JP2023139412A - Fiber-reinforced resin joined structure - Google Patents

Fiber-reinforced resin joined structure Download PDF

Info

Publication number
JP2023139412A
JP2023139412A JP2022044928A JP2022044928A JP2023139412A JP 2023139412 A JP2023139412 A JP 2023139412A JP 2022044928 A JP2022044928 A JP 2022044928A JP 2022044928 A JP2022044928 A JP 2022044928A JP 2023139412 A JP2023139412 A JP 2023139412A
Authority
JP
Japan
Prior art keywords
bonding
adherend
fiber
reinforced resin
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022044928A
Other languages
Japanese (ja)
Inventor
敦岐 土谷
Atsuki Tsuchiya
秀人 光岡
Hideto Mitsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2022044928A priority Critical patent/JP2023139412A/en
Publication of JP2023139412A publication Critical patent/JP2023139412A/en
Pending legal-status Critical Current

Links

Abstract

To provide a joined structure of a fiber-reinforced resin which exhibits good joining characteristics, and can be executed under a simpler process condition than a joining process when the joined structure is manufactured.SOLUTION: There is provided a fiber-reinforced resin joined structure in which an adherend 1 and an adherend 2 that are formed of fiber-reinforced resins having uneven shapes thereon are integrated with each other through a joining component 1, where the joining component 1 is made to fill the adherends within a range of 30-95% of a depth D1 of the uneven shape existing on the surface of the adherend 1.SELECTED DRAWING: Figure 2

Description

本発明は繊維強化樹脂接合構造体に関し、繊維強化樹脂と他の被着体とが良好に接合した状態を維持できる繊維強化樹脂接合構造体を示しており、この繊維強化樹脂接合構造体の接合状態が実現可能となる範囲であれば、接合の際の接合温度や接合圧力、接合時間といった接合プロセス負荷を低減することも可能である。 The present invention relates to a fiber-reinforced resin bonded structure, and relates to a fiber-reinforced resin bonded structure that can maintain a good bonded state between the fiber-reinforced resin and another adherend. As long as the conditions are within a feasible range, it is also possible to reduce the bonding process load such as bonding temperature, bonding pressure, and bonding time during bonding.

繊維強化樹脂(FRP)と他の被着体とを接合したFRP接合構造体は、その機能を効果的に発揮するために、良好な接合状態を維持するには、FRP表面に凹凸形状を付与してFRPと他の被着体とを接合する接合成分の両者間での接触面積を増大させたり、両者間で接合成分が容易に引き剥がれないような、いわゆるアンカー構造を形成させたりする手法が一般的である。しかしFRP表面の凹凸形状に接合成分を隅々まで行き渡らせるのは容易ではなく、接合プロセスの負荷が非常に大きくなってしまう。 In order for FRP bonded structures, which are made by bonding fiber reinforced resin (FRP) and other adherends, to effectively exhibit their functions, it is necessary to provide an uneven shape to the FRP surface in order to maintain a good bonding state. A method of increasing the contact area between the bonding components that bond FRP and other adherends, or forming a so-called anchor structure between the two to prevent the bonding components from being easily peeled off. is common. However, it is not easy to spread the bonding component to every corner of the uneven shape of the FRP surface, and the load of the bonding process becomes extremely large.

これに対して、特許文献1では、FRPを硬化して成形する際に接合成分である熱可塑性樹脂を含浸させることで成形時に形成される凹凸形状の隅々まで接合成分を行き渡らせる手法が記載されている。しかしこの方法は接合成分なしで成形したFRPへの適用が出来ず、そもそも成形後に接合成分を用いて接合する場合には実施が不可能であった。 On the other hand, Patent Document 1 describes a method in which a thermoplastic resin, which is a bonding component, is impregnated when FRP is cured and molded, thereby spreading the bonding component to every corner of the uneven shape formed during molding. has been done. However, this method cannot be applied to FRP molded without a bonding component, and in the first place cannot be implemented when bonding is performed using a bonding component after molding.

また、特許文献2では、FRP表面に微細凹凸形状を付与して、そこに他の部材を接合成分で接合する構成が記載されているが、微細凹凸形状への接合成分の充填度合いについては触れられておらず、接合は微細凹凸形状全てへの充填が前提として記載されており、場合によっては接合プロセス負荷が大きくなる可能性もある。 Further, Patent Document 2 describes a configuration in which a fine uneven shape is imparted to the FRP surface and other members are bonded thereto using a bonding component, but the degree of filling of the bonding component into the fine uneven shape is not mentioned. However, the description is based on the premise that all the fine irregularities are filled, and in some cases, the bonding process load may become large.

特許文献3には、FRPのマトリックス樹脂のみを除去して強化繊維を露出させて接合成分である第二の高分子材料を充填して接合する接合構造が記載されている。この方法はFRP表面を予め処理して強化繊維のみを露出させておき、そこへ接合成分を充填する必要があるが、露出した強化繊維への接合成分の充填度合いについては触れられておらず、接合は露出した強化繊維全てへの充填が前提として記載されており、場合によっては接合プロセス負荷が大きくなる可能性もある。 Patent Document 3 describes a joining structure in which only the matrix resin of FRP is removed to expose the reinforcing fibers, and the reinforcing fibers are filled and joined with a second polymeric material as a joining component. This method requires pre-treating the FRP surface to expose only the reinforcing fibers and then filling them with the bonding component, but there is no mention of the degree to which the exposed reinforcing fibers are filled with the bonding component. Bonding is described on the premise that all exposed reinforcing fibers are filled, and in some cases, the bonding process load may become large.

国際公開WO2004/060658号International publication WO2004/060658 特開2017-52127号公報JP2017-52127A 特開2011-79289号公報Japanese Patent Application Publication No. 2011-79289

そこで本発明の課題は、上記のような従来技術における問題点に着目し、FRPと他の被着体とを良好に接合した状態を維持できるFRP接合構造体を提供することにあり、このFRP接合構造体の接合状態が実現可能となる範囲であれば、接合の際の接合温度や接合圧力、接合時間といった接合プロセス負荷を低減することも可能である。 Therefore, an object of the present invention is to provide an FRP bonded structure that can maintain a good bonded state between FRP and other adherends, focusing on the problems in the prior art as described above. As long as the bonded state of the bonded structure can be realized, it is also possible to reduce the bonding process load such as the bonding temperature, bonding pressure, and bonding time during bonding.

