JP2023135721A - Taking-off/landing control device - Google Patents

Taking-off/landing control device Download PDF

Info

Publication number
JP2023135721A
JP2023135721A JP2022040946A JP2022040946A JP2023135721A JP 2023135721 A JP2023135721 A JP 2023135721A JP 2022040946 A JP2022040946 A JP 2022040946A JP 2022040946 A JP2022040946 A JP 2022040946A JP 2023135721 A JP2023135721 A JP 2023135721A
Authority
JP
Japan
Prior art keywords
landing
weather
takeoff
data
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022040946A
Other languages
Japanese (ja)
Other versions
JP2023135721A5 (en
Inventor
昌道 中村
Masamichi Nakamura
欣也 中津
Kinya Nakatsu
貴廣 伊藤
Takahiro Ito
幹雄 板東
Mikio Bando
ソフィアン ラムダニ
Ramdani Soufiane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2022040946A priority Critical patent/JP2023135721A/en
Priority to PCT/JP2022/046024 priority patent/WO2023176069A1/en
Publication of JP2023135721A publication Critical patent/JP2023135721A/en
Publication of JP2023135721A5 publication Critical patent/JP2023135721A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

To provide a taking-off/landing control device capable of performing stable control of a vertical taking-off/landing machine based on a highly precise prediction value of a wind speed and wind direction in the periphery of an object point in real-time.SOLUTION: A taking-off/landing control device 200 includes: previous weather feature quantity extraction sections 203, 204 for extracting a weather feature quantity from past weather and topographic data of a taking-off/landing place; a weather analysis section 206 for outputting a weather analysis value in taking-off/landing from weather forecasting data and the topographic data; a weather sensor data acquisition section 207 for acquiring observation values such as a wind speed and a wind direction from weather sensors in the periphery of the taking-off/landing place; a data assimilation section 208 for assimilating the weather analysis value of the taking-off/landing place with the wind speed, the wind direction or the like; and guidance control information generation sections 209-212 for acquiring machine body information of the vertical taking-off/landing machine and flight plan data, simulating a taking-off/landing place peripheral environment, generating posture control data of the vertical taking-off/landing machine based on the taking-off/landing place peripheral environment, and then outputting the posture control data to the vertical taking-off/landing machine.SELECTED DRAWING: Figure 2

Description

本発明は、予測に基づき回転翼機やドローンなどの垂直離着陸機の離着陸を制御する離着陸管制装に関する。 The present invention relates to a takeoff and landing control system that controls takeoff and landing of vertical takeoff and landing aircraft such as rotary wing aircraft and drones based on predictions.

航空機や回転翼機などの飛翔体の離着陸において、安定した気体の制御には風速や風向などの気象状況を把握する必要がある。現在では気象状況は各国の気象機関や民間の気象会社がシミュレーションや観測データに基づき様々な予測を行っており、航空機の運航や離着陸にはこれらのデータが使用されている。 During takeoff and landing of flying objects such as airplanes and rotary-wing aircraft, it is necessary to understand weather conditions such as wind speed and direction in order to control gas stably. Currently, various weather forecasts are made by meteorological agencies and private weather companies in various countries based on simulations and observation data, and this data is used for aircraft operations, takeoffs and landings.

さらに、空港近傍では専用のレーダーなどの観測機器により、詳細な気象が観測されており、これらの情報に基づき離着陸の可否の決定や航空機の制御が行われている。 Furthermore, detailed weather information is observed near airports using observation equipment such as dedicated radars, and based on this information decisions are made on whether to take off or land, and aircraft are controlled.

一方で、近年では、旅客の輸送や物流向けの回転翼機やドローンなどの垂直離着陸機が注目されており、これらの機体が高度な設備を持たない空港以外の地点へ離着陸する際の安定した制御の実現が望まれている。 On the other hand, in recent years, vertical takeoff and landing aircraft such as rotary-wing aircraft and drones for passenger transportation and logistics have been attracting attention, and these aircraft require stable takeoff and landing when taking off and landing at locations other than airports that do not have advanced equipment. Realization of control is desired.

このため、従来とは異なる手法により局所的な風速・風向などの気象状況の把握が必要となっている。 For this reason, it is necessary to understand local weather conditions such as wind speed and direction using methods different from conventional methods.

しかし、風速や風向などの気象状況は簡易的なセンサのみでは予測が困難であり、条件によっては観測機器の観測精度が低下する場合や、観測範囲が限定されてしまう場合がある。 However, weather conditions such as wind speed and direction are difficult to predict using only simple sensors, and depending on the conditions, the observation accuracy of observation equipment may decrease or the observation range may be limited.

一方で、気象庁などが公開している観測データは数十km単位の空間解像度となっており、離着陸場所の周辺での気象状況の詳細な把握が困難である。 On the other hand, the observation data published by the Japan Meteorological Agency and other organizations has a spatial resolution of several tens of kilometers, making it difficult to grasp the detailed weather conditions around takeoff and landing sites.

このような課題に対して、風速や風向の予測分野において、特許文献1および特許文献2に記載の技術が開示されている。 To address such problems, techniques described in Patent Document 1 and Patent Document 2 are disclosed in the field of predicting wind speed and wind direction.

特許文献1では、空港などの気象予測の対象となる地点周辺に複数の気圧センサを設置して、気圧の勾配を把握することで風向および風速などを予測する技術が提案されている。特に、気圧の傾斜から気象擾乱を把握することによりダウンバーストなどの航空機の離着陸の安全性に影響を与える風速・風向の変動の把握を目的としている。 Patent Document 1 proposes a technique for predicting wind direction, wind speed, etc. by installing a plurality of atmospheric pressure sensors around a point such as an airport that is subject to weather prediction and grasping the gradient of atmospheric pressure. In particular, the aim is to understand changes in wind speed and direction that affect the safety of aircraft takeoff and landing, such as downbursts, by understanding weather disturbances from the gradient of atmospheric pressure.

特許文献2では着陸地点上空の風速・風向観測値と着陸機体が撮影した構造物の画像データに基づく数値計算によりシミュレーションを実施し、着陸時に着陸地点近傍の風速・風向を把握する技術が提案されている。この技術により観測地点だけでなく着陸地点周辺の風速・風向の予測を実現している。 Patent Document 2 proposes a technology that performs a simulation using numerical calculations based on observed values of wind speed and wind direction above the landing site and image data of structures photographed by the landing aircraft, and grasps the wind speed and wind direction near the landing site at the time of landing. ing. This technology makes it possible to predict wind speed and direction not only at the observation point but also around the landing site.

特開2013-50417号公報Japanese Patent Application Publication No. 2013-50417 特開2020-45049号公報JP 2020-45049 Publication

特許文献1に記載の技術では、例えば、数km離れた複数地点の気圧観測結果から、それらの観測地点が包含する領域でおおよその風速・風向を予測可能である。一方で、気圧のみの観測では地形の影響や構造物の影響を考慮した風速・風向の予測は困難である。 With the technology described in Patent Document 1, for example, it is possible to predict the approximate wind speed and direction in the area covered by those observation points from the atmospheric pressure observation results at multiple points several kilometers apart. On the other hand, it is difficult to predict wind speed and direction by observing atmospheric pressure alone, taking into account the effects of topography and structures.

例えば、平地に立地する空港のように周辺の地形や構造物の影響を受けない場合は、大域的な風速・風向が予測できれば十分であるが、回転翼機やドローンなどの垂直離着陸機が山間部や構造物がある程度密集した地域に離着陸する場合、地形に起因する渦や剥離などの風速・風向変化を予測する必要があり、何らかの観測装置のみでこの変化を把握する場合は、より多くの種類のセンサを多数設置し、観測網を拡充しなければならないという課題がある。 For example, for airports located on flat land that are not affected by the surrounding topography or structures, it is sufficient to be able to predict global wind speed and direction, but vertical takeoff and landing aircraft such as rotary-wing aircraft and drones are When taking off or landing in an area with a certain degree of density, it is necessary to predict changes in wind speed and direction such as vortices and separation caused by the topography. There is a problem in that it is necessary to install many different types of sensors and expand the observation network.

特許文献2に記載の技術では、上空の観測点と画像データから抽出した構造物の配置に基づきシミュレーションの境界条件および初期条件を設定し、数値解析や簡易モデルでの計算により、実際の条件に近い風速・風向が予測可能である。 In the technology described in Patent Document 2, boundary conditions and initial conditions for simulation are set based on observation points in the sky and the arrangement of structures extracted from image data, and then the conditions are adjusted to actual conditions through numerical analysis and calculations using a simple model. Wind speed and direction can be predicted in the near future.

しかし、離着陸時の数分間の風速・風向をリアルタイムにシミュレーションするためには、計算格子数の削減や簡易モデルの使用などの対策が必要であり、その場合には予測精度が低下してしまうとともに、機体の安定した制御に必要な風速・風向の予測が困難という課題がある。 However, in order to simulate the wind speed and direction for several minutes during takeoff and landing in real time, it is necessary to take measures such as reducing the number of calculation grids and using a simplified model, which reduces prediction accuracy and However, there is a problem in that it is difficult to predict the wind speed and direction required for stable control of the aircraft.

