JP2023139355A - Thermoplastic resin, optical member composed of the same, and diol compound - Google Patents

Thermoplastic resin, optical member composed of the same, and diol compound Download PDF

Info

Publication number
JP2023139355A
JP2023139355A JP2022044840A JP2022044840A JP2023139355A JP 2023139355 A JP2023139355 A JP 2023139355A JP 2022044840 A JP2022044840 A JP 2022044840A JP 2022044840 A JP2022044840 A JP 2022044840A JP 2023139355 A JP2023139355 A JP 2023139355A
Authority
JP
Japan
Prior art keywords
formula
thermoplastic resin
carbon atoms
hydrocarbon group
resin according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022044840A
Other languages
Japanese (ja)
Inventor
達也 大山
Tatsuya Oyama
健太 今里
Kenta IMAZATO
和徳 布目
Kazunori Nunome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2022044840A priority Critical patent/JP2023139355A/en
Publication of JP2023139355A publication Critical patent/JP2023139355A/en
Pending legal-status Critical Current

Links

Abstract

To provide a thermoplastic resin using a new diol compound, having an appropriate refractive index and an Abbe number, and having a low water absorption rate, and an optical member including the same.SOLUTION: A thermoplastic resin includes a structural unit represented by the following formula (1). In the formula (1), R1 and R2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R3 and R4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. In addition, R1 and R3, or R2 or R4 may be bonded to each other and form a ring. W is a residue obtained by removing a hydroxyl group from a carbonic acid or a dicarboxylic acid.SELECTED DRAWING: None

Description

本発明は、新規なジオール化合物を用い、適切な屈折率およびアッベ数を有し、かつ、吸水率の低い熱可塑性樹脂およびそれからなる光学部材に関する。 The present invention relates to a thermoplastic resin that uses a novel diol compound, has an appropriate refractive index and Abbe number, and has a low water absorption rate, and an optical member made from the thermoplastic resin.

カメラ、ビデオカメラあるいはカメラ付携帯電話、テレビ電話あるいはカメラ付ドアホンなどには、撮像モジュールが用いられている。近年、この撮像モジュールに用いられる光学系では、特に小型化が求められている。光学系を小型化していくと光学系の色収差が大きな問題となる。そこで、光学レンズの屈折率を高く、かつアッベ数を小さくして高分散にした光学レンズ材料と、屈折率を低くかつアッベ数を大きくして低分散にした光学レンズ材料を組み合わせることで、色収差の補正を行うことができることが知られている。 Imaging modules are used in cameras, video cameras, mobile phones with cameras, videophones, doorbells with cameras, and the like. In recent years, there has been a particular demand for miniaturization of optical systems used in imaging modules. As optical systems become smaller, chromatic aberration in the optical system becomes a major problem. Therefore, by combining an optical lens material that has a high refractive index and a small Abbe number to achieve high dispersion, and an optical lens material that has a low refractive index and a large Abbe number to achieve low dispersion, it is possible to reduce chromatic aberration. It is known that it is possible to perform corrections for

近年、撮影モジュールに使用される光学素子の種類はより多くなっており、様々なバランスの屈折率とアッベ数を有する光学レンズ向け樹脂の要望が強くなっている。しかしながら、屈折率を低くかつアッベ数を大きくして低分散にした光学レンズ材料に関しては、耐熱性とのバランスが取れた熱可塑性樹脂の報告は少ない。 In recent years, the types of optical elements used in photographic modules have increased, and there has been a strong demand for resins for optical lenses having variously balanced refractive indexes and Abbe numbers. However, regarding optical lens materials that have low refractive index and large Abbe number to achieve low dispersion, there are few reports on thermoplastic resins that are well-balanced with heat resistance.

また、近年、石油資源の枯渇の懸念や、地球温暖化を引き起こす空気中の二酸化炭素の増加の問題から、原料を石油に依存せず、また燃焼させても二酸化炭素を増加させないカーボンニュートラルが成り立つバイオマス資源が大きく注目を集めるようになり、ポリマーの分野においても、バイオマス資源から生産されるバイオマスプラスチックが盛んに開発されている。特に、モノマーとしてイソソルビドを中心に用いたポリカーボネートは耐熱性や耐候性、表面硬度、耐薬品性といった点で優れており、一般のビスフェノールAからなるポリカーボネートとは異なる特徴を有することから注目され、種々の検討がなされている(特許文献1、2)。光学特性においても、屈折率が低くかつアッベ数が大きいことが報告されている。(特許文献3)。これらのイソソルビド系ポリカーボネートは優れた特徴を有する一方で、吸水率が高いという課題がある。そのため、光学レンズ材料としての利用する場合はイソソルビド共重合比率を高くすることができず、バイオプラスチックとしては十分にイソソルビドの特徴を活かしきれていなかった。 In addition, in recent years, due to concerns about the depletion of petroleum resources and the problem of increasing carbon dioxide in the air, which causes global warming, carbon neutrality is becoming a reality, which does not rely on petroleum as a raw material and does not increase carbon dioxide even when burned. Biomass resources are attracting a lot of attention, and in the field of polymers, biomass plastics produced from biomass resources are being actively developed. In particular, polycarbonate mainly using isosorbide as a monomer has been attracting attention because it has excellent heat resistance, weather resistance, surface hardness, and chemical resistance, and has different characteristics from polycarbonate made of general bisphenol A. has been studied (Patent Documents 1 and 2). Regarding optical properties, it has been reported that the refractive index is low and the Abbe number is large. (Patent Document 3). Although these isosorbide polycarbonates have excellent characteristics, they have a problem of high water absorption. Therefore, when used as an optical lens material, it is not possible to increase the isosorbide copolymerization ratio, and the characteristics of isosorbide cannot be fully utilized as a bioplastic.

特開2006-36954号公報Japanese Patent Application Publication No. 2006-36954 特開2009-46519号公報Japanese Patent Application Publication No. 2009-46519 国際公開第2012/144573号公報International Publication No. 2012/144573

本発明の目的は、新規なジオール化合物を用い、適切な屈折率およびアッベ数を有し、かつ、吸水率の低い熱可塑性樹脂およびそれを含む光学部材を提供することにある。
また、本発明の好ましい目的は、石油由来ではない原料から合成される新規なジオール化合物を用い、バイオマス度の高い熱可塑性樹脂およびそれを含む光学部材を提供することにある。
An object of the present invention is to provide a thermoplastic resin that uses a novel diol compound, has an appropriate refractive index and Abbe number, and has a low water absorption rate, and an optical member containing the same.
Further, a preferable object of the present invention is to provide a thermoplastic resin with a high degree of biomass and an optical member containing the same, using a novel diol compound synthesized from raw materials not derived from petroleum.

本発明者らはこの目的を達成せんとして鋭意研究を重ねた結果、特定の構造を有する熱可塑性樹脂が前記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の(態様1)から(態様17)のとおりである。 The present inventors have conducted extensive research to achieve this objective, and as a result, have discovered that a thermoplastic resin having a specific structure can solve the above-mentioned problems, and have arrived at the present invention. That is, the present invention is as follows (Aspect 1) to (Aspect 17).

(態様1)
下記式(1)で表される構成単位を含む、熱可塑性樹脂。
(Aspect 1)
A thermoplastic resin containing a structural unit represented by the following formula (1).

(式(1)中、RおよびRは、それぞれ独立して水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、RおよびRは、それぞれ独立して、炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示す。また、RとR、またはRとRが相互に結合して環を形成していてもよい。Wは下記式(2)および下記式(3)からなる群より選ばれる少なくとも一つである。) (In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring. W is at least one selected from the group consisting of the following formula (2) and the following formula (3). .)

(式中、Xは2価の連結基を示す。) (In the formula, X represents a divalent linking group.)

(態様2)
前記式(1)で表される構成単位が、前記熱可塑性樹脂を構成する全構成単位の5mol%~100mol%を占める、態様1に記載の熱可塑性樹脂。
(態様3)
前記式(1)におけるRおよびRがメチル基である、態様1または2に記載の熱可塑性樹脂。
(態様4)
前記式(1)におけるRおよびRがメチレン基である、態様1~3のいずれかに記載の熱可塑性樹脂。
(態様5)
下記式(4)で表される構成単位をさらに含む態様1~4のいずれかに記載の熱可塑性樹脂。
(Aspect 2)
The thermoplastic resin according to aspect 1, wherein the structural unit represented by the formula (1) accounts for 5 mol% to 100 mol% of all structural units constituting the thermoplastic resin.
(Aspect 3)
The thermoplastic resin according to aspect 1 or 2, wherein R 1 and R 2 in the formula (1) are methyl groups.
(Aspect 4)
The thermoplastic resin according to any one of aspects 1 to 3, wherein R 3 and R 4 in the formula (1) are methylene groups.
(Aspect 5)
The thermoplastic resin according to any one of aspects 1 to 4, further comprising a structural unit represented by the following formula (4).

(式(4)中、RおよびRは、同一または異なって、水素原子または炭素原子数1~10の炭化水素基を表し、LおよびLはそれぞれ独立に2価の連結基を示し、mおよびnはそれぞれ独立に0または1を示す。) (In formula (4), R 5 and R 6 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and L 1 and L 2 each independently represent a divalent linking group. (m and n each independently represent 0 or 1.)