上記課題を解決するために、本発明では以下の構成を採用する。
(1)表面に凹凸形状を有する繊維強化樹脂からなる被着体1と被着体2が接合成分1を介して一体化された接合構造体であって、接合成分1が被着体1の表面に存在する凹凸形状の深さD1の30~95%の範囲で充填している繊維強化樹脂接合構造体。
(2)接合成分1が被着体1の表面に存在する凹凸形状の深さD1の50~80%の範囲で充填している、(1)に記載の繊維強化樹脂接合構造体。
(3)被着体2が表面に凹凸形状を有し、接合成分1が被着体2の表面に存在する凹凸形状の深さD2の30~95%の範囲で充填している、(1)または(2)に記載の繊維強化樹脂接合構造体。
(4)被着体1および/または被着体2が炭素繊維強化樹脂からなる、(1)~(3)のいずれかに記載の繊維強化樹脂接合構造体。
(5)接合成分1がエポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリアミド樹脂、ポリオレフィン樹脂のいずれかの樹脂である、(1)~(4)のいずれかに記載の繊維強化樹脂接合構造体。
(6)接合成分1の引張強度が10~200MPaである、(1)~(5)のいずれかに記載の繊維強化樹脂接合構造体。
In order to solve the above problems, the present invention employs the following configuration.
(1) A bonded structure in which an adherend 1 and an adherend 2 made of fiber-reinforced resin having an uneven surface are integrated via a bonding component 1, and the bonding component 1 A fiber-reinforced resin bonded structure that is filled to a depth of 30 to 95% of the depth D1 of the uneven shape existing on the surface.
(2) The fiber-reinforced resin bonded structure according to (1), wherein the bonding component 1 is filled in a range of 50 to 80% of the depth D1 of the uneven shape existing on the surface of the adherend 1.
(3) The adherend 2 has an uneven shape on its surface, and the bonding component 1 is filled in a range of 30 to 95% of the depth D2 of the uneven shape existing on the surface of the adherend 2, (1 ) or the fiber-reinforced resin bonded structure according to (2).
(4) The fiber-reinforced resin bonded structure according to any one of (1) to (3), wherein the adherend 1 and/or the adherend 2 are made of carbon fiber-reinforced resin.
(5) The fiber-reinforced resin bonded structure according to any one of (1) to (4), wherein bonding component 1 is any one of epoxy resin, urethane resin, acrylic resin, polyamide resin, and polyolefin resin.
(6) The fiber-reinforced resin bonded structure according to any one of (1) to (5), wherein the bonding component 1 has a tensile strength of 10 to 200 MPa.

このように、本発明の繊維強化樹脂接合構造体によれば、良好な接合特性を示し、それを作製する際の接合プロセスもより簡便なプロセス条件で実施可能な繊維強化樹脂の接合構造体を提供することが出来る。 As described above, the fiber-reinforced resin bonded structure of the present invention exhibits good bonding properties and can be manufactured using simpler process conditions. can be provided.

繊維強化樹脂表面の凹凸形状の一例を示す概略断面図である。It is a schematic sectional view showing an example of the uneven shape of the fiber reinforced resin surface. 接合成分1が充填した繊維強化樹脂表面の凹凸形状の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of an uneven shape on the surface of a fiber-reinforced resin filled with bonding component 1. FIG. 接合構造体(接合試験片)を示す概略斜視図である。FIG. 2 is a schematic perspective view showing a bonded structure (bonded test piece). レーザー加工処理された被着体を示す概略斜視図である。FIG. 2 is a schematic perspective view showing an adherend subjected to laser processing. サンドブラスト処理された被着体を示す概略斜視図である。FIG. 2 is a schematic perspective view showing a sandblasted adherend.

以下に、本発明について、実施の形態とともに、さらに詳細に説明する。 The present invention will be described in more detail below along with embodiments.

本発明に係るFRP接合構造体は表面に凹凸形状を有する繊維強化樹脂からなる被着体1と、被着体2が接合成分1を介して一体化された接合構造体であって、接合成分1が被着体1の表面に存在する凹凸形状の深さD1の30~95%の範囲で充填している繊維強化樹脂接合構造体であって、接合成分1が凹凸の深さD1に対して完全充填ではないが、接合が良好となるように一定の度合いで充填していることを特徴とする。ここで良好な接合とは、接合強度評価を実施した際に、接合成分が接合面全体にわたり凝集破壊することで安定した高い接合強度を発現する状態が理想的である。逆に接合成分が被着体との界面で界面剥離となってしまう場合は、接合強度のばらつきが大きくなり、接合強度も低くなる傾向にある。また、接合成分の凝集破壊と界面剥離が混在する場合も考えられ、その場合は凝集破壊の割合が高くなるほど、安定した良好な接合と判断することが出来る。 The FRP bonded structure according to the present invention is a bonded structure in which an adherend 1 made of fiber-reinforced resin having an uneven surface and an adherend 2 are integrated via a bonding component 1. 1 is a fiber-reinforced resin bonded structure that is filled in a range of 30 to 95% of the depth D1 of the uneven shape existing on the surface of the adherend 1, and the bonding component 1 is filled with the depth D1 of the unevenness. Although it is not completely filled, it is characterized by being filled to a certain degree to ensure good bonding. Here, a good bond is ideally a state in which, when bonding strength is evaluated, the bonding components exhibit cohesive failure over the entire bonding surface, resulting in stable and high bonding strength. Conversely, if the bonding component causes interfacial peeling at the interface with the adherend, the variation in bonding strength will increase and the bonding strength will also tend to decrease. In addition, there may be a case where cohesive failure of bonding components and interfacial peeling coexist, and in that case, the higher the rate of cohesive failure, the more stable and good the bond can be judged to be.

