JP2023134352A - Copper foil, laminate, and flexible printed wiring board - Google Patents

Copper foil, laminate, and flexible printed wiring board Download PDF

Info

Publication number
JP2023134352A
JP2023134352A JP2022204740A JP2022204740A JP2023134352A JP 2023134352 A JP2023134352 A JP 2023134352A JP 2022204740 A JP2022204740 A JP 2022204740A JP 2022204740 A JP2022204740 A JP 2022204740A JP 2023134352 A JP2023134352 A JP 2023134352A
Authority
JP
Japan
Prior art keywords
copper foil
sdr
copper
laminate
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022204740A
Other languages
Japanese (ja)
Inventor
裕士 石野
Yuji Ishino
貴勇 池田
Takaisa Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to EP23193485.2A priority Critical patent/EP4391734A1/en
Priority to EP23193487.8A priority patent/EP4391735A1/en
Priority to US18/239,782 priority patent/US20240215153A1/en
Publication of JP2023134352A publication Critical patent/JP2023134352A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D33/00Special measures in connection with working metal foils, e.g. gold foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a copper foil having excellent electrical conductivity as a high frequency circuit copper foil.SOLUTION: A copper foil has a developed interfacial area ratio (sdr) of 0.0030 or less in at least one of the surfaces.SELECTED DRAWING: Figure 1

Description

本発明は、銅箔、積層体、及びフレキシブルプリント配線板に関する。とりわけ、高周波回路用銅箔として優れた導電率を有する銅箔、及びそのような銅箔を備えた積層体とフレキシブルプリント配線板に関する。 The present invention relates to a copper foil, a laminate, and a flexible printed wiring board. In particular, the present invention relates to a copper foil having excellent conductivity as a copper foil for high-frequency circuits, and a laminate and a flexible printed wiring board including such a copper foil.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して優れた高周波対応が求められている。 Printed wiring boards have made great progress over the past half century and are now used in almost all electronic devices. In recent years, as electronic devices have become smaller and the need for higher performance has increased, components have become more densely packaged and signals have higher frequencies, and printed wiring boards are required to have excellent high frequency support.

高周波回路基板には、出力信号の品質を確保するため、伝送損失の低減が求められている。伝送損失は、主に、樹脂(基板側)に起因する誘電体損失と、導体(銅箔側)に起因する導体損失からなっている。誘電体損失は、樹脂の誘電率及び誘電正接が小さくなるほど減少する。高周波信号において、導体損失は、周波数が高くなるほど電流は導体の表面しか流れなくなるという表皮効果によって電流が流れる断面積が減少し、抵抗が高くなることが主な原因となっている。 High-frequency circuit boards are required to reduce transmission loss in order to ensure the quality of output signals. Transmission loss mainly consists of dielectric loss caused by the resin (board side) and conductor loss caused by the conductor (copper foil side). Dielectric loss decreases as the dielectric constant and dielectric loss tangent of the resin decrease. In high-frequency signals, the main cause of conductor loss is that as the frequency increases, the cross-sectional area through which current flows decreases due to the skin effect, in which current flows only on the surface of the conductor, and the resistance increases.

高周波回路用銅箔の伝送損失を低減させることを目的とした技術としては、例えば、特許文献1(特許第4161304号公報)に、金属箔表面の片面又は両面に、銀又は銀合金属を被覆し、該銀又は銀合金被覆層の上に、銀又は銀合金以外の被覆層が前記銀又は銀合金被覆層の厚さより薄く施されている高周波回路用金属箔が開示されている。そして、これによれば、衛星通信で使用されるような超高周波領域においても表皮効果による損失を小さくした金属箔を提供することができると記載されている。 As a technique aimed at reducing the transmission loss of copper foil for high-frequency circuits, for example, Patent Document 1 (Japanese Patent No. 4161304) discloses that silver or silver alloy is coated on one or both sides of the surface of the metal foil. However, a metal foil for high frequency circuits is disclosed, in which a coating layer other than silver or silver alloy is formed on the silver or silver alloy coating layer to be thinner than the silver or silver alloy coating layer. According to this document, it is stated that it is possible to provide a metal foil with reduced loss due to the skin effect even in an ultra-high frequency region such as that used in satellite communications.

また、特許文献2(特許第4704025号公報)には、圧延銅箔の再結晶焼鈍後の圧延面でのX線回折で求めた(200)面の積分強度(I(200))が、微粉末銅のX線回折で求めた(200)面の積分強度(I0(200))に対し、I(200)/I0(200)>40であり、該圧延面に電解めっきによる粗化処理を行った後の粗化処理面の算術平均粗さ(以下、Raとする)が0.02μm~0.2μm、十点平均粗さ(以下、Rzとする)が0.1μm~1.5μmであって、プリント回路基板用素材であることを特徴とする高周波回路用粗化処理圧延銅箔が開示されている。そして、これによれば、1GHzを超える高周波数下での使用が可能なプリント回路板を提供することができると記載されている。 Furthermore, in Patent Document 2 (Patent No. 4704025), the integrated intensity (I (200) ) of the (200) plane determined by X-ray diffraction on the rolled surface after recrystallization annealing of rolled copper foil is Compared to the integrated intensity (I 0(200) ) of the (200) plane determined by X-ray diffraction of powdered copper, I (200) /I 0(200) > 40, and the rolled surface was roughened by electrolytic plating. The arithmetic mean roughness (hereinafter referred to as Ra) of the roughened surface after the treatment is 0.02 μm to 0.2 μm, and the ten point average roughness (hereinafter referred to as Rz) is 0.1 μm to 1. A roughened rolled copper foil for high frequency circuits, which has a thickness of 5 μm and is a material for printed circuit boards, is disclosed. According to this document, it is stated that a printed circuit board that can be used at high frequencies exceeding 1 GHz can be provided.

