in series operation, while the load on raw water W is lower in parallel operation and lower in series operation. Therefore, based on these and depending on the switching between series operation and parallel operation, the amount of various chemicals added in the first coagulation sedimentation tank 5A and the second coagulation sedimentation tank 5B, the first biological treatment tank 9A, The pH of the second biological treatment tank 9B may be switched using an intermittent timer to set the injection amount of various chemicals according to the wastewater load.

上述したように本実施形態の水処理システムは、原水負荷が高い場合と低い場合とを切替運転可能となっているので、原水Wの水質が大幅に変動するような工場において好適に適用することができる。しかも、同一の装置構成で並列運転と直列運転とが可能であるので装置のコンパクト化が図れるとともに、これらの切替を操作パネルなどで可能とすることで、作業性の向上も図ることができる。なお、並列運転と直列運転の切替は、原水Wの水質(例えば濁質成分の濃度やTOC濃度など)、処理水量と、水処理システム1の性能などに応じて適宜設定すればよく、これらの設定項目をセンシングして、その測定値に基づいて並列運転とするか直列運転とするかを判断して、手動で切り替えてもよいし、制御手段により自動的に切り替えるように制御してもよい。 As described above, the water treatment system of the present embodiment can be operated in a manner that switches between high and low raw water loads, so it can be suitably applied to factories where the quality of raw water W fluctuates significantly. I can do it. Moreover, since parallel operation and series operation are possible with the same device configuration, the device can be made more compact, and by making these changes possible with an operation panel, it is also possible to improve work efficiency. The switching between parallel operation and series operation can be set as appropriate depending on the quality of the raw water W (for example, the concentration of turbid components and TOC concentration), the amount of water to be treated, and the performance of the water treatment system 1. The setting items may be sensed, and based on the measured values, it may be determined whether to operate in parallel or in series, and the switching may be done manually, or the switching may be controlled automatically by a control means. .

以上、本実施形態の水処理システムについて説明してきたが、本発明は前記実施形態に限定されず、種々の構成の排水処理装置、排水回収装置あるいはこれら以外の水処理装置に適用することができる。また、第一の生物処理槽9A,第二の生物処理槽9Bは、流動床型好気性生物処理槽に限らず、活性汚泥槽や膜式活性汚泥(MBR)槽などであってもよい。さらに、直列配管14は、第一の供給管3Aとは別に第一の中継槽6Aに接続するなど種々の変更実施が可能である。 Although the water treatment system of this embodiment has been described above, the present invention is not limited to the above embodiment, and can be applied to wastewater treatment devices, wastewater recovery devices, or other water treatment devices with various configurations. . Further, the first biological treatment tank 9A and the second biological treatment tank 9B are not limited to the fluidized bed type aerobic biological treatment tank, but may be an activated sludge tank, a membrane activated sludge (MBR) tank, or the like. Furthermore, various changes can be made to the series piping 14, such as connecting it to the first relay tank 6A separately from the first supply pipe 3A.

1 水処理システム
2 原水槽
3A 第一の供給管(並列配管)
3B 第二の供給管(並列配管)
4A,4B 送液ポンプ
5A 第一の凝集沈殿槽(第一の水処理装置)
5B 第二の凝集沈殿槽(第一の水処理装置)
6A 第一の中継槽
6B 第二の中継槽
7A,7B 送液ポンプ
8A 第一の中和槽
8B 第二の中和槽
9A 第一の生物処理装置(第二の水処理装置)
9B 第二の生物処理装置(第二の水処理装置)
10 ろ過原水槽
11A,11B,11C,11D ろ過器(第三の水処理装置)
12A,12B,12C,12D 送液ポンプ
13 ろ過処理水槽
14 直列配管
15,16,17 開閉バルブ(切替手段)
18 分岐配管
19 開閉バルブ
W 原水(排水)
W1 ろ過原水
W2 ろ過処理水
1 Water treatment system 2 Raw water tank 3A First supply pipe (parallel piping)
3B Second supply pipe (parallel piping)
4A, 4B Liquid pump 5A First coagulation sedimentation tank (first water treatment device)
5B Second coagulation sedimentation tank (first water treatment device)
6A First relay tank 6B Second relay tank 7A, 7B Liquid pump 8A First neutralization tank 8B Second neutralization tank 9A First biological treatment device (second water treatment device)
9B Second biological treatment device (second water treatment device)
10 Filtration raw water tank 11A, 11B, 11C, 11D Filter (third water treatment device)
12A, 12B, 12C, 12D Liquid pump 13 Filtration treatment tank 14 Series piping 15, 16, 17 Opening/closing valve (switching means)
18 Branch pipe 19 Open/close valve W Raw water (drainage)
W1 Filtered raw water W2 Filtered water

Claims (8)

