JP2023139347A - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP2023139347A
JP2023139347A JP2022044829A JP2022044829A JP2023139347A JP 2023139347 A JP2023139347 A JP 2023139347A JP 2022044829 A JP2022044829 A JP 2022044829A JP 2022044829 A JP2022044829 A JP 2022044829A JP 2023139347 A JP2023139347 A JP 2023139347A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow fan
cross
auxiliary heat
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022044829A
Other languages
Japanese (ja)
Inventor
賢宣 和田
Masanobu Wada
崇裕 大城
Takahiro Oshiro
剛史 永田
Takashi Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022044829A priority Critical patent/JP2023139347A/en
Publication of JP2023139347A publication Critical patent/JP2023139347A/en
Pending legal-status Critical Current

Links

Abstract

To provide an air conditioner reducing input in a cross flow fan by expanding an area where air flow passing through a heat exchanger flows into the cross flow fan, and thereby suppressing noise.SOLUTION: An air conditioner in the present disclosure includes a cross flow fan, a rear guider, a heat exchanger and an auxiliary heat exchanger. The rear guider is provided with an upper end projection part, and the relation of a distance RX between an intersection point X and an upper end point R and a distance QX between the intersection point X and a lower end point QX satisfies QX/(RX+QX)≥0.5 when a straight line is perpendicular to the front surface of a back surface heat exchanger and circumscribed on the upper end projection part is made to be a straight line A; an intersection point between the straight line A and the back surface of the back surface heat exchanger is made to be the intersection point X; the upper end of the surface facing the back surface heat exchanger in the auxiliary heat exchanger is made to be the upper end point R; and the lower end of the surface facing the back surface heat exchanger in the auxiliary heat exchanger is made to be the lower end point Q on a cross section orthogonal to the rotary shaft of the cross flow fan.SELECTED DRAWING: Figure 2

Description

本開示は、主に家庭用の空気調和機に関する。 The present disclosure mainly relates to a home air conditioner.

一般に、空気調和機は、筐体内に、複数のブレードを有するクロスフローファンと、スタビライザと、リアガイダと、クロスフローファンの前面側に前面熱交換器、背面側に背面熱交換器を配設して構成される熱交換器とを備える。そして、筐体天面側から空気を吸い込み、吸い込んだ空気と熱交換器の内部を流れる冷媒とが熱交換し、筐体底面側から空気を吹き出し、室内の空気調和を行っている。リアガイダは、クロスフローファンに対向して近接して所定の寸法だけクロスフローファンから離れる近接部と、近接部から上方へ向けて延出した上端突起部とを有する。 Generally, an air conditioner has a cross-flow fan with multiple blades, a stabilizer, a rear guider, a front heat exchanger on the front side of the cross-flow fan, and a rear heat exchanger on the back side of the cross-flow fan. A heat exchanger configured with Then, air is sucked in from the top side of the casing, heat is exchanged between the sucked air and the refrigerant flowing inside the heat exchanger, and air is blown out from the bottom side of the casing to perform indoor air conditioning. The rear guider has a proximal portion facing and proximate to the cross-flow fan and separated from the cross-flow fan by a predetermined distance, and an upper end protrusion extending upward from the proximal portion.

特許文献1は、熱交換性能の低下や騒音増大の防止を図る空気調和機を開示する。この空気調和機において、筐体の風路は、背面熱交換器の後方に位置する背面側壁面部と、空気吹出口と連続して形成され、クロスフローファンと熱交換器との間に配置されるフロントノーズ部およびバックノーズ部を備える。熱交換器は、前面熱交換器と背面熱交換器とで略逆V字状に構成されるとともに、フロントノーズ部およびバックノーズ部を含めてクロスフローファンを覆うように配設される。背面熱交換器は、空気の流れ方向の伝熱管の配列数がそれぞれ一定の背面主熱交換器および背面補助熱交換器を有する。補助熱交換器が背面主熱交換器の風上側に位置して背面側壁面部と離間して配置され、背面側補助熱交換器の下縁部から伝熱管の配列方向に対して直交する方向に沿って背面側壁面部までの距離をL1とし、補助熱交換器と背面側壁面部との間の最短距離をL2とし、背面主熱交換器とバックノーズ部の先端との間の距離をL3としたときに、0.4<(L2/L1)<0.6、かつ、0.55<(L3/L1)の関係を満たしている。 Patent Document 1 discloses an air conditioner that aims to prevent a decrease in heat exchange performance and an increase in noise. In this air conditioner, the air passage of the housing is formed continuously with the rear side wall section located behind the rear heat exchanger and the air outlet, and is arranged between the cross flow fan and the heat exchanger. It has a front nose part and a back nose part. The heat exchanger is configured in a substantially inverted V shape with a front heat exchanger and a back heat exchanger, and is disposed so as to cover the cross flow fan including the front nose portion and the back nose portion. The back heat exchanger includes a back main heat exchanger and a back auxiliary heat exchanger, each of which has a constant number of heat transfer tubes arranged in the air flow direction. The auxiliary heat exchanger is located on the windward side of the rear main heat exchanger and is spaced apart from the rear side wall surface, and extends from the lower edge of the rear side auxiliary heat exchanger in a direction perpendicular to the arrangement direction of the heat exchanger tubes. Along the line, the distance to the back side wall part was set as L1, the shortest distance between the auxiliary heat exchanger and the back side wall part was set as L2, and the distance between the back main heat exchanger and the tip of the back nose part was set as L3. Sometimes, the relationships 0.4<(L2/L1)<0.6 and 0.55<(L3/L1) are satisfied.

特開2014-20718号公報Japanese Patent Application Publication No. 2014-20718

特許文献1に開示された空気調和機は、背面熱交換器及び補助熱交換器を通過する空気の風速分布と、背面熱交換器のみを通過する空気の風速分布を均一にしている。しかしながら、特許文献1に開示された空気調和機には、上端突起部とクロスフローファンとの間に大きな逆流渦が生じることによって送風性能が低下してしまうという課題がある。 The air conditioner disclosed in Patent Document 1 makes uniform the wind speed distribution of air passing through the back heat exchanger and the auxiliary heat exchanger, and the wind speed distribution of air passing only through the back heat exchanger. However, the air conditioner disclosed in Patent Document 1 has a problem in that a large backflow vortex is generated between the upper end protrusion and the cross flow fan, resulting in a decrease in air blowing performance.

本開示は、送風性能の向上を可能とする空気調和機を提供する。 The present disclosure provides an air conditioner that can improve air blowing performance.

本開示における空気調和機は、クロスフローファンと、前記クロスフローファンの前面側に配置された前面熱交換器と、前記クロスフローファンの背面側に配置された背面熱交換器と、前記背面熱交換器の背面側に配置された補助熱交換器と、前記クロスフローファンと前記背面熱交換器との間に配置されたリアガイダとを備え、
前記リアガイダは、前記クロスフローファンに近接した近接部と、前記近接部から上方へ向けて延出した上端突起部とを有し、
前記クロスフローファンの回転軸と直交する断面において、前記背面熱交換器の前面に対して垂直かつ前記上端突起部に外接する直線を直線Aとし、前記直線Aと前記背面熱交換器の背面との交点を交点Xとし、前記補助熱交換器における前記背面熱交換器と対向する面の上端を上端点Rとし、前記前記補助熱交換器における前記背面熱交換器と対向する面の下端を下端点Qとした場合に、前記交点Xと前記上端点Rとの距離RXと、前記交点Xと前記下端点Qとの距離QXとが、QX/(RX+QX)≧0.5の関係を満たす。
The air conditioner according to the present disclosure includes a cross flow fan, a front heat exchanger disposed on the front side of the cross flow fan, a back heat exchanger disposed on the back side of the cross flow fan, and the back heat exchanger disposed on the front side of the cross flow fan. an auxiliary heat exchanger disposed on the back side of the exchanger, and a rear guider disposed between the cross flow fan and the back heat exchanger,
The rear guider has a proximal portion proximate to the cross flow fan, and an upper end protrusion extending upward from the proximal portion,
In a cross section perpendicular to the rotation axis of the cross flow fan, a straight line perpendicular to the front surface of the back heat exchanger and circumscribing the upper end protrusion is defined as a straight line A, and the straight line A and the back surface of the back heat exchanger The intersection point of the auxiliary heat exchanger is defined as the intersection point X, the upper end of the surface of the auxiliary heat exchanger facing the back heat exchanger is defined as the upper end point R, and the lower end of the surface of the auxiliary heat exchanger facing the back surface heat exchanger is defined as the lower end. In the case of a point Q, the distance RX between the intersection point X and the upper end point R and the distance QX between the intersection point X and the lower end point Q satisfy the relationship QX/(RX+QX)≧0.5.

本開示における空気調和機は、リアガイダの上端突起部の上端より上方における熱交換器通風抵抗の増加を抑制し、上端突起部の上端近傍での気流の乱れを改善することで、送風性能の向上を可能とする。 The air conditioner according to the present disclosure improves air blowing performance by suppressing an increase in heat exchanger ventilation resistance above the upper end of the upper end projection of the rear guider and improving airflow turbulence near the upper end of the upper end projection. is possible.