具体的に図1、図2に示すように、FRP接合構造体のFRP部分の断面模式図において、FRPの表面Fに凹凸形状が付与されており、この凹凸形状に接合成分1が充填してFRPと被着体2とを接合することで、良好なFRP接合構造体が得られる。この際、接合成分1はFRP表面の凹凸形状の全領域に渡って充填している必要はなく、接合成分1が凝集破壊する程度に充填していれば良好な接合を維持出来る。凹凸形状の全領域に渡って接合成分1を充填させるためには、接合プロセスにおいて接合温度や接合圧力、接合時間などの負荷を大きくする必要があり、接合プロセスにおける使用電力や消費エネルギーを抑える観点からは可能な限り負荷を小さくしておきたい。 Specifically, as shown in FIGS. 1 and 2, in the cross-sectional schematic diagram of the FRP part of the FRP bonded structure, the surface F of the FRP is provided with an uneven shape, and the bonding component 1 is filled in this uneven shape. A good FRP bonded structure can be obtained by bonding FRP and adherend 2. At this time, it is not necessary that the bonding component 1 is filled over the entire region of the uneven shape of the FRP surface, and good bonding can be maintained as long as the bonding component 1 is filled to the extent that cohesive failure occurs. In order to fill the entire area of the uneven shape with bonding component 1, it is necessary to increase the load such as bonding temperature, bonding pressure, bonding time, etc. in the bonding process, and this is from the perspective of reducing power consumption and energy consumption in the bonding process. From now on, I want to keep the load as small as possible.

ここで、本発明の重要なパラメータである、FRP表面の凹凸形状の深さD1と、凹凸形状D1への接合成分1の充填について説明する。本発明のFRP表面の凹凸形状とは、サンドブラスト処理、レーザー加工処理、火炎処理、薬液処理、電解処理、プラズマ処理、紙ヤスリ等での表面粗化などの表面処理方法でFRP表面に付与された凹凸形状のことを示している。また、その凹凸形状の深さD1とは、図1に示すFRP断面において2で示される特定長さLの範囲内において、FRP表面の凹凸形状のうち最も浅い位置にある2点AB間で形成されるFRPの基準表面1から凹凸形状で形成された凹凸形状表面3までの距離のうち、最大から5番目までの深さDmax1~Dmax5と、最小から5番目までの深さDmin1~Dmin5までの10ヶ所の深さの平均をもって、凹凸形状の深さD1とする。さらに、凹凸形状の深さD1への接合成分1の充填については、図2において2で示される上記特定長さLの範囲内のDmax1~Dmax5において、接合成分1が充填した距離Dmax1p~Dmax5pとの比をパーセント表示した値の平均値で定義する。例えば、接合成分1が凹凸形状の深さDmax1~Dmax5のいずれも半分まで充填していた場合は、充填50%となる。ここで特定長さLについては、評価結果にFRPの特徴を十分に反映させる観点から、FRPに曲げ加工など極端な凹凸形状が付与された部位を除いて0.1mm~10mmの範囲で選択することが適切である。また、凹凸形状の深さD1の評価と、接合成分1の充填の評価はFRPの同じ部位で評価しても異なる部位で評価しても構わない。 Here, the depth D1 of the uneven shape on the FRP surface and the filling of the bonding component 1 into the uneven shape D1, which are important parameters of the present invention, will be explained. The uneven shape of the FRP surface of the present invention refers to the uneven shape imparted to the FRP surface by a surface treatment method such as sandblasting, laser processing, flame treatment, chemical treatment, electrolytic treatment, plasma treatment, surface roughening with sandpaper, etc. It indicates an uneven shape. In addition, the depth D1 of the uneven shape is defined as the depth D1 formed between two points AB at the shallowest position of the uneven shape on the FRP surface within the range of a specific length L shown by 2 in the FRP cross section shown in FIG. Among the distances from the reference surface 1 of the FRP to the uneven surface 3 formed with uneven shapes, the maximum to fifth depths Dmax1 to Dmax5 and the minimum to fifth depths Dmin1 to Dmin5. The average depth of the 10 locations is defined as the depth D1 of the uneven shape. Furthermore, regarding the filling of the bonding component 1 into the depth D1 of the uneven shape, the distance Dmax1p to Dmax5p filled with the bonding component 1 is determined from Dmax1 to Dmax5 within the range of the specific length L indicated by 2 in FIG. The ratio is defined as the average value of the values expressed as a percentage. For example, if the bonding component 1 fills all of the depths Dmax1 to Dmax5 of the uneven shape to half, the filling becomes 50%. Here, the specific length L is selected in the range of 0.1 mm to 10 mm, excluding areas where the FRP has been given extreme irregularities such as bending, in order to fully reflect the characteristics of FRP in the evaluation results. That is appropriate. Further, the evaluation of the depth D1 of the uneven shape and the evaluation of the filling of the bonding component 1 may be performed at the same part of the FRP or at different parts.

凹凸形状の深さD1は良好な接合を発現する観点から、1μm以上であることが好ましい。また、FRPに過度な凹凸形状を付与して、FRP自体の強度低下をさせない観点、および凹凸形状を付与する際の負荷を低減させる観点から、5000μm以下とすることが好ましい。より好ましい範囲としては10μm~3000μm、さらに好ましくは50~1000μmである。 The depth D1 of the uneven shape is preferably 1 μm or more from the viewpoint of achieving good bonding. Further, from the viewpoint of not reducing the strength of the FRP itself by imparting an excessive uneven shape to the FRP, and from the viewpoint of reducing the load when imparting the uneven shape, the thickness is preferably 5000 μm or less. A more preferable range is 10 μm to 3000 μm, and even more preferably 50 to 1000 μm.

また、凹凸形状の深さD1への接合成分1の充填は、良好な接合を発現する観点から、30%以上であることが重要であり、接合プロセスの負荷低減の観点からは完全充填である100%よりも小さいことが重要となり、具体的には95%以下とする。好ましい範囲としては40~90%、より好ましくは50~80%である。 In addition, it is important that the filling of the bonding component 1 into the depth D1 of the uneven shape is 30% or more from the perspective of achieving good bonding, and from the perspective of reducing the load of the bonding process, it is important to fill the bonding component 1 to the depth D1. It is important that it be smaller than 100%, specifically 95% or less. The preferred range is 40 to 90%, more preferably 50 to 80%.

