JP2023138169A - 情報処理装置、情報処理方法、及びプログラム。 - Google Patents

情報処理装置、情報処理方法、及びプログラム。 Download PDF

Info

Publication number
JP2023138169A
JP2023138169A JP2022044722A JP2022044722A JP2023138169A JP 2023138169 A JP2023138169 A JP 2023138169A JP 2022044722 A JP2022044722 A JP 2022044722A JP 2022044722 A JP2022044722 A JP 2022044722A JP 2023138169 A JP2023138169 A JP 2023138169A
Authority
JP
Japan
Prior art keywords
time
series data
information processing
processing device
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022044722A
Other languages
English (en)
Inventor
知之 樋口
Tomoyuki Higuchi
毅 石曽根
Takeshi Ishizone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2022044722A priority Critical patent/JP2023138169A/ja
Publication of JP2023138169A publication Critical patent/JP2023138169A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】異常検知と個別周期の推定とを可能にする、準周期的パターンを示す時系列データを予測する技術を提供する。【解決手段】情報処理装置10の制御部11は、準周期的パターンを示す時系列データを所定の期間において取得し、複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した時系列データに基づいて、チャンネル毎の特徴量を要素とする特徴ベクトルを複数の時点毎に生成し、注意機構を用いて、複数の時点における特徴ベクトルと複数の時点のうち最先の時点における特徴ベクトルとの類似度に基づいて、複数の時点における特徴ベクトルを重み付けすることにより、注意機構の出力ベクトルを生成し、畳み込みニューラルネットワークの全結合層に、出力ベクトルを入力することにより、所定の期間より後における時系列データを予測する。【選択図】図2