実施の形態1における空気調和機の縦断面図Vertical cross-sectional view of the air conditioner in Embodiment 1 実施の形態1における空気調和機の背面熱交換器近傍の縦断面図Vertical cross-sectional view near the back heat exchanger of the air conditioner in Embodiment 1 実施の形態1における空気調和機の背面熱交換器近傍の空気の流れを示す図A diagram showing the air flow near the back heat exchanger of the air conditioner in Embodiment 1. 実施の形態1における空気調和機の背面熱交換器近傍の気流分布を示す図A diagram showing airflow distribution near the back heat exchanger of the air conditioner in Embodiment 1 実施の形態1における空気調和機の、QX/(RX+QX)に対する吹出風量変化を示す図A diagram showing a change in the blowout air volume with respect to QX/(RX+QX) of the air conditioner in Embodiment 1 実施の形態1における空気調和機の、QX/(RX+QX)に対するクロスフローファンの入力変化を示す図A diagram showing the input change of the crossflow fan with respect to QX/(RX+QX) of the air conditioner in Embodiment 1 特許文献1に係る空気調和機の縦断面図Vertical cross-sectional view of the air conditioner according to Patent Document 1 特許文献1に係る空気調和機の背面熱交換器近傍の縦断面図Vertical cross-sectional view of the vicinity of the back heat exchanger of the air conditioner according to Patent Document 1

(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、クロスフローファンとリアガイダとの隙間において、クロスフローファンの回転方向と逆方向に逆流が生じ、この逆流がクロスフローファンとリアガイダの近接部を通過することで、クロスフローファンとリアガイダの近接部の上流において周囲の気流を巻き込んで逆流渦が形成され、その逆流渦をブレードが通過することで干渉騒音が生じるという課題があった。この課題に対し、クロスフローファンの後方で上流と下流を仕切る近接部からクロスフローファンの上方に向かって設けられる上端突起部により、逆流渦を上端突起部のクロスフローファンに対向する面に付着させることで渦中心を近接部よりも上流に位置させ、ブレードとの干渉を緩和して騒音抑制を図る技術があった。この技術による空気調和機において、クロスフローファンの後方でありリアガイダの背部に配置される背面熱交換器は、背面熱交換器の下端部が、上端突起部の上端より下方に挿入され、背面熱交換器の下流側面と上端突起部の背面熱交換器に対向する面との間に風路が形成されるように構成されている。この構成により、上端突起部の上端より下方に位置する背面熱交換器を通過する吸込気流は、上端突起部の背面熱交換器に対向する面に沿って上方へ流動し、上端突起部の上端近傍で、クロスフローファンへ向けて旋回し、クロスフローファンへ流入する。
(Findings, etc. that formed the basis of this disclosure)
At the time the inventors came up with the present disclosure, a backflow occurred in the gap between the crossflow fan and the rear guider in a direction opposite to the rotational direction of the crossflow fan, and this backflow caused the adjacent portion of the crossflow fan and rear guider to By passing through the blade, a backflow vortex is formed upstream of the vicinity of the crossflow fan and the rear guider by drawing in the surrounding airflow, and when the blade passes through the backflow vortex, there is a problem in that interference noise is generated. To solve this problem, an upper end protrusion is provided toward the top of the cross flow fan from the adjacent part that partitions the upstream and downstream areas at the rear of the cross flow fan, so that the reverse flow vortex is attached to the surface of the upper end protrusion facing the cross flow fan. There is a technology that allows the center of the vortex to be located upstream of the adjacent part, thereby alleviating interference with the blade and suppressing noise. In an air conditioner using this technology, the rear heat exchanger is located behind the crossflow fan and behind the rear guider, and the lower end of the rear heat exchanger is inserted below the upper end of the upper end protrusion. An air passage is formed between the downstream side surface of the exchanger and the surface of the upper end projection facing the back heat exchanger. With this configuration, the suction airflow passing through the back heat exchanger located below the upper end of the upper end protrusion flows upward along the surface of the upper end projection that faces the back heat exchanger, and Nearby, it turns toward the cross-flow fan and flows into the cross-flow fan.

ここで、図7~図8を用いて、従来の空気調和機の一例として、特許文献1について説明する。 Here, Patent Document 1 will be described as an example of a conventional air conditioner using FIGS. 7 to 8.

図7を用いて特許文献1に開示されている空気調和機1の構造を説明する。空気調和機1は、空気吸込口2と、空気吹出口3を有する筐体4を備える。筐体4は、貫流ファン5と、空気吸込口2と貫流ファン5との間に熱交換器6と、フロントケーシング7と、バックケーシング8を備える。貫流ファン5は、複数枚のファンブレード5Aを有する。熱交換器6は、前面熱交換器6Aと、背面熱交換器6Bと、補助熱交換器6Cとで構成される。熱交換器6は、フィン6Dと、フィン6Dを貫通する伝熱管6Eとを備える。前面熱交換器6Aと背面熱交換器6Bは、貫流ファン5をその上部から覆うように略逆V字状に配設される。熱交換器6の補助熱交換器6Cは、いわゆるサブクーラとして機能するものであり、背面熱交換器6Bの風上側(空気の流れの上流側)に配設されている。 The structure of the air conditioner 1 disclosed in Patent Document 1 will be explained using FIG. 7. The air conditioner 1 includes a housing 4 having an air inlet 2 and an air outlet 3. The housing 4 includes a cross-flow fan 5, a heat exchanger 6 between the air suction port 2 and the cross-flow fan 5, a front casing 7, and a back casing 8. The cross-flow fan 5 has a plurality of fan blades 5A. The heat exchanger 6 includes a front heat exchanger 6A, a back heat exchanger 6B, and an auxiliary heat exchanger 6C. The heat exchanger 6 includes fins 6D and heat exchanger tubes 6E passing through the fins 6D. The front heat exchanger 6A and the back heat exchanger 6B are arranged in a substantially inverted V shape so as to cover the cross-flow fan 5 from above. The auxiliary heat exchanger 6C of the heat exchanger 6 functions as a so-called subcooler, and is arranged on the windward side (upstream side of the air flow) of the back heat exchanger 6B.

フロントケーシング7は、貫流ファン5の前方に位置し、フロントケーシング7の先端には略矩形状に曲げ形成されたスタビライザ7Aが一体に形成されている。 The front casing 7 is located in front of the cross-flow fan 5, and a stabilizer 7A bent into a substantially rectangular shape is integrally formed at the tip of the front casing 7.

バックケーシング8は、貫流ファン5の背面側に位置し、湾曲面8Aの上端部(先端部)8Bから、貫流ファン5と熱交換器6との間に突出する上端突起部8Cを有し、上端突起部8Cの後方に、鉛直方向上方に延びる流路壁面8Dを有している。バックケーシング8の湾曲面8Aの上端部8Bと流路壁面8Dの下端部との間に、背面熱交換器6Bの一部が挿入される凹部8Eが形成されている。 The back casing 8 is located on the back side of the cross-flow fan 5, and has an upper end protrusion 8C that protrudes between the cross-flow fan 5 and the heat exchanger 6 from the upper end (tip) 8B of the curved surface 8A. Behind the upper end protrusion 8C, there is a channel wall surface 8D extending vertically upward. A recess 8E into which a part of the back heat exchanger 6B is inserted is formed between the upper end 8B of the curved surface 8A of the back casing 8 and the lower end of the flow path wall surface 8D.

背面熱交換器6Bは、縦断面において略長方形状を呈し、その長手方向が貫流ファン5の上方から下方に向けて流路壁面8Dに向けて傾斜し、さらに下端が流路壁面8Dに接している。背面熱交換器6Bの下端は、凹部8E内に挿入される。 The back heat exchanger 6B has a substantially rectangular shape in longitudinal section, and its longitudinal direction is inclined from above the cross-flow fan 5 toward the flow path wall surface 8D, and its lower end is in contact with the flow path wall surface 8D. There is. The lower end of the back heat exchanger 6B is inserted into the recess 8E.

補助熱交換器6Cは、背面熱交換器6Bの長手方向よりも短く形成され、背面熱交換器6Bの上流面の一部に重ねられている。また、補助熱交換器6Cは、流路壁面8Dから離間している。なお、補助熱交換器6Cは、流路壁面8Dに近い側の端部の角部が、流路壁面8Dと平行になるように切り欠かれている。補助熱交換器6Cと流路壁面8Dとは接していないため、背面熱交換器6Bと補助熱交換器6Cを通過する空気の経路は、背面熱交換器6Bと補助熱交換器6Cの両方を通過するものと、背面熱交換器6Bのみを通過するものが存在する。 The auxiliary heat exchanger 6C is formed shorter than the longitudinal direction of the back heat exchanger 6B, and is overlapped with a part of the upstream surface of the back heat exchanger 6B. Further, the auxiliary heat exchanger 6C is spaced apart from the channel wall surface 8D. Note that the corner of the auxiliary heat exchanger 6C at the end closer to the channel wall surface 8D is cut out so as to be parallel to the channel wall surface 8D. Since the auxiliary heat exchanger 6C and the flow path wall surface 8D are not in contact with each other, the air path passing through the back heat exchanger 6B and the auxiliary heat exchanger 6C passes through both the back heat exchanger 6B and the auxiliary heat exchanger 6C. There are those that pass through, and those that pass only through the back heat exchanger 6B.