また、特許文献3(特開2004-244656号公報)には、銅箔の表面の一部がコブ状突起からなる表面粗度が2μm~4μmの凹凸面であることを特徴とする電解銅箔が開示されている。そして、これによれば、高周波伝送特性に優れた電解銅箔を提供することができると記載されている。 Furthermore, Patent Document 3 (Japanese Unexamined Patent Publication No. 2004-244656) describes an electrolytic copper foil characterized in that a part of the surface of the copper foil has an uneven surface consisting of knob-like protrusions with a surface roughness of 2 μm to 4 μm. is disclosed. And, according to this, it is described that an electrolytic copper foil having excellent high frequency transmission characteristics can be provided.

さらに、特許文献4(特開2017-193778号公報)には、粗化処理層を有する銅箔として、前記粗化処理層が一次粒子層を有し、前記一次粒子層側表面の表面粗さRaが0.12μm以下であり、前記一次粒子層の一次粒子の平均粒径が0.10~0.25μmである銅箔を開示している。このような所定の粗化粒子層を形成し、且つ、当該粗化粒子層側表面の表面粗さRa及び粗化粒子の平均粒径を制御することにより、高周波回路基板に用いたときの伝送損失の抑制に効果的であることが記載されている。 Further, Patent Document 4 (Japanese Patent Application Laid-open No. 2017-193778) describes a copper foil having a roughening treatment layer, in which the roughening treatment layer has a primary particle layer, and the surface roughness of the surface on the primary particle layer side is A copper foil is disclosed in which Ra is 0.12 μm or less and the average particle size of primary particles in the primary particle layer is 0.10 to 0.25 μm. By forming such a predetermined roughened particle layer and controlling the surface roughness Ra of the surface on the side of the roughened particle layer and the average particle size of the roughened particles, transmission when used in a high frequency circuit board can be improved. It is described that it is effective in suppressing loss.

特許第4161304号公報Patent No. 4161304 特許第4704025号公報Patent No. 4704025 特開2004-244656号公報Japanese Patent Application Publication No. 2004-244656 特開2017-193778号公報Japanese Patent Application Publication No. 2017-193778

近年、信号の高周波化のさらなる進歩に伴い、60GHz以上などの高周波領域においてより優れた伝送特性を有するプリント配線板を製造するニーズが高まり、その原材料である銅箔のさらなる改良が求められている。特に、信号が高周波になるに従い、銅箔の導電率は表皮効果によって減少し、伝送損失の悪化要因となるところ、特許文献1~4に記載されている技術では、60GHz以上などの高周波回路基板に対応することが困難な場合がある。特に、特許文献4に係る発明は、銅箔表面の粗さが導体損失の主たる要因であり、粗さが小さいほど伝送損失が減少するということに着目し、粗化粒子層側表面の表面粗さRa及び粗化粒子の平均粒径を制御することにより、伝送損失の抑制と樹脂との密着性を両立できるという点で優れた発明であるが、粗化処理の条件を厳格に制御しなければならないという問題点もある。また、粗化粒子の存在により、上述のように表皮効果による抵抗の上昇は避けられない。 In recent years, with further advances in signal frequencies, there has been an increasing need to manufacture printed wiring boards with better transmission characteristics in high frequency ranges such as 60 GHz and above, and further improvements to the copper foil that is the raw material for these boards are required. . In particular, as the signal frequency increases, the conductivity of copper foil decreases due to the skin effect, which becomes a factor in worsening transmission loss. It may be difficult to respond to In particular, the invention according to Patent Document 4 focuses on the fact that the roughness of the copper foil surface is the main cause of conductor loss, and that the smaller the roughness, the lower the transmission loss. This is an excellent invention in that it can both suppress transmission loss and achieve adhesion to the resin by controlling the Ra and the average particle size of the roughening particles, but the conditions of the roughening treatment must be strictly controlled. There is also the problem of not having to do so. Furthermore, due to the presence of roughening particles, an increase in resistance due to the skin effect as described above is unavoidable.

本発明は上記問題点に鑑み完成されたものであり、一実施形態において、高周波回路用銅箔として優れた導電率を有する銅箔を提供することを課題とする。また、本発明は、別の実施形態において、そのような銅箔を備えた積層体を提供することを課題とする。 The present invention was completed in view of the above problems, and in one embodiment, an object of the present invention is to provide a copper foil having excellent conductivity as a copper foil for high frequency circuits. Moreover, an object of the present invention, in another embodiment, is to provide a laminate including such a copper foil.