(態様6)
前記式(1)中、Wが前記式(2)である、態様1~5のいずれかに記載の熱可塑性樹脂。
(態様7)
23℃、24時間浸漬後の吸水率が0.25%以下である態様1~6のいずれかに記載の熱可塑性樹脂。
(態様8)
バイオマス度が5%以上である態様1~7のいずれかに記載の熱可塑性樹脂。
(態様9)
5%重量減少温度が350℃以上である態様1~8のいずれかに記載の熱可塑性樹脂。
(態様10)
屈折率が1.450~1.650である態様1~9のいずれかに記載の熱可塑性樹脂。
(態様11)
アッベ数が20~65である態様1~10のいずれかに記載の熱可塑性樹脂。
(態様12)
態様1~11のいずれかに記載の熱可塑性樹脂から形成される光学部材。
(態様13)
光学レンズである態様12に記載の光学部材。
(態様14)
下記式(a)で表されるジオール化合物。
(Aspect 6)
The thermoplastic resin according to any one of aspects 1 to 5, wherein in the formula (1), W is the formula (2).
(Aspect 7)
The thermoplastic resin according to any one of aspects 1 to 6, which has a water absorption rate of 0.25% or less after immersion at 23° C. for 24 hours.
(Aspect 8)
The thermoplastic resin according to any one of aspects 1 to 7, having a biomass degree of 5% or more.
(Aspect 9)
The thermoplastic resin according to any one of aspects 1 to 8, having a 5% weight loss temperature of 350° C. or higher.
(Aspect 10)
The thermoplastic resin according to any one of aspects 1 to 9, having a refractive index of 1.450 to 1.650.
(Aspect 11)
The thermoplastic resin according to any one of aspects 1 to 10, having an Abbe number of 20 to 65.
(Aspect 12)
An optical member formed from the thermoplastic resin according to any one of aspects 1 to 11.
(Aspect 13)
The optical member according to aspect 12, which is an optical lens.
(Aspect 14)
A diol compound represented by the following formula (a).

(式(a)中、RおよびRは、それぞれ独立して水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、RおよびRは、それぞれ独立して、炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示す。また、RとR、またはRとRが相互に結合して環を形成していてもよい。) (In formula (a), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring.)

(態様15)
前記式(a)におけるRおよびRがメチル基である、態様14に記載のジオール化合物。
(態様16)
前記式(a)におけるRおよびRがメチレン基である、態様14または15に記載のジオール化合物。
(態様17)
下記式(5)で表されるヒドロキシケトン類と下記式(6)で表されるエリスリトールとを酸触媒および溶媒の存在下、脱水環化反応させる態様14に記載のジオール化合物の製造方法。
(Aspect 15)
The diol compound according to aspect 14, wherein R 1 and R 2 in the formula (a) are methyl groups.
(Aspect 16)
The diol compound according to aspect 14 or 15, wherein R 3 and R 4 in the formula (a) are methylene groups.
(Aspect 17)
The method for producing a diol compound according to aspect 14, wherein hydroxyketones represented by the following formula (5) and erythritol represented by the following formula (6) are subjected to a cyclodehydration reaction in the presence of an acid catalyst and a solvent.

(式(5)中、Rは水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、Rは炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示し、RとRが相互に結合して環を形成していてもよい。) (In formula (5), R 7 represents a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and R 8 represents a hydrogen atom having 1 to 10 carbon atoms. It represents 10 divalent acyclic hydrocarbon groups or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and R 7 and R 8 may be bonded to each other to form a ring. )

本発明の熱可塑性樹脂は、光学特性に優れ、吸水率が低いため、光学レンズ、プリズム、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、光学膜、光学フィルター、ハードコート膜等の光学部材に用いることができ、特に携帯電話、スマートフォン、タブレット端末、パソコン、デジタルカメラ、ビデオカメラ、車載カメラ、又は監視カメラに用いるための光学レンズに極めて有用であり、そのため、その奏する産業上の効果は格別である。 The thermoplastic resin of the present invention has excellent optical properties and low water absorption, so it can be used for optical lenses, prisms, optical disks, transparent conductive substrates, optical cards, sheets, films, optical fibers, optical films, optical filters, hard coat films, etc. It is particularly useful for optical lenses for use in mobile phones, smartphones, tablet terminals, personal computers, digital cameras, video cameras, in-vehicle cameras, or surveillance cameras. The effect is exceptional.

実施例1で得られた2,6-ビス(ヒドロキシメチル)-2,6-ジメチル-1,3,5,7-テトラオキサデカリンのH NMRである。 1 H NMR of 2,6-bis(hydroxymethyl)-2,6-dimethyl-1,3,5,7-tetraoxadecalin obtained in Example 1. 実施例2で得られたポリカーボネート樹脂のH NMRである。 1 H NMR of the polycarbonate resin obtained in Example 2. 実施例3で得られたポリカーボネート樹脂のH NMRである。 1H NMR of the polycarbonate resin obtained in Example 3. 実施例4で得られたポリカーボネート樹脂のH NMRである。 1H NMR of the polycarbonate resin obtained in Example 4. 実施例2~4、比較例1~2における吸水率の推移のグラフである。1 is a graph of changes in water absorption rates in Examples 2 to 4 and Comparative Examples 1 to 2.

本発明をさらに詳しく説明する。
<熱可塑性樹脂>
本発明の熱可塑性樹脂は、下記式(1)で表される構成単位を含む熱可塑性樹脂である。
The present invention will be explained in more detail.
<Thermoplastic resin>
The thermoplastic resin of the present invention is a thermoplastic resin containing a structural unit represented by the following formula (1).

(式(1)中、RおよびRは、それぞれ独立して水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、RおよびRは、それぞれ独立して、炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示す。また、RとR、またはRとRが相互に結合して環を形成していてもよい。Wは下記式(2)および下記式(3)からなる群より選ばれる少なくとも一つである。) (In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring. W is at least one selected from the group consisting of the following formula (2) and the following formula (3). .)

(式中、Xは2価の連結基を示す。)
前記式(1)において、R、Rはそれぞれ独立に水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、水素原子または炭素原子数1~3の非環状炭化水素基が好ましく、水素原子またはメチル基がより好ましく、メチル基がさらに好ましい。
(In the formula, X represents a divalent linking group.)
In the formula (1), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and a hydrogen atom Alternatively, an acyclic hydrocarbon group having 1 to 3 carbon atoms is preferable, a hydrogen atom or a methyl group is more preferable, and a methyl group is even more preferable.

前記式(1)において、R、Rはそれぞれ独立に炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示し、炭素原子数1~3の2価の非環状炭化水素基または炭素原子数3~6の2価の脂環式炭化水素基が好ましく、メチレン基がより好ましい。 In the formula (1), R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. , a divalent acyclic hydrocarbon group having 1 to 3 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 6 carbon atoms are preferred, and a methylene group is more preferred.

前記式(1)において、RとR、またはRとRが相互に結合して環を形成していてもよく、構造の例として、好ましくは、下記構造式(1-a)で表されるものが挙げられ、これらのうち、耐熱性の観点から環構造がシクロヘキサンであることが特に好ましい。 In the above formula (1), R 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring, and as an example of the structure, preferably the following structural formula (1-a) Among them, from the viewpoint of heat resistance, it is particularly preferable that the ring structure is cyclohexane.

(式(1-a)中、Lは2価の連結基を示し、kはそれぞれ独立に0または1を示す。)
前記式(1-a)において、Lは2価の連結基を示し、炭素原子数1~4のアルキレン基が好ましく、メチレン基またはエチレン基がより好ましく、メチレン基がさらに好ましい。
(In formula (1-a), L represents a divalent linking group, and k each independently represents 0 or 1.)
In the formula (1-a), L represents a divalent linking group, preferably an alkylene group having 1 to 4 carbon atoms, more preferably a methylene group or an ethylene group, and even more preferably a methylene group.

前記式(1)において、Wは前記式(2)および前記式(3)からなる群より選ばれる少なくとも1つであり、前記式(2)が好ましい。Wが前記式(2)である場合、前記式(1)はカーボネート単位となり、Wが前記式(3)である場合、前記式(1)はエステル単位となる。 In the above formula (1), W is at least one selected from the group consisting of the above formula (2) and the above formula (3), and the above formula (2) is preferable. When W is the formula (2), the formula (1) is a carbonate unit, and when W is the formula (3), the formula (1) is an ester unit.

前記式(1)は、ジヒドロキシ化合物と炭酸エステルなどのカーボネート前駆物質、またはジヒドロキシ化合物とジカルボン酸またはそのエステル形成性誘導体とから得ることができる。 The formula (1) can be obtained from a dihydroxy compound and a carbonate precursor such as a carbonate ester, or a dihydroxy compound and a dicarboxylic acid or an ester-forming derivative thereof.