図8を用いて特許文献1に開示されている空気調和機1の背面熱交換器6Bの近傍の構造を説明する。背面熱交換器6Bの下端は、凹部8E内に挿入され、背面熱交換器6Bの下流面と上端突起部8Cの背面熱交換器6Bに対向する面の間に狭隘部S1が形成される。背面熱交換器6Bに補助熱交換器6Cが存在しない部分の背面熱交換器6Bの上流側には、流路壁面8Dと補助熱交換器6Cとの間に狭隘部S2が形成されている。 The structure near the back heat exchanger 6B of the air conditioner 1 disclosed in Patent Document 1 will be described using FIG. 8. The lower end of the back heat exchanger 6B is inserted into the recess 8E, and a narrow portion S1 is formed between the downstream surface of the back heat exchanger 6B and the surface of the upper end protrusion 8C facing the back heat exchanger 6B. A narrow portion S2 is formed between the channel wall surface 8D and the auxiliary heat exchanger 6C on the upstream side of the back surface heat exchanger 6B where the auxiliary heat exchanger 6C is not present in the back surface heat exchanger 6B.

補助熱交換器6Cの下端縁から伝熱管6Eの配列方向(矢印A,Bの方向)に直交する方向に沿って流路壁面8Dまでの距離をL1とし、背面熱交換器6Bの上流側の狭隘部S2の寸法、すなわち、補助熱交換器6Cと流路壁面8Dとの最短距離をL2とし、背面熱交換器6Bの下流側の狭隘部S1の寸法、すなわち、背面熱交換器6Bと上端突起部8Cの先端との間の距離をL3としたときに、0.4<(L2/L1)<0.6、かつ、0.55<(L3/L1)の関係を満たすように設定したものである。 The distance from the lower edge of the auxiliary heat exchanger 6C to the flow path wall surface 8D along the direction perpendicular to the arrangement direction of the heat exchanger tubes 6E (directions of arrows A and B) is defined as L1, and The dimension of the narrow part S2, that is, the shortest distance between the auxiliary heat exchanger 6C and the flow path wall surface 8D is L2, and the dimension of the narrow part S1 on the downstream side of the back heat exchanger 6B, that is, the shortest distance between the back heat exchanger 6B and the upper end. When the distance between the tip of the projection 8C is L3, it was set to satisfy the following relationships: 0.4<(L2/L1)<0.6 and 0.55<(L3/L1) It is something.

このように、距離L1,L2,L3の関係を設定することで、これら2つの狭隘部S1,S2の通風抵抗の合計と、補助熱交換器6Cの通風抵抗を一致させることにより、背面熱交換器6B及び補助熱交換器6Cを通過する空気(矢印A)の風速分布と、背面熱交換器6Bのみを通過する空気(矢印B)の風速分布との偏りを低減し、熱交換性能の低下や騒音の増大を防止するとともに、性能のバラツキの小さな空気調和機1を提供することができると目論んでいる。 In this way, by setting the relationship between the distances L1, L2, and L3, the sum of the ventilation resistances of these two narrow parts S1 and S2 and the ventilation resistance of the auxiliary heat exchanger 6C can be made to match. This reduces the imbalance between the wind speed distribution of the air passing through the heat exchanger 6B and the auxiliary heat exchanger 6C (arrow A) and the wind speed distribution of the air passing only through the rear heat exchanger 6B (arrow B), resulting in a decrease in heat exchange performance. The present invention is intended to provide an air conditioner 1 that can prevent an increase in air and noise levels and that has small variations in performance.

しかし、背面熱交換器6Bのみを通過する空気は、上端突起部8Cの背面熱交換器6Bに対向する面と背面熱交換器6Bとの間の狭隘部S1を下方から上方へ流動するため、背面熱交換器6B及び補助熱交換器6Cを通過する空気(矢印A)の風速分布と、背面熱交換器6Bのみを通過する空気(矢印B)の風速分布を均一にしても、背面熱交換器6B及び補助熱交換器6Cを通過した気流の速度と、背面熱交換器6Bのみを通過して狭隘部S1を下方から流動した後の上端突起部8Cの先端で貫流ファン5へ偏向する気流の速度との間で差異が生じる。背面熱交換器6Bのみを通過して狭隘部S1を下方から流動した後の上端突起部8Cの先端で貫流ファン5へ偏向する際の速度によっては、上端突起部8Cの先端近傍での旋回半径が大きくなり、熱交換器6を通過した吸込気流が貫流ファン5に流入する位置が上端突起部8Cの先端から前方へ離れた位置となり、貫流ファン5と上端突起部8Cの貫流ファン5に対向する面との間に生じる逆流渦が拡大して、熱交換器6を通過した気流が貫流ファン5に流入する領域が狭まる場合がある。この場合は、ファンの吹き出風量が低下する、ファン入力が増加する、騒音を抑制できないと言う課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。 However, since the air passing only through the back heat exchanger 6B flows from the bottom to the top through the narrow part S1 between the surface of the upper end protrusion 8C facing the back heat exchanger 6B and the back heat exchanger 6B, Even if the wind speed distribution of the air passing through the back heat exchanger 6B and the auxiliary heat exchanger 6C (arrow A) and the wind speed distribution of the air passing only through the back heat exchanger 6B (arrow B) are made uniform, the back heat exchange will not be possible. The velocity of the airflow that has passed through the heat exchanger 6B and the auxiliary heat exchanger 6C, and the airflow that is deflected toward the once-through fan 5 at the tip of the upper end protrusion 8C after passing only through the back heat exchanger 6B and flowing through the narrow part S1 from below. There is a difference between the speed of Depending on the speed at which the flow is deflected to the once-through fan 5 at the tip of the upper end protrusion 8C after passing only through the back heat exchanger 6B and flowing through the narrow part S1 from below, the turning radius near the tip of the upper end protrusion 8C may vary. becomes larger, and the position where the suction airflow that has passed through the heat exchanger 6 flows into the cross-flow fan 5 becomes a position that is forwardly away from the tip of the upper end protrusion 8C, and faces the cross-flow fan 5 and the cross-flow fan 5 of the upper end protrusion 8C. The backflow vortex generated between the heat exchanger 6 and the cross-flow fan 5 may expand, and the area where the airflow that has passed through the heat exchanger 6 flows into the cross-flow fan 5 may be narrowed. In this case, the inventors discovered the problems that the airflow volume of the fan decreases, the fan input increases, and the noise cannot be suppressed, and in order to solve the problems, they constituted the subject matter of the present disclosure. Ta.

そこで本開示は、上端突起部の先端近傍での気流の旋回半径を縮小し、熱交換器を通過した吸込気流がクロスフローファン(貫流ファン)に流入する位置を上端突起部の先端に近づけ、クロスフローファン(貫流ファン)と上端突起部の貫流ファンに対向する面との間に生じる逆流渦を縮小して、熱交換器を通過した気流がクロスフローファン(貫流ファン)に流入する領域を拡大することで送風性能の向上を可能とする空気調和機を提供する。 Therefore, the present disclosure reduces the turning radius of the airflow near the tip of the upper end protrusion, moves the position where the suction airflow that has passed through the heat exchanger into the crossflow fan (cross-flow fan) closer to the tip of the upper end protrusion, The area where the airflow that has passed through the heat exchanger flows into the cross-flow fan (once-through fan) is reduced by reducing the backflow vortex that occurs between the cross-flow fan (once-through fan) and the surface of the upper end protrusion that faces the once-through fan. To provide an air conditioner that can improve air blowing performance by expanding the size.

以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid making the following description unnecessarily redundant and to facilitate understanding by those skilled in the art.

なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.

(実施の形態1)
以下、図1~図6を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below using FIGS. 1 to 6.

[1-1.構成]
図1において、空気調和機100は、吸込口101と吹出口102を有する本体ケーシング103と、スタビライザ104と、リアガイダ105と、クロスフローファン106と、熱交換器107を備えている。
[1-1. composition]
In FIG. 1, an air conditioner 100 includes a main body casing 103 having an inlet 101 and an outlet 102, a stabilizer 104, a rear guider 105, a cross flow fan 106, and a heat exchanger 107.

リアガイダ105は、クロスフローファン106に対向して近接し、所定の寸法だけクロスフローファン106から離れる近接部105Aと、近接部105Aから上方へ向かって延出する上端突起部105Bとを有する。リアガイダ105はクロスフローファン106と後述する背面熱交換器107Bとの間に配置されている。 The rear guider 105 has a proximal portion 105A that faces and approaches the cross-flow fan 106 and is separated from the cross-flow fan 106 by a predetermined dimension, and an upper end protrusion 105B that extends upward from the proximal portion 105A. The rear guider 105 is arranged between the crossflow fan 106 and a backside heat exchanger 107B, which will be described later.

クロスフローファン106は円筒状に配置された複数のブレード106Aを有している。 The crossflow fan 106 has a plurality of blades 106A arranged in a cylindrical shape.