このような背景に鑑みて本発明がなされたのであり、本発明の目的は、離発着場の周辺での観測値とシミュレーションを組み合わせて、リアルタイムでの対象地点周辺の風速・風向の高精度な予測ならびに予測値に基づく垂直離着陸機の安定制御が可能な離着陸管制装置および離着陸管制方法を実現することである。 The present invention was made in view of this background, and the purpose of the present invention is to combine observation values and simulations around takeoff and landing sites to provide highly accurate predictions of wind speed and wind direction around target points in real time. Another object of the present invention is to realize a takeoff and landing control system and a takeoff and landing control method that are capable of stably controlling a vertical takeoff and landing aircraft based on predicted values.

前記目的を達成するため、本発明は次のように構成される。 In order to achieve the above object, the present invention is configured as follows.

離着陸管制装置において、離着陸場の過去気象データおよび地形データから事前の気象解析を行い、気象特徴量を抽出する事前気象特徴量抽出部と、気象予報データおよび前記地形データから垂直離着陸機の離着陸時の気象を解析し、前記気象の解析値を出力する気象解析部と、前記離着陸場の周辺に配置された気象センサから風速、風向などの観測値を取得する気象センサデータ取得部と、抽出された前記気象特徴量に基づき、前記垂直離着陸機の前記離着陸場の前記気象の解析値と、前記風速、前記風向などの前記観測値と、を同化するデータ同化部と、前記離着陸場の周辺の前記垂直離着陸機の機体情報および前記垂直離着陸機の飛行計画データを取得し、前記データ同化部により同化された前記気象の解析値、前記機体情報及び前記飛行計画データに基づき前記離着陸場の周辺の環境をシミュレーションし、シミュレーションした前記離着陸場の周辺の環境に基づき、前記垂直離着陸機の姿勢制御に必要な制御データを生成して、前記垂直離着陸機に出力する誘導制御情報生成部と、を備える。 In the takeoff and landing control system, there is a preliminary weather feature extraction unit that performs advance weather analysis from past weather data and terrain data of the airfield and extracts weather features, and a weather feature extraction unit that performs advance weather analysis from past weather data and terrain data of the airfield, and extracts meteorological features from the weather forecast data and the terrain data. a weather analysis unit that analyzes the weather of a data assimilation unit that assimilates the meteorological analysis value of the airfield of the vertical takeoff and landing aircraft and the observed values such as the wind speed and the wind direction, based on the meteorological feature amount, and The aircraft information of the vertical take-off and landing aircraft and the flight plan data of the vertical take-off and landing aircraft are acquired, and the surroundings of the airfield are acquired based on the weather analysis values assimilated by the data assimilation unit, the aircraft information, and the flight plan data. a guidance control information generation unit that simulates an environment, generates control data necessary for attitude control of the vertical take-off and landing aircraft based on the simulated environment around the take-off and landing field, and outputs the control data to the vertical take-off and landing aircraft. .

また、離着陸管制方法において、離着陸場の過去気象データおよび地形データから事前の気象解析を行い、気象特徴量を抽出し、気象予報データおよび前記地形データから垂直離着陸機の離着陸時の気象を解析し、前記離着陸場の周辺に配置された気象センサから風速、風向などの観測値を取得し、抽出された前記気象特徴量に基づき、前記垂直離着陸機の前記離着陸場の前記気象の解析値と、前記風速、前記風向などの前記観測値と、を同化し、前記離着陸場の周辺の前記垂直離着陸機の機体情報および前記垂直離着陸機の飛行計画データを取得し、同化された前記気象の解析値、前記機体情報及び前記飛行計画データに基づき、前記離着陸場の周辺の環境をシミュレーションし、シミュレーションした前記離着陸場の周辺の環境に基づき、前記垂直離着陸機の姿勢制御に必要な制御データを生成して、前記垂直離着陸機に出力する。 In addition, in the takeoff and landing control method, preliminary weather analysis is performed from past weather data and topographic data of the airfield, extracting weather features, and analyzing the weather during takeoff and landing of vertical takeoff and landing aircraft from weather forecast data and the topographic data. Obtaining observed values such as wind speed and wind direction from weather sensors placed around the takeoff and landing field, and based on the extracted weather features, an analysis value of the weather at the takeoff and landing field of the vertical takeoff and landing aircraft; The observed values such as the wind speed and the wind direction are assimilated, aircraft information of the vertical take-off and landing aircraft around the airfield and flight plan data of the vertical take-off and landing aircraft are obtained, and the assimilated analysis value of the weather is obtained. , based on the aircraft information and the flight plan data, simulate the environment around the takeoff and landing field, and generate control data necessary for attitude control of the vertical takeoff and landing aircraft based on the simulated environment around the takeoff and landing field. and output to the vertical takeoff and landing aircraft.

本発明によれば、リアルタイムでの対象地点周辺の風速・風向の高精度な予測ならびに予測値に基づく垂直離着陸機の安定制御が可能な離着陸管制装置および離着陸管制方法を実現することができる。 According to the present invention, it is possible to realize a takeoff and landing control device and a takeoff and landing control method that are capable of highly accurate prediction of wind speed and wind direction around a target point in real time and stable control of a vertical takeoff and landing aircraft based on the predicted values.

構造物に囲まれた離着陸場の一例を示す図である。It is a diagram showing an example of an airfield surrounded by structures. 本発明の実施例1における離着陸管制装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a takeoff and landing control system in Embodiment 1 of the present invention. 気象予報値と局地的な風況解析の一例を示す図である。FIG. 3 is a diagram showing an example of weather forecast values and local wind condition analysis. 流体解析における流れ場と特徴量の関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship between a flow field and a feature amount in fluid analysis. 本発明の実施例1におけるデータ同化部の機能ブロック図である。FIG. 3 is a functional block diagram of a data assimilation unit in Embodiment 1 of the present invention. 本発明の実施例2における離着陸管制装置の構成例を示す図である。It is a figure showing the example of composition of the takeoff and landing control system in Example 2 of the present invention. 本発明の実施例3における離着陸管制装置の構成例を示す図である。It is a figure showing the example of composition of the takeoff and landing control system in Example 3 of the present invention. 本発明の実施例4における離着陸管制装置の構成例を示す図である。It is a figure showing the example of composition of the takeoff and landing control system in Example 4 of the present invention.

次に、本発明を実施するための形態について、適宜、図面を参照しながら詳細に説明する。 Next, embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.

なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。 In addition, in each drawing, the same reference numerals are given to the same components, and the description thereof will be omitted.

(実施例1)
図1は、構造物102に囲まれた垂直離着陸機101の離着陸場103の一例を示す図である。
(Example 1)
FIG. 1 is a diagram showing an example of an airfield 103 for a vertical takeoff and landing aircraft 101 surrounded by structures 102.

図1において、垂直離着陸機101は構造物102に囲まれた離着陸場103で離陸および着陸する。構造物102はビルや住居、駅や橋などの建築物や、山や木など離着陸場103周辺の風速や風向に影響を与える物体である。 In FIG. 1, a vertical takeoff and landing aircraft 101 takes off and lands at an airfield 103 surrounded by structures 102. The structures 102 are buildings such as buildings, residences, stations and bridges, and objects that affect the wind speed and direction around the airfield 103, such as mountains and trees.

離着陸場103の周辺には風速・風向などの気象に関する状態量を観測できる気象センサ104が設置されている。気象センサ104は三杯式風速計などの、設置地点の風速・風向を計測するセンサや、ドップラーライダなどの高度方向の風速分布を計測可能なセンサであってよい。 A weather sensor 104 is installed around the airfield 103 that can observe weather-related state quantities such as wind speed and direction. The weather sensor 104 may be a sensor that measures the wind speed and direction at the installation point, such as a three-cup anemometer, or a sensor that can measure the wind speed distribution in the altitude direction, such as a Doppler lidar.

離着陸場103は数mから数十mの大きさであり、周囲の気象センサ104は離着陸場103周辺の数mから数kmの範囲内に設置される。 The airfield 103 has a size of several meters to several tens of meters, and the surrounding weather sensors 104 are installed within a range of several meters to several kilometers around the airfield 103.

図2は本発明の実施例1における離着陸管制装置200の構成例を示す図である。 FIG. 2 is a diagram showing an example of the configuration of the takeoff and landing control system 200 according to the first embodiment of the present invention.

離着陸管制装置200は、運用の事前準備として、地形データ記憶部201に記憶された地形データと、過去気象データ記憶部202に記憶された過去気象データとを入力として、事前気象解析部203で離着陸場103の周辺における過去の気象状況を数値シミュレーションにより解析する。 The takeoff and landing control system 200 uses the terrain data stored in the terrain data storage unit 201 and the past weather data stored in the past weather data storage unit 202 as input, and performs takeoff and landing using the advance weather analysis unit 203 as advance preparation for operation. Past weather conditions around the field 103 are analyzed by numerical simulation.

事前気象解析部203は、地形データに基づき計算格子を作成し、過去気象データに基づき解析の初期条件および境界条件を作成し、数値解析によって離着陸場周辺の過去の気象状況を高解像度に算出する。 The advance weather analysis unit 203 creates a calculation grid based on topographical data, creates initial conditions and boundary conditions for analysis based on past weather data, and calculates past weather conditions around the airfield in high resolution through numerical analysis. .

地形データ記憶部201に記憶された地形データは、国土地理院が発行する標高が数値で表された地理院地図や独自に計測された地形情報、または民間企業の発行するビルなどの建造物の座標や大きさなどが含まれるデータであっても良い。 The topographical data stored in the topographical data storage unit 201 includes Geographical Survey Institute maps published by the Geospatial Information Authority of Japan in which altitudes are expressed numerically, topographical information measured independently, or topographical information of buildings such as buildings published by private companies. The data may include coordinates, size, etc.