本発明における式(1)で表される構成単位を含む熱可塑性樹脂において、熱可塑性樹脂を構成する全構成単位中、前記式(1)で表される構成単位を、5mоl%以上、10mol%以上、15mol%以上、20mol%以上で含んでいてもよく、100mol%以下、90mol%以下、80mol%以下、70mol%以下、60mol%以下、50mol%以下、40mol%以下で含んでいてもよい。本発明の熱可塑性樹脂において、前記式(1)で表される構成単位を、熱可塑性樹脂を構成する全構成単位中、好ましくは5mol%以上100mol%以下、より好ましくは10mol%以上80mol%以下、さらに好ましくは15mol%以上60mol%以下、特に好ましくは20mol%以上50mol%以下で含むことができる。前記式(1)で表される構成単位の割合が前記範囲であると適切な屈折率およびアッベ数を有し、低吸水率となり、かつ、石油資源由来ではない原料の割合が高くなるため好ましい。 In the thermoplastic resin containing the structural unit represented by the formula (1) in the present invention, the structural unit represented by the formula (1) is contained in an amount of 5 mol% or more and 10 mol% of all the structural units constituting the thermoplastic resin. As mentioned above, it may be contained in an amount of 15 mol% or more, 20 mol% or more, or 100 mol% or less, 90 mol% or less, 80 mol% or less, 70 mol% or less, 60 mol% or less, 50 mol% or less, or 40 mol% or less. In the thermoplastic resin of the present invention, the structural unit represented by the formula (1) is preferably 5 mol% or more and 100 mol% or less, more preferably 10 mol% or more and 80 mol% or less of all the structural units constituting the thermoplastic resin. , more preferably 15 mol% or more and 60 mol% or less, particularly preferably 20 mol% or more and 50 mol% or less. It is preferable that the ratio of the structural unit represented by the formula (1) is within the above range because it has an appropriate refractive index and Abbe number, has a low water absorption rate, and has a high ratio of raw materials not derived from petroleum resources. .

本発明の熱可塑性樹脂において、さらに下記式(4)で表される構成単位を含むことができる。 The thermoplastic resin of the present invention may further contain a structural unit represented by the following formula (4).

(式(4)中、RおよびRは、同一または異なって、水素原子または炭素原子数1~10の炭化水素基を表し、LおよびLはそれぞれ独立に2価の連結基を示し、mおよびnはそれぞれ独立に0または1を示す。) (In formula (4), R 5 and R 6 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and L 1 and L 2 each independently represent a divalent linking group. (m and n each independently represent 0 or 1.)

前記式(4)においてRおよびRはそれぞれ独立に、水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基を示し、水素原子、メチル基、フェニル基またはナフチル基が好ましく、水素原子、メチル基またはフェニル基がより好ましく、水素原子またはメチル基がさらに好ましく、メチル基が特に好ましい。 In the formula (4), R 5 and R 6 each independently represent a substituent having 1 to 20 carbon atoms which may include a hydrogen atom, a halogen atom, an aromatic group, and a hydrogen atom, a methyl group, a phenyl group. or a naphthyl group, more preferably a hydrogen atom, a methyl group or a phenyl group, even more preferably a hydrogen atom or a methyl group, and particularly preferably a methyl group.

前記式(4)において、L、Lはそれぞれ独立に2価の連結基を示し、炭素数1~12のアルキレン基であると好ましく、炭素数1~4のアルキレン基であるとより好ましく、エチレン基であるとさらに好ましい。L、Lの連結基の長さを調整することによって、樹脂のガラス転移温度(Tg)を調整することができる。 In the formula (4), L 1 and L 2 each independently represent a divalent linking group, preferably an alkylene group having 1 to 12 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms. , more preferably an ethylene group. The glass transition temperature (Tg) of the resin can be adjusted by adjusting the length of the linking groups L 1 and L 2 .

<熱可塑性樹脂の物性>
本発明の熱可塑性樹脂の吸水率は、23℃、24時間浸漬後の吸水率が0.25%以下であると好ましく、0.20%以下であるとより好ましく、0.18%以下であるとさらに好ましい。また、23℃、480時間浸漬後の吸水率が0.60%以下であると好ましく、0.50%以下であるとより好ましく、0.45%以下であるとさらに好ましい。吸水率が上限より高い場合は、吸脱湿による形状の寸法変化が大きくなる。特にレンズなどに成型した場合には膨張収縮や屈折率変化が起こり、焦点距離や波面収差などのレンズ性能低下をもたらすことがある。
<Physical properties of thermoplastic resin>
The water absorption rate of the thermoplastic resin of the present invention after immersion at 23°C for 24 hours is preferably 0.25% or less, more preferably 0.20% or less, and 0.18% or less. and even more preferable. Further, the water absorption rate after immersion at 23° C. for 480 hours is preferably 0.60% or less, more preferably 0.50% or less, and even more preferably 0.45% or less. When the water absorption rate is higher than the upper limit, dimensional changes in the shape due to moisture absorption and desorption become large. In particular, when molded into a lens or the like, expansion/contraction and changes in refractive index may occur, resulting in deterioration of lens performance such as focal length and wavefront aberration.

本発明の熱可塑性樹脂のバイオマス度は5%以上であると好ましく、10%以上であるとより好ましく、15%以上であるとさらに好ましく、20%以上であると特に好ましい。 The biomass degree of the thermoplastic resin of the present invention is preferably 5% or more, more preferably 10% or more, even more preferably 15% or more, and particularly preferably 20% or more.

本発明において、熱可塑性樹脂におけるバイオマス度は、熱可塑性樹脂を構成する全構造単位のうち、植物由来資源から合成された構造単位の重量比率と定義する。なお、熱可塑性樹脂中のバイオマス度は100%である必要はない。一部にでもバイオマス由来の原料が用いられていれば、化石燃料の使用量を削減し環境負荷を低減するという本発明の趣旨に沿うためである。また、植物由来の資源から製造されたものであるかどうかは、例えば、放射性炭素(14C)の濃度測定により確認することが可能である。大気中の二酸化炭素には、14Cが一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中の14C含有量も105.5pMC程度であることが知られている。また、化石燃料中には14Cが殆ど含まれていないことも知られている。したがって、熱可塑性樹脂中の全炭素原子中に含まれる14Cの割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。 In the present invention, the degree of biomass in a thermoplastic resin is defined as the weight ratio of structural units synthesized from plant-derived resources among all structural units constituting the thermoplastic resin. Note that the degree of biomass in the thermoplastic resin does not need to be 100%. This is because if biomass-derived raw materials are used even in part, the purpose of the present invention is to reduce the amount of fossil fuel used and the environmental load. Further, whether or not the product is manufactured from plant-derived resources can be confirmed by, for example, measuring the concentration of radioactive carbon ( 14 C). Since atmospheric carbon dioxide contains 14 C at a certain rate (105.5 pMC), the 14 C content in plants that grow by taking in atmospheric carbon dioxide, such as corn, is also around 105.5 pMC. It is known that It is also known that fossil fuels contain almost no 14C . Therefore, by measuring the proportion of 14 C contained in all carbon atoms in the thermoplastic resin, the proportion of carbon derived from biomass can be calculated.

本発明の熱可塑性樹脂の数平均分子量は、3,000以上であると好ましく、5,000以上であるとより好ましく、7,500以上であるとさらに好ましく、10,000以上であると特に好ましい。数平均分子量が上記範囲内であると成形性と機械強度のバランスに優れるため好ましい。 The number average molecular weight of the thermoplastic resin of the present invention is preferably 3,000 or more, more preferably 5,000 or more, even more preferably 7,500 or more, and particularly preferably 10,000 or more. . It is preferable that the number average molecular weight is within the above range because it provides an excellent balance between moldability and mechanical strength.

本発明の熱可塑性樹脂の重量平均分子量は、7,500以上であると好ましく、10,000以上であるとより好ましく、20,000以上であるとさらに好ましく、30,000以上であると特に好ましい。重量平均分子量が上記範囲内であると成形性と機械強度のバランスに優れるため好ましい。 The weight average molecular weight of the thermoplastic resin of the present invention is preferably 7,500 or more, more preferably 10,000 or more, even more preferably 20,000 or more, and particularly preferably 30,000 or more. . It is preferable that the weight average molecular weight is within the above range because it provides an excellent balance between moldability and mechanical strength.

本発明の熱可塑性樹脂の5%重量減少温度は、窒素雰囲気下で昇温速度20℃/分での5%重量減少温度であり、350℃以上であることが好ましく、360℃以上であるとより好ましく、370℃以上であるとさらに好ましく、380℃以上であると特に好ましい。5%重量減少温度が上記下限以上であると耐熱安定性が高い。 The 5% weight loss temperature of the thermoplastic resin of the present invention is the 5% weight loss temperature at a heating rate of 20°C/min in a nitrogen atmosphere, preferably 350°C or higher, and preferably 360°C or higher. The temperature is more preferably 370°C or higher, even more preferably 380°C or higher. When the 5% weight loss temperature is equal to or higher than the above lower limit, heat resistance stability is high.

本発明の熱可塑性樹脂の屈折率は、温度:20℃、波長:587.56nmで測定した場合に、1.450以上、1.460以上、1.470以上、1.480以上、1.490以上、または1.500以上であってもよく、1.650以下、1.640以下、1.630以下、1.620以下、1.610以下または1.600以下であってもよい。 The refractive index of the thermoplastic resin of the present invention is 1.450 or more, 1.460 or more, 1.470 or more, 1.480 or more, 1.490 when measured at a temperature of 20°C and a wavelength of 587.56 nm. or more, or 1.500 or more, or 1.650 or less, 1.640 or less, 1.630 or less, 1.620 or less, 1.610 or less, or 1.600 or less.

