JP2023134125A - Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst - Google Patents

Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst Download PDF

Info

Publication number
JP2023134125A
JP2023134125A JP2022039484A JP2022039484A JP2023134125A JP 2023134125 A JP2023134125 A JP 2023134125A JP 2022039484 A JP2022039484 A JP 2022039484A JP 2022039484 A JP2022039484 A JP 2022039484A JP 2023134125 A JP2023134125 A JP 2023134125A
Authority
JP
Japan
Prior art keywords
gas
reaction
catalyst
reactor
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022039484A
Other languages
Japanese (ja)
Inventor
治之 河合
Haruyuki Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022039484A priority Critical patent/JP2023134125A/en
Publication of JP2023134125A publication Critical patent/JP2023134125A/en
Pending legal-status Critical Current

Links

Abstract

To provide a reactor and a reaction method of methanol capable of increasing a space-time yield.SOLUTION: A reactor 1 for reacting a first gas and a second gas in the presence of a catalyst, comprises: a reaction tube 8; a feed tube 10 arranged within the reaction tube 8 and provided with a large number of distributed side holes 9; a catalyst fixed layer 11 provided with a catalyst arranged between the reaction tube 8 and the feed tube 10; a first supplying section 12 for supplying a first gas between the reaction tube 8 and the feed tube 10 from one end side; a second supply section 13 that supplies the second gas to the feed pipe 10; a heating and cooling section 14 that heats or cools the reaction tube 8; and a discharge section 15 that discharges the reaction mixture gas from the other end side, wherein with a fixed bed catalyst reactor 1 in which while flowing the first gas in one direction to the catalyst fixed bed 11, the second gas is supplied to positions distributed in one direction to the catalyst fixed layer 11 from the feed tube 10 to react carbon dioxide and/or carbon dioxide and hydrogen.SELECTED DRAWING: Figure 1

Description

本発明は固定層触媒反応器、固定層触媒反応器を用いたプラント、固定層触媒を用いた反応方法に関する。 The present invention relates to a fixed bed catalytic reactor, a plant using a fixed bed catalytic reactor, and a reaction method using a fixed bed catalyst.

工業的なメタノール合成は化石燃料を改質して得る一酸化炭素(CO)、二酸化炭素(CO)、水素(H)を主成分とする合成ガスを触媒上で反応させることにより行われる(非特許文献1)。近年は地球温暖化対策の一環として、排ガス等から回収した二酸化炭素(CO)とHの反応により合成する検討が行われている(非特許文献2、3)。この場合は次の3種の反応が並列に発生する。
Industrial methanol synthesis is carried out by reacting synthesis gas, whose main components are carbon monoxide (CO), carbon dioxide (CO 2 ), and hydrogen (H 2 ) obtained by reforming fossil fuels, on a catalyst. (Non-patent document 1). In recent years, as part of global warming countermeasures, studies have been conducted to synthesize carbon dioxide (CO 2 ) recovered from exhaust gas and the like by reacting with H 2 (Non-Patent Documents 2 and 3). In this case, the following three reactions occur in parallel.

現実的に取り得る反応条件下で、平衡状態になっても反応ガス中に無視できない量の原料が残存する反応を便宜的に平衡反応と定義すると、この3種の反応はいずれも平衡反応であり、反応器出口ガス中には未反応のCO,CO,Hが残存する。従って反応器出口ガスから生成物のメタノール(CHOH),と水(HO)を分離した残りのガスの反応器へのリサイクル操作が工業的には必須であり、新たに供給される各種の原料と反応系外に流出する量とのバランスが保たれている定常状態においては新規に供給されるCOとHは最終的にはほとんど全量CHOHとHOになる。一部にはメタン等も副生するが無視しうる量である。従って反応系全体としては(1)で表される反応のみとなり発熱反応となる。 If we define an equilibrium reaction as a reaction in which a non-negligible amount of starting material remains in the reaction gas even after reaching equilibrium under realistic reaction conditions, all three of these reactions are equilibrium reactions. However, unreacted CO 2 , CO, and H 2 remain in the reactor outlet gas. Therefore, it is industrially essential to separate the products methanol (CH 3 OH) and water (H 2 O) from the reactor outlet gas and recycle the remaining gas to the reactor, so that it can be newly supplied. In a steady state where the balance between various raw materials and the amount flowing out of the reaction system is maintained, the newly supplied CO 2 and H 2 eventually become almost all CH 3 OH and H 2 O. Some methane is also produced as a by-product, but the amount is negligible. Therefore, the entire reaction system consists of only the reaction expressed by (1), which is an exothermic reaction.

反応熱は沸騰水と熱交換させスチームとして回収するのが工業的には好ましく、COからの製造ではその方式で実施されており、COからの合成プロセスでもその方向で検討されている。沸騰水冷却は冷却側の伝熱係数を大きくできる利点もある。反応器は一般的には固定層触媒反応器で多管式熱交換器型が使用される。 It is industrially preferable to recover the reaction heat as steam by exchanging heat with boiling water, and this method is used in production from CO, and this direction is also being considered in the synthesis process from CO2 . Boiling water cooling also has the advantage of increasing the heat transfer coefficient on the cooling side. The reactor is generally a fixed bed catalytic reactor with a shell-and-tube heat exchanger type.