過去気象データ記憶部202に記憶された過去気象データは、気象庁や米国海洋大気庁などの気象機関が発行する過去の気象予報値や、対象地点においてアメダスなど何らかのセンサで観測された過去の気象観測データや、民間企業が気象解析シミュレータなどを使用して独自に公開している過去の気象データであっても良い。 The past weather data stored in the past weather data storage unit 202 includes past weather forecast values issued by meteorological organizations such as the Japan Meteorological Agency and the National Oceanic and Atmospheric Administration, and past weather observations observed at the target point using some kind of sensor such as AMeDAS. It may also be past weather data published independently by a private company using a weather analysis simulator or the like.

このシミュレーションは、離着陸場103周囲の数km範囲を解析対象とし、シミュレーションは局所的な地形や構造物の影響を考慮できるモデルで実施される。このモデルは数値流体解析の分野で乱流現象を解析するために使用されるものや、そのモデルに雲や日射などの物理現象の影響を加えた解析モデルであっても良い。 This simulation targets a range of several kilometers around the airfield 103, and is performed using a model that can take into account the effects of local topography and structures. This model may be one used for analyzing turbulence phenomena in the field of computational fluid analysis, or an analytical model in which the influence of physical phenomena such as clouds and solar radiation is added to the model.

事前の気象解析では、過去の気象状況のできるだけ正確な把握が求められるため、解析に用いられる計算格子はビル風や山風の影響を把握できる十分な解像度であることが必要であり、乱流などの物理現象のモデルも解析対象範囲内で生じうる乱流や剥離などの流体現象を再現しうるものを使用する必要がある。 Preliminary weather analysis requires as accurate an understanding of past weather conditions as possible, so the computational grid used for analysis must have sufficient resolution to understand the effects of building winds and mountain winds. It is also necessary to use models for physical phenomena that can reproduce fluid phenomena such as turbulence and separation that may occur within the analysis target range.

事前気象解析部203は、地形データに基づき計算格子を作成し、過去の気象データに基づき解析の初期条件および境界条件を作成し、数値解析によって離着陸場103周辺の過去の気象状況を高解像度に算出する。 The preliminary weather analysis unit 203 creates a calculation grid based on topographical data, creates initial conditions and boundary conditions for analysis based on past weather data, and uses numerical analysis to obtain high resolution past weather conditions around the airfield 103. calculate.

事前気象解析部203で得られた解析結果は、特徴量抽出部204において、対象地点における気象状況の特徴的な状態量として分解される。この分解には主成分分析や正規直行分解、特異値分解などの手法が使用される。特徴量抽出部204は、過去の気象状況から主成分分析などにより特徴量として離着陸場103周辺の気象主成分を算出する。 The analysis results obtained by the preliminary weather analysis section 203 are decomposed by the feature amount extraction section 204 into characteristic state amounts of the weather situation at the target point. Techniques such as principal component analysis, orthonormal decomposition, and singular value decomposition are used for this decomposition. The feature extraction unit 204 calculates the meteorological principal component around the airfield 103 as a feature by principal component analysis based on past weather conditions.

一例として、事前気象解析部203で得られた過去の風向・風速データを対象として、これらのデータをZという行列で表すと、特異値分解はZ=UΣVと表され、Zを特徴量空間に射影することができる。このとき、行列Uは特徴量空間への変換を表す行列となっており、この行列Uにより事前解析に含まれていない条件であっても、対象地点の風速・風向データは特徴量空間に変換が可能である。 As an example, if past wind direction and wind speed data obtained by the advance weather analysis unit 203 are expressed as a matrix Z, the singular value decomposition is expressed as Z=UΣV T , and Z is expressed as a feature space. can be projected to. At this time, the matrix U is a matrix that represents conversion to the feature space, and even if the conditions are not included in the preliminary analysis, the wind speed and direction data at the target point are converted to the feature space using this matrix U. is possible.

次に、離着陸管制装置200の運用にあたり、初めに気象予報データ記憶部205に記憶された気象予報データに基づき、気象解析部206による解析が必要となる。 Next, when operating the take-off and landing control system 200, analysis by the weather analysis unit 206 is required based on the weather forecast data stored in the weather forecast data storage unit 205 first.

一例として、離着陸管制装置200の運用当日の早朝において、気象庁の発行する気象予報データであるLFM(局地モデル)を受診し、そのデータを初期条件、境界条件として、事前気象解析部203と同様に地形データ記憶部201に記憶された地形データも入力し、数値流体解析により気象状況をシミュレーションする。気象予報データは未来の予報値を含むため、解析結果として離着陸場103周辺の未来の時点での気象解析値が得られる。 As an example, in the early morning on the day of operation of the takeoff and landing control system 200, LFM (local model), which is weather forecast data issued by the Japan Meteorological Agency, is examined, and this data is used as the initial condition and boundary condition, similar to the advance weather analysis unit 203. The topographical data stored in the topographical data storage unit 201 is also inputted, and the weather conditions are simulated by computational fluid analysis. Since the weather forecast data includes future forecast values, a weather analysis value at a future point in time around the airfield 103 can be obtained as an analysis result.

その後、垂直離着陸機101の離着陸時において、気象センサデータ取得部207により取得された気象観測値と、気象解析部206が予測した気象解析値を、特徴量抽出部204から得られる変換行列Uを用いてデータ同化部208により同化する。 Thereafter, when the vertical takeoff and landing aircraft 101 takes off and lands, the weather observation values acquired by the weather sensor data acquisition unit 207 and the weather analysis values predicted by the weather analysis unit 206 are converted into a transformation matrix U obtained from the feature extraction unit 204. The data is assimilated by the data assimilation unit 208.

つまり、データ同化部208は、気象解析部206から出力された解析値と、気象センサデータ取得部207から取得された観測値を、気象特徴量と同じ空間上に変換し、データ同化した後に、解析値と同じ空間上に再度変換することで、気象予報データよりも精度が向上した気象予測値を算出する。 That is, the data assimilation unit 208 converts the analysis value output from the weather analysis unit 206 and the observed value acquired from the weather sensor data acquisition unit 207 into the same space as the weather feature quantity, and after data assimilation, By converting it again into the same space as the analysis value, weather prediction values with improved accuracy than weather forecast data are calculated.

気象センサデータ取得部207により取得された気象観測値は、例えば気象センサ104から観測される風速・風向データの観測値のように、特定の地点の値である。しかし、変換行列Uを用いた変換により、観測値の特徴量空間での分布が推測できる。この特徴量空間における観測値分布により、気象解析部206により得られている解析値を補正することで、観測値が得られた時点において、精度の高い気象予測値が入手可能である。 The weather observation values acquired by the weather sensor data acquisition unit 207 are values at a specific point, such as the observed values of wind speed and wind direction data observed from the weather sensor 104, for example. However, by transformation using the transformation matrix U, the distribution of observed values in the feature space can be estimated. By correcting the analysis values obtained by the weather analysis unit 206 based on the observation value distribution in this feature space, highly accurate weather prediction values can be obtained at the time the observation values are obtained.

より詳細な説明は図5を用いて後述する。 A more detailed explanation will be given later using FIG. 5.

機体センサデータ取得部209は、直離着陸機101の機体の位置や姿勢などの機体情報を取得する。また、飛行計画データ取得部210は、垂直離着陸機101の今後の飛行経路を取得する。 The aircraft sensor data acquisition unit 209 acquires aircraft information such as the position and attitude of the direct take-off and landing aircraft 101. Further, the flight plan data acquisition unit 210 acquires the future flight route of the vertical takeoff and landing aircraft 101.

データ同化部208により得られた気象予測値は、環境シミュレーション部211において、機体センサデータ取得部209から得られる垂直離着陸機101の機体の位置や姿勢などの機体情報と、飛行計画データ取得部210から得られる、垂直離着陸機101の今後の飛行経路と組み合わせられて、バーチャル空間上で垂直離着陸機101がどのように誘導、制御されれば安定して離着陸ができるかがシミュレーションされる。 The weather forecast values obtained by the data assimilation unit 208 are combined with aircraft information such as the position and attitude of the vertical takeoff and landing aircraft 101 obtained from the aircraft sensor data acquisition unit 209 and the flight plan data acquisition unit 210. In combination with the future flight path of the vertical take-off and landing aircraft 101 obtained from the above, it is simulated how the vertical take-off and landing aircraft 101 should be guided and controlled in virtual space to ensure stable takeoff and landing.

つまり、環境シミュレーション部211は、気象予測値に含まれる風雨などの気象状況の中で、垂直離着陸機101の機体情報および飛行計画データに基づき、デジタル空間上(バーチャル空間上)において垂直離着陸機101の離着陸時における飛行をシミュレーションし、飛行シミュレーションの結果から機体が離着陸時に取るべき経路や姿勢を算出する。 In other words, the environment simulation unit 211 calculates whether the vertical take-off and landing aircraft 101 will appear in the digital space (virtual space) based on the aircraft information and flight plan data of the vertical take-off and landing aircraft 101 under weather conditions such as wind and rain included in the weather forecast values. The system simulates the flight of the aircraft during takeoff and landing, and calculates the route and attitude the aircraft should take during takeoff and landing from the flight simulation results.

このシミュレーション結果に基づき、垂直離着陸機101に必要な情報(制御データ)が誘導制御情報出力部212から出力され、垂直離着陸機101が誘導され、制御される。 Based on this simulation result, information (control data) necessary for the vertical take-off and landing aircraft 101 is output from the guidance control information output unit 212, and the vertical take-off and landing aircraft 101 is guided and controlled.