本発明者は鋭意検討の結果、上記表皮効果を抑制し、高周波伝送における導電率の低下を抑制するための銅箔の特性として、展開界面面積率(sdr)を制御することが効果的であることを見出した。本発明は上記知見に基づき完成されたものであり、以下に例示される。
[1]
少なくとも一方の表面における展開界面面積率(sdr)が0.0030以下である銅箔。
[2]
前記少なくとも一方の表面における展開界面面積率(sdr)が0.0025以下である、[1]に記載の銅箔。
[3]
前記少なくとも一方の表面にさらに表面処理層を含む、[1]又は[2]に記載の銅箔。
[4]
圧延銅箔である、[1]~[3]のいずれか1項に記載の銅箔。
[5]
[1]~[4]のいずれか1項に記載の銅箔と樹脂基板とを積層して構成した積層体。
[6]
[5]に記載の積層体を用いたフレキシブルプリント配線板。
As a result of extensive studies, the present inventor has found that controlling the developed interface area ratio (sdr) is an effective characteristic of copper foil for suppressing the above-mentioned skin effect and suppressing the decrease in conductivity during high frequency transmission. I discovered that. The present invention was completed based on the above findings, and is exemplified below.
[1]
A copper foil having a developed interface area ratio (sdr) of at least one surface of 0.0030 or less.
[2]
The copper foil according to [1], wherein the developed interface area ratio (sdr) on the at least one surface is 0.0025 or less.
[3]
The copper foil according to [1] or [2], further comprising a surface treatment layer on at least one surface.
[4]
The copper foil according to any one of [1] to [3], which is a rolled copper foil.
[5]
A laminate formed by laminating the copper foil according to any one of [1] to [4] and a resin substrate.
[6]
A flexible printed wiring board using the laminate according to [5].

本発明の一実施形態によれば、高周波回路用銅箔として優れた導電率を有する銅箔を提供することができる。また、本発明の別の一実施形態によれば、そのような銅箔を備えた積層体を提供することができる。 According to one embodiment of the present invention, it is possible to provide a copper foil having excellent electrical conductivity as a copper foil for high frequency circuits. Moreover, according to another embodiment of the present invention, a laminate including such a copper foil can be provided.

実施例及び比較例に基づき、sdrを横軸とし、導電率を縦軸としてプロットしたグラフである。This is a graph plotting sdr on the horizontal axis and conductivity on the vertical axis based on Examples and Comparative Examples.

次に、本発明の実施形態について説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Next, embodiments of the present invention will be described. It is understood that the present invention is not limited to the following embodiments, and that design changes, improvements, etc. may be made as appropriate based on the common knowledge of those skilled in the art without departing from the spirit of the present invention. Should.

(銅箔の組成)
本実施形態に用いることのできる銅箔の形態に特に制限はない。また、典型的には本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれであっても良い。一般的には、電解銅箔は硫酸銅メッキ浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。屈曲性が要求される用途には圧延銅箔を適用することが多い。
(Composition of copper foil)
There are no particular limitations on the form of copper foil that can be used in this embodiment. Further, typically, the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Generally, electrolytic copper foil is manufactured by electrolytically depositing copper onto a titanium or stainless steel drum from a copper sulfate plating bath, and rolled copper foil is manufactured by repeatedly undergoing plastic working with rolling rolls and heat treatment. Rolled copper foil is often used in applications that require flexibility.

銅箔材料としてはプリント配線板の導体パターンとして通常使用されるタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、P、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。 Copper foil materials include high-purity copper such as tough pitch copper and oxygen-free copper that are commonly used as conductor patterns for printed wiring boards, as well as copper containing Sn, copper containing Ag, P, Cr, Zr, or Mg. Copper alloys such as Corson-based copper alloys containing copper alloys such as Ni and Si can also be used. Note that in this specification, when the term "copper foil" is used alone, it also includes copper alloy foil.

また、銅箔の板厚は特に限定する必要は無いが、例えば1~1000μm、あるいは1~500μm、あるいは1~300μm、あるいは3~100μm、あるいは5~70μm、あるいは6~35μm、あるいは9~18μmである。 Further, the thickness of the copper foil does not need to be particularly limited, but for example, 1 to 1000 μm, or 1 to 500 μm, or 1 to 300 μm, or 3 to 100 μm, or 5 to 70 μm, or 6 to 35 μm, or 9 to 18 μm. It is.

本実施形態の銅箔は高周波回路用途に好適に用いることができる。ここで高周波回路とは、回路を通じて伝送される信号周波数が60GHz以上である回路とする。 The copper foil of this embodiment can be suitably used for high frequency circuit applications. Here, the high frequency circuit is defined as a circuit whose signal frequency transmitted through the circuit is 60 GHz or higher.

本実施形態の銅箔は、その少なくとも一方の表面の展開界面面積率(sdr)が0.0030以下である。展開界面面積率は、定義領域の展開面積が、定義領域の面積に対してどれだけ増大しているかを表す指標であり、凹凸のない、完全に平坦な面のsdrは0となる。凹凸のある面であり、表面積(展開面積)が平坦な面より大きくなるので、sdrが0より大きくなる。sdrが大きくなると、前述の表皮効果により高周波における導電率が低下するため、小さいことが好ましい。この観点から、展開界面面積率(sdr)が0.0028以下であることが好ましく、0.0025以下であることがより好ましく、0.0020以下であることがさらにより好ましい。sdrの下限値は導電率の点からは制限されないが、銅箔表面の傷が目立ちやすくなることが想定されるため、0.0001以上、より好ましくは0.0002以上であることが望ましい。 The copper foil of this embodiment has a developed interface area ratio (sdr) of at least one surface of 0.0030 or less. The developed interface area ratio is an index showing how much the developed area of the defined region increases with respect to the area of the defined region, and the sdr of a completely flat surface with no unevenness is 0. Since the surface is uneven and the surface area (developed area) is larger than that of a flat surface, the sdr is larger than 0. When sdr becomes large, the conductivity at high frequencies decreases due to the skin effect described above, so it is preferably small. From this viewpoint, the developed interface area ratio (sdr) is preferably 0.0028 or less, more preferably 0.0025 or less, and even more preferably 0.0020 or less. Although the lower limit of sdr is not limited from the viewpoint of conductivity, it is assumed that scratches on the surface of the copper foil become more noticeable, so it is desirable that it is 0.0001 or more, more preferably 0.0002 or more.