本発明の熱可塑性樹脂の屈折率は、1.450~1.650の範囲であることが好ましく、1.460~1.640の範囲であるとより好ましく、1.470~1.630の範囲であるとさらに好ましく、1.480~1.620の範囲であると特に好ましく、1.490~1.610の範囲であると最も好ましい。 The refractive index of the thermoplastic resin of the present invention is preferably in the range of 1.450 to 1.650, more preferably in the range of 1.460 to 1.640, and more preferably in the range of 1.470 to 1.630. More preferably, it is in the range of 1.480 to 1.620, most preferably in the range of 1.490 to 1.610.

本発明の熱可塑性樹脂のアッベ数は、20以上、21以上、22以上、23以上、24以上または25以上であってもよく、65以下、64以下、63以下、62以下、61以下、60以下または59以下であってもよい。アッベ数(νd)は、20~65の範囲であることが好ましく、22~63の範囲であることがより好ましく、25~60の範囲であるとさらに好ましい。 The Abbe number of the thermoplastic resin of the present invention may be 20 or more, 21 or more, 22 or more, 23 or more, 24 or more, or 25 or more, 65 or less, 64 or less, 63 or less, 62 or less, 61 or less, 60 It may be less than or equal to 59. The Abbe number (νd) is preferably in the range of 20 to 65, more preferably in the range of 22 to 63, even more preferably in the range of 25 to 60.

ここで、アッベ数は、温度:20℃、波長:486.13nm、587.56nm、656.27nmの屈折率から、下記式を用いて算出する:
νd=(nd-1)/(nF-nC)
nd:波長587.56nmにおける屈折率、
nF:波長486.13nmにおける屈折率、
nC:波長656.27nmにおける屈折率を意味する。
Here, the Abbe number is calculated from the refractive index at temperature: 20°C and wavelength: 486.13 nm, 587.56 nm, and 656.27 nm using the following formula:
νd=(nd-1)/(nF-nC)
nd: refractive index at wavelength 587.56 nm,
nF: refractive index at a wavelength of 486.13 nm,
nC: means the refractive index at a wavelength of 656.27 nm.

<熱可塑性樹脂の原料>
(式(1)のジオール成分)
式(1)の原料となるジオール成分は、主として下記式(a)で表されるジオール成分であり、単独で使用してもよく、又は二種以上組み合わせて用いてもよい。
<Raw materials for thermoplastic resin>
(Diol component of formula (1))
The diol component serving as a raw material of formula (1) is mainly a diol component represented by the following formula (a), and may be used alone or in combination of two or more types.

(式(a)中、RおよびRは、それぞれ独立して水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、RおよびRは、それぞれ独立して、炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示す。また、RとR、またはRとRが相互に結合して環を形成していてもよい。)
式(a)における、R、R、R、Rは、式(1)におけるR、R、R、Rと同義であり、好ましい範囲も同様である。
(In formula (a), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring.)
R 1 , R 2 , R 3 , and R 4 in formula (a) have the same meanings as R 1 , R 2 , R 3 , and R 4 in formula (1), and their preferred ranges are also the same.

式(a)で表されるジオールは、下記式(5)で表されるヒドロキシケトンと、下記式(6)で表されるエリスリトールを脱水環化反応させることによって得られる。エリスリトールは自然派甘味料として知られ、トウモロコシを原料に酵素を用いて発酵させて製造することができる。本発明においては、石油由来ではない原料を用いることが好ましい。 The diol represented by the formula (a) can be obtained by subjecting a hydroxyketone represented by the following formula (5) and erythritol represented by the following formula (6) to a cyclodehydration reaction. Erythritol is known as a natural sweetener and can be produced by fermenting corn using enzymes. In the present invention, it is preferable to use raw materials that are not derived from petroleum.

(式(5)中、Rは水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、Rは炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示し、RとRが相互に結合して環を形成していてもよい。) (In formula (5), R 7 represents a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and R 8 represents a hydrogen atom having 1 to 10 carbon atoms. It represents 10 divalent acyclic hydrocarbon groups or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and R 7 and R 8 may be bonded to each other to form a ring. )

式(5)におけるRは水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数が3~10の脂環式炭化水素基を示し、水素原子または炭素原子数1~3の非環状炭化水素基が好ましく、水素原子またはメチル基がさらに好ましく、メチル基が特に好ましい。 R 7 in formula (5) represents a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms; is preferably an acyclic hydrocarbon group, more preferably a hydrogen atom or a methyl group, and particularly preferably a methyl group.

式(5)におけるRとしては、それぞれ独立に炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示し、炭素原子数1~3の2価の非環状炭化水素基または炭素原子数3~6の2価の脂環式炭化水素基が好ましく、メチレン基がさらに好ましい。 R 8 in formula (5) each independently represents a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms; A divalent acyclic hydrocarbon group having 1 to 3 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 6 carbon atoms is preferred, and a methylene group is more preferred.

前記式(5)において、RとRが相互に結合して環を形成していてもよく、構造の例として、好ましくは、下記構造式(a-1)で表されるものが挙げられ、これらのうち、耐熱性の観点から環構造がシクロヘキサンであることが特に好ましい。 In the above formula (5), R 7 and R 8 may be bonded to each other to form a ring, and preferred examples of the structure include those represented by the following structural formula (a-1). Among these, it is particularly preferable that the ring structure is cyclohexane from the viewpoint of heat resistance.

(式(a-1)中、L、kは前記式(1-a)と同じである。)
前記式(a-1)において、Lは2価の連結基を示し、炭素原子数1~4のアルキレン基が好ましく、メチレン基またはエチレン基がより好ましく、メチレン基がさらに好ましい。
(In formula (a-1), L and k are the same as in formula (1-a) above.)
In the formula (a-1), L represents a divalent linking group, preferably an alkylene group having 1 to 4 carbon atoms, more preferably a methylene group or an ethylene group, and even more preferably a methylene group.

本発明の前記式(a)で表されるジオール化合物の純度は95%以上であると好ましく、97%以上であるとより好ましく、98%以上であるとさらに好ましい。純度はガスクロマトグラフで測定される。 The purity of the diol compound represented by the formula (a) of the present invention is preferably 95% or more, more preferably 97% or more, and even more preferably 98% or more. Purity is determined by gas chromatography.

<ジオール化合物の製造方法>
本発明の前記式(a)で表されるジオール化合物は、上記式(5)で表されるヒドロキシケトン類と上記式(6)で表されるエリスリトールとを酸触媒および溶媒の存在下、脱水環化反応させることで得られる。特に、石油由来ではない原料から合成されることが好ましい。
<Method for producing diol compound>
The diol compound represented by the above formula (a) of the present invention is obtained by dehydrating hydroxyketones represented by the above formula (5) and erythritol represented by the above formula (6) in the presence of an acid catalyst and a solvent. Obtained by cyclization reaction. In particular, it is preferably synthesized from raw materials that are not derived from petroleum.

本発明の製造方法において、上記式(5)で表されるヒドロキシケトン類の使用比率は、上記式(6)で表されるエリスリトール1モルに対して1.8~2.4モルが好ましく、1.9~2.1モルがより好ましい。 In the production method of the present invention, the usage ratio of the hydroxyketones represented by the above formula (5) is preferably 1.8 to 2.4 mol per 1 mol of erythritol represented by the above formula (6), More preferably 1.9 to 2.1 mol.

酸触媒として、シュウ酸、酢酸、塩酸、硫酸、リン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸、ヘテロポリ酸が挙げられ、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸が好ましく、p-トルエンスルホン酸がより好ましい。 Examples of acid catalysts include oxalic acid, acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, and heteropolyacid; Preferred is p-toluenesulfonic acid, more preferred.

本発明で使用する酸触媒の使用量は、エリスリトール1モルに対して、0.001~1モルが好ましく、0.005~0.1モルがより好ましく、0.01~0.05モルがさらに好ましい。 The amount of the acid catalyst used in the present invention is preferably 0.001 to 1 mol, more preferably 0.005 to 0.1 mol, and still more preferably 0.01 to 0.05 mol, per 1 mol of erythritol. preferable.

溶媒として、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、テトラヒドロフラン、ジオキサン、ジメチルスルホキシドが挙げられ、トルエン、ジメチルホルムアミドが好ましい。これら溶媒は単独で使用しても良く、2種類以上を併用しても良い。 Examples of the solvent include benzene, toluene, xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, tetrahydrofuran, dioxane, and dimethylsulfoxide, with toluene and dimethylformamide being preferred. These solvents may be used alone or in combination of two or more.

溶媒の量は、エリスリトールに対して、1~100重量倍であると好ましく、3~50重量倍であるとより好ましく、5~20重量倍であるとさらに好ましい。 The amount of the solvent is preferably 1 to 100 times the weight of erythritol, more preferably 3 to 50 times, and even more preferably 5 to 20 times the weight.