つまり、シミュレーションした離着陸場103の周辺の風速及び風向による垂直離着陸機101の飛行方向変化及び速度変化が推定された飛行経路に従って、垂直離着陸機101が飛行する。 That is, the vertical take-off and landing aircraft 101 flies according to a flight path in which changes in flight direction and speed of the vertical take-off and landing aircraft 101 are estimated due to wind speed and wind direction around the simulated airfield 103.

一例として、未来の風速予測値に対して、安定して着陸が可能となるように、垂直離着陸機101の機体を傾ける角度や着陸経路などのパラメータが垂直離着陸機101に出力される。垂直離着陸機101はこれらの情報を受け取り、周辺の気象状況などを考慮して安定した離着陸が可能となる。 As an example, parameters such as the tilting angle of the vertical take-off and landing aircraft 101 and the landing route are output to the vertical take-off and landing aircraft 101 so that it can land stably with respect to the predicted future wind speed. The vertical takeoff and landing aircraft 101 receives this information and is able to take off and land stably in consideration of the surrounding weather conditions.

つまり、誘導制御情報出力部212は、垂直離着陸機101が離着陸時に取るべき経路や姿勢の情報を、無線通信などの通信手段により、離着陸場103周辺の他の垂直離着陸機101へ発信する。 That is, the guidance control information output unit 212 transmits information on the route and attitude that the vertical takeoff and landing aircraft 101 should take during takeoff and landing to other vertical takeoff and landing aircraft 101 around the airfield 103 by communication means such as wireless communication.

図3は、気象予報値と局地的な風況解析の一例を示す図である。例えば、気象庁が発行している気象データ301はGrid Point Value(GPV)と呼ばれるものであり、格子状に分割された空間の中で、それぞれの格子に対応した風速や風向などの気象変数の値が格納されている。気象データ301は格子点上に風速ベクトル302を示しており、その大きさに応じて濃淡が変化している。 FIG. 3 is a diagram showing an example of weather forecast values and local wind condition analysis. For example, the meteorological data 301 published by the Japan Meteorological Agency is called Grid Point Value (GPV), and it shows the values of meteorological variables such as wind speed and wind direction corresponding to each grid in a space divided into grids. is stored. Weather data 301 shows wind speed vectors 302 on grid points, and the shading changes depending on the size of the wind speed vectors 302.

気象データ301の一部分303を拡大すると拡大した気象データ311のようになる。海岸線312に対して風速ベクトル302によりどの方向にどの大きさの風が吹いているかがわかる。拡大した気象データ311の範囲では、海岸線312の西側では北東方向に風が吹いており、東側ではより強い風が南東方向に吹いている。 When a portion 303 of the weather data 301 is enlarged, it becomes like the enlarged weather data 311. It can be seen from the wind speed vector 302 that the direction and magnitude of the wind is blowing with respect to the coastline 312. In the expanded range of meteorological data 311, winds are blowing northeast on the west side of coastline 312, and stronger winds are blowing southeast on the east side.

離着陸管制装置200に含まれる気象解析は、上記GPVデータをもとに行われる。例えば、離着陸場103が拡大した気象データ311の中の解析対象範囲314に含まれる場合、解析対象範囲314に含まれる風速ベクトルの情報から、気象解析の初期条件および境界条件が作成される。 Weather analysis included in the takeoff and landing control system 200 is performed based on the above GPV data. For example, when the airfield 103 is included in the analysis range 314 in the expanded weather data 311, initial conditions and boundary conditions for the weather analysis are created from information on wind speed vectors included in the analysis range 314.

例えば、離着陸場103周辺の解析対象領域321において、解析対象範囲314のGPVが示す南東からの風速から境界条件322が作成され、数値流体解析による解析対象領域321のシミュレーションが可能となる。シミュレーションの結果、例えば、風況323が得られ、構造物102に遮られて離着陸場103周辺で風向きや風速の変化を把握できる。 For example, in the analysis target area 321 around the airfield 103, the boundary condition 322 is created from the wind speed from the southeast indicated by the GPV of the analysis target range 314, making it possible to simulate the analysis target area 321 by computational fluid analysis. As a result of the simulation, for example, wind conditions 323 are obtained, and changes in wind direction and wind speed around the airfield 103 that are blocked by the structure 102 can be understood.

図4は、特徴量抽出部204において抽出される気象の特徴量について、円柱周りの簡易的な流れ場の例を用いて、流体解析における流れ場とその特徴量の関係の一例を示す図である。 FIG. 4 is a diagram showing an example of the relationship between a flow field and its feature in fluid analysis, using an example of a simple flow field around a cylinder, regarding the meteorological feature extracted by the feature extraction unit 204. be.

図4において、円柱403に対して流れ402が流入すると、流速分布401が円柱の周りに形成される。円柱403後方の流速は減速すると同時に、渦が生じる。この時の流速変化を行列Zとして特異値分解を行い、変換行列Uをプロットすると、主成分410が得られる。主成分はエネルギーの大きさ別に得ることができ、エネルギーの大きい主成分411からエネルギーの小さい主成分412が得られる。 In FIG. 4, when a flow 402 flows into a cylinder 403, a flow velocity distribution 401 is formed around the cylinder. The flow velocity behind the cylinder 403 slows down and a vortex is generated at the same time. By performing singular value decomposition using the flow velocity change at this time as a matrix Z and plotting the transformation matrix U, a principal component 410 is obtained. The principal components can be obtained according to the magnitude of energy, and a principal component 411 with large energy and a principal component 412 with small energy are obtained.

エネルギーの大きい主成分411は、流速分布401の主要な変化を表しており、主成分411の変化は円柱403後方の渦の配置と関連している。エネルギーの小さい主成分412も流速分布401の変化を表しているが、渦の変化に含まれる小さな構造の変化を表しており、その変化はエネルギーの大きい主成分411よりも流速分布401の中での影響度合いが小さい。特徴量抽出部204は、このような主成分411を、離着陸場103周辺の解析対象領域321において3次元的に求める。 The principal component 411 with large energy represents a major change in the flow velocity distribution 401, and the change in the principal component 411 is related to the arrangement of vortices behind the cylinder 403. The principal component 412 with low energy also represents a change in the flow velocity distribution 401, but it represents a small structural change included in the change in the vortex, and the change is more pronounced in the flow velocity distribution 401 than the principal component 411 with higher energy. The degree of influence is small. The feature extraction unit 204 three-dimensionally obtains such a principal component 411 in the analysis target area 321 around the airfield 103.

図5は、実施例1におけるデータ同化部208の機能ブロック図である。 FIG. 5 is a functional block diagram of the data assimilation unit 208 in the first embodiment.

図5において、データ同課部208は、低次元化状態量計算部01と、同化量解析部502と、同化計算部503と、を備える。データ同化部208は、初めに気象解析部206から気象予測値が入力される。この気象予測値は、低次元化状態量計算部501により、事前解析における特徴量抽出部204が導出した変換行列Uを用いて、特徴量空間に射影され、低次元化される。 In FIG. 5, the data processing unit 208 includes a reduced-dimensional state quantity calculation unit 01, an assimilation amount analysis unit 502, and an assimilation calculation unit 503. The data assimilation unit 208 first receives weather forecast values from the weather analysis unit 206 . This weather forecast value is projected onto the feature space by the dimension reduction state quantity calculation unit 501 using the transformation matrix U derived by the feature quantity extraction unit 204 in the preliminary analysis, and is reduced in dimension.

つまり、データ同化部208は、気象解析部206から出力された解析値と、気象センサデータ取得部207から取得された観測値を、特徴量と同じ空間上に変換し、データ同化した後に、解析値と同じ空間上に再度変換することで、気象予報データよりも精度が向上した気象予測値を算出する。 In other words, the data assimilation unit 208 converts the analysis value output from the weather analysis unit 206 and the observed value acquired from the weather sensor data acquisition unit 207 into the same space as the feature quantity, performs data assimilation, and then performs analysis. By converting it again into the same space as the value, a weather prediction value with improved accuracy than the weather forecast data is calculated.

次に、気象センサデータ取得部207が取得した観測値も同化量解析部502により、事前解析における特徴量抽出部204が導出した変換行列Uを用いて、特徴量空間に射影される。 Next, the observed values acquired by the weather sensor data acquisition unit 207 are also projected onto the feature space by the assimilation amount analysis unit 502 using the transformation matrix U derived by the feature extraction unit 204 in the preliminary analysis.

このとき、観測値は離散的な地点の値となっているため、変換行列Uを掛け合わせる際に、離散的な地点が気象解析部206に使用された計算格子のどの格子の情報であるかも必要となる。 At this time, since the observed values are values at discrete points, when multiplying by the transformation matrix U, it is difficult to determine which grid of the calculation grid used by the weather analysis unit 206 the discrete points are. It becomes necessary.

特徴量空間における観測値および解析値は同化計算部503において、データ同化される。データ同化には3次元変分法やカルマンフィルタなどの手法が用いられても良いし、より簡易的な内挿法のような手法が用いられても良い。 Observed values and analysis values in the feature space are data assimilated in an assimilation calculation unit 503. For data assimilation, a method such as a three-dimensional variational method or a Kalman filter may be used, or a simpler method such as an interpolation method may be used.