より一般的な表面粗さの指標として算術平均高さ(Sa)や最大高さ(Sz)が挙げられるが、表皮効果によって銅箔表面近傍のみを信号が流れる際の伝送距離の増加の程度を表すには適さないと考えられる。なぜなら、最大高さ(Sz)は銅箔表面上に点在するキズ等の特異点によって大きく値が変動する指標であり、高周波回路として銅箔の表面全体を信号が流れる際の特性を表す指標としては不適当と考える。また、算術平均高さ(Sa)は伝送距離の増加に寄与する細かな起伏がよりうねりの大きな起伏に隠されてしまうことが懸念され、不適当と考える。したがって、表皮効果によって銅箔表面近傍のみを信号が流れる際の伝送距離の増加の程度を直接的に表している展開界面面積率(sdr)が本質を示した適した指標であると考える。 Arithmetic mean height (Sa) and maximum height (Sz) are more common indicators of surface roughness, but they also measure the degree of increase in transmission distance when a signal flows only near the copper foil surface due to the skin effect. It is considered unsuitable for representation. This is because the maximum height (Sz) is an index whose value fluctuates greatly due to singular points such as scratches scattered on the surface of the copper foil, and it is an index that represents the characteristics when a signal flows across the entire surface of the copper foil in a high-frequency circuit. I think it is inappropriate as such. Furthermore, the arithmetic mean height (Sa) is considered inappropriate because there is a concern that fine undulations that contribute to an increase in transmission distance will be hidden by larger undulations. Therefore, we believe that the developed interface area ratio (sdr), which directly represents the degree of increase in transmission distance when a signal flows only near the surface of the copper foil due to the skin effect, is a suitable index that shows the essence.

展開界面面積率(sdr)は、後述のように、ISO25178-2:2012に準拠して、キーエンス製レーザー顕微鏡VK-X1000(コントローラ部)/1050(ヘッド部)又はこれと同等の装置にて銅箔表面の粗さデータを測定後、算出する。 As described below, the developed interface area ratio (sdr) is calculated using a Keyence laser microscope VK-X1000 (controller part)/1050 (head part) or an equivalent device in accordance with ISO25178-2:2012. Calculate after measuring the roughness data of the foil surface.

また、銅箔の少なくとも一方の表面が表面処理層を備えることができる。表面処理層は、粗化処理層であってもよい。粗化処理は、通常、銅箔の、樹脂基板と接着する面、即ち表面処理層側の表面に積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を形成する処理をいう。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくすることができる。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体又は合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。また、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。 Moreover, at least one surface of the copper foil can be provided with a surface treatment layer. The surface treatment layer may be a roughening treatment layer. Roughening treatment is usually performed to improve the peel strength of copper foil after lamination on the surface of the copper foil that will be bonded to the resin substrate, that is, on the surface treatment layer side. A process that forms lump-like electrodepositions on the surface. Although the electrolytic copper foil has irregularities at the time of manufacture, the roughening treatment can strengthen the convex portions of the electrolytic copper foil and make the irregularities even larger. The roughening treatment can be performed, for example, by forming roughening particles from copper or a copper alloy. The roughening treatment may be fine. The roughening treatment layer is a layer made of any single substance selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium, and zinc, or an alloy containing one or more of them. Good too. Further, after forming roughening particles using copper or a copper alloy, a roughening treatment can also be performed to provide secondary particles or tertiary particles using nickel, cobalt, copper, zinc alone or an alloy, or the like. Furthermore, one or more layers selected from the group consisting of a heat-resistant layer, a rust-proofing layer, a chromate-treated layer, and a silane coupling-treated layer may be formed on the surface of the roughened layer.

また、表面処理層として、粗化処理層のほか、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層であってもよい。これらの層として、公知の手法を用いて設けることができる。また、後述のように、本発明の銅箔は、表面処理なしに前述の展開界面面積率(sdr)を制御することが可能であるので、製造方法が簡便という意味で、一実施形態において、銅箔は表面処理層を含まない。 In addition to the roughening layer, the surface treatment layer may be one or more layers selected from the group consisting of a heat resistant layer, a rust preventive layer, a chromate layer, and a silane coupling layer. These layers can be provided using known techniques. In addition, as will be described later, the copper foil of the present invention can control the developed interface area ratio (sdr) described above without surface treatment, so in the sense that the manufacturing method is simple, in one embodiment, Copper foil does not include a surface treatment layer.

本発明の銅箔を、樹脂基板に貼り合わせて積層体を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、ポリエチレンテレフタラート(PET)等のポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、フッ素樹脂フィルム等を使用することができる。 A laminate can be manufactured by bonding the copper foil of the present invention to a resin substrate. The resin substrate is not particularly limited as long as it has characteristics applicable to printed wiring boards, etc., but examples include polyester films such as polyethylene terephthalate (PET), polyimide films, liquid crystal polymer (LCP) films, and fluorine resins. Film etc. can be used.

貼り合わせの方法は、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で圧延銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層体を製造することができる。 The bonding method is to use an adhesive on a base material such as a polyimide film, or to bond it to a rolled copper foil under high temperature and high pressure without using an adhesive, or to apply and dry a polyimide precursor. - A laminate can be manufactured by performing curing etc.