熱交換器107は、前面熱交換器107Aと、背面熱交換器107Bと、補助熱交換器108とで構成される。前面熱交換器107Aはクロスフローファン106の前面側に配置される。背面熱交換器107Bはクロスフローファン106の背面側に配置される。補助熱交換器108は背面熱交換器107Bの背面、つまり、クロスフローファン106と背面熱交換器107Bの対面する面とは反対側の面に配置されており、言い換えると、補助熱交換器108は背面熱交換器107Bにおける、クロスフローファン回転時に吸込口101から流入する空気の上流側の面に配置される。以後、便宜上、吸込口101から流入する空気において、熱交換器の風上側の面を上流面、熱交換器の風下側の面を下流面と称する。 The heat exchanger 107 includes a front heat exchanger 107A, a back heat exchanger 107B, and an auxiliary heat exchanger 108. The front heat exchanger 107A is arranged on the front side of the cross flow fan 106. The back heat exchanger 107B is arranged on the back side of the cross flow fan 106. The auxiliary heat exchanger 108 is disposed on the back side of the back heat exchanger 107B, that is, on the opposite side of the surface where the cross flow fan 106 and the back heat exchanger 107B face each other. is arranged on the surface of the back heat exchanger 107B on the upstream side of the air flowing in from the suction port 101 when the crossflow fan rotates. Hereinafter, for convenience, the surface on the windward side of the heat exchanger will be referred to as the upstream surface, and the surface on the leeward side of the heat exchanger will be referred to as the downstream surface, with respect to the air flowing in from the suction port 101.

前面熱交換器107A及び背面熱交換器107Bは、フィン107Cと、フィン107Cを貫通する伝熱管107Dとを備え、伝熱管107Dの外径D1がD1=5MMとなる。 The front heat exchanger 107A and the back heat exchanger 107B include fins 107C and heat transfer tubes 107D passing through the fins 107C, and the outer diameter D1 of the heat transfer tubes 107D is D1=5MM.

補助熱交換器108は、フィン108Aと、フィン108Aを貫通する伝熱管108Bとを備え、伝熱管108Bの外径D2がD2=6MMとなる。 The auxiliary heat exchanger 108 includes fins 108A and heat exchanger tubes 108B passing through the fins 108A, and the outer diameter D2 of the heat exchanger tubes 108B is D2=6MM.

次に、図2において、背面熱交換器107B近傍の詳細形状について説明する。リアガイダ105は、クロスフローファン106に対向して近接して所定の寸法だけクロスフローファン106から離れる近接部105Aを有し、近接部105Aから上方へ向かって延出した上端突起部105Bを有する。 Next, referring to FIG. 2, the detailed shape of the vicinity of the back heat exchanger 107B will be described. The rear guider 105 has a proximal portion 105A that faces and approaches the cross-flow fan 106 and is separated from the cross-flow fan 106 by a predetermined dimension, and has an upper end protrusion 105B that extends upward from the proximal portion 105A.

背面熱交換器107Bの略平面状である前面(下流面)に垂直で上端突起部105Bに外接する直線を直線Aとし、直線Aと背面熱交換器107Bの背面(上流面)の交点を交点Xとし、補助熱交換器における背面熱交換器と対向する面(下流面)の上端を上端点Rとし、補助熱交換器における背面熱交換器と対向する面(下流面)の下端を下端点Qとすると、交点Xと上端点Rの距離RXと、交点Xと下端点Qの距離QXの長さは、QX/(RX+QX)≧0.5となる。 The straight line that is perpendicular to the substantially planar front surface (downstream surface) of the rear heat exchanger 107B and circumscribes the upper end protrusion 105B is defined as a straight line A, and the intersection of the straight line A and the rear surface (upstream surface) of the rear heat exchanger 107B is the intersection point. X, the upper end of the surface of the auxiliary heat exchanger facing the back heat exchanger (downstream surface) is the upper end point R, and the lower end of the surface of the auxiliary heat exchanger facing the back heat exchanger (downstream surface) is the lower end point When Q, the lengths of the distance RX between the intersection point X and the upper end point R and the distance QX between the intersection point X and the lower end point Q are QX/(RX+QX)≧0.5.

直線Aと背面熱交換器107Bの背面(上流面)の交点を交点Xとし、背面熱交換器107Bの背面(上流面)の下端点を下端点Yとし、交点Xと下端点Yの距離を距離XYとし、補助熱交換器108の段方向長さを長さHとする。距離XYと長さHが、XY/H≧1.0となる。ここで、補助熱交換器108の段方向長さHは、補助熱交換器108の背面熱交換器107Bに最も近接する面、すなわち補助熱交換器における背面熱交換器と対向する面(下流面)の上端と下端との間の距離で規定する。 The intersection of the straight line A and the back surface (upstream surface) of the back heat exchanger 107B is the intersection point X, the lower end point of the back surface (upstream surface) of the back heat exchanger 107B is the lower end point Y, and the distance between the intersection point X and the lower end point Y is Let the distance be XY, and let the length of the auxiliary heat exchanger 108 in the step direction be the length H. The distance XY and the length H satisfy XY/H≧1.0. Here, the stage direction length H of the auxiliary heat exchanger 108 is defined as the surface of the auxiliary heat exchanger 108 closest to the back heat exchanger 107B, that is, the surface of the auxiliary heat exchanger facing the back heat exchanger (downstream surface). ) Specified by the distance between the top and bottom edges of

[1-2.動作]
以上のように構成された空気調和機100について、図3において、その動作を以下説明する。空気調和機100において、クロスフローファン106が回転することにより、室内空気は吸込口101から本体ケーシング103内へ吸い込まれる。本体ケーシング103内へ吸い込まれた室内空気は、前面熱交換器107A、背面熱交換器107B、補助熱交換器108を通過してクロスフローファン106に流入し、吹出口102から室内空間へ吹き出される。
[1-2. motion]
The operation of the air conditioner 100 configured as described above will be described below with reference to FIG. In the air conditioner 100, when the cross flow fan 106 rotates, indoor air is sucked into the main body casing 103 from the suction port 101. The indoor air sucked into the main body casing 103 passes through the front heat exchanger 107A, the back heat exchanger 107B, and the auxiliary heat exchanger 108, flows into the crossflow fan 106, and is blown out from the air outlet 102 into the indoor space. Ru.

この時、背面熱交換器107Bのみを通過する吸込気流200Aと吸込気流200B、背面熱交換器107Bと補助熱交換器108の両方を通過する吸込気流200Cと吸込気流200Dの4つの吸込気流が存在する。 At this time, there are four suction airflows: suction airflow 200A and suction airflow 200B that pass only through the back heat exchanger 107B, and suction airflow 200C and suction airflow 200D that pass through both the back heat exchanger 107B and the auxiliary heat exchanger 108. do.

吸込気流200Aは背面熱交換器107Bにおける上端突起部105Bの上端より下方に位置する部分を通過する。 The suction airflow 200A passes through a portion of the back heat exchanger 107B located below the upper end of the upper end protrusion 105B.

吸込気流200Bは背面熱交換器107Bにおける上端突起部105Bの上端より上方に位置する部分を通過する。 The suction airflow 200B passes through a portion of the back heat exchanger 107B located above the upper end of the upper end protrusion 105B.

吸込気流200Cは補助熱交換器108と、背面熱交換器107Bにおける上端突起部105Bの上端より下方に位置する部分との両方を通過する。 The suction airflow 200C passes through both the auxiliary heat exchanger 108 and the portion of the back heat exchanger 107B located below the upper end of the upper end protrusion 105B.

吸込気流200Dは補助熱交換器108と、背面熱交換器107Bにおける上端突起部105Bの上端より上方に位置する部分との両方を通過する。 The suction airflow 200D passes through both the auxiliary heat exchanger 108 and the portion of the back heat exchanger 107B located above the upper end of the upper end protrusion 105B.

背面熱交換器107Bにおける上端突起部105Bの上端より下方に位置する部分を通過する吸込気流200Aと吸込気流200Cは、上端突起部105Bの背面熱交換器107Bに対向する面に沿って上方へ流動し、上端突起部105Bの上端近傍で、クロスフローファン106へ向けて旋回し、クロスフローファン106へ流入する。 The suction airflow 200A and the suction airflow 200C passing through the portion of the back heat exchanger 107B located below the upper end of the upper end protrusion 105B flow upward along the surface of the upper end protrusion 105B facing the back heat exchanger 107B. Then, near the upper end of the upper end protrusion 105B, it turns toward the cross flow fan 106 and flows into the cross flow fan 106.

また、背面熱交換器107Bにおける上端突起部105Bの上端より上方に位置する部分を通過する吸込気流200B及び吸込気流200Dは、上端突起部105Bの上端近傍で、背面熱交換器107Bのおける上端突起部105Bの上端より下方に位置する部分を通過する吸込気流200A及び吸込気流200Cと合流して、クロスフローファン106へ流入する。 In addition, the suction airflow 200B and the suction airflow 200D passing through the portion of the back heat exchanger 107B located above the upper end of the upper end protrusion 105B are connected to the upper end protrusion of the back heat exchanger 107B near the upper end of the upper end protrusion 105B. It merges with the suction airflow 200A and the suction airflow 200C passing through the portion located below the upper end of the portion 105B, and flows into the crossflow fan 106.