一例として内挿法が用いられる場合、特徴量空間において、気象予測値と観測値の差分が計算される。この差分に対して、変換行列Uの逆行列が掛け合わされ、元々の物理空間上の値に復元される。この復元された値に対して、任意の重み係数Wが掛け合わされた後、気象予測値に対して補正量として足し合わされる。この同化計算の結果、高精度気象予測値504が得られる。 For example, when an interpolation method is used, the difference between the predicted weather value and the observed value is calculated in the feature space. This difference is multiplied by the inverse matrix of the transformation matrix U to restore the original value in physical space. This restored value is multiplied by an arbitrary weighting coefficient W, and then added to the weather forecast value as a correction amount. As a result of this assimilation calculation, a highly accurate weather prediction value 504 is obtained.

以上のように、本発明の実施例1によれば、地形データ記憶部201に記憶された予測対象地点の地形データおよび過去気象データ記憶部202に記憶された過去の気象データに基づき想定される気象状況の特徴量を事前気象解析部203により把握する。 As described above, according to the first embodiment of the present invention, predictions are made based on the topography data of the prediction target point stored in the topography data storage unit 201 and the past weather data stored in the past weather data storage unit 202. The feature amount of the weather situation is grasped by the preliminary weather analysis unit 203.

そして、気象データ記憶部205に記憶された、気象庁などの気象機関が発行する気象予報データに基づき対象地点周辺の気象状況を気象解析部206により解析しておき、垂直離着陸機101の離着陸時において離着陸対象地点周辺の気象センサ104から観測値を気象センサデータ取得部207から取得するとともに、事前に把握した特徴量に基づき気象解析値および観測値を特徴量空間に変換し、データ同化により組み合わせる。 The weather analysis unit 206 analyzes the weather conditions around the target point based on the weather forecast data issued by a meteorological organization such as the Japan Meteorological Agency, which is stored in the weather data storage unit 205. Observed values from the weather sensor 104 around the takeoff and landing target point are acquired from the weather sensor data acquisition unit 207, and the meteorological analysis values and observed values are converted into a feature space based on the feature quantities grasped in advance, and combined by data assimilation.

そして、環境シミュレーション部211により、高精度に風速・風向などの気象状況を予測し、予測結果に基づき垂直離着陸機101を安定して制御することで、リアルタイムでの対象地点周辺の風速・風向の高精度な予測ならびに予測値に基づく垂直離着陸機101の安定制御が可能な離着陸管制装置200および離着陸管制方法を実現することができる。 Then, the environmental simulation unit 211 predicts weather conditions such as wind speed and direction with high precision, and stably controls the vertical takeoff and landing aircraft 101 based on the prediction results, thereby predicting the wind speed and direction around the target point in real time. It is possible to realize a takeoff and landing control device 200 and a takeoff and landing control method that are capable of highly accurate prediction and stable control of the vertical takeoff and landing aircraft 101 based on predicted values.

(実施例2)
次に、本発明の実施例2について説明する。
(Example 2)
Next, Example 2 of the present invention will be described.

図6は、実施例2に係る離着陸管制装置200の構成例を示す図である。実施例1と同様の箇所については説明を省略する。 FIG. 6 is a diagram illustrating a configuration example of a takeoff and landing control system 200 according to the second embodiment. Descriptions of parts similar to those in Example 1 will be omitted.

実施例2の離着陸管制装置200では、気象センサデータ取得部207により取得された観測値は、観測値補正部601に入力される。観測値補正部601は、気象センサデータ取得部207により取得された観測値に含まれる誤差を除去し、誤差を除去し、補正した観測値をデータ同化部208へ出力する。このときの誤差は、気象センサ104などが観測時に生じるノイズなどの誤差であったり、適切に設置されていないことによる誤差であったり、経年劣化などによりセンサが適切な出力ができていない場合の誤差である。 In the takeoff and landing control system 200 of the second embodiment, the observed values acquired by the weather sensor data acquisition section 207 are input to the observed value correction section 601. The observed value correction unit 601 removes errors included in the observed values acquired by the weather sensor data acquisition unit 207, removes the errors, and outputs the corrected observed values to the data assimilation unit 208. Errors at this time may be due to noise caused by the weather sensor 104 etc. during observation, errors due to improper installation, or errors due to the sensor not being able to output properly due to aging etc. This is an error.

気象センサデータ取得部207により取得された観測値の中から、これらの誤差を判別するためには、データ同化部208により高精度化された気象予測値と同化前の観測値補正部601による観測値による修正量を、同化結果学習部602により学習する。 In order to determine these errors from among the observed values acquired by the weather sensor data acquisition unit 207, it is necessary to combine the weather forecast values made highly accurate by the data assimilation unit 208 and the observation by the observed value correction unit 601 before assimilation. The assimilation result learning unit 602 learns the amount of correction based on the value.

この学習結果に基づき、通常のデータ同化(過去の平均的なデータ同化)に対して、観測値補正部601による修正量が大きく変化した場合(一定量以上変化した場合)に、それを誤差として観測値補正部601に出力し、観測値補正部601が観測値を修正した後に、修正した観測値を用いて、再度、データ同化部208がデータ同化を実行する。 Based on this learning result, if the amount of correction by the observed value correction unit 601 changes significantly (changes by more than a certain amount) with respect to normal data assimilation (past average data assimilation), it is treated as an error. After the observed value correction unit 601 corrects the observed value, the data assimilation unit 208 performs data assimilation again using the corrected observed value.

同化結果学習部602では、例えば、誤差閾値による誤差の判別を行う。同化結果学習部602には、予め決められた誤差閾値が保持されており、データ同化部208における補正量が誤差閾値を上回る場合、観測値補正部601に対して閾値との差分を出力し、閾値との差分に従って、観測値補正部601により、観測値が補正され、再度データ同化部208において同化される。 The assimilation result learning unit 602 determines the error based on, for example, an error threshold. The assimilation result learning unit 602 holds a predetermined error threshold, and when the correction amount in the data assimilation unit 208 exceeds the error threshold, outputs the difference from the threshold to the observed value correction unit 601, The observed value is corrected by the observed value correcting unit 601 according to the difference from the threshold value, and is assimilated again by the data assimilating unit 208.

そして、データ同化部208により同化されたデータは、同化結果学習部602を介して環境シミュレーション部211に出力される。 The data assimilated by the data assimilation unit 208 is output to the environment simulation unit 211 via the assimilation result learning unit 602.

ただし、同化結果学習部602は、データ同化部208からの出力から同化結果を学習し、閾値との差分を観測値補正部601に出力すればよく、データ同化部208により同化されたデータは、同化結果学習部602を介することなく、環境シミュレーション部211に出力することも可能である。 However, the assimilation result learning unit 602 only needs to learn the assimilation result from the output from the data assimilation unit 208 and output the difference from the threshold to the observed value correction unit 601, and the data assimilated by the data assimilation unit 208 is It is also possible to output to the environment simulation unit 211 without going through the assimilation result learning unit 602.

その他の構成及び動作は実施例1と同様である。 Other configurations and operations are the same as in the first embodiment.

本発明の実施例2によれば、実施例1と同様な効果を得ることができる他、気象データ取得部207に含まれる誤差を適切に補正することができ、垂直離着陸機101を、より高精度で離着陸場103に誘導可能な離着陸管制装置200および離着陸管制方法を実現することができる。 According to the second embodiment of the present invention, in addition to being able to obtain the same effects as the first embodiment, it is also possible to appropriately correct errors included in the weather data acquisition unit 207, and to raise the vertical takeoff and landing aircraft 101 to a higher altitude. It is possible to realize a takeoff and landing control device 200 and a takeoff and landing control method that can guide the user to the takeoff and landing field 103 with precision.

(実施例3)
次に、本発明の実施例3について説明する。
(Example 3)
Next, Example 3 of the present invention will be described.

図7は、実施例3に係る離着陸管制装置200の構成例を示す図である。実施例1と同様の箇所については説明を省略する。 FIG. 7 is a diagram illustrating a configuration example of a takeoff and landing control system 200 according to the third embodiment. Descriptions of parts similar to those in Example 1 will be omitted.

実施例3の離着陸管制装置200では、環境シミュレーション部211に複数機体センサデータ取得部701により複数機体のセンサデータが入力される。また、それぞれの機体に対する飛行計画データを、複数飛行計画データ取得部702から取得する。 In the takeoff and landing control system 200 according to the third embodiment, sensor data of a plurality of aircraft is inputted to the environment simulation unit 211 by a multi-aircraft sensor data acquisition unit 701. Further, flight plan data for each aircraft is acquired from the multiple flight plan data acquisition unit 702.

環境シミュレーション部211では、実施例1と同様のシミュレーションが実行されるが、複数の垂直離着陸機101が同時に離着陸場103に離着陸する状況でのシミュレーション結果が得られる。この結果に基づき、複数機体経路最適化部703において、それぞれの垂直離着陸機101に対して離着陸のための最適な経路情報が算出される。 The environment simulation unit 211 executes the same simulation as in the first embodiment, but obtains simulation results in a situation where a plurality of vertical takeoff and landing aircraft 101 take off and land at the airfield 103 at the same time. Based on this result, the multi-aircraft route optimization unit 703 calculates optimal route information for takeoff and landing for each vertical takeoff and landing aircraft 101.