原水を処理する複数の第一の水処理装置を少なくとも備えた水処理システムであって、前記各第一の水処理装置により原水を並列処理する並列配管と、該第一の水処理装置を直列に接続して直列処理する直列配管とが設けられており、前記並列配管と直列配管とを切り替える切替手段を備える、水処理システム。 A water treatment system comprising at least a plurality of first water treatment devices that treat raw water, wherein the first water treatment devices are connected in series with parallel piping that processes raw water in parallel by each of the first water treatment devices. A water treatment system, comprising: series piping connected to the water treatment system for serial treatment, and comprising switching means for switching between the parallel piping and the series piping. 前記第一の水処理装置の後段に該第一の水処理装置と同数の第二の水処理装置を備える、請求項1に記載の水処理システム。 The water treatment system according to claim 1, further comprising the same number of second water treatment devices as the first water treatment devices downstream of the first water treatment device. 前記第二の水処理装置が前記複数の第一の水処理装置の処理水をそれぞれ並列処理可能に設けられている、請求項2に記載の水処理システム。 The water treatment system according to claim 2, wherein the second water treatment device is provided to be able to process the treated water of the plurality of first water treatment devices in parallel. 前記第一の水処理装置又は第二の水処理装置の処理水を処理する第三の水処理装置を備える、請求項2又は3に記載の水処理システム。 The water treatment system according to claim 2 or 3, comprising a third water treatment device that processes treated water of the first water treatment device or the second water treatment device. 前記第三の水処理装置が複数並列に設けられおり、前記第一の水処理装置が並列か直列接続かで第三の水処理装置の稼働数を切り替え可能となっている、請求項4に記載の水処理システム。 According to claim 4, a plurality of the third water treatment devices are provided in parallel, and the number of operating third water treatment devices can be switched depending on whether the first water treatment devices are connected in parallel or in series. Water treatment system as described. 前記第一の水処理装置が凝集沈殿装置であり、前記第二の水処理装置が中和槽であり、前記第三の水処理装置がろ過器である、請求項4又は5に記載の水処理システム。 The water according to claim 4 or 5, wherein the first water treatment device is a coagulation sedimentation device, the second water treatment device is a neutralization tank, and the third water treatment device is a filter. processing system. 原水を処理する複数の異なる水処理装置が直列に接続された水処理系列を複数系列備えた水処理システムであって、前記一の水処理系列を構成する少なくとも一種の水処理装置の後段に他の水処理系列を構成する該水処理装置と同種の水処理装置の前段と連結する連結配管が設けられていて、該水処理装置を並列処理と直列処理とに切り換える切替手段を備える、水処理システム。 A water treatment system comprising a plurality of water treatment trains in which a plurality of different water treatment equipments for treating raw water are connected in series, the water treatment system comprising at least one water treatment equipment constituting the one water treatment train at a stage downstream of the other water treatment equipment. A water treatment system, comprising a connecting pipe that connects to a previous stage of a water treatment system of the same type as the water treatment system constituting a water treatment system, and comprising switching means for switching the water treatment system between parallel processing and serial processing. system. 前記連結配管が前段に接続された他の水処理系列の水処理装置の後段に、該他の水処理系列の水処理装置の処理水の一部を一の水処理系列の該水処理装置の後段に供給する分岐配管を備える、請求項7に記載の水処理システム。 A portion of the treated water of the water treatment equipment of the other water treatment system is transferred to the water treatment equipment of the first water treatment system after the water treatment equipment of the other water treatment system to which the connecting pipe is connected to the previous stage. The water treatment system according to claim 7, comprising a branch pipe for supplying water to a subsequent stage.
JP2022045037A 2022-03-22 2022-03-22 Load fluctuation responsive type water treatment system Pending JP2023139479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022045037A JP2023139479A (en) 2022-03-22 2022-03-22 Load fluctuation responsive type water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022045037A JP2023139479A (en) 2022-03-22 2022-03-22 Load fluctuation responsive type water treatment system

Publications (1)

Publication Number Publication Date
JP2023139479A true JP2023139479A (en) 2023-10-04

Family

ID=88205054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022045037A Pending JP2023139479A (en) 2022-03-22 2022-03-22 Load fluctuation responsive type water treatment system

Country Status (1)

Country Link
JP (1) JP2023139479A (en)

Similar Documents

Publication Publication Date Title
JP5658306B2 (en) Advanced treatment method and apparatus for sewage that does not discharge sludge
US7517456B2 (en) Method for treating landfill leachate
KR101804555B1 (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
Ordóñez et al. Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
KR100751233B1 (en) Ultra filtration type heavy water treatment system
JP2001054792A (en) Method and apparatus for treating wastewater
JP2023139479A (en) Load fluctuation responsive type water treatment system
CN205420095U (en) Oil refinery waste water retrieval and utilization composite set
JPH08281284A (en) Combined septic tank
KR101642379B1 (en) System and Method for treating drinking water using multi-source water
JP2010269203A (en) Waste water treatment apparatus and method of controlling the same
CN211921199U (en) Arsenic-containing wastewater treatment system
US11346093B2 (en) Interchangeable system for overflow treatment and tertiary filtration for wastewater treatment facilities
KR101979939B1 (en) Decentalized water supply system improving back wash efficiency of membrane
CN117285201B (en) Device and method for treating concentrated water by clean wastewater system and leachate treatment system
KR20200087397A (en) Treatment system of waste water using oxidation preprocess
CN114804488B (en) Reduction treatment device and method for gasified concentrated water
CN115745179B (en) Dynamic hydrolysis acidification device for high-concentration sulfate wastewater
KR20180019029A (en) The method for treating water using the apparatus for treating water
CN218969018U (en) High recovery rate pure water treatment device
CN102390901B (en) Modularized multicomponent-combined industrial sewage treatment apparatus
CN210140522U (en) Integrated treatment system for hydraulic oil wastewater
CN212818327U (en) Sludge discharge system of primary sedimentation tank
KR101363142B1 (en) Apparatus and Method for Treating Waste Water of Food