背面熱交換器107Bにおける上端突起部105Bの上端より下方に位置する部分を通過する吸込気流200A及び吸込気流200Cは、上端突起部105Bの背面熱交換器107Bに対向する面に沿って上方へ流動し、上端突起部105Bの上端近傍で、背面熱交換器107Bにおける上端突起部105Bの上端より上方に位置する部分を通過する吸込気流200B及び吸込気流200Dと合流する際に、上方から下方に抑え込まれてクロスフローファン106へ向けて旋回し、クロスフローファン106へ流入する。 The suction airflow 200A and the suction airflow 200C passing through the portion of the back heat exchanger 107B located below the upper end of the upper end protrusion 105B flow upward along the surface of the upper end protrusion 105B that faces the back heat exchanger 107B. However, near the upper end of the upper end protrusion 105B, when joining with the suction airflow 200B and the suction airflow 200D passing through the portion of the back heat exchanger 107B located above the upper end of the upper end protrusion 105B, it is suppressed from above to below. It turns toward the cross-flow fan 106 and flows into the cross-flow fan 106.

背面熱交換器107B及び補助熱交換器108の通風抵抗は、背面熱交換器107Bのみの通風抵抗よりも高く、通風抵抗の差から、背面熱交換器107B及び補助熱交換器108を通過する吸込気流200C及び吸込気流200Dの風速は、背面熱交換器107Bのみを通過する吸込気流200A及び200Bの風速よりも低下する。 The ventilation resistance of the back heat exchanger 107B and the auxiliary heat exchanger 108 is higher than that of only the back heat exchanger 107B. The wind speeds of the airflow 200C and the suction airflow 200D are lower than the wind speeds of the suction airflows 200A and 200B that pass only through the back heat exchanger 107B.

補助熱交換器108は、QX/(RX+QX)≧0.5の位置にあり、つまり、背面熱交換器107Bの下流面に垂直で上端突起部105Bに外接する直線Aに対して、補助熱交換器108の段方向の半分以上が下方にある。この配置により、上端突起部105Bの先端近傍において、上端突起部105Bの先端に向けて上端突起部105Bの下方から流動してくる吸込気流200A及び吸込気流200Cの合流風速は、上端突起部105Bの先端近傍に向けて上端突起部105Bの上方から流動してくる吸込気流200B及び吸込気流200Dの合流風速よりも相対的に低下する。その風速差から、上端突起部105Bの上端より下方に位置する背面熱交換器107Bを通過する吸込気流200A及び吸込気流200Cは、上端突起部105Bの上端近傍で、上端突起部105Bの上端より上方に位置する背面熱交換器107Bを通過する吸込気流200C及び吸込気流200Dに強く抑え込まれる。 The auxiliary heat exchanger 108 is located at a position where QX/(RX+QX)≧0.5, that is, the auxiliary heat exchanger 108 is located at a position where QX/(RX+QX)≧0.5. More than half of the container 108 in the tier direction is located below. With this arrangement, near the tip of the upper end protrusion 105B, the combined wind speed of the suction airflow 200A and the suction airflow 200C flowing from below the upper end protrusion 105B toward the tip of the upper end protrusion 105B is The velocity is relatively lower than the combined wind speed of the suction airflow 200B and the suction airflow 200D flowing from above the upper end protrusion 105B toward the vicinity of the tip. Due to the difference in wind speed, the suction airflow 200A and the suction airflow 200C passing through the back heat exchanger 107B located below the upper end of the upper end protrusion 105B are located near the upper end of the upper end protrusion 105B and above the upper end of the upper end protrusion 105B. The airflow is strongly suppressed by the suction airflow 200C and the suction airflow 200D passing through the back heat exchanger 107B located at .

クロスフローファン106と上端突起部105Bのクロスフローファン106に対向する面との間の空間に、クロスフローファン106の回転方向と逆方向に逆流渦201が生じる。逆流渦201は上端突起部105Bのクロスフローファン106に対向する面に付着し、渦中心が近接部105Aよりも上流に位置する。 A countercurrent vortex 201 is generated in the space between the crossflow fan 106 and the surface of the upper end protrusion 105B facing the crossflow fan 106 in a direction opposite to the rotational direction of the crossflow fan 106. The backflow vortex 201 adheres to the surface of the upper end protrusion 105B facing the crossflow fan 106, and the vortex center is located upstream of the proximal portion 105A.

図4、図5、図6を用いて、直線Aが補助熱交換器108と交わる、つまり交点Xが補助熱交換器108と接触する場合について、補助熱交換器の配置位置による送風性能の向上を詳細に説明する。 Using FIGS. 4, 5, and 6, when the straight line A intersects with the auxiliary heat exchanger 108, that is, the intersection point X contacts the auxiliary heat exchanger 108, improvement of air blowing performance depending on the placement position of the auxiliary heat exchanger will be explained in detail.

本実施の形態における空気調和機100の背面熱交換器107Bの近傍、特に上端突起部105Bの上端近傍の気流分布について、図4において、その詳細を以下説明する。 The airflow distribution in the vicinity of the back heat exchanger 107B of the air conditioner 100 in this embodiment, particularly in the vicinity of the upper end of the upper end protrusion 105B, will be described in detail below with reference to FIG.

図4において、補助熱交換器108の位置による、上端突起部105Bの先端近傍の吸込気流、及び、クロスフローファン106への流入気流の気流比較として、QX/(RX+QX)=0.34となる補助熱交換器108の位置の場合と、QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合との、数値解析による上端突起部105Bの先端近傍の吸込気流の風速分布の比較とクロスフローファン106への流入気流の流線分布の比較を示す。 In FIG. 4, QX/(RX+QX)=0.34 as a comparison of the intake airflow near the tip of the upper end protrusion 105B and the inflow airflow to the crossflow fan 106 depending on the position of the auxiliary heat exchanger 108. Wind speed distribution of the intake airflow near the tip of the upper end protrusion 105B based on numerical analysis in the case of the position of the auxiliary heat exchanger 108 and the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX) = 0.67 A comparison of the flow line distribution of the inflow air to the cross flow fan 106 is shown.

図4の上段に補助熱交換器位置を示す。図中、四角で囲んだ領域について、図4の中段で上端突起部105Bの近傍における風速分布を示し、下段でクロスフローファン106への流入気流の流線分布を示す。 The position of the auxiliary heat exchanger is shown in the upper part of Figure 4. In the figure, regarding the area surrounded by a square, the middle part of FIG. 4 shows the wind speed distribution in the vicinity of the upper end protrusion 105B, and the lower part shows the streamline distribution of the airflow flowing into the cross-flow fan 106.

図4の中段を用いて、上端突起部105Bの近傍における風速分布を説明する。図4の中段において、破線は風速3M/Sの境界線を示し、破線の内側は風速3M/S以上であることを示している。 The wind speed distribution in the vicinity of the upper end protrusion 105B will be explained using the middle part of FIG. 4. In the middle part of FIG. 4, the broken line indicates the boundary line of the wind speed of 3 M/S, and the area inside the broken line indicates the wind speed of 3 M/S or more.

また、図4の中段左側は、QX/(RX+QX)=0.34となる補助熱交換器108の位置の場合の風速分布を示し、中段右側は、QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合の風速分布図を示す。図4中段右側には、QX/(RX+QX)=0.34となる補助熱交換器108の位置の場合の風速3M/Sを点線で示している。 In addition, the left side of the middle row of FIG. 4 shows the wind speed distribution in the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.34, and the right side of the middle row shows the wind speed distribution where QX/(RX+QX)=0.67. A wind speed distribution diagram in the case of the position of the auxiliary heat exchanger 108 is shown. On the middle right side of FIG. 4, a dotted line indicates the wind speed of 3 M/S at the position of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.34.

QX/(RX+QX)=0.34と、QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合を比較すると、上端突起部105Bに近い領域が風速3M/S以上となることは一致する。しかし、QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合の方が、上端突起部105Bの上端側に破線が狭くなっている。つまり、QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合の方が、上端突起部105Bの上端より下方に位置する背面熱交換器107Bを通過する吸込気流の風速は低下していることがわかる。 Comparing the positions of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.34 and QX/(RX+QX)=0.67, the area near the upper end protrusion 105B has a wind speed of 3 M/S or more. That agrees. However, in the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.67, the broken line is narrower on the upper end side of the upper end protrusion 105B. In other words, in the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.67, the wind speed of the intake airflow passing through the back heat exchanger 107B located below the upper end of the upper end protrusion 105B is It can be seen that it is decreasing.