例えば、ある垂直離着陸機101が優先して着陸を行う場合、別の垂直離着陸機101は、離着陸場103の上空で待機する必要がある。もしくは、離着陸場103周辺で強風が予想される場合、垂直離着陸機101同士の間隔を広げた離着陸経路が必要となり、そのための経路が複数機体経路最適化部703により算出される。 For example, when a certain vertical takeoff and landing aircraft 101 lands preferentially, another vertical takeoff and landing aircraft 101 needs to wait above the airfield 103. Alternatively, if strong winds are expected around the takeoff and landing field 103, a takeoff and landing route in which vertical takeoff and landing aircraft 101 are spaced apart is required, and a route for this purpose is calculated by the multi-aircraft route optimization unit 703.

算出された経路に基づき、誘導制御情報出力部212により、複数の垂直離着陸機101のそれぞれについて、実施例1と同様に安定して着陸が可能となるような、垂直離着陸機101の機体を傾ける角度や着陸経路などのパラメータ(データ)が出力される。 Based on the calculated route, the guidance control information output unit 212 tilts the body of the vertical take-off and landing aircraft 101 so that each of the plurality of vertical take-off and landing aircraft 101 can land stably as in the first embodiment. Parameters (data) such as angle and landing route are output.

その他の構成及び動作は実施例1と同様である。 Other configurations and operations are the same as in the first embodiment.

本発明の実施例3によれば、実施例1と同様な効果を得ることができる他、複数の垂直離着陸機101が同時に離着陸場103に離着陸する状況においても、垂直離着陸機101に対して離着陸のための最適な経路情報を算出することができ、垂直離着陸機101についての、より安定制御が可能な離着陸管制装置200および離着陸管制方法を実現することができる。 According to the third embodiment of the present invention, in addition to being able to obtain the same effects as in the first embodiment, even in a situation where a plurality of vertical take-off and landing aircraft 101 take off and land at the airfield 103 at the same time, the vertical take-off and landing aircraft 101 It is possible to calculate optimal route information for the vertical takeoff and landing aircraft 101, and to realize a takeoff and landing control system 200 and a takeoff and landing control method capable of more stable control of the vertical takeoff and landing aircraft 101.

なお、上述した実施例3と実施例2とを組み合わせた例についても、本発明の実施例に含まれる。 Note that an example in which the third embodiment and the second embodiment described above are combined is also included in the embodiments of the present invention.

(実施例4)
次に、本発明の実施例4について説明する。
(Example 4)
Next, Example 4 of the present invention will be described.

図8は、実施例4に係る離着陸管制装置200の構成例を示す図である。実施例1と同様の箇所については説明を省略する。 FIG. 8 is a diagram showing a configuration example of a takeoff and landing control system 200 according to the fourth embodiment. Descriptions of parts similar to those in Example 1 will be omitted.

実施例4の離着陸管制装置200では、気象センサデータ取得部207が取得した風速、風向などの観測値のデータから、気象急変情報推定部801が気象の急変を推定(予測)し、その気象急変推定結果を誘導制御情報出力部212に出力する。誘導制御情報出力部212は、気象急変推定結果に基づいて、垂直離着陸機101に出力(送信)する制御情報(制御データ)を変更する。 In the takeoff and landing control system 200 of the fourth embodiment, the weather sudden change information estimating unit 801 estimates (predicts) a sudden change in weather from data on observed values such as wind speed and wind direction acquired by the weather sensor data acquisition unit 207, and estimates (predicts) a sudden change in the weather. The estimation result is output to the guidance control information output section 212. The guidance control information output unit 212 changes the control information (control data) to be output (transmitted) to the vertical takeoff and landing aircraft 101 based on the sudden weather change estimation result.

例えば、数分以内に風速が数m/s以上変動するような突風が生じる場合、データ同化部208および環境シミュレーション部211によるシミュレーションが間に合わない場合がある。 For example, if a gust of wind occurs that changes the wind speed by several m/s or more within a few minutes, the data assimilation unit 208 and the environment simulation unit 211 may not be able to complete the simulation in time.

そこで、このような急変を異なる手法により推定し、その結果に応じて垂直離着陸機101の離着陸場103への離着陸を中断させるなどの処理を行う。 Therefore, such sudden changes are estimated using different methods, and depending on the results, processing such as interrupting takeoff and landing of the vertical takeoff and landing aircraft 101 to the airfield 103 is performed.

上記異なる手法については、例えば機械学習などの学習手法が用いられる。例えば、過去の気象予測結果と気象観測値から、離着陸場103の周辺において突風が生じるような条件を学習させておくことで、気象センサデータ取得部207からのデータに基づき突風などの風速の急変をリアルタイムに予測可能となる。 As for the above-mentioned different methods, for example, a learning method such as machine learning is used. For example, by learning conditions that cause gusts around the airfield 103 from past weather prediction results and weather observation values, sudden changes in wind speed such as gusts can be learned based on data from the weather sensor data acquisition unit 207. can be predicted in real time.

その他の構成及び動作は実施例1と同様である。 Other configurations and operations are the same as in the first embodiment.

本発明の実施例4によれば、実施例1と同様な効果を得ることができる他、気象が急変した場合においても、垂直離着陸機101についての安定制御が可能な離着陸管制装置200及び離着陸管制方法を実現することができる。 According to the fourth embodiment of the present invention, in addition to being able to obtain the same effects as in the first embodiment, the takeoff and landing control system 200 and the takeoff and landing control system are capable of stably controlling the vertical takeoff and landing aircraft 101 even when the weather suddenly changes. method can be realized.

なお、上述した実施例4と、実施例2または実施例3とを組み合わせた例についても、本発明の実施例に含まれる。さらに、実施例2と、実施例3と、実施例4とを組み合わせた例についても、本発明の実施例に含まれる。 Note that examples in which the above-mentioned Example 4 is combined with Example 2 or Example 3 are also included in the examples of the present invention. Further, examples in which Example 2, Example 3, and Example 4 are combined are also included in the examples of the present invention.

上述した事前気象解析部203および特徴量抽出部204は、事前気象特徴量抽出部として一つにまとめることができる。 The advance weather analysis section 203 and feature amount extraction section 204 described above can be combined into one advance weather feature amount extraction section.

また、機体センサデータ取得部209、飛行計画データ取得部210、環境シミュレーション部211および誘導制御情報出力部212は、誘導制御情報生成部として一つにまとめることができる。 Furthermore, the aircraft sensor data acquisition section 209, the flight plan data acquisition section 210, the environment simulation section 211, and the guidance control information output section 212 can be combined into one guidance and control information generation section.

よって、本発明は、離着陸場103の過去気象データおよび地形データから事前の気象解析を行い、気象特徴量を抽出する事前気象特徴量抽出部(203、204)と、気象予報データおよび地形データから垂直離着陸機101の離着陸時の気象を解析し、気象の解析値を出力する気象解析部206と、離着陸場103周辺に配置された気象センサ104から風速、風向などの観測値を取得する気象センサデータ取得部207と、抽出された気象特徴量に基づき、垂直離着陸機101の離着陸場103の気象の解析値と、風速、風向などの観測値と、を同化するデータ同化部208と、離着陸場103周辺の垂直離着陸機101の機体情報および垂直離着陸機101の飛行計画データを取得し、データ同化部208により同化された気象の解析値、機体情報及び飛行計画データに基づき離着陸場103周辺の環境をシミュレーションし、シミュレーションした離着陸場103周辺の環境に基づき、垂直離着陸機101の姿勢制御に必要なデータを生成して出力する誘導制御情報生成部(209、210、211、212)と、を備える離着陸管制装置が実施例として含まれる。 Therefore, the present invention includes advance weather feature extraction units (203, 204) that perform advance weather analysis from past weather data and terrain data of the airfield 103 and extract weather features, and A weather analysis unit 206 that analyzes the weather during takeoff and landing of the vertical takeoff and landing aircraft 101 and outputs the weather analysis values, and a weather sensor that acquires observed values such as wind speed and wind direction from the weather sensors 104 placed around the airfield 103. a data acquisition unit 207; a data assimilation unit 208 that assimilates the meteorological analysis values of the airfield 103 of the vertical takeoff and landing aircraft 101 and observed values such as wind speed and wind direction based on the extracted meteorological features; The environment around the airfield 103 is acquired based on the weather analysis values, aircraft information, and flight plan data assimilated by the data assimilation unit 208. and a guidance control information generation unit (209, 210, 211, 212) that generates and outputs data necessary for attitude control of the vertical takeoff and landing aircraft 101 based on the simulated environment around the airfield 103. Examples include takeoff and landing control systems.