本発明の被着体2は、その構成材料については特に制限はなく、スチールやアルミなどの金属材料、各種樹脂材料、フィルム、被着体1と同様のFRPなどFRP接合構造体に求められる特性に応じて適切に組み合わせることができる。FRP接合構造体における被着体1と被着体2との接合を高める観点からは、被着体1と同様に被着体2の表面にも深さD2が1~5000μmの凹凸形状を有することが好ましい。より好ましい範囲としては10μm~3000μm、さらに好ましくは50~1000μmである。 The adherend 2 of the present invention is not particularly limited in its constituent materials, and includes metal materials such as steel and aluminum, various resin materials, films, and FRP similar to the adherend 1, which have the characteristics required for FRP bonded structures. Can be combined appropriately depending on the situation. From the viewpoint of enhancing the bonding between the adherends 1 and 2 in the FRP bonded structure, the surface of the adherend 2 as well as the adherend 1 has an uneven shape with a depth D2 of 1 to 5000 μm. It is preferable. A more preferable range is 10 μm to 3000 μm, and even more preferably 50 to 1000 μm.

また、凹凸形状の深さD2への接合成分1の充填は、良好な接合を発現し、かつ接合プロセスの負荷低減の観点からは30~95%であることが好ましく、より好ましくは40~90%、さらに好ましくは50~80%である。 Further, from the viewpoint of achieving good bonding and reducing the load of the bonding process, the filling of the bonding component 1 into the depth D2 of the uneven shape is preferably 30 to 95%, more preferably 40 to 90%. %, more preferably 50 to 80%.

FRP表面の凹凸形状の深さの測定方法については、例えばFRPの断面を顕微鏡観察して、図1に記載する最大から5番目までの深さDmax1~Dmax5、および最小から5番目までの深さDmax1~Dmax5を画像解析により測定する方法などが挙げられる。凹凸形状の深さD1への接合成分1の充填の測定方法については、同様に接合成分1が充填した後のFRP接合構造体の断面の顕微鏡観察から、図2に記載する接合成分1が充填した距離Dmax1p~Dmax5pを画像解析により測定する方法などが挙げられる。被着体2についても同様に測定することが可能である。 Regarding the method of measuring the depth of the uneven shape on the FRP surface, for example, by observing the cross section of FRP with a microscope, the maximum to 5th depths Dmax1 to Dmax5 and the minimum to 5th depths shown in Fig. 1 are measured. Examples include a method of measuring Dmax1 to Dmax5 by image analysis. Regarding the method of measuring the filling of the bonding component 1 into the depth D1 of the uneven shape, from the microscopic observation of the cross section of the FRP bonded structure after being filled with the bonding component 1, as shown in FIG. Examples include a method of measuring the distances Dmax1p to Dmax5p by image analysis. The adherend 2 can also be measured in the same manner.

本発明のFRPからなる被着体1と被着体2の少なくともいずれか一方が炭素繊維強化樹脂であることが、FRP接合構造体をより軽量で強度剛性に優れたものとすることが出来るため好ましい。用いる炭素繊維は、その強度や弾性率を用途や必要とされる特性に応じて選択して使用する。また、炭素繊維強化樹脂に用いるマトリックス樹脂には、熱硬化性樹脂あるいは熱可塑性樹脂のいずれを用いても良い。熱硬化性樹脂としてはエポキシ樹脂、ビニルエステル樹脂、フェノール樹脂などを用いることができる。熱可塑性樹脂としてはポリプロピレン樹脂、ポリアミド樹脂、PPS樹脂、PEEK樹脂などを用いることができる。 Since at least one of the adherends 1 and 2 made of FRP of the present invention is made of carbon fiber reinforced resin, the FRP bonded structure can be made lighter and superior in strength and rigidity. preferable. The strength and elastic modulus of the carbon fibers used are selected depending on the purpose and required characteristics. Furthermore, the matrix resin used for the carbon fiber reinforced resin may be either a thermosetting resin or a thermoplastic resin. As the thermosetting resin, epoxy resin, vinyl ester resin, phenol resin, etc. can be used. As the thermoplastic resin, polypropylene resin, polyamide resin, PPS resin, PEEK resin, etc. can be used.

本発明の接合成分1としては、各種接合用樹脂を用いることが出来るが、なかでもエポキシ樹脂は熱硬化性で三次元架橋構造を形成し、強度や耐熱性に優れて高い耐久性を有することから好ましい。また破断伸度が高く変形に強い接合構造を可能とする観点から、ウレタン樹脂も好ましい。また、アクリル樹脂も化学構造のバリエーションを豊富に有しており、接合成分として性能バランスを制御しやすい樹脂である点から好ましい。さらにポリアミド樹脂やポリプロピレン樹脂などの熱可塑性樹脂は、熱を付与することで溶融させたのち冷却固化することで接合可能であることから、接合サイクルを短くすることが容易であり、かつ熱により接合構造を解体できるリサイクル性を有する観点からも好ましい。 As the bonding component 1 of the present invention, various bonding resins can be used, but among them, epoxy resin is thermosetting, forms a three-dimensional crosslinked structure, has excellent strength and heat resistance, and has high durability. preferred. Further, urethane resin is also preferable from the viewpoint of enabling a bonded structure that has high elongation at break and is resistant to deformation. Furthermore, acrylic resin has a wide variety of chemical structures and is preferred as a bonding component because it is a resin whose performance balance can be easily controlled. Furthermore, thermoplastic resins such as polyamide resins and polypropylene resins can be bonded by applying heat to melt them and then cooling and solidifying them, making it easy to shorten the bonding cycle and bonding by heat. It is also preferable from the viewpoint of having recyclability that allows the structure to be dismantled.

また、本発明の接合成分1は、より強固な接合強度を発現させる観点から、その引張強度(ISO527規格)が10~200MPaであることが好ましい。より好ましくは15~200MPa、さらに好ましくは20~200MPaである。 Further, the bonding component 1 of the present invention preferably has a tensile strength (ISO527 standard) of 10 to 200 MPa from the viewpoint of developing stronger bonding strength. More preferably 15 to 200 MPa, still more preferably 20 to 200 MPa.