Description

本発明は、情報処理装置、情報処理方法、及びプログラムに関する。
垂直方向と水平方向との製造プロセスの統合、及びモノとインターネットとの繋がりを主眼とする新しい産業ステージであるIndustry 4.0が注目を集めている。Industry 4.0で提唱されているスマート工場は、工場内のあらゆる機械とシステムとの間の通信により、製造プロセスを円滑化し、効率的な生産を可能とする。各生産機械に、消費電力量を計測するためのスマートメータが取り付けられた生産ラインにおいて、スマートメータが示す時系列データの変動から異常信号を自動的に捉えることができれば、製品の欠陥率が抑制され、生産性を向上させることができる。
例えば、特許文献1には、サポートベクトルマシン、kNN法(k-nearest neighbor algorithm)、k-means法、ニューラルネットワーク、又は局所外れ値因子法といった機械学習の手法により、工場等に配備された装置が故障する前の予兆となる異常を検出する技術が開示されている。
国際公開第2018/003879号
特許文献1に開示された技術は、例えば生産機械の消費電力量データに代表される準周期的パターンを示す時系列データに対する異常検知を行うにあたって、以下の点で改善の余地がある。
すなわち、後述する図1に示されるような、ある生産ラインにおけるスマートメータの時系列データは、準周期的パターンを示す一方で、ロットの切替え又は停止状態等のシステム情報を含んでいない。このような時系列データに対しては、異常検知と並行して、重要製品性能指数である個別周期の推定が強く求められている。個別周期の推定により、生産ラインの異常度を見積もったり、ロットの切替えを検出したりすることができるからである。生産機械の消費電力量データに代表される準周期的パターンを示す時系列データに対する異常検知の手法として、大きく2つのアプローチがある。
1つ目のアプローチは、時系列データを1周期分のセグメントに分割した後、セグメントの特徴量を用いて分類を行う、セグメントベースの手法である。1段階目のセグメンテーションでは、1周期内に現れる特徴的に表す候補点(例えば、1周期内に1つ現れるスパイク等の点)を抽出し、当該候補点を用いて各セグメントに分割する。2段階目の異常検知では、異常又は正常の教師ラベルが与えられている場合には、ナイーブベイズ法又はサポートベクトルマシン等の分類手法が用いられ、異常又は正常の教師ラベルが与えられていない場合には、DBSCAN(Density-based spatial clustering of applications with noise)又はk-means法等のクラスタリング手法が用いられる。また、データの大部分が正常なデータであることを利用して、教師無しの異常検知手法であるkNN法若しくはSVDD(support vector data description)法、又は深層学習を活用した手法も提案されている。生産機械の消費電力量データでは、教師ラベルが与えられておらず、作業量の省力化の観点で教師ラベルを与えることが厳しいため、前者の分類手法を適用することは困難である。後者のクラスタリング手法であっても、1段階目のセグメンテーションと2段階目の異常検知におけるクラスタリングとが高精度であることが必要とされるが、即時に高精度な応答を返すことは困難である。
2つ目のアプローチは、時系列データの予測手法を活用し、予測誤差で異常度を評価することにより、即時の応答を可能とする予測ベースの手法である。予測ベースの代表的な手法としては、ARIMA(Autoregressive integrated moving average)モデル又はLSTM(Long Short Term Memory)を活用した研究があり、予測信頼区間の内外で異常が判別されている。しかしながら、これらの手法は、個別周期を推定することができず、準周期的パターンを活用した異常検知を行うこともできない。
かかる事情に鑑みてなされた本発明の目的は、異常検知と個別周期の推定とを可能にする、準周期的パターンを示す時系列データを予測する技術を提供することにある。
本発明の一実施形態に係る情報処理装置は、
制御部を備える情報処理装置であって、
前記制御部は、
準周期的パターンを示す時系列データを所定の期間において取得する、時系列データ取得処理と、
複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した前記時系列データに基づいて、前記チャンネル毎の特徴量を要素とする特徴ベクトルを、複数の時点毎に生成する、特徴ベクトル生成処理と、
注意機構を用いて、前記複数の時点における前記特徴ベクトルと前記複数の時点のうち最先の時点における前記特徴ベクトルとの類似度に基づいて、前記複数の時点における前記特徴ベクトルを重み付けすることにより、前記注意機構の出力ベクトルを生成する、出力ベクトル生成処理と、
前記畳み込みニューラルネットワークの全結合層に、重み付けされた前記複数の時点における前記特徴ベクトルを入力することにより、前記所定の期間より後における前記時系列データを予測する、時系列データ予測処理と、
を実行する。
また、本発明の一実施形態に係る情報処理装置において、
前記制御部は、前記複数の時点のうち、前記最先の時点を除く時点であって、且つ前記類似度に相当する重みベクトルの要素の値が最大となる時点に基づいて、取得した前記時系列データの各時刻における個別周期を推定してもよい。
また、本発明の一実施形態に係る情報処理装置において、
前記制御部は、取得した前記時系列データと予測した前記時系列データとの比較に基づいて、取得した前記時系列データにおける異常の有無を判定してもよい。
また、本発明の一実施形態に係る情報処理装置において、
前記制御部は、前記類似度に相当する重みベクトルの要素を用いて構成される確率分布に基づいて、取得した前記時系列データにおける異常の有無を判定してもよい。
また、本発明の一実施形態に係る情報処理装置において、
前記制御部は、推定した前記個別周期の頻度を用いて構成される経験分布に基づいて、取得した前記時系列データにおける異常の有無を判定してもよい。
本発明の一実施形態に係る情報処理方法は、
情報処理装置が実行する情報処理方法であって、
準周期的パターンを示す時系列データを所定の期間において取得する、時系列データ取得ステップと、
複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した前記時系列データに基づいて、前記チャンネル毎の特徴量を要素とする特徴ベクトルを、複数の時点毎に生成する、特徴ベクトル生成ステップと、
注意機構を用いて、前記複数の時点における前記特徴ベクトルと前記複数の時点のうち最先の時点における前記特徴ベクトルとの類似度に基づいて、前記複数の時点における前記特徴ベクトルを重み付けすることにより、前記注意機構の出力ベクトルを生成する、出力ベクトル生成ステップと、