101・・・垂直離着陸機、102・・・構造物、103・・・離着陸場、104・・・気象センサ、200・・・離着陸管制装置、201・・・地形データメモリ、202・・・過去気象データメモリ、203・・・事前気象解析部、204・・・特徴量抽出部、205・・・気象予報データ、206・・・気象解析部、207・・・気象センサデータ取得部、208・・・データ同化部、209・・・機体センサデータ取得部、210・・・飛行計画データ取得部、211・・・環境シミュレーション部、212・・・誘導制御情報取得部、301・・・気象データ、302・・・風速ベクトル、303・・・気象データ301の一部分、311・・・解析対象領域、312・・・海岸線、314・・・解析対象範囲、321・・・解析対象領域、501・・・低次元化状態量計算部、502・・・同化量解析部、503・・・同化計算部、504・・・高精度気象予測値、601・・・観測値補正部、602・・・同化結果学習部、701・・・複数機体センサデータ取得部、702・・・複数飛行計画データ取得部、703・・・複数機体経路最適化部、801・・・気象急変情報推定部 101... Vertical takeoff and landing aircraft, 102... Structure, 103... Takeoff and landing field, 104... Weather sensor, 200... Takeoff and landing control system, 201... Terrain data memory, 202... Past Weather data memory, 203... Advance weather analysis section, 204... Feature amount extraction section, 205... Weather forecast data, 206... Weather analysis section, 207... Weather sensor data acquisition section, 208. ...Data assimilation section, 209...Aircraft sensor data acquisition section, 210...Flight plan data acquisition section, 211...Environment simulation section, 212...Guidance control information acquisition section, 301...Meteorological data , 302... Wind speed vector, 303... Part of meteorological data 301, 311... Area to be analyzed, 312... Coastline, 314... Range to be analyzed, 321... Area to be analyzed, 501... . . . Low-dimensional state quantity calculation section, 502 . . . Assimilation amount analysis section, 503 . . . Assimilation calculation section, 504 . . . Assimilation result learning unit, 701...Multiple aircraft sensor data acquisition unit, 702...Multiple flight plan data acquisition unit, 703...Multiple aircraft route optimization unit, 801...Sudden weather change information estimation unit

Claims (15)

離着陸場の過去気象データおよび地形データから事前の気象解析を行い、気象特徴量を抽出する事前気象特徴量抽出部と、
気象予報データおよび前記地形データから垂直離着陸機の離着陸時の気象を解析し、前記気象の解析値を出力する気象解析部と、
前記離着陸場の周辺に配置された気象センサから風速、風向などの観測値を取得する気象センサデータ取得部と、
抽出された前記気象特徴量に基づき、前記垂直離着陸機の前記離着陸場の前記気象の解析値と、前記風速、前記風向などの前記観測値と、を同化するデータ同化部と、
前記離着陸場の周辺の前記垂直離着陸機の機体情報および前記垂直離着陸機の飛行計画データを取得し、前記データ同化部により同化された前記気象の解析値、前記機体情報及び前記飛行計画データに基づき前記離着陸場の周辺の環境をシミュレーションし、シミュレーションした前記離着陸場の周辺の環境に基づき、前記垂直離着陸機の姿勢制御に必要な制御データを生成して、前記垂直離着陸機に出力する誘導制御情報生成部と、
を備えることを特徴とする離着陸管制装置。
a preliminary weather feature extraction unit that performs preliminary weather analysis from past weather data and topographical data of the airfield and extracts weather features;
a weather analysis unit that analyzes the weather at the time of takeoff and landing of the vertical takeoff and landing aircraft from the weather forecast data and the terrain data, and outputs the analysis value of the weather;
a weather sensor data acquisition unit that acquires observed values such as wind speed and wind direction from weather sensors placed around the airfield;
a data assimilation unit that assimilates the meteorological analysis value of the airfield of the vertical takeoff and landing aircraft and the observed values such as the wind speed and the wind direction, based on the extracted meteorological feature amount;
Acquire aircraft information of the vertical take-off and landing aircraft around the airfield and flight plan data of the vertical take-off and landing aircraft, and based on the meteorological analysis value assimilated by the data assimilation unit, the aircraft information, and the flight plan data. Guidance control information that simulates an environment around the takeoff and landing field, generates control data necessary for attitude control of the vertical takeoff and landing aircraft based on the simulated environment around the takeoff and landing field, and outputs the control data to the vertical takeoff and landing aircraft. A generation section,
A takeoff and landing control device characterized by comprising:
請求項1に記載の離着陸管制装置において、
前記事前気象特徴量抽出部は、
前記離着陸場での垂直離着陸機の離着陸に関して、過去気象データおよび地形データから事前の気象解析を行う事前気象解析部と、
前記事前気象解析部の気象解析結果から前記気象特徴量を抽出する特徴量抽出部と、
を備え、
前記誘導制御情報生成部は、
前記離着陸場の周辺の前記垂直離着陸機の前記機体情報を取得する機体センサデータ取得部と、
前記垂直離着陸機の前記飛行計画データを取得する飛行計画データ取得部と、
同化された前記気象の解析値、前記機体情報及び前記飛行計画データに基づき前記離着陸場の周辺の環境をシミュレーションする環境シミュレーション部と、
前記環境シミュレーション部がシミュレーションした前記離着陸場の周辺の環境に基づき、前記垂直離着陸機の前記姿勢制御などに必要な前記制御データを出力する誘導制御情報出力部と、
を備えることを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 1,
The prior weather feature extraction unit includes:
a preliminary weather analysis unit that performs a preliminary weather analysis based on past weather data and terrain data regarding takeoff and landing of vertical takeoff and landing aircraft at the airfield;
a feature extraction unit that extracts the weather feature from the weather analysis result of the preliminary weather analysis unit;
Equipped with
The guidance control information generation unit includes:
an aircraft sensor data acquisition unit that acquires the aircraft information of the vertical takeoff and landing aircraft around the airfield;
a flight plan data acquisition unit that acquires the flight plan data of the vertical takeoff and landing aircraft;
an environment simulation unit that simulates the environment around the airfield based on the assimilated weather analysis values, the aircraft information, and the flight plan data;
a guidance control information output unit that outputs the control data necessary for the attitude control of the vertical takeoff and landing aircraft based on the environment around the takeoff and landing field simulated by the environment simulation unit;
A takeoff and landing control device characterized by comprising:
請求項2に記載の離着陸管制装置において、
前記事前気象解析部は、前記地形データに基づき計算格子を作成し、前記過去気象データに基づき解析の初期条件および境界条件を作成し、数値解析によって前記離着陸場の周辺の過去の気象状況を高解像度に算出することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
The preliminary weather analysis section creates a calculation grid based on the topographical data, creates initial conditions and boundary conditions for analysis based on the past weather data, and calculates past weather conditions around the airfield by numerical analysis. A takeoff and landing control system that is characterized by high-resolution calculations.
請求項2に記載の離着陸管制装置において、
前記特徴量抽出部は、過去の気象状況から主成分分析などにより、前記気象特徴量として前記離着陸場の周辺の気象主成分を算出することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
The take-off and landing control device is characterized in that the feature extracting unit calculates a meteorological principal component around the takeoff and landing field as the meteorological feature by principal component analysis based on past weather conditions.
請求項2に記載の離着陸管制装置において、
前記データ同化部は、前記気象解析部から出力された前記解析値と、前記気象センサデータ取得部から取得された前記観測値を、前記気象特徴量と同じ空間上に変換し、データ同化した後に、前記解析値と同じ空間上に再度変換することで、前記気象予報データよりも精度が向上した前記気象の解析値を算出することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
The data assimilation unit converts the analysis value output from the weather analysis unit and the observed value acquired from the weather sensor data acquisition unit into the same space as the weather feature amount, and after data assimilation. . A takeoff and landing control system, characterized in that the weather analysis value is calculated with improved accuracy than the weather forecast data by converting it again into the same space as the analysis value.
請求項2に記載の離着陸管制装置において、
前記環境シミュレーション部は、前記気象の解析値に含まれる風雨などの気象状況の中で、前記垂直離着陸機の前記機体情報および前記飛行計画データに基づきデジタル空間上において前記垂直離着陸機の離着陸時における飛行をシミュレーションし、前記飛行をシミュレーションした結果から前記垂直離着陸機が離着陸時に取るべき経路や姿勢を算出することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
The environment simulation unit is configured to calculate the timing of take-off and landing of the vertical take-off and landing aircraft in digital space based on the aircraft information and the flight plan data of the vertical take-off and landing aircraft under weather conditions such as wind and rain included in the weather analysis values. A takeoff and landing control system characterized by simulating a flight and calculating a route and an attitude that the vertical takeoff and landing aircraft should take during takeoff and landing based on the results of the flight simulation.
請求項2に記載の離着陸管制装置において、
前記誘導制御情報出力部は、前記垂直離着陸機が離着陸時に取るべき経路や姿勢の情報を、前記離着陸場の周辺の他の前記垂直離着陸機へ出力することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
The take-off and landing control system is characterized in that the guidance control information output unit outputs information on the route and attitude that the vertical take-off and landing aircraft should take during takeoff and landing to other vertical take-off and landing aircraft around the airfield.
請求項2に記載の離着陸管制装置において、
前記気象センサデータ取得部により取得された前記観測値に含まれる誤差を除去して補正し、前記データ同化部へ出力する観測値補正部と、
前記データ同化部により同化された気象予測値と同化前の前記観測値補正部による補正量を学習し、学習結果に基づき、予め決められた誤差閾値より前記観測値による補正量が上回る場合、修正量を観測値補正部に出力する同化結果学習部と、
を備えることを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
an observed value correction unit that removes and corrects errors included in the observed values acquired by the weather sensor data acquisition unit, and outputs the results to the data assimilation unit;
The weather prediction value assimilated by the data assimilation unit and the correction amount by the observed value correction unit before assimilation are learned, and based on the learning result, if the correction amount by the observed value exceeds a predetermined error threshold, correction is performed. an assimilation result learning unit that outputs the amount to the observed value correction unit;
A takeoff and landing control device characterized by comprising:
請求項2に記載の離着陸管制装置において、
複数の前記垂直離着陸機の前記機体情報を取得する複数の前記機体センサデータ取得部と、
複数の前記垂直離着陸機の前記飛行計画データを取得する複数の前記飛行計画データ取得部と、
前記環境シミュレーション部によりシミュレーションされた前記離着陸場の周辺の環境に基づいて、前記複数の前記垂直離着陸機の飛行経路を最適化する複数機体経路最適化部と、
をさらに備え、前記誘導制御情報出力部は、前記複数の前記垂直離着陸機について、複数機体経路最適化部により最適化された前記飛行経路に基づき、複数の前記垂直離着陸機の前記姿勢制御などに必要な前記制御データを出力することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
a plurality of aircraft sensor data acquisition units that acquire the aircraft information of the plurality of vertical takeoff and landing aircraft;
a plurality of flight plan data acquisition units that acquire the flight plan data of the plurality of vertical takeoff and landing aircraft;
a multi-aircraft route optimization unit that optimizes the flight path of the plurality of vertical takeoff and landing aircraft based on the environment around the airfield simulated by the environment simulation unit;
The guidance control information output unit is configured to control the attitude of the plurality of vertical take-off and landing aircraft based on the flight path optimized by the multi-aircraft path optimization unit for the plurality of vertical take-off and landing aircraft. A takeoff and landing control device, characterized in that it outputs the necessary control data.
請求項2に記載の離着陸管制装置において、
前記気象センサデータ取得部が取得した前記観測値から、前記気象の急変を推定し、気象急変推定結果を前記誘導制御情報出力部に出力する気象急変情報推定部を、さらに備え、
前記誘導制御情報出力部は、前記気象急変推定結果に基づいて、前記垂直離着陸機に出力する前記制御データを変更することを特徴とする離着陸管制装置。
The takeoff and landing control device according to claim 2,
further comprising a sudden weather change information estimating unit that estimates a sudden change in the weather from the observed value acquired by the weather sensor data acquisition unit and outputs the sudden weather change estimation result to the guidance control information output unit,
The takeoff and landing control device is characterized in that the guidance control information output unit changes the control data to be output to the vertical takeoff and landing aircraft based on the sudden weather change estimation result.
離着陸場の過去気象データおよび地形データから事前の気象解析を行い、気象特徴量を抽出し、
気象予報データおよび前記地形データから垂直離着陸機の離着陸時の気象を解析し、
前記離着陸場の周辺に配置された気象センサから風速、風向などの観測値を取得し、
抽出された前記気象特徴量に基づき、前記垂直離着陸機の前記離着陸場の前記気象の解析値と、前記風速、前記風向などの前記観測値と、を同化し、
前記離着陸場の周辺の前記垂直離着陸機の機体情報および前記垂直離着陸機の飛行計画データを取得し、同化された前記気象の解析値、前記機体情報及び前記飛行計画データに基づき、前記離着陸場の周辺の環境をシミュレーションし、シミュレーションした前記離着陸場の周辺の環境に基づき、前記垂直離着陸機の姿勢制御に必要な制御データを生成して、前記垂直離着陸機に出力する、
ことを特徴とする離着陸管制方法。
Perform preliminary weather analysis from past weather data and topographical data of the airfield, extract weather features,
Analyzing the weather during takeoff and landing of vertical takeoff and landing aircraft from weather forecast data and the terrain data,
Obtaining observed values such as wind speed and wind direction from weather sensors placed around the airfield,
Assimilating the meteorological analysis value of the airfield of the vertical takeoff and landing aircraft and the observed values such as the wind speed and the wind direction based on the extracted meteorological feature amount,
Obtain aircraft information of the vertical take-off and landing aircraft and flight plan data of the vertical take-off and landing aircraft around the airfield, and based on the assimilated weather analysis values, aircraft information, and flight plan data, simulating a surrounding environment, generating control data necessary for attitude control of the vertical takeoff and landing aircraft based on the simulated surrounding environment of the takeoff and landing field, and outputting the control data to the vertical takeoff and landing aircraft;
A takeoff and landing control method characterized by:
請求項11に記載の離着陸管制方法において、
前記観測値に含まれる誤差を除去して補正し、
前記気象の解析値と、前記誤差を補正した前記観測値とを同化することを特徴とする離着陸管制方法。
The takeoff and landing control method according to claim 11,
correcting by removing the error included in the observed value,
A takeoff and landing control method, characterized in that the meteorological analysis value and the observed value corrected for the error are assimilated.
請求項11に記載の離着陸管制方法において、
複数の前記垂直離着陸機の前記機体情報を取得し、
複数の前記垂直離着陸機の前記飛行計画データを取得し、
前記シミュレーションした前記離着陸場の周辺の環境に基づいて、前記複数の前記垂直離着陸機の飛行経路を最適化し、
最適化された前記飛行経路に基づき、複数の前記垂直離着陸機の前記姿勢制御などに必要な前記制御データを出力することを特徴とする離着陸管制方法。
The takeoff and landing control method according to claim 11,
acquiring the aircraft information of the plurality of vertical takeoff and landing aircraft;
acquiring the flight plan data of the plurality of vertical takeoff and landing aircraft;
optimizing the flight path of the plurality of vertical takeoff and landing aircraft based on the simulated environment around the airfield;
A takeoff and landing control method, characterized in that the control data necessary for the attitude control of the plurality of vertical takeoff and landing aircraft is output based on the optimized flight path.
請求項11に記載の離着陸管制方法において、
取得した前記観測値から、前記気象の急変を推定し、
推定した前記気象の急変に基づいて、前記垂直離着陸機に出力する前記制御データを変更することを特徴とする離着陸管制方法。
The takeoff and landing control method according to claim 11,
Estimating a sudden change in the weather from the obtained observed values,
A takeoff and landing control method, characterized in that the control data output to the vertical takeoff and landing aircraft is changed based on the estimated sudden change in the weather.
請求項11に記載の離着陸管制方法において、
前記シミュレーションした前記離着陸場の周辺の風速及び風向による前記垂直離着陸機の飛行方向変化及び速度変化が推定された飛行経路に従って、前記垂直離着陸機が飛行することを特徴とする離着陸管制方法。
The takeoff and landing control method according to claim 11,
A takeoff and landing control method, characterized in that the vertical takeoff and landing aircraft flies in accordance with a flight path in which changes in flight direction and speed of the vertical takeoff and landing aircraft are estimated due to the simulated wind speed and direction around the airfield.
JP2022040946A 2022-03-16 2022-03-16 Taking-off/landing control device Pending JP2023135721A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022040946A JP2023135721A (en) 2022-03-16 2022-03-16 Taking-off/landing control device
PCT/JP2022/046024 WO2023176069A1 (en) 2022-03-16 2022-12-14 Takeoff and landing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040946A JP2023135721A (en) 2022-03-16 2022-03-16 Taking-off/landing control device