FRP接合構造体の用途
本発明のFRP接合構造体は航空機部品、自動車部品、ドローンなどのモビリティ用途や、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。なかでもモビリティ用途においてFRPを活用した構造部品、外装部品、内装部品などに用いることが好ましい。
Applications of FRP bonded structure The FRP bonded structure of the present invention can be used in various applications such as aircraft parts, automobile parts, mobility applications such as drones, electrical/electronic parts, building materials, various containers, daily necessities, household goods, and sanitary products. can do. Among these, it is preferable to use FRP in structural parts, exterior parts, interior parts, etc. in mobility applications.

以下に実施例を示し、本発明を更に具体的に説明するが、下記実施例は本発明を何ら制約するものではなく、本発明の主旨を逸脱しない範囲で変更することは、本発明の技術範囲である。本発明特性評価は下記の方法に従って行った。 Examples will be shown below to further specifically explain the present invention, but the following examples do not limit the present invention in any way, and changes within the scope of the gist of the present invention are within the scope of the technology of the present invention. range. The characteristics of the present invention were evaluated according to the following method.

(1)被着体1の凹凸の深さD1
被着体1の断面を湿式研磨して顕微鏡で観察し、その断面(図1に示す模式図)において2で示される特定長さLを5mmとする範囲内において、FRP表面の凹凸形状のうち最も浅い位置にある2点AB間で形成されるFRPの基準表面1から凹凸形状で形成された凹凸形状表面3までの距離のうち、最大から5番目までの深さDmax1~Dmax5と、最小から5番目までの深さDmin1~Dmin5までの10ヶ所の深さの平均をもって、凹凸形状の深さD1とした。なお、被着体2の凹凸の深さD2も同様に評価した。
(1) Depth D1 of unevenness of adherend 1
A cross section of the adherend 1 is wet-polished and observed under a microscope, and within the range where the specific length L shown by 2 is 5 mm in the cross section (schematic diagram shown in FIG. 1), the unevenness of the FRP surface is determined. Among the distances from the FRP reference surface 1 formed between the two points AB at the shallowest position to the uneven surface 3 formed in an uneven shape, the depths Dmax1 to Dmax5 from the maximum to the fifth, and from the minimum to The average depth of the 10 locations from the fifth depth Dmin1 to Dmin5 was defined as the depth D1 of the uneven shape. Note that the depth D2 of the unevenness of the adherend 2 was also evaluated in the same manner.

(2)接合成分1の充填(%)
FRP接合構造体の断面を湿式研磨して顕微鏡で観察し、被着体1に接合成分1が充填した断面(図2に示す模式図)において2で示される上記特定長さLを5mmとする範囲内のDmax1~Dmax5において、接合成分1が充填した距離Dmax1p~Dmax5pとの比をパーセント表示した値の平均値として評価した。なお、被着体2への接合成分1の充填(%)も同様に評価した。
(2) Filling of bonding component 1 (%)
Wet-polish the cross section of the FRP bonded structure and observe it with a microscope, and in the cross section (schematic diagram shown in FIG. 2) where the adherend 1 is filled with the bonding component 1, the specific length L indicated by 2 is set to 5 mm. Within the range Dmax1 to Dmax5, the ratio to the distance Dmax1p to Dmax5p filled with bonding component 1 was evaluated as the average value expressed as a percentage. The filling (%) of bonding component 1 into adherend 2 was also evaluated in the same manner.

(3)FRP接合構造体の接合強度
接合成分1で接合された被着体1と被着体2からなる接合試験片(図3)を引張試験機にて5mm/分の速度で引張剪断試験をn=5で実施し、平均値を接合強度とした。接合強度20MPa以上をA、10MPa以上20MPa未満をB、10MPa未満をCとした。
(3) Bonding strength of FRP bonded structure A bonded test piece (Fig. 3) consisting of adherend 1 and adherend 2 bonded with bonding component 1 was subjected to a tensile shear test at a speed of 5 mm/min using a tensile testing machine. was carried out with n=5, and the average value was taken as the bonding strength. Bonding strength of 20 MPa or more was graded A, bonding strength of 10 MPa or more but less than 20 MPa was graded B, and bonding strength of less than 10 MPa was graded C.

(4)FRP接合構造体の接合強度ばらつき
接合強度評価において、n=5の評価の最大値と最小値との差を接合強度ばらつきとし、接合強度ばらつきが5MPa未満をA、5MPa以上8MPa未満をB、8MPa以上をCとした。接合強度ばらつきの良好な順からA、B、Cとなる。
(4) Bonding strength variation of FRP bonded structure In the bonding strength evaluation, the difference between the maximum value and the minimum value of the evaluation of n = 5 is defined as the bonding strength variation, and bonding strength variation of less than 5 MPa is A, and 5 MPa or more and less than 8 MPa. B, 8 MPa or higher was rated C. A, B, and C are ranked in descending order of bonding strength variation.

(5)FRP接合構造体の破壊形態
接合強度を評価した後のFRP接合構造体の破断面を目視で観察し、接合部全面にわたり接合成分1の凝集破壊である場合をA、接合成分1の凝集破壊の領域が界面剥離の領域よりも多い場合をB、接合成分1の凝集破壊の領域が界面剥離の領域よりも少ない場合をC、接合部全面にわたり接合成分1の界面剥離である場合をDとした。接合状態の良好な順からA、B、C、Dとなる。
(5) Fracture form of FRP bonded structure Visually observe the fracture surface of the FRP bonded structure after evaluating the bond strength, and A indicates cohesive failure of bond component 1 over the entire surface of the bond. B is the case where the area of cohesive failure is larger than the area of interfacial peeling; C is the case where the area of cohesive failure of bonding component 1 is smaller than the area of interfacial peeling; and C is the case where interfacial peeling of bonding component 1 occurs over the entire surface of the joint. It was set as D. A, B, C, and D are listed in descending order of bonding state.

[参考例1]炭素繊維強化樹脂(CFRP1)の製造
東レ(株)製炭素繊維“トレカ”(登録商標)T700S(12K)使いの一方向プリプレグを同一方向に積層して1.5mm厚みに硬化したCFRP1を得た。接合する前にはアセトンで脱脂して使用した。
[Reference Example 1] Manufacture of carbon fiber reinforced resin (CFRP1) Unidirectional prepregs made of carbon fiber "Torayca" (registered trademark) T700S (12K) manufactured by Toray Industries, Inc. are laminated in the same direction and cured to a thickness of 1.5 mm. CFRP1 was obtained. Before joining, it was degreased with acetone.