図4の下段を用いて、クロスフローファン106への流入気流の流線分布を説明する。流線図中の実線は上端突起部105Bの上端近傍でクロスフローファン106へ向けて旋回する流入気流を示す。クロスフローファン106へ流入する流線のうち、矢印付きの実線は上端突起部105Bの先端から最も後方の流線を示す。つまり、矢印付きの実線は、クロスフローファン106に実際に流入する吸込気流と逆流渦との境界を示す。 The streamline distribution of the incoming airflow to the crossflow fan 106 will be explained using the lower part of FIG. 4. A solid line in the streamline diagram indicates an incoming airflow that swirls toward the crossflow fan 106 near the upper end of the upper end protrusion 105B. Among the streamlines flowing into the cross-flow fan 106, a solid line with an arrow indicates the streamline most rearward from the tip of the upper end protrusion 105B. That is, the solid line with an arrow indicates the boundary between the suction airflow that actually flows into the crossflow fan 106 and the backflow vortex.

図4の下段左側は、QX/(RX+QX)=0.34となる補助熱交換器108の位置の場合の流線分布を示し、下段右側は、QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合の流線分布図を示す。図4下段段右側には、QX/(RX+QX)=0.34となる補助熱交換器108の位置の場合の最も後方の流線を点線で示している。 The lower left side of FIG. 4 shows the streamline distribution in the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.34, and the lower right side shows the streamline distribution where QX/(RX+QX)=0.67. A streamline distribution diagram for the position of the heat exchanger 108 is shown. On the lower right side of FIG. 4, the rearmost streamline in the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX)=0.34 is shown as a dotted line.

QX/(RX+QX)=0.67となる補助熱交換器108の位置の場合、QX/(RX+QX)=0.34となる補助熱交換器108の位置の場合と比べ、クロスフローファン106に実際に流入する吸込気流と逆流渦との境界が図中右側へ移動しており、逆流渦の領域が縮小している。これは熱交換器107を通過した気流がクロスフローファン106に流入する領域を拡大していることを示す。 In the case of the position of the auxiliary heat exchanger 108 where QX/(RX+QX) = 0.67, the cross flow fan 106 actually The boundary between the incoming airflow and the backflow vortex has moved to the right in the figure, and the area of the backflow vortex has shrunk. This indicates that the area where the airflow that has passed through the heat exchanger 107 flows into the crossflow fan 106 is expanded.

図5において、QX/(RX+QX)に対する風量変化について説明する。図5は、数値解析によるQX/(RX+QX)をパラメータとしたときの空気調和機100の吹出風量変化を示す図である。横軸にQX/(RX+QX)をとり、縦軸に空気調和機100のクロスフローファン106の回転数を同一とした時の風量比(QX/(RX+QX)=0.5の時の風量比100%)をとる。XY座標上にプロットされている5つの点の座標は(0,97.8)、(0.34,99.4)、(0.5,100)、(0.67,100.3)、(1.0,99.8)である。図5に示すようにQX/(RX+QX)が0.5を下回ると風量比は急激に低下し、一方、QX/(RX+QX)が0.5以上で風量比はほぼ一定となる。言い換えると、QX/(RX+QX)の値を0から1に増加させた場合に、0~0.5の間では急激に風量比は増加し、0.5に達した時点で風量比は上限に達する。つまり、QX/(RX+QX)が0.5以上の時、風量比は増加し、送風性能は向上するといえる。 In FIG. 5, a change in air volume with respect to QX/(RX+QX) will be described. FIG. 5 is a diagram illustrating changes in the amount of air blown from the air conditioner 100 when QX/(RX+QX) is used as a parameter based on numerical analysis. The horizontal axis is QX/(RX+QX), and the vertical axis is the air volume ratio when the rotation speed of the cross flow fan 106 of the air conditioner 100 is the same (air volume ratio 100 when QX/(RX+QX) = 0.5) %). The coordinates of the five points plotted on the XY coordinates are (0,97.8), (0.34,99.4), (0.5,100), (0.67,100.3), (1.0,99.8). As shown in FIG. 5, when QX/(RX+QX) is less than 0.5, the air volume ratio decreases rapidly, whereas when QX/(RX+QX) is 0.5 or more, the air volume ratio remains almost constant. In other words, when the value of QX/(RX+QX) is increased from 0 to 1, the air volume ratio increases rapidly between 0 and 0.5, and when it reaches 0.5, the air volume ratio reaches its upper limit. reach In other words, it can be said that when QX/(RX+QX) is 0.5 or more, the air volume ratio increases and the air blowing performance improves.

図6において、QX/(RX+QX)に対する入力変化について説明する。図6は、数値解析によるQX/(RX+QX)をパラメータとしたときの空気調和機100の入力変化を示す図である。横軸にQX/(RX+QX)をとり、縦軸に空気調和機100の吹出風量を同一とした時のクロスフローファンの入力比(QX/(RX+QX)が0.0の時の入力比100%)をとる。XY座標上にプロットされている5つの点の座標は(0,100)、(0.34,100.1)、(0.5,99.9)、(0.67,99.9)、(1.0,99.8)である。図6に示すようにQX/(RX+QX)が0.0~0.34間では入力比が上昇しているのに対して、0.34~0.5間で急激に入力比が低下し、その後、1.0にいたるまで、入力比が低い状態を保つ。つまり、QX/(RX+QX)が0.34~0.5の間に急激に改善する点が存在し、QX/(RX+QX)が少なくとも0.5以上であれば入力比は低減するといえる。また、QX/(RX+QX)が0.5以上では入力比を0.1%低減でき、十分な送風性能の向上を見込むことができる。 In FIG. 6, input changes to QX/(RX+QX) will be explained. FIG. 6 is a diagram showing input changes to the air conditioner 100 when QX/(RX+QX) is a parameter based on numerical analysis. The horizontal axis shows QX/(RX+QX), and the vertical axis shows the input ratio of the crossflow fan when the air volume of the air conditioner 100 is the same (100% input ratio when QX/(RX+QX) is 0.0) ). The coordinates of the five points plotted on the XY coordinates are (0,100), (0.34,100.1), (0.5,99.9), (0.67,99.9), (1.0,99.8). As shown in Figure 6, the input ratio increases when QX/(RX+QX) is between 0.0 and 0.34, but when it is between 0.34 and 0.5, the input ratio decreases rapidly. Thereafter, the input ratio remains low until it reaches 1.0. In other words, there is a point where QX/(RX+QX) rapidly improves between 0.34 and 0.5, and it can be said that the input ratio is reduced if QX/(RX+QX) is at least 0.5 or more. Moreover, when QX/(RX+QX) is 0.5 or more, the input ratio can be reduced by 0.1%, and a sufficient improvement in air blowing performance can be expected.

以上、直線Aが補助熱交換器108と交わる、つまり交点Xが補助熱交換器108と接触する場合についての送風性能の向上を説明したが、交点Xが補助熱交換器108と接触しない場合、つまり、補助熱交換器108がすべて直線Aの下側にある場合においてもQX/(RX+QX)≧0.5の関係を満たし、同様の効果が生じるため、空気調和機の送風性能は向上する。 Above, improvement in air blowing performance has been explained in the case where the straight line A intersects with the auxiliary heat exchanger 108, that is, the intersection point X comes into contact with the auxiliary heat exchanger 108. However, when the intersection point X does not come into contact with the auxiliary heat exchanger 108, In other words, even when all of the auxiliary heat exchangers 108 are located below the straight line A, the relationship QX/(RX+QX)≧0.5 is satisfied, and the same effect is produced, so that the air blowing performance of the air conditioner is improved.