また、積層体を用いて、プリント配線板、特にはフレキシブルプリント配線板を構成することができる。したがって、本発明は、別の側面において、本発明の圧延銅箔、及び本発明の積層体を用いて、プリント配線板、特にフレキシブルプリント配線板を製造する方法を開示する。 Moreover, a printed wiring board, particularly a flexible printed wiring board, can be constructed using the laminate. Therefore, in another aspect, the present invention discloses a method for manufacturing a printed wiring board, particularly a flexible printed wiring board, using the rolled copper foil of the present invention and the laminate of the present invention.

(製造方法)
本発明の銅箔は、前述の展開界面面積率(sdr)が本発明の範囲内に制御できれば、その製造方法は特に限定されないが、表面処理なしに、簡便に製造できる方法として、最終冷間圧延工程における最終圧延パスの油膜厚さ当量を適宜調整するという手法を採用することができる。
(Production method)
The method of manufacturing the copper foil of the present invention is not particularly limited as long as the above-mentioned developed interface area ratio (sdr) can be controlled within the range of the present invention. It is possible to adopt a method of appropriately adjusting the oil film thickness equivalent of the final rolling pass in the rolling process.

本実施形態の圧延銅箔の製造方法としては、まず溶解炉で原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、及び、焼鈍を適宜行い、所定の厚みを有する箔に仕上げる。熱処理後には、熱処理時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。最終冷間圧延では、熱処理後の材料を繰り返し圧延機に通板(パス)することで所定の厚みに仕上げる。本実施形態の圧延銅箔の製造方法では、最終冷間圧延工程の最終圧延パスにおける油膜厚さ当量を10000~40000として、最終圧延パスを行うことが重要である。 In the method for manufacturing rolled copper foil of this embodiment, raw materials are first melted in a melting furnace to obtain a molten metal having a desired composition. This molten metal is then cast into an ingot. Thereafter, hot rolling, cold rolling, and annealing are performed as appropriate to finish the foil into a foil having a predetermined thickness. After the heat treatment, the surface may be pickled, polished, etc. in order to remove the surface oxide film generated during the heat treatment. In the final cold rolling, the heat-treated material is repeatedly passed through a rolling mill to achieve a predetermined thickness. In the method for manufacturing rolled copper foil of this embodiment, it is important to perform the final rolling pass with an oil film thickness equivalent of 10,000 to 40,000 in the final rolling pass of the final cold rolling step.

油膜厚さ当量を制御することによって、銅箔表面の展開界面面積率を抑制することができる。油膜厚さ当量が40000を超えると、銅箔の表面を平坦にする効果が薄くなり、展開界面面積率の低下が不十分になる。一方、油膜厚さ当量が10000を下回ると、銅箔と圧延ロールとの間の油膜が薄くなるため、圧延ロールの表面の傷や汚れが銅箔表面に転写しやすく、展開界面面積率が上昇してしまうことがある。 By controlling the oil film thickness equivalent, the developed interface area ratio of the copper foil surface can be suppressed. When the oil film thickness equivalent exceeds 40,000, the effect of flattening the surface of the copper foil becomes weak, and the developed interface area ratio becomes insufficiently reduced. On the other hand, when the oil film thickness equivalent is less than 10,000, the oil film between the copper foil and the rolling roll becomes thinner, so scratches and dirt on the surface of the rolling roll are easily transferred to the copper foil surface, increasing the developed interface area ratio. Sometimes I end up doing it.

ここで、油膜厚さ当量は下記の式で規定される。
油膜厚さ当量={(圧延油粘度[cSt])×(入側通板速度[mm/s]+ロール周速度[mm/s])}/{(ロールの噛み込み角[rad])×(単位面積当たりの圧延荷重[kg/mm2])}
Here, the oil film thickness equivalent is defined by the following formula.
Oil film thickness equivalent = {(rolling oil viscosity [cSt]) x (inlet side passing speed [mm/s] + roll circumferential speed [mm/s])}/{(roll bite angle [rad]) x (Rolling load per unit area [kg/mm 2 ])}