[参考例2]ガラス繊維強化樹脂(GFRP1)の製造
日東紡(株)製ガラス繊維RS240PU-537使いの一方向プリプレグを同一方向に積層して1.5mm厚みに硬化したGFRP1を得た。接合する前にはアセトンで脱脂して使用した。
[Reference Example 2] Production of glass fiber reinforced resin (GFRP1) Unidirectional prepregs made of glass fiber RS240PU-537 manufactured by Nittobo Co., Ltd. were laminated in the same direction to obtain GFRP1 which was cured to a thickness of 1.5 mm. Before joining, it was degreased with acetone.

[参考例3]アルミ材1
アルミA5052(厚み1.5mm)の表面をアセトンで脱脂して使用した。
[Reference example 3] Aluminum material 1
The surface of aluminum A5052 (thickness 1.5 mm) was degreased with acetone before use.

[参考例4]接合成分1
エポキシ1:3M製パネルボンド8115を用いた。
エポキシ2:スリーボンド製スリーボンド3951Dを用いた。
ポリアミド:東レ製CM4000をプレス成形し0.3mm厚みのシートとして用いた。
変性PP(ポリプロピレン):三井化学製QF500をプレス成形し0.3mm厚みのシートとして用いた。
[Reference Example 4] Bonding component 1
Epoxy 1:3M panel bond 8115 was used.
Epoxy 2: ThreeBond 3951D manufactured by ThreeBond was used.
Polyamide: CM4000 manufactured by Toray Industries was press-molded and used as a 0.3 mm thick sheet.
Modified PP (polypropylene): QF500 manufactured by Mitsui Chemicals was press-molded and used as a 0.3 mm thick sheet.

実施例1
被着体1に参考例1で作製したCFRP1を用い、被着体2にも参考例1で作製したCFRP1を用いて、それぞれ幅25mm、長さ150mm(繊維の配向方向が長さ方向とした)の大きさにカットし、図4のようにCFRP1の表面にレーザー加工処理を施して直径100μmで深さ20μmの孔を200μm間隔の格子交点上に形成した。このCFRP1の孔の形成した面同士を参考例4に記載した接合成分1(エポキシ1)を用いて、図3のような接合構造体(接合試験片)を作製した。接合部分の面積は25mm×12.5mmである。接合プロセスは表1に記載のとおりである。得られた接合試験片の接合成分1の充填と接合強度評価を表1に示す。
Example 1
The CFRP1 fabricated in Reference Example 1 was used for adherend 1, and the CFRP1 fabricated in Reference Example 1 was used for adherend 2, each having a width of 25 mm and a length of 150 mm (the fiber orientation direction was the length direction). ), and as shown in FIG. 4, the surface of the CFRP 1 was laser-processed to form holes with a diameter of 100 μm and a depth of 20 μm on grid intersections spaced at 200 μm intervals. A bonded structure (bonded test piece) as shown in FIG. 3 was prepared by using bonding component 1 (epoxy 1) described in Reference Example 4 between the surfaces of this CFRP 1 where holes were formed. The area of the joint portion is 25 mm x 12.5 mm. The bonding process is as described in Table 1. Table 1 shows the filling of the bonding component 1 and the bonding strength evaluation of the obtained bonding test piece.

実施例2~12、比較例2、3
表1,2に示すように使用する被着体1、被着体2、被着体の表面を図4または図5のようにレーザー加工処理またはサンドブラスト処理を施して表面凹凸形状を付与したこと、接合成分1、接合プロセス条件を変更した以外は、実施例1と同様の方法で接合構造体(接合試験片)を作製し、評価を行った。評価結果を表1,2に示す。なお、接合成分1がポリアミドの場合の接合プロセスは、例えば実施例7では160℃で0.1MPaの圧力で0.02時間処理したのち、25℃で0.1MPaの圧力で0.5時間処理している。接合成分1が変性PP(実施例11)の場合の接合プロセスは、170℃で0.2MPaの圧力で0.02時間処理したのち、25℃で0.2MPaの圧力で0.5時間処理している。
Examples 2 to 12, Comparative Examples 2 and 3
As shown in Tables 1 and 2, the surface of adherend 1, adherend 2, and adherend used is subjected to laser processing or sandblasting as shown in Figure 4 or Figure 5 to give a surface uneven shape. A bonded structure (bonded test piece) was prepared and evaluated in the same manner as in Example 1, except that the bonding component 1 and the bonding process conditions were changed. The evaluation results are shown in Tables 1 and 2. In addition, the bonding process when the bonding component 1 is polyamide is, for example, in Example 7, processing at 160° C. and a pressure of 0.1 MPa for 0.02 hours, and then processing at 25° C. and a pressure of 0.1 MPa for 0.5 hours. are doing. In the case where bonding component 1 was modified PP (Example 11), the bonding process was performed at 170°C and a pressure of 0.2 MPa for 0.02 hours, and then at 25°C and a pressure of 0.2 MPa for 0.5 hours. ing.

比較例1
CFRP1に表面処理を施さなかったこと以外は、実施例7と同様の方法で接合構造体(接合試験片)を作製し、評価を行った。評価結果を表2に示す。
Comparative example 1
A bonded structure (bonded test piece) was produced and evaluated in the same manner as in Example 7, except that CFRP1 was not subjected to surface treatment. The evaluation results are shown in Table 2.

実施例1はレーザー加工処理したCFRP1同士をエポキシ1で接合した接合構造体であるが、良好な接合状態が得られている。 Example 1 is a bonded structure in which laser-processed CFRPs 1 are bonded together using epoxy 1, and a good bonded state is obtained.

実施例2は実施例1よりも凹凸の深さD1、D2を深くしており、接合強度がより良好な結果となった。 In Example 2, the depths D1 and D2 of the unevenness were made deeper than in Example 1, resulting in better bonding strength.