[1-3.効果等]
以上のように、本実施の形態において、空気調和機100は、吸込口101と、吹出口102を有する本体ケーシング103と、スタビライザ104と、リアガイダ105と、クロスフローファン106と、前面熱交換器107Aと、背面熱交換器107Bと、補助熱交換器108を備えている。リアガイダ105は、クロスフローファン106に対向して近接して所定の寸法だけクロスフローファン106から離れる近接部105Aを有し、近接部105Aから上方へ向かって延出する上端突起部105Bを有し、近接部105Aから上方へ向かって上端突起部105Bを有する。背面熱交換器107Bの前面(下流面)に垂直で上端突起部105Bに外接する直線Aと背面熱交換器107Bの背面(上流面)の交点Xと、補助熱交換器における背面熱交換器と対向する面(下流面)の上端点Rと補助熱交換器における背面熱交換器と対向する面(下流面)の下端点Qと、交点Xと下端点Rの距離RXと、交点Xと下端点Qの距離QXの長さがQX/(RX+QX)≧0.5となる。補助熱交換器108は、QX/(RX+QX)≧0.5となる位置にあり、背面熱交換器107Bの下流面に垂直で上端突起部105Bに外接する直線Aに対して、補助熱交換器108の段方向の半分以上が下方にあることから、上端突起部105Bの先端近傍において、上端突起部105Bの先端に向けて上端突起部105Bの下方から流動してくる吸込気流の風速は、上端突起部105Bの先端近傍に向けて上端突起部105Bの上方から流動してくる吸込気流の風速よりも相対的に低下している。その風速差から、背面熱交換器107Bにおける上端突起部105Bの上端より下方に位置する部分を通過する吸込気流は、上端突起部105Bの上端近傍で、背面熱交換器107Bにおける上端突起部105Bの上端より上方に位置する部分を通過する吸込気流に強く抑え込まれる。これにより、空気調和機100は、上端突起部105Bの上端近傍でクロスフローファン106へ向けて旋回する気流の旋回半径を縮小できる。そのため、クロスフローファン106と上端突起部105Bのクロスフローファン106に対向する面との間に生じる逆流渦を縮小して、熱交換器107を通過した気流がクロスフローファン106に流入する領域を拡大することで、クロスフローファン106における吹出風量を増大し、クロスフローファン106における入力を低減し、騒音を抑制することができ、空気調和機の送風性能を向上させることができる。
[1-3. Effects, etc.]
As described above, in this embodiment, the air conditioner 100 includes a main body casing 103 having an inlet 101 and an outlet 102, a stabilizer 104, a rear guider 105, a cross flow fan 106, and a front heat exchanger. 107A, a back heat exchanger 107B, and an auxiliary heat exchanger 108. The rear guider 105 has a proximal portion 105A that faces and approaches the cross-flow fan 106 and is separated from the cross-flow fan 106 by a predetermined dimension, and has an upper end protrusion 105B that extends upward from the proximal portion 105A. , has an upper end protrusion 105B extending upward from the proximal portion 105A. The intersection point X of the straight line A that is perpendicular to the front surface (downstream surface) of the back surface heat exchanger 107B and circumscribes the upper end protrusion 105B and the back surface (upstream surface) of the back surface heat exchanger 107B, and the back surface heat exchanger in the auxiliary heat exchanger. The upper end point R of the opposing surface (downstream surface), the lower end point Q of the surface (downstream surface) of the auxiliary heat exchanger that faces the rear heat exchanger, the distance RX between the intersection X and the lower end point R, and the distance RX between the intersection X and the lower end The length of the distance QX of the point Q is QX/(RX+QX)≧0.5. The auxiliary heat exchanger 108 is located at a position where QX/(RX+QX)≧0.5, and the auxiliary heat exchanger 108 is located at a position where QX/(RX+QX)≧0.5. 108 is located below, the wind speed of the suction airflow flowing from below the upper end protrusion 105B toward the tip of the upper end protrusion 105B near the tip of the upper end protrusion 105B is The wind speed is relatively lower than the wind speed of the suction airflow flowing from above the upper end projection 105B toward the vicinity of the tip of the projection 105B. Due to the difference in wind speed, the suction airflow that passes through the portion of the back heat exchanger 107B located below the upper end of the upper end protrusion 105B is near the upper end of the upper end protrusion 105B. It is strongly suppressed by the suction airflow that passes through the portion located above the upper end. Thereby, the air conditioner 100 can reduce the turning radius of the airflow swirling toward the crossflow fan 106 near the upper end of the upper end protrusion 105B. Therefore, the region where the airflow that has passed through the heat exchanger 107 flows into the cross-flow fan 106 is reduced by reducing the backflow vortex that occurs between the cross-flow fan 106 and the surface of the upper end protrusion 105B that faces the cross-flow fan 106. By enlarging, the amount of air blown from the cross-flow fan 106 can be increased, the input to the cross-flow fan 106 can be reduced, noise can be suppressed, and the air blowing performance of the air conditioner can be improved.

本実施の形態のように、直線Aと背面熱交換器107Bの上流面の交点Xと、背面熱交換器107Bの上流面の下端点Yの距離XYと、補助熱交換器108の段方向の長さHが、XY/H≧1.0となってもよい。 As in this embodiment, the distance XY between the intersection X of the straight line A and the upstream surface of the back heat exchanger 107B and the lower end point Y of the upstream surface of the back heat exchanger 107B, and the distance The length H may be XY/H≧1.0.

補助熱交換器108は、長さHがXY/H≧1.0となるため、背面熱交換器107Bの前面(下流面)に垂直で上端突起部105Bに外接する直線Aに対して、補助熱交換器108が全て直線Aの下方に位置することが可能となる。補助熱交換器108が全て直線Aの下方に位置することで、上端突起部105Bの先端近傍において、上端突起部105Bの先端に向けて上端突起部105Bの下方から背面熱交換器107B及び補助熱交換器108を通過して流動してくる吸込気流の風速と、上端突起部105Bの先端近傍に向けて上端突起部105Bの上方から背面熱交換器107Bのみを通過して流動してくる吸込気流の風速との相対的な風速差をより拡大することができる。その風速差から、背面熱交換器107Bにおける上端突起部105Bの上端より下方に位置する部分を通過する吸込気流は、上端突起部105Bの上端近傍で、背面熱交換器107Bにおける上端突起部105Bの上端より上方に位置する部分を通過する吸込気流に強く抑え込まれる。これにより、空気調和機100は、上端突起部105Bの上端近傍でクロスフローファン106へ向けて旋回する気流の旋回半径をさらに縮小できる。そのため、クロスフローファン106と上端突起部105Bのクロスフローファン106に対向する面との間に生じる逆流渦をより効果的に縮小して、熱交換器107を通過した気流がクロスフローファン106に流入する領域を諸条件により拡大することでクロスフローファン106における吹出風量を増大し、入力を低減し、騒音を抑制することができる。 Since the length H of the auxiliary heat exchanger 108 satisfies XY/H≧1.0, the auxiliary heat exchanger 108 has an auxiliary All heat exchangers 108 can be located below straight line A. Since all the auxiliary heat exchangers 108 are located below the straight line A, the back heat exchanger 107B and the auxiliary heat The wind speed of the suction airflow passing through the exchanger 108 and the suction airflow flowing from above the upper end protrusion 105B toward the vicinity of the tip of the upper end protrusion 105B, passing only through the back heat exchanger 107B. The relative wind speed difference between the two wind speeds can be further expanded. Due to the difference in wind speed, the suction airflow that passes through the portion of the back heat exchanger 107B located below the upper end of the upper end protrusion 105B is near the upper end of the upper end protrusion 105B. It is strongly suppressed by the suction airflow that passes through the portion located above the upper end. Thereby, the air conditioner 100 can further reduce the turning radius of the airflow swirling toward the crossflow fan 106 near the upper end of the upper end protrusion 105B. Therefore, the backflow vortex generated between the cross-flow fan 106 and the surface of the upper end protrusion 105B facing the cross-flow fan 106 is more effectively reduced, and the airflow that has passed through the heat exchanger 107 is directed to the cross-flow fan 106. By enlarging the inflow area depending on various conditions, it is possible to increase the amount of air blown from the cross flow fan 106, reduce input, and suppress noise.

本実施の形態のように、熱交換器107は、フィン107Cと、フィン107Cを貫通する伝熱管107Dとを備え、補助熱交換器108は、フィン108Aと、フィン108Aを貫通する伝熱管108Bとを備え、伝熱管107Dの外径D1と伝熱管108Bの外径D2がD1<D2となってもよい。但し、本実施の形態で示す伝熱管107Dの外径D1=5MM、伝熱管108Bの外径D2=6MMは一例に過ぎない。熱交換器107はD1≦5MMを満たす伝熱管107Dであればよい。これにより、空気調和機100は、伝熱管107Dの外径D1と伝熱管108Bの外径D2がD1<D2となり、背面熱交換器107Bに対して補助熱交換器108の通風抵抗が大きくなる。そして、上端突起部105Bの先端に向けて上端突起部105Bの下方から背面熱交換器107B及び補助熱交換器108を通過して流動してくる吸込気流の風速と、上端突起部105Bの先端近傍に向けて上端突起部105Bの上方から背面熱交換器107Bのみを通過して流動してくる吸込気流の風速との相対的な風速差をより拡大することができる。 As in this embodiment, the heat exchanger 107 includes fins 107C and heat transfer tubes 107D passing through the fins 107C, and the auxiliary heat exchanger 108 includes fins 108A and heat transfer tubes 108B passing through the fins 108A. The outer diameter D1 of the heat exchanger tube 107D and the outer diameter D2 of the heat exchanger tube 108B may satisfy D1<D2. However, the outer diameter D1 of heat exchanger tube 107D = 5 MM and the outer diameter D2 = 6 MM of heat exchanger tube 108B shown in this embodiment are only examples. The heat exchanger 107 may be any heat exchanger tube 107D that satisfies D1≦5MM. As a result, in the air conditioner 100, the outer diameter D1 of the heat exchanger tube 107D and the outer diameter D2 of the heat exchanger tube 108B become D1<D2, and the ventilation resistance of the auxiliary heat exchanger 108 becomes larger than that of the back heat exchanger 107B. Then, the wind speed of the suction airflow flowing from below the upper end projection 105B through the back heat exchanger 107B and the auxiliary heat exchanger 108 toward the tip of the upper end projection 105B, and the vicinity of the tip of the upper end projection 105B. It is possible to further increase the relative wind speed difference with the wind speed of the suction airflow flowing from above the upper end protrusion 105B through only the back side heat exchanger 107B.