ジオール化合物の製造方法において、反応器の上にディーンスターク装置を付け、副生する水を系外に除去することが好ましい。 In the method for producing a diol compound, it is preferable to attach a Dean-Stark device on top of the reactor to remove by-product water from the system.

ジオール化合物の製造方法において、脱水縮合反応の反応温度は60~150℃が好ましく、80~130℃がより好ましく、100~120℃がさらに好ましい。 In the method for producing a diol compound, the reaction temperature for the dehydration condensation reaction is preferably 60 to 150°C, more preferably 80 to 130°C, and even more preferably 100 to 120°C.

反応は大気下でも実施することができるが、安全性や色相の観点から、窒素、アルゴンなどの不活性ガス雰囲気下で行うことが好ましい。反応はガスクロマトグラフィーや液体クロマトグラフィーなどの分析手段で追跡することができる。 Although the reaction can be carried out in the atmosphere, from the viewpoint of safety and hue, it is preferable to carry out the reaction in an atmosphere of an inert gas such as nitrogen or argon. The reaction can be followed by analytical means such as gas chromatography or liquid chromatography.

(前記式(1)のカーボネート成分)
本発明の熱可塑性樹脂の前記式(1)で表される単位に使用するカーボネート成分としては、ホスゲン、カーボネートエステルがあげられる。カーボネートエステルは、置換されていてもよい炭素数6~10のアリール基、アラルキル基あるいは炭素数1~4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、ビス(m-クレジル)カーボネート、ジナフチルカーボネートなどの炭酸ジアリール、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどの炭酸ジアルキル、エチルフェニルカーボネート、シクロヘキシルフェニルカーボネートなどの炭酸アルキルアリール、または、ジビニルカーボネート、ジイソプロぺニルカーボネート、ジプロペニルカーボネートなどの炭酸ジアルケニルなどが挙げられ、なかでも炭酸ジアリールが好ましく、ジフェニルカーボネートがより好ましい。
(Carbonate component of formula (1) above)
Examples of the carbonate component used in the unit represented by formula (1) of the thermoplastic resin of the present invention include phosgene and carbonate ester. Examples of the carbonate ester include esters of an optionally substituted aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms. Specifically, diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, bis(m-cresyl) carbonate, and dinaphthyl carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate, and ethyl carbonates. Examples include alkylaryl carbonates such as phenyl carbonate and cyclohexylphenyl carbonate, and dialkenyl carbonates such as divinyl carbonate, diisopropenyl carbonate and dipropenyl carbonate, among which diaryl carbonates are preferred, and diphenyl carbonate is more preferred.

(前記式(1)のジカルボン酸成分)
本発明の熱可塑性樹脂の前記式(1)で表される単位に使用するジカルボン酸成分は主として、式(b)で表されるジカルボン酸、またはそのエステル形成性誘導体が好ましく用いられる。
(Dicarboxylic acid component of formula (1) above)
The dicarboxylic acid component used in the unit represented by formula (1) of the thermoplastic resin of the present invention is preferably a dicarboxylic acid represented by formula (b) or an ester-forming derivative thereof.

前記式(b)において、Xは2価の連結基を示す。
以下、前記式(b)で表されるジカルボン酸またはそのエステル形成性誘導体の代表的具体例を示すが、本発明の前記式(b)に用いられる原料としては、それらによって限定されるものではない。
In the formula (b), X represents a divalent linking group.
Typical specific examples of the dicarboxylic acid represented by the above formula (b) or its ester-forming derivative are shown below, but the raw materials used in the above formula (b) of the present invention are not limited thereto. do not have.

本発明の熱可塑性樹脂に使用するジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸成分、フタル酸、イソフタル酸、テレフタル酸等の単環式芳香族ジカルボン酸成分、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9-ビス(カルボキシメチル)フルオレン、9,9-ビス(1-カルボキシエチル)フルオレン、9,9-ビス(1-カルボキシプロピル)フルオレン、9,9-ビス(2-カルボキシプロピル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルエチル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルプロピル)フルオレン、9,9-ビス(2-カルボキシブチル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルブチル)フルオレン、9,9-ビス(5-カルボキシペンチル)フルオレン、9,9-ビス(カルボキシシクロヘキシル)フルオレン、2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル等の多環式芳香族ジカルボン酸成分、2,2’-ビフェニルジカルボン酸等のビフェニルジカルボン酸成分、1,4-シクロヘキサンジカルボン酸、2,6-デカリンジカルボン酸等の脂環族ジカルボン酸成分が挙げられる。これらは単独または二種類以上組み合わせて用いても良い。また、エステル形成性誘導体としては酸クロライドや、メチルエステル、エチルエステル、フェニルエステル等のエステル類を用いてもよい。 Dicarboxylic acid components used in the thermoplastic resin of the present invention include aliphatic dicarboxylic acid components such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid. , monocyclic aromatic dicarboxylic acid components such as phthalic acid, isophthalic acid, and terephthalic acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid acid, 1,8-naphthalene dicarboxylic acid, anthracene dicarboxylic acid, phenanthrene dicarboxylic acid, 9,9-bis(carboxymethyl)fluorene, 9,9-bis(1-carboxyethyl)fluorene, 9,9-bis(1- carboxypropyl) fluorene, 9,9-bis(2-carboxypropyl)fluorene, 9,9-bis(2-carboxy-1-methylethyl)fluorene, 9,9-bis(2-carboxy-1-methylpropyl) Fluorene, 9,9-bis(2-carboxybutyl)fluorene, 9,9-bis(2-carboxy-1-methylbutyl)fluorene, 9,9-bis(5-carboxypentyl)fluorene, 9,9-bis( polycyclic aromatic dicarboxylic acid components such as carboxycyclohexyl) fluorene, 2,2'-bis(carboxymethoxy)-1,1'-binaphthyl, biphenyldicarboxylic acid components such as 2,2'-biphenyldicarboxylic acid, 1, Examples include alicyclic dicarboxylic acid components such as 4-cyclohexanedicarboxylic acid and 2,6-decalindicarboxylic acid. These may be used alone or in combination of two or more. Further, as the ester-forming derivative, acid chloride and esters such as methyl ester, ethyl ester, and phenyl ester may be used.

(前記式(4)の成分)
本発明の熱可塑性樹脂は、さらに前記式(4)の構成単位を有していてもよく、前記式(4)の原料となるジヒドロキシ化合物成分を以下に示す。これらは単独で使用してもよく、または二種以上組み合わせて用いてもよい。
(Components of the above formula (4))
The thermoplastic resin of the present invention may further have a structural unit of the above formula (4), and the dihydroxy compound component serving as the raw material of the above formula (4) is shown below. These may be used alone or in combination of two or more.

本発明の前記式(4)の原料となるジヒドロキシ化合物成分は、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン等が例示され、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが特に好ましい。これらは単独で使用してもよく、または二種以上組み合わせて用いてもよい。 The dihydroxy compound component serving as a raw material for the formula (4) of the present invention is 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)- 3-methylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3-cyclohexylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3-phenylphenyl)fluorene , 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 9,9-bis(4-hydroxy-3-cyclohexylphenyl)fluorene, 9, Examples include 9-bis(4-hydroxy-3-phenylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy) )-3-phenylphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are particularly preferred. These may be used alone or in combination of two or more.

また、本発明の熱可塑性樹脂には、必要に応じて熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、酸化防止剤、紫外線吸収剤、離型剤等の添加剤を配合することができる。 In addition, the thermoplastic resin of the present invention may optionally contain heat stabilizers, plasticizers, light stabilizers, polymerized metal deactivators, flame retardants, lubricants, antistatic agents, surfactants, antibacterial agents, oxidizing agents, etc. Additives such as inhibitors, ultraviolet absorbers, and mold release agents can be added.

本発明の熱可塑性樹脂は、例えばジヒドロキシ化合物成分に炭酸ジエステルなどのカーボネート前駆物質を反応させる方法やジオール成分にジカルボン酸またはそのエステル形成性誘導体を反応させる方法等により製造される。以下にその具体例を示す。 The thermoplastic resin of the present invention is produced, for example, by a method in which a dihydroxy compound component is reacted with a carbonate precursor such as a diester carbonate, or a method in which a diol component is reacted with a dicarboxylic acid or its ester-forming derivative. A specific example is shown below.

<製造方法>
(ポリカーボネート樹脂の製造方法)
本発明の熱可塑性樹脂がポリカーボネート樹脂である場合はそれ自体公知の反応手段、例えばジヒドロキシ化合物成分とカーボネート前駆物質を溶融重合法によって反応させて得られる。ポリカーボネート樹脂を製造するに当たっては、必要に応じて触媒、末端停止剤、酸化防止剤等を使用してもよい。
<Manufacturing method>
(Production method of polycarbonate resin)
When the thermoplastic resin of the present invention is a polycarbonate resin, it can be obtained by a reaction method known per se, for example, by reacting a dihydroxy compound component with a carbonate precursor by a melt polymerization method. When producing a polycarbonate resin, a catalyst, a terminal stopper, an antioxidant, etc. may be used as necessary.