前記畳み込みニューラルネットワークの全結合層に、重み付けされた前記複数の時点における前記特徴ベクトルを入力することにより、前記所定の期間より後における前記時系列データを予測する、時系列データ予測ステップと、
を含む。
本発明の一実施形態に係るプログラムは、
コンピュータに、
準周期的パターンを示す時系列データを所定の期間において取得する、時系列データ取得ステップと、
複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した前記時系列データに基づいて、前記チャンネル毎の特徴量を要素とする特徴ベクトルを、複数の時点毎に生成する、特徴ベクトル生成ステップと、
注意機構を用いて、前記複数の時点における前記特徴ベクトルと前記複数の時点のうち最先の時点における前記特徴ベクトルとの類似度に基づいて、前記複数の時点における前記特徴ベクトルを重み付けすることにより、前記注意機構の出力ベクトルを生成する、出力ベクトル生成ステップと、
前記畳み込みニューラルネットワークの全結合層に、重み付けされた前記複数の時点における前記特徴ベクトルを入力することにより、前記所定の期間より後における前記時系列データを予測する、時系列データ予測ステップと、
を実行させる。
本発明によれば、異常検知と個別周期の推定とを可能にする、準周期的パターンを示す時系列データを予測する技術を提供することができる。
ある生産ラインにおけるスマートメータの時系列データの概略を説明する図である。 本発明の一実施形態に係る情報処理装置10の概略構成を示すブロック図である。 図2に示す情報処理装置10が属するQuADシステムを説明する図である。 図2に示す情報処理装置10の第1の動作例を示すフローチャートである。 図3に示すQuADシステムで用いられる予測ネットワークを説明する図である。 図3に示すQuADシステムで用いられる注意機構を説明する図である。 図3に示すQuADシステムにおける個別周期の推定を説明する図である。
以下、図面を参照して、本発明の実施形態を説明する。
(情報処理装置10の構成)
図2を参照して、本発明の一実施形態に係る情報処理装置10の構成を説明する。
情報処理装置10は、例えば、クラウドコンピューティングシステム又はその他のコンピューティングシステムに属する任意のコンピュータ又はタブレットである。詳細については後述するが、情報処理装置10は、図3に示されるQuADシステムと称されるコンピューティングシステムに属してもよい。ここで、QuADシステムは、画像又は音声処理で用いられる畳み込みニューラルネットワーク(CNN;Convolutional Neural Network)と自然言語処理で用いられる注意機構(attention mechanism)との2つの技法によって設計される。
情報処理装置10は、例えば、制御部11と、通信部12と、記憶部13と、入力部14と、出力部15と、を備える。
制御部11は、CPU(central processing unit)若しくはGPU(graphics processing unit)等のプロセッサ、FPGA(field-programmable gate array)等のプログラマブル回路、ASIC(application specific integrated circuit)等の専用回路、又はこれらの任意の組合せを含む。なお、詳細については後述するが、制御部11は、情報処理装置10の各部を制御しながら、情報処理装置10の動作に関わる処理を実行する。
通信部12は、通信用インタフェースを含む。当該通信インタフェースは、例えば4G(4th Generation)若しくは5G(5th Generation)等の移動体通信規格、有線LAN(Local Area Network)規格、又は無線LAN規格に対応してもよいが、これらに限られない。なお、詳細については後述するが、通信部12は、情報処理装置10の動作に用いられるデータを受信し、また情報処理装置10の動作によって得られるデータを送信する。
記憶部13は、半導体メモリ、磁気メモリ、又は光メモリ等のメモリを含む。当該メモリは、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。なお、詳細については後述するが、記憶部13は、情報処理装置10の動作に用いられる任意のデータを記憶する。
入力部14は、入力用インタフェースを含む。当該入力用インタフェースは、例えば、物理キー、静電容量キー、ポインティングデバイス、又はディスプレイと一体的に設けられたタッチスクリーンであるが、これらに限られない。入力部14は、情報処理装置10の動作に用いられるデータを入力する操作を受け付ける。なお、入力部14は、情報処理装置10に備えられる代わりに、外部の入力機器として情報処理装置10に接続されてもよい。
出力部15は、出力用インタフェースを含む。当該出力用インタフェースは、LCD(liquid crystal display)又は有機EL(electro luminescence)ディスプレイ等のディスプレイであるが、これらに限られない。出力部15は、情報処理装置10の動作によって得られるデータを出力する。なお、出力部15は、情報処理装置10に備えられる代わりに、外部の出力機器として情報処理装置10に接続されてもよい。
(情報処理装置10の第1の動作例:QuADNet)
図4も参照して、本実施形態に係る情報処理装置10の第1の動作例を説明する。第1の動作例は、図3に示されるQuADシステムにおけるQuADNetで実行される処理に相当する。
[時系列データ取得処理]
ステップS100:情報処理装置10の制御部11は、準周期的パターンを示す時系列データxを所定の期間(t=1、…、T)において取得する。
具体的には、情報処理装置10の制御部11は、例えば生産ライン等に設けられたd個のスマートメータ等のセンサから、通信部12を介して、準周期的パターンを示す時系列データxを取得する。なお、xは、下記(1)式で表される入力行列Xを構成するベクトルであり、tは、1からTの自然数であり、且つ各時点のインデックスを示す。そして、情報処理装置10の制御部11は、取得した時系列データxから、下記(1)式で表されるw時点束ねた入力行列Xと、下記(2)式で表されるh時点束ねた出力行列Yとを用意する。そして、情報処理装置10の制御部11は、入力行列X及び出力行列Yを記憶部13に格納する。なお、d、w、及びhは、自然数であり、情報処理装置10の入力部14を介して任意に設定され得る。また、時系列データxは、準周期的パターンを示す時系列データであれば、生産ライン等に設けられたスマートメータ等のセンサが示す時系列データに限られず、例えば心電計等の医療機器が示す時系列データであってもよく、或いはその他の時系列データであってもよい。