圧延油粘度はJIS K2283に準拠して測定した。入側通板速度は、出側の巻取りリールの周速度から当該圧延パスの圧延加工度を考慮して算出した。ロール周速度は、ロールと材料にスリップが生じていないと仮定し、出側の巻取りリールの周速度から算出した。またロールの噛み込み角および単位面積当たりの圧延荷重は、下記の式を用いてそれぞれ算出した。なお、ロールのヤング率およびポアソン比は、ロール製造業者カタログに記載の値およびロール素材の文献値をそれぞれ用いた。ロールの半径は、0.0005mm単位での測定が可能なロール径測定機にて直径を計測して出した。圧延荷重は、圧延機の油圧シリンダーの油圧センサーで測定した圧力から、シリンダーの径・本数を用いて算出した。圧下量は、通板前後の材料板厚から算出した。材料板厚は、例えばJIS C6515の質量厚さの測定方法に準拠して測定できる。
ロールの噛み込み角={(圧下量[mm])/(ロールの扁平半径[mm])}0.5
単位面積当たりの圧延荷重=(圧延荷重[kg])/{(平均板幅[mm])×(接触弧長[mm])}
ロールの扁平半径=(ロールの半径[mm])×〔1+16×{1-(ロールのポアソン比)2}/{π×(ロールのヤング率[kg/mm2])}×(圧延荷重[kg])/{(平均板幅[mm])×(圧下量[mm])}〕
接触弧長={(圧下量[mm])×(ロールの扁平半径[mm])}0.5
なお、表1中の油膜厚さ当量の数値は100の位で四捨五入した数値としている。
The rolling oil viscosity was measured in accordance with JIS K2283. The sheet passing speed on the inlet side was calculated from the circumferential speed of the take-up reel on the outlet side, taking into consideration the rolling degree of the rolling pass. The roll circumferential speed was calculated from the circumferential speed of the take-up reel on the exit side, assuming that no slip occurred between the roll and the material. Further, the bite angle of the rolls and the rolling load per unit area were calculated using the following formulas. For the Young's modulus and Poisson's ratio of the roll, the values listed in the roll manufacturer's catalog and the literature values of the roll material were used, respectively. The radius of the roll was determined by measuring the diameter with a roll diameter measuring machine capable of measuring in units of 0.0005 mm. The rolling load was calculated from the pressure measured by the oil pressure sensor of the oil pressure cylinder of the rolling mill using the diameter and number of cylinders. The reduction amount was calculated from the material thickness before and after threading. The material plate thickness can be measured, for example, in accordance with the mass thickness measurement method of JIS C6515.
Roll bite angle = {(reduction amount [mm])/(roll flat radius [mm])} 0.5
Rolling load per unit area = (rolling load [kg]) / {(average plate width [mm]) × (contact arc length [mm])}
Flat radius of roll = (radius of roll [mm]) × [1 + 16 × {1 - (Poisson's ratio of roll) 2 } / {π × (Young's modulus of roll [kg/mm 2 ])} × (rolling load [ kg])/{(Average plate width [mm]) x (Reduction amount [mm])}]
Contact arc length = {(reduction amount [mm]) x (roll flat radius [mm])} 0.5
Note that the oil film thickness equivalent values in Table 1 are rounded to the nearest 100.

油膜厚さ当量を制御するためには、低粘度の圧延油を用いたり、入側通板速度を遅くしたりする等、公知の方法を用いればよい。 In order to control the oil film thickness equivalent, known methods such as using low viscosity rolling oil or slowing down the plate passing speed on the entry side may be used.

以下、実施例によって本発明を具体的に説明するが、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the explanation here is for the purpose of mere illustration and is not intended to be limited thereto.

まず、表1に記載の銅割合の銅インゴットを製造し、熱間圧延を行った後、冷間圧延と300~800℃の温度に設定した焼鈍炉における焼鈍とを一回以上繰り返した後、冷間圧延を行って0.1~1.0mm厚の圧延板を得た。この圧延板を300~800℃の温度に設定した焼鈍炉で焼鈍して再結晶させ、最終冷間圧延した。実施例1の銅箔厚みは12μm、比較例1、2の銅箔厚みは18μmとした。このとき、最終冷間圧延工程において、最終圧延パスにおいて油膜厚さ当量を表1に示されるように変えて、実施例と比較例の銅箔を製造した。 First, a copper ingot having the copper proportion shown in Table 1 is produced, hot rolled, and then cold rolled and annealed in an annealing furnace set at a temperature of 300 to 800°C one or more times. Cold rolling was performed to obtain a rolled plate having a thickness of 0.1 to 1.0 mm. This rolled plate was annealed and recrystallized in an annealing furnace set at a temperature of 300 to 800°C, and finally cold rolled. The copper foil thickness of Example 1 was 12 μm, and the copper foil thickness of Comparative Examples 1 and 2 was 18 μm. At this time, in the final cold rolling process, the oil film thickness equivalent in the final rolling pass was changed as shown in Table 1, and copper foils of Examples and Comparative Examples were manufactured.

上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。結果を表1に示す。 Various evaluations were performed as follows for each of the samples of Examples and Comparative Examples produced as described above. The results are shown in Table 1.

(展開界面面積率の測定)
キーエンス製レーザー顕微鏡VK-X1000(コントローラ部)/1050(ヘッド部)を用いて形状測定を行った。その後、キーエンス製レーザー顕微鏡VK-X1000(コントローラ部)/1050(ヘッド部)の解析ソフトを用いて、展開界面面積率sdrを測定した。このとき、レーザー顕微鏡における対物レンズ50倍を使用して250μm×200μm面積(具体的には50000μm2)の測定を任意の10箇所において行い、それぞれの箇所における展開界面面積率sdrを算出した。10箇所で得られた展開界面面積率sdrの算術平均値を展開界面面積率sdrの値とした。なお形状測定における被測定物配置時の被測定物表面の傾斜およびうねりの影響を排除するため、解析ソフトを用いた解析時に測定領域を対象に面形状補正として平面傾き補正およびうねり除去(カットオフ波長0.08mm)を行った後に展開界面面積率sdrを算出した。なお、レーザー顕微鏡による展開界面面積率sdrの測定環境温度は20~25℃とした。また、レーザー顕微鏡および解析ソフトにおける主要な設定条件は下記の通りである。
<形状測定条件>
対物レンズ:CF IC EPI Plan 50X
光学ズーム倍率:1倍
平均回数:1回
Z軸モード:推奨設定(R)
形状測定モード:簡単測定(スキャンモード:レーザーコンフォーカル)
<解析条件>
画像処理:面形状補正実施(平面傾き補正、うねり除去(カットオフ波長0.08mm))
表面粗さ設定(フィルター設定)
フィルター種別:ガウシアン
S-フィルター(ローパスフィルター):なし
F-オペレーション(形状補正):なし
L-フィルター(ハイパスフィルター):なし
終端効果の補正:ON
(Measurement of developed interface area ratio)
Shape measurement was performed using a Keyence laser microscope VK-X1000 (controller part)/1050 (head part). Thereafter, the developed interface area ratio sdr was measured using the analysis software of the Keyence laser microscope VK-X1000 (controller part)/1050 (head part). At this time, an area of 250 μm x 200 μm (specifically, 50,000 μm 2 ) was measured at ten arbitrary locations using a 50x objective lens in a laser microscope, and the developed interface area ratio sdr at each location was calculated. The arithmetic mean value of the developed interface area ratio sdr obtained at 10 locations was taken as the value of the developed interface area ratio sdr. In order to eliminate the effects of slope and waviness on the surface of the workpiece when placing the workpiece in shape measurement, plane tilt correction and waviness removal (cutoff) are performed on the measurement area as surface shape correction during analysis using analysis software. The developed interface area ratio sdr was calculated after conducting the test (wavelength: 0.08 mm). Note that the ambient temperature for measuring the developed interface area ratio sdr using a laser microscope was 20 to 25°C. In addition, the main setting conditions for the laser microscope and analysis software are as follows.
<Shape measurement conditions>
Objective lens: CF IC EPI Plan 50X
Optical zoom magnification: 1x Average number of times: 1 time Z-axis mode: Recommended setting (R)
Shape measurement mode: Easy measurement (Scan mode: Laser confocal)
<Analysis conditions>
Image processing: Surface shape correction (plane tilt correction, waviness removal (cutoff wavelength 0.08 mm))
Surface roughness setting (filter setting)
Filter type: Gaussian S-filter (low-pass filter): None F-operation (shape correction): None L-filter (high-pass filter): None End effect correction: ON