実施例3はCFRP1の表面処理をサンドブラストに変更しているが、良好な接合状態が得られている。 In Example 3, the surface treatment of CFRP1 was changed to sandblasting, but a good bonding state was obtained.

実施例4は実施例3において被着体2をアルミ材1に変更しているが、良好な接合状態が得られている。 In Example 4, the adherend 2 in Example 3 was changed to aluminum material 1, but a good bonding state was obtained.

実施例5は実施例4において被着体1をGFRP1に変更しているが、良好な接合状態が得られている。 In Example 5, the adherend 1 in Example 4 was changed to GFRP1, but a good bonding state was obtained.

実施例6は実施例4の接合プロセスにおける負荷をより大きく、具体的には接合温度を50℃から80℃へ、接合圧力を0.01MPaから0.05MPaへ変更しており、その結果、接合成分1の充填は70%から95%と大きくなったが、接合状態はどちらも同様に良好な状態である。 In Example 6, the load in the bonding process of Example 4 was increased, specifically, the bonding temperature was changed from 50°C to 80°C and the bonding pressure was changed from 0.01 MPa to 0.05 MPa. The filling of component 1 increased from 70% to 95%, but the bonding conditions were equally good in both cases.

実施例7は実施例4の接合成分1をポリアミドに変更しているが、良好な接合状態が得られている。接合成分1を熱可塑性樹脂のポリアミドにしたことから、接合温度や接合圧力は大きくする必要があるものの、接合時間が3時間から約30分と大きく短縮可能となった。 In Example 7, the bonding component 1 of Example 4 was changed to polyamide, but a good bonding state was obtained. Since polyamide, a thermoplastic resin, was used as the bonding component 1, the bonding time could be significantly shortened from 3 hours to about 30 minutes, although the bonding temperature and bonding pressure had to be increased.

実施例8は実施例7よりも凹凸の深さD1、D2を浅くしており、接合強度はやや低下するものの良好な結果となった。 In Example 8, the depths D1 and D2 of the unevenness were made shallower than in Example 7, and although the bonding strength was slightly lower, good results were obtained.

実施例9は実施例7の接合プロセスにおける負荷をより大きく、具体的には接合温度を160℃から170℃へ、接合圧力を0.1MPaから0.2MPaへ、接合時間を0.52時間から0.54時間へ変更しており、その結果、接合成分1の充填は75~80%から95%と大きくなったが、接合状態はどちらも同様に良好な状態である。 In Example 9, the load in the bonding process of Example 7 was increased, specifically, the bonding temperature was increased from 160°C to 170°C, the bonding pressure was increased from 0.1 MPa to 0.2 MPa, and the bonding time was changed from 0.52 hours. The time was changed to 0.54 hours, and as a result, the filling of bonding component 1 increased from 75 to 80% to 95%, but the bonding conditions were equally good in both cases.

実施例10は実施例7の接合プロセスにおける負荷をより小さく、具体的には接合圧力を0.1MPaから0.01MPaへ、接合時間を0.52時間から0.51時間へ変更したことにより、接合成分1の充填が小さくなり、それに伴って接合状態も良好ではあるがやや低下する結果となった。 In Example 10, the load in the bonding process of Example 7 was reduced, specifically by changing the bonding pressure from 0.1 MPa to 0.01 MPa and the bonding time from 0.52 hours to 0.51 hours. The filling of bonding component 1 became smaller, and the bonding condition was good, but slightly deteriorated accordingly.

実施例11は実施例7の接合成分1を変性PPに変更したものであるが、変性PPはポリアミドよりも極性が低いため、CFRP1との接合性がポリアミドよりも低下する傾向にあることから、接合成分1の引張強度や充填は同じレベルであっても接合強度がやや低下する結果となった。 In Example 11, bonding component 1 of Example 7 was changed to modified PP, but since modified PP has lower polarity than polyamide, the bondability with CFRP1 tends to be lower than that of polyamide. Even though the tensile strength and filling of bonding component 1 were at the same level, the bonding strength was slightly lower.

実施例12は実施例3の接合成分1をエポキシ2に変更したものであるが、エポキシ2は引張強度が8MPaとエポキシ1の21MPaよりも低強度であるため、接合強度は低くなる結果となった。但し、接合強度ばらつきは小さく、破壊形態も接合成分1の凝集破壊であり、接合強度は低いが接合特性としては安定した良好なものである。 In Example 12, bonding component 1 in Example 3 was changed to epoxy 2, but since epoxy 2 has a tensile strength of 8 MPa, which is lower than the 21 MPa of epoxy 1, the bonding strength was lower. Ta. However, the variation in bonding strength is small, and the fracture mode is cohesive failure of bonding component 1, and although the bonding strength is low, the bonding properties are stable and good.

一方、比較例1は被着体1の表面に凹凸が形成されておらず、接合成分1が充填しないことから、破壊形態が界面剥離となり、接合状態は悪いものとなった。 On the other hand, in Comparative Example 1, no irregularities were formed on the surface of the adherend 1 and the bonding component 1 was not filled, so that the form of failure was interfacial peeling and the bonding state was poor.

比較例2では、接合成分1の充填を100%とするために、接合プロセスの負荷を大きくする必要があり、実施例7と比較して接合温度は160℃から200℃へ、接合圧力は0.1MPaから1MPaへ、接合時間は0.52時間から0.7時間へ条件を変更することが必要であったが、接合特性としては大きな違いは見られず、過剰な条件で過剰に充填された状態であると判断できる。 In Comparative Example 2, in order to make the filling of bonding component 1 100%, it was necessary to increase the load of the bonding process, and compared to Example 7, the bonding temperature was increased from 160°C to 200°C, and the bonding pressure was 0. It was necessary to change the conditions from .1 MPa to 1 MPa and the bonding time from 0.52 hours to 0.7 hours, but there was no major difference in bonding characteristics, and the excessive conditions caused excessive filling. It can be determined that the condition is

比較例3は接合成分1の充填が20%と小さい状態であり、破壊形態も界面剥離が多く見られる低接合強度の接合状態であった。 In Comparative Example 3, the filling of bonding component 1 was as small as 20%, and the fracture form was a bonded state with low bonding strength in which interfacial peeling was often observed.