Figure 2023138169000002
Figure 2023138169000003
ここで、第1の動作例では、後述するステップS110乃至S170の処理により、入力行列Xから出力行列Yを予測する多時点予測精度が高くなるように学習される。
[特徴ベクトル生成処理]
ステップS110:情報処理装置10の制御部11は、複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、ステップS100で取得した時系列データxに基づいて、当該チャンネル毎の特徴量を要素とする特徴ベクトルz(但し、t=1、…、n)を、複数の時点毎に生成する。
具体的には、図5も参照して、情報処理装置10の制御部11は、ステップS100で取得した時系列データxから用意した入力行列Xを、チャンネル数が1であり、且つ画像サイズがw×dである画像と見做す。そして、情報処理装置10の制御部11は、チャンネル数がcであり、且つカーネルサイズがk×dであるカーネル(図5では、「フィルタ」と称する。)が適用される2次元畳み込みニューラルネットワーク(以下、「2次元CNN」と称する。)に当該画像と見做した入力行列Xを入力する。これにより、情報処理装置10の制御部11は、チャンネル毎の特徴量を要素とする特徴ベクトルzを、複数の時点毎に生成することができる。そして、情報処理装置10の制御部11は、特徴ベクトルzを用いて、下記(3)式で表される時間局所的特徴行列Zを構成する。そして、情報処理装置10の制御部11は、時間局所的特徴行列Zを記憶部13に格納する。なお、下記(3)式において、Tは転置行列を意味する。また、下記(3)式において、n(=w-k+1)は、自然数であり、時間局所的特徴行列Zの時間軸方向の長さを示す。また、kは、自然数であり、2次元CNNの時間軸方向のカーネルサイズを示す。また、cは、自然数であり、時間局所的特徴行列Zのチャンネル数を示す。なお、c及びkは、学習過程の1回目のループでは、入力部14を介して任意に設定され、学習過程の2回目以降のループでは、後述するステップS170の処理により更新され得る。
Figure 2023138169000004
ステップS120:情報処理装置10の制御部11は、ステップS110で生成した時間局所的特徴行列ZをLSTM(Long short-term memory)に通すことにより、時間遷移を加味した特徴ベクトルl(但し、t=1、…、n)から構成される時間遷移を加味した特徴行列Lを生成する。
具体的には、図5も参照して、情報処理装置10の制御部11は、ステップS110で生成した時間局所的特徴行列Zを、時系列の特徴量を内在セルで表現することが可能な公知又は任意のLSTMに入力することにより、時間遷移を加味した特徴ベクトルlを生成する。そして、情報処理装置10の制御部11は、特徴ベクトルlを用いて、下記(4)式で表される時間遷移を加味した特徴行列Lを構成する。そして、情報処理装置10の制御部11は、時間遷移を加味した特徴行列Lを記憶部13に格納する。なお、下記(4)式において、qは、LSTMの隠れ層のユニット数であり、ユーザによって予め設定され得る自然数である。qは、例えば50又は100等に設定され得るが、本発明はこれらに限られない。
Figure 2023138169000005
なお、ステップS120の処理は、任意選択的であり、ステップS120で生成した特徴行列Lを構成する特徴ベクトルlに代えて、ステップS110で生成した時間局所的特徴行列Zを構成する特徴ベクトルzが後述するステップS130の処理に用いられてもよい。
[出力ベクトル生成処理]
ステップS130:情報処理装置10の制御部11は、注意機構を用いて、複数の時点における特徴ベクトルl(但し、t=1、…、n)と複数の時点のうち最先の時点における特徴ベクトルlとの類似度に基づいて、複数の時点における特徴ベクトルl(t=1、…、n)を重み付けすることにより、注意機構の出力ベクトルaを生成する。
ここで、注意機構は、出力をn個のベクトルの重み付き和として表現する手法であり、下記(5)式により出力ベクトルaを出力する。なお、下記(5)式において、qは、クエリベクトルである。また、Kは、キー行列(行列サイズ:q×n)である。また、Kは、キー行列の転置行列である。また、softmax演算は、下記(6)式で表される。また、ωは、重みベクトルである。また、Vは、バリュー行列(行列サイズ:v×n)である。
Figure 2023138169000006
Figure 2023138169000007
具体的には、図5も参照して、本例では、情報処理装置10の制御部11は、ステップS120で生成した特徴ベクトルlから構成される特徴行列Lを用いて、上記(5)式において、K=Lと見做し、V=Lと見做し、q=lと見做して、図6に示される注意機構を適用する。これにより、複数の時点における特徴ベクトルl(但し、t=1、…、n)と複数の時点のうち最先の時点における特徴ベクトルlとの類似度に基づいて、複数の時点における特徴ベクトルlが重み付けされ、注意機構の出力ベクトルaが生成される。そして、情報処理装置10の制御部11は、注意機構の出力ベクトルaを記憶部13に格納する。
[時系列データ予測処理]
ステップS140:情報処理装置10の制御部11は、ステップS110で用いた畳み込みニューラルネットワークの全結合層に、ステップS130で生成した注意機構の出力ベクトルaを入力することにより、所定の期間より後における時系列データY^を予測する。なお、Y^は、行列(行列サイズ:d×h)である。
具体的には、図5も参照して、情報処理装置10の制御部11は、下記(7)式及び(8)式を実行する。そして、情報処理装置10の制御部11は、Y^を記憶部13に格納する。なお、下記(7)式及び(8)式において、Nは層数であり、Wは重み行列であり、bはバイアスベクトルであり、nは全結合層の第i層のユニット数(nNl=dh、n=q)であり、matrixはベクトルを行列にreshapeする(要素を揃え変える)演算子である。ただし、本発明は、下記(7)式及び(8)式に限られない。
Figure 2023138169000008
Figure 2023138169000009
ステップS150:情報処理装置10の制御部11は、ステップS100で用意した出力行列YとステップS140で予測したY^との誤差l({Y}、{Y^})を算出する。
具体的には、情報処理装置10の制御部11は、下記(9)式で表されるL1損失関数を用いて、ステップS100で用意した出力行列YとステップS140で予測したY^との誤差l({Y}、{Y^})を算出する。そして、情報処理装置10の制御部11は、誤差l({Y}、{Y^})を記憶部13に格納する。なお、誤差の算出方法は、外れ値に対する頑健性が高いL1損失関数を用いることが好ましいが、本発明はこれに限られない。