(高周波導電率の測定)
各実施例および比較例のサンプルについて、エッチングでD=15.0mmの円板形状に加工した後、銅張積層板の積層時の温度条件を模擬して200℃×1hrの焼鈍を施した。なお、サンプル表面への酸化被膜形成を防ぐため、焼鈍はAr雰囲気中で実施した。その後、平衡型円板共振器法(BCDR法)を用いて高周波域における導電率を求めた。より具体的には「Broadband Conductivity Measurement Technique at Millimeter-Wave Bands Using a Balanced-Type Circular Disk Resonator」(IEEE Transactions on Microwave Theory and Techniques、Volume: 69、Issue: 1、Jan 2021、pages: 861-873)におけるIV-Cに記載の方法で、導電率を求めた。サンプル毎に、測定装置へのサンプルの取り付けからやり直して10回の測定を実施した。10測定の平均値を導電率として表1に示す。表1の導電率は数値が高いほど導電率が良好であることを示す。また、周波数は68GHz、81GHz、107GHz(いずれも小数点以下切り捨て)の3点で測定した。
(Measurement of high frequency conductivity)
The samples of each example and comparative example were etched into a disk shape with D=15.0 mm, and then annealed at 200° C. for 1 hr, simulating the temperature conditions during lamination of copper-clad laminates. In addition, in order to prevent the formation of an oxide film on the sample surface, annealing was performed in an Ar atmosphere. Thereafter, the conductivity in the high frequency range was determined using the balanced disc resonator method (BCDR method). More specifically, "Broadband Conductivity Measurement Technique at Millimeter-Wave Bands Using a Balanced-Type Circular Disk Resonator" (IEEE Transactions on Microwave Theory and Techniques, Volume: 69, Issue: 1, Jan 2021, pages: 861-873) The conductivity was determined by the method described in IV-C. For each sample, measurements were performed 10 times starting from attaching the sample to the measuring device. Table 1 shows the average value of the 10 measurements as the conductivity. The electrical conductivity in Table 1 indicates that the higher the value, the better the electrical conductivity. Further, the frequencies were measured at three points: 68 GHz, 81 GHz, and 107 GHz (all are rounded down to the nearest whole number).

(考察)
実施例は、表面における展開界面面積率sdrが0.0030以下であるため、高周波における導電率の低下が抑制できた。特に実施例の銅箔は高周波になるにしたがっても導電率の低下を抑制できており、高周波回路用銅箔として優れた導電率を有することが示されている。一方、比較例では、最終冷間圧延における最終圧延パスの油膜厚さ当量が高かったため、展開界面面積率が0.0030を超え、導電率は実施例より低下した。
(Consideration)
In the example, since the developed interface area ratio sdr on the surface was 0.0030 or less, a decrease in conductivity at high frequencies could be suppressed. In particular, the copper foils of the examples were able to suppress a decrease in conductivity even as the frequency increased, indicating that they have excellent conductivity as copper foils for high-frequency circuits. On the other hand, in the comparative example, since the oil film thickness equivalent of the final rolling pass in the final cold rolling was high, the developed interface area ratio exceeded 0.0030, and the electrical conductivity was lower than that of the example.