(ポリエステル樹脂の製造方法)
本発明の熱可塑性樹脂がポリエステル樹脂である場合はそれ自体公知の反応手段、例えばジヒドロキシ化合物成分とジカルボン酸またはそのエステル形成性誘導体とをエステル化反応もしくはエステル交換反応させ、得られた反応生成物を重縮合反応させ、所望の分子量の高分子量体とすればよい。
(Production method of polyester resin)
When the thermoplastic resin of the present invention is a polyester resin, a reaction product obtained by performing an esterification reaction or transesterification reaction between a dihydroxy compound component and a dicarboxylic acid or an ester-forming derivative thereof using a reaction method known per se, for example, a dihydroxy compound component and a dicarboxylic acid or an ester-forming derivative thereof. may be subjected to a polycondensation reaction to obtain a polymer having a desired molecular weight.

(ポリエステルカーボネート樹脂の製造方法)
本発明の熱可塑性樹脂がポリエステルカーボネート樹脂である場合は、ジヒドロキシ化合物成分およびジカルボン酸またはそのエステル形成性誘導体と、カーボネートエステルなどのカーボネート前駆物質とを反応させることにより製造することができる。重合方法は前記ポリカーボネート樹脂またはポリエステル樹脂と同様の方法を用いることができる。
(Production method of polyester carbonate resin)
When the thermoplastic resin of the present invention is a polyester carbonate resin, it can be produced by reacting a dihydroxy compound component and a dicarboxylic acid or an ester-forming derivative thereof with a carbonate precursor such as a carbonate ester. As the polymerization method, the same method as for the polycarbonate resin or polyester resin can be used.

<光学部材>
本発明の光学部材は、上記の熱可塑性樹脂から形成される。そのような光学部材としては、上記の熱可塑性樹脂が有用となる光学用途であれば、特に限定されないが、光学レンズ、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等を挙げることができる。
<Optical members>
The optical member of the present invention is formed from the above thermoplastic resin. Such optical members include, but are not limited to, optical lenses, optical discs, transparent conductive substrates, optical cards, sheets, films, optical fibers, lenses, and prisms as long as they are used for optical applications where the above-mentioned thermoplastic resins are useful. , optical films, substrates, optical filters, hard coat films, etc.

本発明の光学部材は、射出成形、圧縮成形、射出圧縮成形、溶融押出成形、キャスティング等の任意の方法により成形、加工することができる。 The optical member of the present invention can be molded and processed by any method such as injection molding, compression molding, injection compression molding, melt extrusion molding, and casting.

<光学レンズ>
本発明の光学部材として、特に光学レンズを挙げることができる。このような光学レンズとしては、携帯電話、スマートフォン、タブレット端末、パソコン、デジタルカメラ、ビデオカメラ、車載カメラ、監視カメラ等のための光学レンズを挙げることができる。
<Optical lens>
As the optical member of the present invention, an optical lens can be mentioned in particular. Examples of such optical lenses include optical lenses for mobile phones, smartphones, tablet terminals, personal computers, digital cameras, video cameras, in-vehicle cameras, surveillance cameras, and the like.

本発明の光学レンズは、射出成形、圧縮成形、射出圧縮成形、溶融押出成形、キャスティング等の任意の方法により成形、加工することができるが、射出成形が特に好適である。 The optical lens of the present invention can be molded and processed by any method such as injection molding, compression molding, injection compression molding, melt extrusion molding, and casting, but injection molding is particularly suitable.

射出成形の成形条件は特に限定されないが、成形機のシリンダー温度は180~320℃が好ましく、220~300℃がより好ましく、240~280℃が特に好ましい。また、金型温度は70~130℃が好ましく、80~125℃がより好ましく、90~120℃が特に好ましい。射出圧力は5~170MPaが好ましく、50~160MPaがより好ましく、100~150MPaが特に好ましい。 The molding conditions for injection molding are not particularly limited, but the cylinder temperature of the molding machine is preferably 180 to 320°C, more preferably 220 to 300°C, and particularly preferably 240 to 280°C. Further, the mold temperature is preferably 70 to 130°C, more preferably 80 to 125°C, and particularly preferably 90 to 120°C. The injection pressure is preferably 5 to 170 MPa, more preferably 50 to 160 MPa, particularly preferably 100 to 150 MPa.

本発明を以下の実施例でさらに具体的に説明をするが、本発明はこれによって限定されるものではない。
≪評価方法≫
<テトラオキサデカリン骨格を有する化合物>
<NMR>
得られたジオール化合物を日本電子(株)製JNM-ECZ400Sを用いてHNMR測定することによって、構造を同定した。溶媒はDMSO-dを用いた。
<純度>
アジレント・テクノロジー製シングル四重極GC/MS 5977Bを用い、下記測定条件で測定した。実施例中、特に断らない限り純度(%)はGC/MSにおける溶媒を除いて補正した面積百分率値である。
(GC)
カラム:DB-1(内径0.25mm、長さ30m、膜厚0.25μm)
注入量:1μl
注入法:スプリット比40:1
注入口温度:280℃
オーブン:60℃-10℃/分-280℃(28分)
キャリアガス:He、線速度 36.6cm/s
(MS)
イオン源温度:230℃
イオン化モード:EI 70eV
測定範囲:m/z 33-700
The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited thereto.
≪Evaluation method≫
<Compound having a tetraoxadecalin skeleton>
<NMR>
The structure of the obtained diol compound was identified by 1 HNMR measurement using JNM-ECZ400S manufactured by JEOL Ltd. DMSO- d6 was used as the solvent.
<Purity>
Measurement was performed using a single quadrupole GC/MS 5977B manufactured by Agilent Technologies under the following measurement conditions. In the examples, unless otherwise specified, purity (%) is an area percentage value corrected by excluding the solvent in GC/MS.
(GC)
Column: DB-1 (inner diameter 0.25 mm, length 30 m, film thickness 0.25 μm)
Injection volume: 1μl
Injection method: split ratio 40:1
Inlet temperature: 280℃
Oven: 60℃-10℃/min-280℃ (28 minutes)
Carrier gas: He, linear velocity 36.6 cm/s
(MS)
Ion source temperature: 230℃
Ionization mode: EI 70eV
Measurement range: m/z 33-700

<熱可塑性樹脂>
<共重合比>
得られた樹脂を日本電子(株)製JNM-ECZ400Sを用いてHNMR測定することによって、各の熱可塑性樹脂組成比を算出した。溶媒はDMSO-dを用いた。
<分子量>
ゲル浸透クロマトグラフィー(GPC)を用いて、下記の条件により分子量分布を測定し、数平均分子量(Mn)、重量平均分子量(Mw)を求めた。
得られた樹脂10mgをクロロホルム5mLに溶解して溶液を調整した。
(測定条件)
装置 : 東ソー株式会社製 HLC-8420
カラム : 東ソー株式会社製TSKgel SupermultiporeHZM-M×3+TSKgel guardcolumn
流量 : 0.350mL/min
検出条件 : UV254nm
カラム温度 : 40.0℃
溶離液 : クロロホルム
<吸水率>
各樹脂の3mm厚成形板を圧縮成形にて作製し、80℃で12時間乾燥した3mm厚さの成形板を23℃の水中に浸し、定期的に取り出してその重量を測定し、吸水率を下記式から計算した。なお、測定はそれぞれの熱可塑性樹脂において3つの成型板サンプルで行い、その平均値を吸水率とした。
吸水率(%)=(吸水後の成形板の質量-吸水前の成形板の質量)/吸水前の成形板の質量×100
<5%重量減少温度>
得られた樹脂をTAインスツルメント製の示差熱・熱重量同時測定装置Discovery SDT650により、窒素雰囲気下で、昇温速度20℃/minで測定し、5%重量減少温度を測定した。試料は5mg程度で測定した。
<Thermoplastic resin>
<Copolymerization ratio>
The composition ratio of each thermoplastic resin was calculated by subjecting the obtained resin to 1 HNMR measurement using JNM-ECZ400S manufactured by JEOL Ltd. DMSO- d6 was used as the solvent.
<Molecular weight>
The molecular weight distribution was measured using gel permeation chromatography (GPC) under the following conditions, and the number average molecular weight (Mn) and weight average molecular weight (Mw) were determined.
10 mg of the obtained resin was dissolved in 5 mL of chloroform to prepare a solution.
(Measurement condition)
Equipment: HLC-8420 manufactured by Tosoh Corporation
Column: TSKgel SupermultiporeHZM-M×3+TSKgel guardcolumn manufactured by Tosoh Corporation
Flow rate: 0.350mL/min
Detection conditions: UV254nm
Column temperature: 40.0℃
Eluent: Chloroform <water absorption>
A 3 mm thick molded plate of each resin was produced by compression molding, dried at 80°C for 12 hours, immersed in 23°C water, taken out periodically, measured its weight, and calculated the water absorption rate. It was calculated using the following formula. The measurements were performed on three molded plate samples for each thermoplastic resin, and the average value was taken as the water absorption rate.
Water absorption rate (%) = (mass of formed plate after water absorption - mass of formed plate before water absorption) / mass of formed plate before water absorption x 100
<5% weight loss temperature>
The obtained resin was measured in a nitrogen atmosphere at a heating rate of 20° C./min using a differential thermal/thermogravimetric simultaneous measuring device Discovery SDT650 manufactured by TA Instruments, and the 5% weight loss temperature was measured. The sample was measured at approximately 5 mg.