Figure 2023138169000010
ステップS160:情報処理装置10の制御部11は、ステップS150で算出した誤差l({Y}、{Y^})が所定の閾値以下であるか否かを判断する。誤差l({Y}、{Y^})が所定の閾値以下である場合には、プロセスは終了する。すなわち、学習過程の今回のループで用いられた各種パラメータが最適化されたパラメータに相当し、予測モデル(畳み込みニューラルネットワーク)を構成する。一方、誤差l({Y}、{Y^})が所定の閾値以下でない場合には、プロセスはステップS170に進む。
ここで、所定の閾値は、多時点予測精度を考慮して、情報処理装置10の入力部14を介して任意に設定され得る。ただし、本発明における学習終了基準は、誤差l({Y}、{Y^})が所定の閾値以下であるか否かによる判断に限られない。例えば、学習のループ数が予め設定された値に到達すると、情報処理装置10の制御部11は、学習終了と判断し、各種パラメータの値の更新を終了してもよい。
ステップS170:情報処理装置10の制御部11は、ステップS110で用いられる畳み込みニューラルネットワーク及びステップS120で用いられるLSTMを構成する各種パラメータの値を更新する。
具体的には、情報処理装置10の制御部11は、例えば確率的勾配降下法(SGD:stochastic gradient descent)又はAdam等の公知又は任意の最適化手法を用いて、ステップS110で用いられる2次元CNN、ステップS120で用いられるLSTM、並びに全結合層に含まれる重み行列及びバイアスベクトルの各種値をそれぞれ更新する。そして、情報処理装置10の制御部11は、更新された各種値を記憶部13に格納する。これにより、学習過程の2回目以降のループにおける2次元CNN及びLSTMの計算は、更新された各種値を用いて実行されることになる。そして、プロセスは、ステップS110に戻る。
第1の動作例によれば、第2の動作例において後述する個別周期の推定と、第3乃至5の動作例において後述する異常検知とを可能にする、準周期的パターンを示す時系列データを予測する技術を提供することができる。なお、情報処理装置10の制御部11は、後述する第2乃至5の動作例における異常検知を同時且つリアルタイムに実行してもよい。
以下、第2乃至5の動作例では、第1の動作例において最適化された各種パラメータを用いて構成された予測モデルが用いられる。
(情報処理装置10の第2の動作例:個別周期の推定)
図7も参照して、本実施形態に係る情報処理装置10の第2の動作例について説明する。第2の動作例は、図3に示されるQuADシステムにおける個別周期の推定に相当する。
第2の動作例では、情報処理装置10の制御部11は、複数の時点のうち、最先の時点(n=w-k+1)を除く時点であって、且つ第1の動作例におけるステップS130で計算された類似度に相当する重みベクトルの要素の値が最大となる時点に基づいて、時系列データxの各時刻における個別周期を推定する。
具体的には、情報処理装置10の制御部11は、第1の動作例におけるステップS130で算出した下記(10)式で表される重みベクトルωの各要素を、下記(11)式に入力することにより、時系列データxの各時刻における個別周期を推定する。図7に示される例では、個別周期が91サイクル程度であることがわかる。なお、下記(11)式において、argmax関数は、1≦s≦(w-k+1)-sのうち、重みベクトルωの要素の値が最大となるsの値(時点)を返す関数である。ここで、sの上限値がs=(w-k+1)-sに制限されているのは、図7に示されるように、現時点に相当するs=w-k+1に近い重みベクトルωの要素は、準周期性に関係なく類似度が高くなるため、準周期的パターンを正しく推定するためには除去する必要があるからである。なお、sは、切断時間を示し、偏相関係数が減少する時間として、情報処理装置10の入力部14を介して適宜設定され得る。
Figure 2023138169000011
Figure 2023138169000012
追加的に、情報処理装置10の制御部11は、上記(11)式により算出した個別周期の推定値cを用いて、下記(12)式で表されるモード平滑化によりロバストな推定量Cを算出してもよい。なお、下記(12)式において、周期の多少の変動に対する頑健化のために周囲のn周期が各周期のカウントに加えられている。また、下記(12)式におけるbは、大域的に基本となる基本周期(base period)の推定量を示し、下記(13)式によって推定される。
Figure 2023138169000013
Figure 2023138169000014
なお、生産機械等におけるロット変更は、上述した基本周期の変化として現れる。そこで、情報処理装置10の制御部11は、上記(11)式により推定した個別周期の推定値Cが上記(13)式により推定した基本周期の推定量bから定常的に同じ幅だけ乖離していると判断すると、ロット変更の信号をシステムに送り、第1の動作例における学習過程を再び行ってもよい。なお、学習過程が再び行われる場合、以前の学習結果をpretrained networkと見做してfine-tuningする場合と全体を改めて再学習する場合とがあるが、いずれの場合であっても全パラメータが変化することになる。
第2の動作例によれば、準周期的パターンを示す時系列データの各時刻における個別周期を推定することができる。
(情報処理装置10の第3の動作例:QuADNet-P)
本実施形態に係る情報処理装置10の第3の動作例について説明する。第3の動作例は、図3に示されるQuADシステムにおけるQuADNet-Pで実行される処理に相当する。
第3の動作例では、情報処理装置10の制御部11は、第1の動作例におけるステップS100と同様にして取得した時系列データと、第1の動作例におけるステップS140と同様にして予測した時系列データとの比較に基づいて、取得した時系列データにおける異常の有無を判定する。