なお、sdrを横軸とし、導電率を縦軸としてプロットした結果は図1に記載の通りである。また、Microsoft(登録商標)Excelの近似曲線の直線近似機能により近似直線を算出した結果を図1に表示した。直線の近似式とR-2乗値も併せて表示する。R-2乗値が1に近ければ近いほど、近似直線が実験データの傾向を適切に表していることを示す。また、各近似直線は68GHz、81GHz、107GHzの場合に以下のようになった。
68GHzの場合
(導電率)=-14.2669×(sdr)+5.9763
81GHzの場合
(導電率)=-19.4499×(sdr)+5.8130
107GHzの場合
(導電率)=-13.6501×(sdr)+5.4665
Note that the results plotted with sdr as the horizontal axis and conductivity as the vertical axis are shown in FIG. Further, the results of calculating an approximate straight line using the approximate straight line approximation function of Microsoft (registered trademark) Excel are displayed in FIG. The approximate equation of the straight line and the R-square value are also displayed. The closer the R-squared value is to 1, the more appropriately the approximate straight line represents the tendency of the experimental data. Moreover, each approximate straight line was as follows in the case of 68 GHz, 81 GHz, and 107 GHz.
For 68GHz (conductivity) = -14.2669 x (sdr) + 5.9763
For 81 GHz (conductivity) = -19.4499 x (sdr) + 5.8130
For 107 GHz (conductivity) = -13.6501 x (sdr) + 5.4665

図1の近似直線に基づいて、sdrが0.0030、0.0025の場合の導電率を推算すると表2のようになり、sdrが0.0030、0.0025の場合には導電率が優れることが把握できる。 Based on the approximate straight line in Figure 1, the electrical conductivity when sdr is 0.0030 and 0.0025 is estimated as shown in Table 2, and the electrical conductivity is excellent when sdr is 0.0030 and 0.0025. I can understand that.

Claims (6)

少なくとも一方の表面における展開界面面積率(sdr)が0.0030以下である銅箔。 A copper foil having a developed interface area ratio (sdr) of at least one surface of 0.0030 or less. 前記少なくとも一方の表面における展開界面面積率(sdr)が0.0025以下である、請求項1に記載の銅箔。 The copper foil according to claim 1, wherein the developed interface area ratio (sdr) on the at least one surface is 0.0025 or less. 前記少なくとも一方の表面にさらに表面処理層を含む、請求項1又は2に記載の銅箔。 The copper foil according to claim 1 or 2, further comprising a surface treatment layer on the at least one surface. 圧延銅箔である、請求項1又は2に記載の銅箔。 The copper foil according to claim 1 or 2, which is a rolled copper foil. 請求項1又は2に記載の銅箔と樹脂基板とを有する積層体。 A laminate comprising the copper foil according to claim 1 or 2 and a resin substrate. 請求項5に記載の積層体を用いたフレキシブルプリント配線板。 A flexible printed wiring board using the laminate according to claim 5.
JP2022204740A 2022-03-14 2022-12-21 Copper foil, laminate, and flexible printed wiring board Pending JP2023134352A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23193485.2A EP4391734A1 (en) 2022-12-21 2023-08-25 Copper foil, laminate, and flexible printed wiring board
EP23193487.8A EP4391735A1 (en) 2022-12-21 2023-08-25 Copper foil, laminate, and flexible printed wiring board
US18/239,782 US20240215153A1 (en) 2022-12-21 2023-08-30 Copper Foil, Laminate, and Flexible Printed Wiring Board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039524 2022-03-14
JP2022039524 2022-03-14

Publications (1)

Publication Number Publication Date
JP2023134352A true JP2023134352A (en) 2023-09-27

Family

ID=88143569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022204740A Pending JP2023134352A (en) 2022-03-14 2022-12-21 Copper foil, laminate, and flexible printed wiring board

Country Status (3)

Country Link
JP (1) JP2023134352A (en)
KR (1) KR20230134431A (en)
TW (1) TW202336285A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474025U (en) 1971-01-30 1972-09-08
JP2004244656A (en) 2003-02-12 2004-09-02 Furukawa Techno Research Kk Copper foil which can deal with high-frequency application and method for manufacturing the same
JP2017193778A (en) 2016-04-15 2017-10-26 Jx金属株式会社 Copper foil, copper foil for high frequency circuit, copper foil with carrier, copper foil with carrier for high frequency circuit, laminate, method for manufacturing printed wiring board and method for producing electronic apparatus

Also Published As

Publication number Publication date
KR20230134431A (en) 2023-09-21
TW202336285A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP4401998B2 (en) High-gloss rolled copper foil for copper-clad laminate and method for producing the same
JP4916154B2 (en) Copper or copper alloy foil for circuit
JP7114499B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
JP4662834B2 (en) Copper or copper alloy foil for circuit
JP2017128804A (en) Copper foil, copper-clad laminate, method of manufacturing printed wiring board, method of manufacturing electronic device, method of manufacturing transmission line, and method of manufacturing antenna
TW201740776A (en) Copper Foil, Copper-Clad Laminate Board, Method for Producing Printed Wiring Board, Method for Producing Electronic Apparatus, Method for Producing Transmission Channel, and Method for Producing Antenna
KR101671130B1 (en) Rolled copper foil, method for producing same, and laminate plate
WO2010110061A1 (en) Metal foil with electric resistance film and production method therefor
JP7114500B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
JP5676401B2 (en) Copper foil for flexible printed wiring boards
JP4538375B2 (en) Metal materials for printed wiring boards
JP2014011341A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
JP2023134352A (en) Copper foil, laminate, and flexible printed wiring board
KR100504518B1 (en) Copper alloy foil for laminated sheet
US20240215153A1 (en) Copper Foil, Laminate, and Flexible Printed Wiring Board
EP4391734A1 (en) Copper foil, laminate, and flexible printed wiring board
JP2014011451A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
JP2013055162A (en) Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
US20240215154A1 (en) Copper Foil, Laminate, and Flexible Printed Wiring Board
KR20240100186A (en) Copper foil, laminate and flexible printed wiring board
TWI809441B (en) Surface-treated copper foil and copper clad laminate
JP2013071138A (en) Rolled copper foil
JP2003013158A (en) Copper alloy foil for laminate