<光学特性>
(屈折率)
各樹脂の3mm厚試験片を圧縮成形にて作製し、研磨した後、島津製作所製のカルニュー精密屈折計KPR-2000を使用して、20℃における屈折率nd(587.56nm)を測定した。
(アッベ数)
アッベ数の測定波長は、486.13nm、587.56nm、656.27nmの屈折率から下記の式を用いて算出した。
νd=(nd-1)/(nF-nC)
nd:波長587.56nmでの屈折率、
nF:波長486.13nmでの屈折率、
nC:波長656.27nmでの屈折率を意味する。
<バイオマス度>
熱可塑性樹脂を構成する全構造単位のうち、植物由来資源から合成された構造単位の重量比率を計算した。
<Optical properties>
(Refractive index)
A 3 mm thick test piece of each resin was produced by compression molding, and after polishing, the refractive index nd (587.56 nm) at 20° C. was measured using a Karnew precision refractometer KPR-2000 manufactured by Shimadzu Corporation.
(Abbe number)
The measurement wavelength of Abbe's number was calculated from the refractive index of 486.13 nm, 587.56 nm, and 656.27 nm using the following formula.
νd=(nd-1)/(nF-nC)
nd: refractive index at wavelength 587.56 nm,
nF: refractive index at wavelength 486.13 nm,
nC: means the refractive index at a wavelength of 656.27 nm.
<Biomass degree>
The weight ratio of structural units synthesized from plant-derived resources among all the structural units constituting the thermoplastic resin was calculated.

[実施例1]2,6-ビス(ヒドロキシメチル)-2,6-ジメチル-1,3,5,7-テトラオキサデカリン(以下、MMTODと省略することがある)の合成
窒素雰囲気下、撹拌機、冷却器、ディーンスターク管、温度計を備え付けたフラスコにmeso-エリスリトール(石油由来ではない原料)10.00g、ヒドロキシアセトン12.13g、p-トルエンスルホン酸1水和物0.31g、トルエン75ml、ジメチルホルムアミド7mlを仕込み、110℃で5時間反応した。反応終了後、エバポレーターで反応液を濃縮し、濃縮後の粗生成物をカラム精製した(展開溶媒は酢酸エチル:ヘキサン=2:1)。メイン成分のみを分取した溶離液をエバポレーターで濃縮後、乾燥しMMTODを13.15g得た(収率:69%、純度:98.39)。なお、MMTODは、以下の化学構造を有する。
[Example 1] Synthesis of 2,6-bis(hydroxymethyl)-2,6-dimethyl-1,3,5,7-tetraoxadecalin (hereinafter sometimes abbreviated as MMTOD) Stirring under nitrogen atmosphere 10.00 g of meso-erythritol (raw material not derived from petroleum), 12.13 g of hydroxyacetone, 0.31 g of p-toluenesulfonic acid monohydrate, and toluene in a flask equipped with a vacuum cleaner, condenser, Dean-Stark tube, and thermometer. 75 ml of dimethylformamide and 7 ml of dimethylformamide were added, and the mixture was reacted at 110° C. for 5 hours. After the reaction was completed, the reaction solution was concentrated using an evaporator, and the crude product after concentration was purified by a column (developing solvent was ethyl acetate:hexane=2:1). The eluate from which only the main component was separated was concentrated using an evaporator and then dried to obtain 13.15 g of MMTOD (yield: 69%, purity: 98.39). Note that MMTOD has the following chemical structure.

[実施例2]ポリカーボネート樹脂の製造
MMTODを2.3質量部(20mоl%)、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(以下、BPEFと省略することがある)17.54質量部(80mоl%)、ジフェニルカーボネート(以下、DPCと省略することがある)10.82質量部(101mоl%)、及び触媒として濃度60mmol/Lの濃度で炭酸水素ナトリウムを2.10×10-4質量部(5.00×10-3mоl%)を加え、窒素雰囲気下180℃に加熱し溶融させた。その後、5分間かけて減圧度を20kPaに調整した。40℃/hrの昇温速度で250℃まで昇温を行い、フェノールの流出量が70%になった後で40kPa/hrで減圧し、所定の電力に到達するまで重合反応を行い、反応終了後フラスコから樹脂を取り出した。得られたポリカ―ボネート樹脂を、HNMRにより分析し、MMTOD成分が全モノマーに対して20mоl%、BPEF成分が全モノマー成分に対して80mоl%導入されていることを確認した。該ポリカ―ボネート樹脂を用いて、共重合比、分子量、屈折率、アッベ数、吸水率、5%重量減少温度を評価し結果を表1に、バイオマス度を表2に示した。なお、BPEFは、以下の化学構造を有する。
[Example 2] Production of polycarbonate resin 2.3 parts by mass (20 mol%) of MMTOD, 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF) 17 .54 parts by mass (80 mol%), 10.82 parts by mass (101 mol%) of diphenyl carbonate (hereinafter sometimes abbreviated as DPC), and 2.10× sodium hydrogen carbonate at a concentration of 60 mmol/L as a catalyst. 10 −4 parts by mass (5.00×10 −3 mol %) was added and heated to 180° C. in a nitrogen atmosphere to melt. Thereafter, the degree of pressure reduction was adjusted to 20 kPa over a period of 5 minutes. The temperature was raised to 250 °C at a temperature increase rate of 40 °C/hr, and after the outflow of phenol reached 70%, the pressure was reduced at 40 kPa/hr, and the polymerization reaction was carried out until the predetermined power was reached, and the reaction was completed. The resin was then removed from the flask. The obtained polycarbonate resin was analyzed by 1 HNMR, and it was confirmed that the MMTOD component was introduced in an amount of 20 mol% based on the total monomer components, and the BPEF component was introduced in an amount of 80 mol% based on the total monomer components. Using the polycarbonate resin, the copolymerization ratio, molecular weight, refractive index, Abbe number, water absorption, and 5% weight loss temperature were evaluated, and the results are shown in Table 1 and the biomass degree is shown in Table 2. Note that BPEF has the following chemical structure.

[実施例3]ポリカーボネート樹脂の製造
MMTODとBPEFの比率を36:64(mol%)に変更した以外は変更したこと以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。該ポリカ―ボネート樹脂を用いて、共重合比、分子量、屈折率、アッベ数、吸水率、5%重量減少温度を評価し結果を表1に、バイオマス度を表2に示した。
[Example 3] Production of polycarbonate resin A polycarbonate resin was produced in the same manner as in Example 1, except that the ratio of MMTOD and BPEF was changed to 36:64 (mol%). Using the polycarbonate resin, the copolymerization ratio, molecular weight, refractive index, Abbe number, water absorption, and 5% weight loss temperature were evaluated, and the results are shown in Table 1 and the biomass degree is shown in Table 2.

[実施例4]ポリカーボネート樹脂の製造
MMTODとBPEFの比率を49:51(mol%)に変更した以外は変更したこと以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。該ポリカ―ボネート樹脂を用いて、共重合比、分子量、屈折率、アッベ数、吸水率、5%重量減少温度を評価し結果を表1に、バイオマス度を表2に示した。
[Example 4] Production of polycarbonate resin A polycarbonate resin was produced in the same manner as in Example 1, except that the ratio of MMTOD and BPEF was changed to 49:51 (mol%). Using the polycarbonate resin, the copolymerization ratio, molecular weight, refractive index, Abbe number, water absorption, and 5% weight loss temperature were evaluated, and the results are shown in Table 1 and the biomass degree is shown in Table 2.

[比較例1]ポリカーボネート樹脂の製造
MMTODの代わりにイソソルビド(以下、「ISS」と省略することがある)を使用し、ISSとBPEFの比率を20:80(mol%)に変更した以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。該ポリカ―ボネート樹脂を用いて、共重合比、分子量、屈折率、アッベ数、吸水率、5%重量減少温度を評価し結果を表1に、バイオマス度を表2に示した。なお、ISSは、以下の化学構造を有する。
[Comparative Example 1] Manufacture of polycarbonate resin Implemented except that isosorbide (hereinafter sometimes abbreviated as "ISS") was used instead of MMTOD and the ratio of ISS and BPEF was changed to 20:80 (mol%) A polycarbonate resin was produced in the same manner as in Example 1. Using the polycarbonate resin, the copolymerization ratio, molecular weight, refractive index, Abbe number, water absorption, and 5% weight loss temperature were evaluated, and the results are shown in Table 1 and the biomass degree is shown in Table 2. Note that ISS has the following chemical structure.

[比較例2]ポリカーボネート樹脂の製造
MMTODの代わりにISSを使用し、ISSとBPEFの比率を40:60(mol%)に変更したこと以外は実施例1と同様にして、ポリカーボネート樹脂を製造した該ポリカ―ボネート樹脂を用いて、共重合比、分子量、屈折率、アッベ数、吸水率、5%重量減少温度を評価し結果を表1に、バイオマス度を表2に示した。
[Comparative Example 2] Production of polycarbonate resin A polycarbonate resin was produced in the same manner as in Example 1, except that ISS was used instead of MMTOD and the ratio of ISS and BPEF was changed to 40:60 (mol%). Using the polycarbonate resin, the copolymerization ratio, molecular weight, refractive index, Abbe number, water absorption, and 5% weight loss temperature were evaluated, and the results are shown in Table 1 and the biomass degree is shown in Table 2.