具体的には、情報処理装置10の制御部11は、第1の動作例におけるステップS100と同様にして、準周期的パターンを示す時系列データxから、h時点束ねた出力行列Yを取得する。ここで、Yの要素を(Yisと表記する。また、情報処理装置10の制御部11は、第1の動作例におけるステップS100と同様にして、準周期的パターンを示す時系列データxから、w時点束ねた入力行列Xを取得する。そして、情報処理装置10の制御部11は、第1の動作例により最適化された2次元CNNに入力行列Xを入力することにより、多時点予測値Y^を予測する。ここで、Y^の要素を(Y^is=(QuADNet(X))isと表記する。なお、i(但し、i=1、…、d)は、スマートメータ等のセンサを特定するためのインデックスある。また、s(但し、s=1、…、h)は、各時点に対応するインデックスである。そして、情報処理装置10の制御部11は、(Yis及び(QuADNet(X))isを下記(14)式に入力することにより、平均絶対誤差(MAE;Mean Absolute Error)であるMAE(X,Y)を算出する。そして、情報処理装置10の制御部11は、MAE(X,Y)が所定の閾値以上である場合には、異常が有ると判定する。一方、情報処理装置10の制御部11は、MAE(X,Y)が所定の閾値未満である場合には、異常が無いと判定する。そして、情報処理装置10の制御部11は、出力部15を介して、当該判定の結果を出力する。なお、(Yisと(QuADNet(X))isとの誤差の評価指標は、スパイクデータに対する頑健性の観点からMAEを用いることが好ましいが、本発明はこれに限られない。また、所定の閾値は、入力部14を介して、適宜設定され得る。
Figure 2023138169000015
第3の動作例によれば、準周期的パターンを示す時系列データにおける異常を検知することができる。
(情報処理装置10の第4の動作例:QuADNet-D)
本実施形態に係る情報処理装置10の第4の動作例について説明する。第4の動作例は、図3に示されるQuADシステムにおけるQuADNet-Dで実行される処理に相当する。
第4の動作例では、情報処理装置10の制御部11は、第1の動作例におけるステップS130で算出した重みベクトルωの要素を用いて構成される確率分布に基づいて、第1の動作例におけるステップS100と同様にして取得した時系列データにおける異常の有無を判定する。
具体的には、情報処理装置10の制御部11は、第1の動作例におけるステップS130で算出した重みベクトルωの要素を用いて、下記(15)式によって表されるディレクレ分布f(ω,α)を構成する。ここで、下記(15)式におけるαは、第1の動作例における学習過程で得られる重みベクトルの集合{ω}から最尤推定することにより適宜得られる。すなわち、最尤推定を行うことにより、重みベクトルωの分布としてディリクレ分布f(ω,α)が得られるので、最尤推定したディリクレ分布に対する当てはまり度合いを評価することにより、異常の有無の判定が為される。そして、情報処理装置10の制御部11は、出力部15を介して、当該判定の結果を出力する。なお、第4の動作例における確率分布には、重みベクトルωは総和が1となる確率ベクトルと解釈することができるので、総和が1となる確率ベクトルに対する分布であるディレクレ分布を用いることが好ましいが、本発明はこれに限られない。
Figure 2023138169000016
第4の動作例によれば、準周期的パターンを示す時系列データにおける異常を検知することができる。
(情報処理装置10の第5の動作例:QuADNet-C)
本実施形態に係る情報処理装置10の第5の動作例について説明する。第5の動作例は、図3に示されるQuADシステムにおけるQuADNet-Cで実行される処理に相当する。
第5の動作例では、情報処理装置10の制御部11は、第2の動作例で得られた個別周期の推定量{Ct}の頻度から経験分布を構成することにより、第1の動作例におけるステップS100と同様にして取得した時系列データにおける異常の有無を判定する。
具体的には、情報処理装置10の制御部11は、第2の動作例で得られた個別周期の推定量{Ct}を下記(16)式で表される経験分布に入力することにより、異常の有無を判定する。すなわち、下記(16)式におけるPは経験尤度関数とも称され、新たな{Ct}が得られた際にこれをPに代入することにより、異常の有無の判定指標となる当てはまり度合いに相当する量が得られる。なお、下記(16)式において、Iは、真であれば1を与え、且つ偽であれば0を与える指示関数である。また、ε(>0)は、P(C=i)の対数を取った際に発散を防止するために適宜設定され得る微小パラメータである。
Figure 2023138169000017
第5の動作例によれば、準周期的パターンを示す時系列データにおける異常を検知することができる。
なお、上述した第3乃至5の動作例では、何れも尤度に基づいて異常の有無が判定されるが、情報処理装置10の制御部11は、頑健な異常区間を同定するために、以下のステップ1乃至5に基づく事後処理を行った後に異常の有無を判定してもよい。
ステップ1:対数尤度を前後b個の値で平均化する。
ステップ2:閾値に基づいて異常又は正常を判定する。
ステップ3:異常区間をγだけ膨張及び/又は収縮する。
ステップ4:異常区間の長さがa以下であれば準異常であると判定し、a以上であれば異常と判定する。
ステップ5:異常区間をγ>max{γ,a}だけ膨張及び/又は収縮する。
上記ステップ1は、平滑化処理に相当し、1周期内における尤度のズレを補正するための処理である。ステップ3及び5は、画像処理におけるクロージングに相当し、異常区間同士の間が1又は2しか空いていない場合に同じ異常区間と見做すことができるように区間を統合する処理である。ステップ4は、画像処理におけるオープニング(収縮及び/又は膨張)に相当し、半周期にも満たないような短期異常を除去するための処理である。なお、bは上記(12)式及び(13)式と同じものであってもよい。また、対数尤度は、QuADNet-Pでは負のMAEの対数を、QuADNet-Dではfの対数を、QuADNet-CではPの対数を取ったものを指す。
本発明を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び改変を行ってもよいことに注意されたい。従って、これらの変形及び改変は本発明の範囲に含まれることに留意されたい。例えば、各部又は各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部又はステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。また、情報処理装置10の構成及び動作を、互いに通信可能な複数のコンピュータに分散させた実施形態も可能である。
一変形例として、汎用のコンピュータを、上述した実施形態に係る情報処理装置10として機能させる実施形態も可能である。具体的には、上述した実施形態に係る情報処理装置10の各機能を実現する処理内容を記述したプログラムを、汎用のコンピュータのメモリに格納し、プロセッサによって当該プログラムを読み出して実行させる。従って、本発明は、プロセッサが実行可能なプログラム、又は当該プログラムを記憶する非一時的なコンピュータ可読媒体としても実現可能である。
10 情報処理装置
11 制御部
12 通信部
13 記憶部
14 入力部
15 出力部