Publications (2)

Publication Number Publication Date
JP2023135721A true JP2023135721A (en) 2023-09-29
JP2023135721A5 JP2023135721A5 (en) 2024-06-17

Family

ID=88023280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022040946A Pending JP2023135721A (en) 2022-03-16 2022-03-16 Taking-off/landing control device

Country Status (2)

Country Link
JP (1) JP2023135721A (en)
WO (1) WO2023176069A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818569B2 (en) * 2017-01-27 2021-01-20 株式会社東芝 Meteorological information processing equipment, meteorological information processing method, program
JP2019095323A (en) * 2017-11-24 2019-06-20 株式会社日立製作所 Weather prediction device
JP6667590B1 (en) * 2018-09-21 2020-03-18 株式会社Subaru Aircraft landing support device, aircraft landing support method, and aircraft landing support program
JP2022038675A (en) * 2020-08-27 2022-03-10 ソニーグループ株式会社 Information processor and information processing method, computer program and mobile device

Also Published As

Publication number Publication date
WO2023176069A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
Hon Predicting low-level wind shear using 200-m-resolution NWP at the Hong Kong International Airport
Flagg et al. Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation
Li et al. Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation
KR102396290B1 (en) Method for providing ultra low altitude wind prediction information
Lampert et al. In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight
Yamashita et al. Towards climate optimized flight trajectories in a climate model: AirTraf
WO2023176069A1 (en) Takeoff and landing control device
Leukauf et al. The impact of a forest parametrization on coupled WRF-CFD simulations during the passage of a cold front over the WINSENT test-site
Elston et al. Evaluation of UAS concepts of operation for severe storm penetration using hardware-in-the-loop simulations
Yang et al. Effect of using land use data with building characteristics on urban weather simulations: A high temperature event in Shanghai
Rais et al. A preliminary comparative study on the feasibility of a multipurpose numerical weather model for prediction of cumulonimbus clouds in indonesia
Andari et al. Turbulence analysis on the flight of Etihad airways in Bangka Island using the WRF case study May 4, 2016
Reilly Exploration of Model-Resolution Dependence of Forecasted Wind Hazards for Small Unmanned Aircraft System Operations
Campbell et al. An operational strategy for persistent contrail mitigation
Liu et al. Concept of a new system synthesizing meteorological and orographic influences on the airplane safe energy envelope
Knutson et al. Terminal wind hazard analyses based on assimilated weather data and Lagrangian coherent structures
Trask The impact of unmanned aircraft system observations on convection initiation along a boundary in numerical weather prediction
Lymperopoulos et al. Improved ground trajectory prediction by multi-aircraft track fusion for air traffic control
CN114355480B (en) Gust load test flight weather forecast guaranteeing method
Laser Evaluation of the Warn-on-Forecast System with Doppler Lidar and Mobile Radiosondes from TORUS2019
Douglas et al. Upgrading the North American upper-air observing network: What are the possibilities?
Frew et al. Toward an Autonomous Airborne Scientist for Studying Severe Local Storms
KR20230060864A (en) Method and system for providing air mobility flight information using weather forecast information
Hawbecker The Influence of Ambient Stability on Downburst Winds
JP2024027302A (en) Low-level wind information providing system and low-level wind information providing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240607