Figure 2023139412000002
Figure 2023139412000002

Figure 2023139412000003
Figure 2023139412000003

1.被着体1(繊維強化樹脂)の基準表面
2.特定長さL
3.凹凸形状表面
4.接合成分1
5.FRP
6.被着体1
7.被着体2
a.150mm
b.25mm
c.12.5mm
1. Reference surface 2 of adherend 1 (fiber reinforced resin). Specific length L
3. Uneven surface 4. Bonding component 1
5. FRP
6. Adherent 1
7. Adherent 2
a. 150mm
b. 25mm
c. 12.5mm

Claims (6)

表面に凹凸形状を有する繊維強化樹脂からなる被着体1と被着体2が接合成分1を介して一体化された接合構造体であって、接合成分1が被着体1の表面に存在する凹凸形状の深さD1の30~95%の範囲で充填している繊維強化樹脂接合構造体。 A bonded structure in which an adherend 1 and an adherend 2 made of fiber-reinforced resin having an uneven surface are integrated via a bonding component 1, where the bonding component 1 is present on the surface of the adherend 1. A fiber-reinforced resin bonded structure in which the depth D1 of the uneven shape is filled in a range of 30 to 95%. 接合成分1が被着体1の表面に存在する凹凸形状の深さD1の50~80%の範囲で充填している、請求項1に記載の繊維強化樹脂接合構造体。 The fiber-reinforced resin bonded structure according to claim 1, wherein the bonding component 1 is filled in a range of 50 to 80% of the depth D1 of the uneven shape existing on the surface of the adherend 1. 被着体2が表面に凹凸形状を有し、接合成分1が被着体2の表面に存在する凹凸形状の深さD2の30~95%の範囲で充填している、請求項1または2に記載の繊維強化樹脂接合構造体。 Claim 1 or 2, wherein the adherend 2 has an uneven shape on its surface, and the bonding component 1 is filled in a range of 30 to 95% of the depth D2 of the uneven shape existing on the surface of the adherend 2. The fiber-reinforced resin bonded structure described in . 被着体1および/または被着体2が炭素繊維強化樹脂からなる、請求項1~3のいずれかに記載の繊維強化樹脂接合構造体。 The fiber-reinforced resin bonded structure according to any one of claims 1 to 3, wherein the adherend 1 and/or the adherend 2 are made of carbon fiber-reinforced resin. 接合成分1がエポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリアミド樹脂、ポリオレフィン樹脂のいずれかの樹脂である、請求項1~4のいずれかに記載の繊維強化樹脂接合構造体。 The fiber-reinforced resin bonded structure according to any one of claims 1 to 4, wherein bonding component 1 is any one of epoxy resin, urethane resin, acrylic resin, polyamide resin, and polyolefin resin. 接合成分1の引張強度が10~200MPaである、請求項1~5のいずれかに記載の繊維強化樹脂接合構造体。 The fiber-reinforced resin bonded structure according to any one of claims 1 to 5, wherein the tensile strength of bonding component 1 is 10 to 200 MPa.
JP2022044928A 2022-03-22 2022-03-22 Fiber-reinforced resin joined structure Pending JP2023139412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044928A JP2023139412A (en) 2022-03-22 2022-03-22 Fiber-reinforced resin joined structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044928A JP2023139412A (en) 2022-03-22 2022-03-22 Fiber-reinforced resin joined structure

Publications (1)

Publication Number Publication Date
JP2023139412A true JP2023139412A (en) 2023-10-04

Family

ID=88205072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044928A Pending JP2023139412A (en) 2022-03-22 2022-03-22 Fiber-reinforced resin joined structure

Country Status (1)

Country Link
JP (1) JP2023139412A (en)

Similar Documents

Publication Publication Date Title
Goto et al. Shear and tensile joint strengths of carbon fiber-reinforced thermoplastics using ultrasonic welding
Mahdi et al. A comparison of oven-cured and induction-cured adhesively bonded composite joints
Huang et al. Friction spot welding of carbon fiber-reinforced polyetherimide laminate
Falck et al. AddJoining: A novel additive manufacturing approach for layered metal-polymer hybrid structures
JP5094849B2 (en) Stainless steel composite
de Freitas et al. Failure analysis of adhesively-bonded metal-skin-to-composite-stiffener: Effect of temperature and cyclic loading
JP5129903B2 (en) Magnesium alloy composite and manufacturing method thereof
Sarantinos et al. Review of through-the-thickness reinforced composites in joints
JPWO2008146833A1 (en) Steel composite and manufacturing method thereof
Nasreen et al. Effect of surface treatments on metal–composite adhesive bonding for high-performance structures: an overview
Ju et al. Delamination strength of composite curved beams reinforced by grooved stainless-steel Z-pins
Shifa et al. Influence of carbon nanotubes on the interlaminar properties of carbon fiber aluminum metal laminates
Nasreen et al. Effect of surface treatment on the performance of composite‐composite and composite‐metal adhesive joints
Ramakrishnan et al. Experimental study of adhesively bonded natural fibre composite–steel hybrid laminates
JP6867844B2 (en) Metal / fiber reinforced plastic composite structure
Bhudolia et al. On the mode II fracture toughness, failure, and toughening mechanisms of wholly thermoplastic composites with ultra-lightweight thermoplastic fabrics and innovative Elium® resin
Kim et al. An experimental study on the effect of overlap length on the failure of composite-to-aluminum single-lap bonded joints
Mund et al. Influence of production based surface topography and release agent amount on bonding properties of CFRP
JP2016221784A (en) Integrally assembled product of cfrp pipe and metal part, and bonding method therefor
Di Franco et al. Influence of anodizing surface treatment on the aging behavior in salt-fog environment of aluminum alloy 5083 to fiber reinforced composites adhesive joints
JP7060904B2 (en) How to join thermoplastic resin and metal
Rezvaninasab et al. Experimental evaluation of reinforcing the single lap joint in both longitudinal and transverse direction under tensile and bending condition
JP2023139412A (en) Fiber-reinforced resin joined structure
JP2023139413A (en) Fiber-reinforced resin for joining
Kang et al. Effect of the surface morphology on the bonding performance of metal/composite hybrid structures