Claims (7)

  1. 制御部を備える情報処理装置であって、
    前記制御部は、
    準周期的パターンを示す時系列データを所定の期間において取得する、時系列データ取得処理と、
    複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した前記時系列データに基づいて、前記チャンネル毎の特徴量を要素とする特徴ベクトルを、複数の時点毎に生成する、特徴ベクトル生成処理と、
    注意機構を用いて、前記複数の時点における前記特徴ベクトルと前記複数の時点のうち最先の時点における前記特徴ベクトルとの類似度に基づいて、前記複数の時点における前記特徴ベクトルを重み付けすることにより、前記注意機構の出力ベクトルを生成する、出力ベクトル生成処理と、
    前記畳み込みニューラルネットワークの全結合層に、前記出力ベクトルを入力することにより、前記所定の期間より後における前記時系列データを予測する、時系列データ予測処理と、
    を実行する、情報処理装置。
  2. 請求項1に記載の情報処理装置であって、
    前記制御部は、前記複数の時点のうち、前記最先の時点を除く時点であって、且つ前記類似度に相当する重みベクトルの要素の値が最大となる時点に基づいて、取得した前記時系列データの各時刻における個別周期を推定する、情報処理装置。
  3. 請求項1又は2に記載の情報処理装置であって、
    前記制御部は、取得した前記時系列データと予測した前記時系列データとの比較に基づいて、取得した前記時系列データにおける異常の有無を判定する、情報処理装置。
  4. 請求項1又は2に記載の情報処理装置であって、
    前記制御部は、前記類似度に相当する重みベクトルの要素を用いて構成される確率分布に基づいて、取得した前記時系列データにおける異常の有無を判定する、情報処理装置。
  5. 請求項2に記載の情報処理装置であって、
    前記制御部は、推定した前記個別周期の頻度を用いて構成される経験分布に基づいて、取得した前記時系列データにおける異常の有無を判定する、情報処理装置。
  6. 情報処理装置が実行する情報処理方法であって、
    準周期的パターンを示す時系列データを所定の期間において取得する、時系列データ取得ステップと、
    複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した前記時系列データに基づいて、前記チャンネル毎の特徴量を要素とする特徴ベクトルを、複数の時点毎に生成する、特徴ベクトル生成ステップと、
    注意機構を用いて、前記複数の時点における前記特徴ベクトルと前記複数の時点のうち最先の時点における前記特徴ベクトルとの類似度に基づいて、前記複数の時点における前記特徴ベクトルを重み付けすることにより、前記注意機構の出力ベクトルを生成する、出力ベクトル生成ステップと、
    前記畳み込みニューラルネットワークの全結合層に、前記出力ベクトルを入力することにより、前記所定の期間より後における前記時系列データを予測する、時系列データ予測ステップと、
    を含む、情報処理方法。
  7. コンピュータに、
    準周期的パターンを示す時系列データを所定の期間において取得する、時系列データ取得ステップと、
    複数のチャンネルを有するカーネルが適用される畳み込みニューラルネットワークを用いて、取得した前記時系列データに基づいて、前記チャンネル毎の特徴量を要素とする特徴ベクトルを、複数の時点毎に生成する、特徴ベクトル生成ステップと、
    注意機構を用いて、前記複数の時点における前記特徴ベクトルと前記複数の時点のうち最先の時点における前記特徴ベクトルとの類似度に基づいて、前記複数の時点における前記特徴ベクトルを重み付けすることにより、前記注意機構の出力ベクトルを生成する、出力ベクトル生成ステップと、
    前記畳み込みニューラルネットワークの全結合層に、前記出力ベクトルを入力することにより、前記所定の期間より後における前記時系列データを予測する、時系列データ予測ステップと、
    を実行させる、プログラム。
JP2022044722A 2022-03-18 2022-03-18 情報処理装置、情報処理方法、及びプログラム。 Pending JP2023138169A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044722A JP2023138169A (ja) 2022-03-18 2022-03-18 情報処理装置、情報処理方法、及びプログラム。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044722A JP2023138169A (ja) 2022-03-18 2022-03-18 情報処理装置、情報処理方法、及びプログラム。