実施例2~4で得られた熱可塑性樹脂は、MMTODの比率を増加させても吸水率が増加することなく、ISSと同等の優れた光学特性を維持しており、バイオマス度を高くすることができる。これに対して、比較例の熱可塑性樹脂は、光学特性は優れるものの、共重合比を増加させると吸水率が増加し、バイオマス度を高くすることができない。 The thermoplastic resins obtained in Examples 2 to 4 maintain excellent optical properties equivalent to ISS without increasing water absorption even when the ratio of MMTOD is increased, and the degree of biomass can be increased. I can do it. On the other hand, although the thermoplastic resin of the comparative example has excellent optical properties, when the copolymerization ratio is increased, the water absorption rate increases and the degree of biomass cannot be increased.

MMTODのような構造は、優れた光学特性を維持しつつ、低い吸水率であるため、低屈折率化ならびに高アッベ数化、バイオマス度向上に効果的である。 A structure like MMTOD has a low water absorption rate while maintaining excellent optical properties, so it is effective in lowering the refractive index, increasing the Abbe number, and increasing the degree of biomass.

本発明の熱可塑性樹脂は、光学特性に優れ、吸水率が低いことから、光学材料として好適に用いられ、具体的に光学レンズ、プリズム、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、光学膜、光学フィルター、ハードコート膜等の光学部材として用いることができ、特に光学レンズ材料として極めて有用である。 The thermoplastic resin of the present invention has excellent optical properties and low water absorption, and is therefore suitable for use as an optical material, specifically for optical lenses, prisms, optical discs, transparent conductive substrates, optical cards, sheets, films, etc. It can be used as optical members such as optical fibers, optical films, optical filters, and hard coat films, and is particularly useful as an optical lens material.

Claims (17)

下記式(1)で表される構成単位を含む、熱可塑性樹脂。
(式(1)中、RおよびRは、それぞれ独立して水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、RおよびRは、それぞれ独立して、炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示す。また、RとR、またはRとRが相互に結合して環を形成していてもよい。Wは下記式(2)および下記式(3)からなる群より選ばれる少なくとも一つである。)
(式中、Xは2価の連結基を示す。)
A thermoplastic resin containing a structural unit represented by the following formula (1).
(In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring. W is at least one selected from the group consisting of the following formula (2) and the following formula (3). .)
(In the formula, X represents a divalent linking group.)
前記式(1)で表される構成単位が、前記熱可塑性樹脂を構成する全構成単位の5mol%~100mol%を占める、請求項1に記載の熱可塑性樹脂。 The thermoplastic resin according to claim 1, wherein the structural unit represented by the formula (1) accounts for 5 mol% to 100 mol% of all structural units constituting the thermoplastic resin. 前記式(1)におけるRおよびRがメチル基である、請求項1または2に記載の熱可塑性樹脂。 The thermoplastic resin according to claim 1 or 2, wherein R 1 and R 2 in the formula (1) are methyl groups. 前記式(1)におけるRおよびRがメチレン基である、請求項1~3のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 3, wherein R 3 and R 4 in the formula (1) are methylene groups. 下記式(4)で表される構成単位をさらに含む請求項1~4のいずれかに記載の熱可塑性樹脂。
(式(4)中、RおよびRは、同一または異なって、水素原子または炭素原子数1~10の炭化水素基を表し、LおよびLはそれぞれ独立に2価の連結基を示し、mおよびnはそれぞれ独立に0または1を示す。)
The thermoplastic resin according to any one of claims 1 to 4, further comprising a structural unit represented by the following formula (4).
(In formula (4), R 5 and R 6 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and L 1 and L 2 each independently represent a divalent linking group. (m and n each independently represent 0 or 1.)
前記式(1)中、Wが前記式(2)である、請求項1~5のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 5, wherein in the formula (1), W is the formula (2). 23℃、24時間浸漬後の吸水率が0.25%以下である請求項1~6のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 6, which has a water absorption rate of 0.25% or less after immersion at 23°C for 24 hours. バイオマス度が5%以上である請求項1~7のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 7, which has a biomass degree of 5% or more. 5%重量減少温度が350℃以上である請求項1~8のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 8, which has a 5% weight loss temperature of 350°C or higher. 屈折率が1.450~1.650である請求項1~9のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 9, having a refractive index of 1.450 to 1.650. アッベ数が20~65である請求項1~10のいずれかに記載の熱可塑性樹脂。 The thermoplastic resin according to any one of claims 1 to 10, which has an Abbe number of 20 to 65. 請求項1~11のいずれかに記載の熱可塑性樹脂から形成される光学部材。 An optical member formed from the thermoplastic resin according to any one of claims 1 to 11. 光学レンズである請求項12に記載の光学部材。 The optical member according to claim 12, which is an optical lens. 下記式(a)で表されるジオール化合物。
(式(a)中、RおよびRは、それぞれ独立して水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、RおよびRは、それぞれ独立して、炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示す。また、RとR、またはRとRが相互に結合して環を形成していてもよい。)
A diol compound represented by the following formula (a).
(In formula (a), R 1 and R 2 each independently represent a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, R 3 and R 4 each independently represent a divalent acyclic hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. 1 and R 3 or R 2 and R 4 may be bonded to each other to form a ring.)
前記式(a)におけるRおよびRがメチル基である、請求項14に記載のジオール化合物。 The diol compound according to claim 14, wherein R 1 and R 2 in the formula (a) are methyl groups. 前記式(a)におけるRおよびRがメチレン基である、請求項14または15に記載のジオール化合物。 The diol compound according to claim 14 or 15, wherein R 3 and R 4 in the formula (a) are methylene groups. 下記式(5)で表されるヒドロキシケトン類と下記式(6)で表されるエリスリトールとを酸触媒および溶媒の存在下、脱水環化反応させる請求項14に記載のジオール化合物の製造方法。
(式(5)中、Rは水素原子、炭素原子数1~10の非環状炭化水素基または炭素原子数3~10の脂環式炭化水素基を示し、Rは炭素原子数1~10の2価の非環状炭化水素基または炭素原子数3~10の2価の脂環式炭化水素基を示し、RとRが相互に結合して環を形成していてもよい。)
15. The method for producing a diol compound according to claim 14, wherein hydroxyketones represented by the following formula (5) and erythritol represented by the following formula (6) are subjected to a cyclodehydration reaction in the presence of an acid catalyst and a solvent.
(In formula (5), R 7 represents a hydrogen atom, an acyclic hydrocarbon group having 1 to 10 carbon atoms, or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and R 8 represents a hydrogen atom having 1 to 10 carbon atoms. It represents 10 divalent acyclic hydrocarbon groups or a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms, and R 7 and R 8 may be bonded to each other to form a ring. )
JP2022044840A 2022-03-22 2022-03-22 Thermoplastic resin, optical member composed of the same, and diol compound Pending JP2023139355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044840A JP2023139355A (en) 2022-03-22 2022-03-22 Thermoplastic resin, optical member composed of the same, and diol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044840A JP2023139355A (en) 2022-03-22 2022-03-22 Thermoplastic resin, optical member composed of the same, and diol compound

Publications (1)

Publication Number Publication Date
JP2023139355A true JP2023139355A (en) 2023-10-04

Family

ID=88204676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044840A Pending JP2023139355A (en) 2022-03-22 2022-03-22 Thermoplastic resin, optical member composed of the same, and diol compound

Country Status (1)

Country Link
JP (1) JP2023139355A (en)

Similar Documents

Publication Publication Date Title
JP6689146B2 (en) Thermoplastic resin
JP6689147B2 (en) Thermoplastic resin
JP2018002893A (en) Thermoplastic resin
JP6916026B2 (en) Thermoplastic resin
CN113667109A (en) Polycarbonate resin, method for producing same, and optical lens
TWI791799B (en) Polycarbonate and moldings
JP7465956B2 (en) Thermoplastic resin and optical components
WO2023074439A1 (en) Thermoplastic resin and optical member
JP2024026220A (en) Thermoplastic resin and optical components containing it
JP2023139355A (en) Thermoplastic resin, optical member composed of the same, and diol compound
JP2022011687A (en) Thermoplastic resin and optical member
JP2024016426A (en) Thermoplastic resin and optical components
WO2020137927A1 (en) Thermoplastic resin and method for producing same, and optical lens comprising said thermoplastic resin
WO2023074471A1 (en) Thermoplastic resin and optical member
WO2022190800A1 (en) Thermoplastic resin and optical member
CN115702214B (en) Resin composition
JP6130255B2 (en) Polyester carbonate copolymer
JP2023067738A (en) Thermoplastic resin and optical member
KR20240053002A (en) Thermoplastics and optical components
JP2023155974A (en) Thermoplastic resin and molded product thereof
WO2023181695A1 (en) Thermoplastic resin and optical member containing same
WO2023199734A1 (en) Thermoplastic resin and molded article thereof
TW202239809A (en) Thermoplastic resin and optical member comprising same
JP2023155975A (en) Thermoplastic resin and molded product thereof
TW202411299A (en) Thermoplastic resin and optical components