また、伝熱管107Dの外径D1がD1=5MMである圧力損失の軽減を図った背面熱交換器107Bを備え、背面熱交換器107Bを大風量の吸込気流が通過する場合に、上端突起部105Bの先端近傍に向けて上端突起部105Bの上方から背面熱交換器107Bのみを通過して流動してくる吸込気流の風速を積極的に増すことができる。そのため、クロスフローファン106と上端突起部105Bのクロスフローファン106に対向する面との間に生じる逆流渦をより効果的に縮小して、熱交換器107を通過した気流がクロスフローファン106に流入する領域を拡大することでクロスフローファン106における吹出風量を増大し、入力を低減し、騒音を抑制することができる。 In addition, the heat exchanger tube 107D is provided with a back heat exchanger 107B whose outer diameter D1 is 5 MM to reduce pressure loss. It is possible to actively increase the wind speed of the suction airflow flowing from above the upper end protrusion 105B, passing only through the back heat exchanger 107B, toward the vicinity of the tip of the upper end protrusion 105B. Therefore, the backflow vortex generated between the cross-flow fan 106 and the surface of the upper end protrusion 105B facing the cross-flow fan 106 is more effectively reduced, and the airflow that has passed through the heat exchanger 107 is directed to the cross-flow fan 106. By enlarging the inflow area, the amount of air blown from the cross flow fan 106 can be increased, the input power can be reduced, and noise can be suppressed.

なお、上述の実施の形態は、背面熱交換器107Bの上流面の上端点を上端点Zとしたとき、直線Aと背面熱交換器107Bの上流面の交点Xと上端点Zの距離XZと、直線Aと背面熱交換器107Bの上流面の交点Xと背面熱交換器107Bの上流面の下端点Yの距離XYが、XZ<XYとなるような背面熱交換器107Bのうち上端突起部105Bの上端よりも下方に位置する領域が多い場合ほど好適である。 In the above embodiment, when the upper end point of the upstream surface of the back heat exchanger 107B is the upper end point Z, the distance XZ between the intersection X of the straight line A and the upstream surface of the back heat exchanger 107B and the upper end point Z is , the upper end protrusion of the rear heat exchanger 107B such that the distance XY between the intersection X of the straight line A and the upstream surface of the rear heat exchanger 107B and the lower end point Y of the upstream surface of the rear heat exchanger 107B satisfies XZ<XY. It is preferable that there are more regions located below the upper end of 105B.

なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiments are for illustrating the technology of the present disclosure, and therefore various changes, substitutions, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.

本開示は、上端突起部の上端近傍でクロスフローファンへ向けて旋回する気流の旋回半径を縮小し、リアガイダの近接部上流で形成される逆流渦を縮小して、熱交換器を通過した気流がクロスフローファンに流入する領域を拡大することで送風性能を向上できることから、家庭用空調や業務用空調に用いるのに好適である。 The present disclosure reduces the turning radius of the airflow swirling toward the crossflow fan near the upper end of the upper end protrusion, and reduces the backflow vortex formed upstream of the vicinity of the rear guider, so that the airflow passing through the heat exchanger can be reduced. Since the air blowing performance can be improved by expanding the area where air flows into the cross-flow fan, it is suitable for use in home air conditioning and commercial air conditioning.

100 空気調和機
101 吸込口
102 吹出口
103 本体ケーシング
104 スタビライザ
105 リアガイダ
105A 近接部
105B 上端突起部
106 クロスフローファン
107 熱交換器
107A 前面熱交換器
107B 背面熱交換器
107C フィン
107D 伝熱管
108 補助熱交換器
108A フィン
108B 伝熱管
100 Air conditioner 101 Suction port 102 Air outlet 103 Main body casing 104 Stabilizer 105 Rear guider 105A Proximal part 105B Upper end protrusion 106 Cross flow fan 107 Heat exchanger 107A Front heat exchanger 107B Back heat exchanger 107C Fin 107D Heat transfer tube 108 auxiliary heat Exchanger 108A Fin 108B Heat exchanger tube

Claims (4)

クロスフローファンと、前記クロスフローファンの前面側に配置された前面熱交換器と、前記クロスフローファンの背面側に配置された配置された背面熱交換器と、前記背面熱交換器の背面側に配置された補助熱交換器と、前記クロスフローファンと前記背面熱交換器との間に配置されたリアガイダとを備え、
前記リアガイダは、前記クロスフローファンに近接した近接部と、前記近接部から上方へ向けて延出した上端突起部とを有し、
前記クロスフローファンの回転軸と直交する断面において、前記背面熱交換器の前面に対して垂直かつ前記上端突起部に外接する直線を直線Aと、前記直線Aと前記背面熱交換器の背面との交点を交点Xと、前記補助熱交換器における前記背面熱交換器と対向する面の上端を上端点Rと、前記補助熱交換器における前記背面熱交換器と対向する面の下端を下端点Qとした場合に、前記交点Xと前記上端点Rとの距離RXと、前記交点Xと前記下端点Qとの距離QXとが、QX/(RX+QX)≧0.5となる、空気調和機。
a cross flow fan; a front heat exchanger disposed on the front side of the cross flow fan; a rear heat exchanger disposed on the rear side of the cross flow fan; and a rear heat exchanger disposed on the rear side of the cross flow fan; an auxiliary heat exchanger disposed in the auxiliary heat exchanger, and a rear guider disposed between the cross flow fan and the rear heat exchanger,
The rear guider has a proximal portion proximate to the cross flow fan, and an upper end protrusion extending upward from the proximal portion,
In a cross section perpendicular to the rotation axis of the cross flow fan, a straight line perpendicular to the front surface of the back heat exchanger and circumscribing the upper end protrusion is defined as a straight line A, and the straight line A and the back face of the back heat exchanger are defined as , the upper end of the surface of the auxiliary heat exchanger facing the back heat exchanger is the upper end point R, and the lower end of the surface of the auxiliary heat exchanger facing the back heat exchanger is the lower end point Q, the distance RX between the intersection point X and the upper end point R, and the distance QX between the intersection point X and the lower end point Q are QX/(RX+QX)≧0.5. .
前記交点Xと、前記背面熱交換器の背面の下端点Yと、前記交点Xと前記下端点Yの距離XYと、前記補助熱交換器の段方向長さHとした場合に、XY/H≧1.0となる、請求項1に記載の空気調和機。 When the intersection X, the lower end point Y of the back surface of the back heat exchanger, the distance XY between the intersection X and the lower end point Y, and the length H of the auxiliary heat exchanger in the step direction, XY/H The air conditioner according to claim 1, wherein ≧1.0. 前記背面熱交換器は、背面熱交換器フィンと、前記背面熱交換器フィンを貫通する背面熱交換器伝熱管とを備え、前記補助熱交換器は、補助熱交換器フィンと、前記補助熱交換器フィンを貫通する補助熱交換器伝熱管とを備え、前記背面熱交換器伝熱管の外径D1と、前記補助熱交換器伝熱管の外径D2が、D1<D2となる、請求項1または2に記載の空気調和機。 The back heat exchanger includes back heat exchanger fins and back heat exchanger heat transfer tubes passing through the back heat exchanger fins, and the auxiliary heat exchanger includes auxiliary heat exchanger fins and the auxiliary heat exchanger fins. auxiliary heat exchanger heat exchanger tubes penetrating through exchanger fins, and an outer diameter D1 of the back heat exchanger heat exchanger tubes and an outer diameter D2 of the auxiliary heat exchanger heat exchanger tubes satisfy D1<D2. The air conditioner according to 1 or 2. 前記背面熱交換器伝熱管の外径D1が、D1≦5MMとなる、請求項1~3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the outer diameter D1 of the back heat exchanger heat transfer tube satisfies D1≦5MM.
JP2022044829A 2022-03-22 2022-03-22 air conditioner Pending JP2023139347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044829A JP2023139347A (en) 2022-03-22 2022-03-22 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044829A JP2023139347A (en) 2022-03-22 2022-03-22 air conditioner

Publications (1)

Publication Number Publication Date
JP2023139347A true JP2023139347A (en) 2023-10-04

Family

ID=88204680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044829A Pending JP2023139347A (en) 2022-03-22 2022-03-22 air conditioner

Country Status (1)

Country Link
JP (1) JP2023139347A (en)

Similar Documents

Publication Publication Date Title
JP5178816B2 (en) Air conditioner
JP4973249B2 (en) Multi-wing fan
JP6041895B2 (en) Air conditioner
JPH05296194A (en) Multiblade blower
JP3649567B2 (en) Once-through fan
JP2009281215A (en) Air conditioner indoor unit
EP4365498A1 (en) Air channel assembly and air conditioning device having same
EP2280176B1 (en) Cross flow fan and air conditioner equipped with same
JP6398086B2 (en) Blower and air conditioner using the same
JP2023139347A (en) air conditioner
US20220205650A1 (en) Air conditioner including a centrifugal fan
JP5506821B2 (en) Air conditioner
JP5631429B2 (en) Air conditioner
CN112050296B (en) Air conditioner
WO2023182025A1 (en) Air conditioner
WO2015064617A1 (en) Cross-flow fan and air conditioner
JP4698818B2 (en) Multi-blade blower
JP2014081147A (en) Outdoor unit of air conditioner
JP3048438B2 (en) Mixed flow fan
JPS5819693A (en) Finned tube type heat exchanger
JPH0861685A (en) Indoor unit for air conditioner
JPH05196248A (en) Indoor unit for air-conditioner
JPH08327082A (en) Indoor unit of air conditioner
JPH04344030A (en) Air conditioner
JPS63135729A (en) Indoor unit of air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024