Publications (1)

Publication Number Publication Date
JP2023138169A true JP2023138169A (ja) 2023-09-29

Family

ID=88145087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044722A Pending JP2023138169A (ja) 2022-03-18 2022-03-18 情報処理装置、情報処理方法、及びプログラム。

Country Status (1)

Country Link
JP (1) JP2023138169A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210639A (zh) * 2023-11-09 2023-12-12 山东宇信铸业有限公司 一种一罐制铁水预处理喷粉控制方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210639A (zh) * 2023-11-09 2023-12-12 山东宇信铸业有限公司 一种一罐制铁水预处理喷粉控制方法及系统
CN117210639B (zh) * 2023-11-09 2024-02-23 山东宇信铸业有限公司 一种一罐制铁水预处理喷粉控制方法及系统

Similar Documents

Publication Publication Date Title
JP7167084B2 (ja) 異常検出システム、異常検出方法、異常検出プログラム及び学習済モデル生成方法
CN111694879B (zh) 一种多元时间序列异常模式预测方法及数据采集监控装置
CN108628281B (zh) 异常检测系统及异常检测方法
Xu et al. Predicting pipeline leakage in petrochemical system through GAN and LSTM
Yu et al. Policy-based reinforcement learning for time series anomaly detection
US12051232B2 (en) Anomaly detection apparatus, anomaly detection method, and program
US11288577B2 (en) Deep long short term memory network for estimation of remaining useful life of the components
US11796989B2 (en) Monitoring system and monitoring method
CN107480704A (zh) 一种具有遮挡感知机制的实时视觉目标跟踪方法
KR20140058501A (ko) 패턴 시퀀스를 가지는 커널 회귀 모델링을 사용하는 모니터링 시스템
JP2014525096A (ja) パターンシーケンスを用いるカーネル回帰モデリングを使用した監視方法
Lei et al. Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application
JP2014525097A (ja) 予測および予想のための逐次カーネル回帰モデリングのシステム
JP2020052714A5 (ja)
Xu et al. Stochastic Online Anomaly Analysis for Streaming Time Series.
Fink et al. Novelty detection by multivariate kernel density estimation and growing neural gas algorithm
CN111177224B (zh) 一种基于条件式规整化流模型的时间序列无监督异常检测方法
JP7481902B2 (ja) 管理計算機、管理プログラム、及び管理方法
JP2023138169A (ja) 情報処理装置、情報処理方法、及びプログラム。
Cirrincione et al. The growing curvilinear component analysis (GCCA) neural network
Bosnić et al. Enhancing data stream predictions with reliability estimators and explanation
Li et al. An adaptive prognostics method based on a new health index via data fusion and diffusion process
GB2465861A (en) A reasoning inference making tool for recommending actions based on a hybridisation of a data driven model and knowledge based logic.
CN109242190A (zh) 基于bfgs-fa优化分数阶灰色模型的中长期负荷预测方法和系统
JP6615892B2 (ja) 物理システムの経時変化プロファイリングエンジン