固体触媒を使用する発熱反応であるから、固定層反応器を使用する場合は冷却機能を有していても触媒層に温度が最高となる箇所が発生するのは避けられない。固体触媒は使用できる最高温度があり、その温度以上では活性が急激に低下する。現在この反応に最も多く使用されているCu-ZnO-Al触媒では使用可能温度は270℃以下(非特許文献3)であり、反応管理としては最高温度をこの値以下とすることが特に重要となる。 Since this is an exothermic reaction that uses a solid catalyst, when a fixed bed reactor is used, even if it has a cooling function, it is unavoidable that some parts of the catalyst bed will have the highest temperature. Solid catalysts have a maximum temperature at which they can be used, and their activity decreases rapidly above that temperature. The usable temperature of the Cu-ZnO-Al 2 O 3 catalyst, which is currently most commonly used in this reaction, is 270°C or lower (Non-Patent Document 3), and the maximum temperature must be kept below this value in order to manage the reaction. This is especially important.

反応器・反応系の生産効率は空時収率(STY)で表される。反応器内触媒単位体積、単位時間あたりの生産量である。STYを増加させるためには反応系に新たに供給するCOとCOの合計値(以下メイクアップCO2/COと表記する)を増加させねばならないが、これは反応熱を増加させ最高温度を増加させることでもある。最高温度を許容値以下に抑えながら、STYを最大とするのが反応器・反応系設計上の重要項目であり、反応系全体で各種の対策が検討されている。リサイクルされるガス量の増加、除熱のために供給される沸騰水温度の低下などである。 The production efficiency of a reactor/reaction system is expressed as space-time yield (STY). It is the production amount per unit volume of catalyst in the reactor and per unit time. In order to increase STY, it is necessary to increase the total value of CO2 and CO newly supplied to the reaction system (hereinafter referred to as makeup CO2/CO), but this increases the reaction heat and increases the maximum temperature. It is also about letting people do it. Maximizing STY while suppressing the maximum temperature below the allowable value is an important item in reactor/reaction system design, and various countermeasures are being considered for the entire reaction system. These include an increase in the amount of recycled gas and a decrease in the temperature of boiling water supplied for heat removal.

対策の中でもリサイクル比(リサイクルされるガス量に対して新たに供給されるガス量の比)の増加は大きな効果があるが、大きくなるほど反応系で必要となるエネルギーの増加や、反応系構成に必須である熱交換機、凝縮器、昇圧機の容量増加を招きコストアップの要因となる。この対策はこれらの大きな問題点を有する。現在工業的な実施例では原料がCO主体の場合はリサイクル比4~6(非特許文献1)が選ばれており、CO主体の場合のそれは4付近(非特許文献3)で検討されている。
沸騰水温度の低下は最高温度の低下には有効であるが反応器触媒層全体の温度を低下させることになり、STYが低下する。
Among the measures, increasing the recycling ratio (the ratio of the amount of newly supplied gas to the amount of recycled gas) has a great effect, but the larger the ratio, the more energy required in the reaction system and the reaction system configuration. This increases the capacity of the essential heat exchanger, condenser, and booster, which increases costs. This measure has these major problems. Currently, in industrial practice, when the raw material is mainly CO, a recycling ratio of 4 to 6 is selected (Non-patent Document 1), and when the raw material is mainly CO2 , it is considered to be around 4 (Non-patent Document 3). There is.
Lowering the boiling water temperature is effective in lowering the maximum temperature, but it also lowers the temperature of the entire reactor catalyst layer, resulting in a decrease in STY.

反応器が一つの反応系では対策が困難なため複数の反応器、熱交換器、凝縮器、昇圧機等を含む反応系を組み合わせる工夫も各種なされている(特許文献5)。しかしこの対策は省エネルギーの点では多少の効果は認められるが設備費の著しい増加をもたらす、さらには運転管理も煩雑となり、特許文献の実施例からもSTYの増加は得られておらず、本質的な改善には至っていない。
COからのメタノール製造の重要性は地球温暖化対策上今後増大して行く。これに用いる触媒の検討は活発に行われており、活性が本発明記載の触媒の活値よりも高いものも発表されている(特許文献6)。しかし触媒活性が高くなるほど、同一条件下での最高温度は増大する。従って最高温度を制御できる手段の重要性は今後ますます増大する。これは発熱反応および平衡反応を固定層触媒反応器で行わせる場合すべてについて共通する。
Since it is difficult to take countermeasures in a reaction system with a single reactor, various efforts have been made to combine reaction systems including multiple reactors, heat exchangers, condensers, boosters, etc. (Patent Document 5). However, although this measure has some effect in terms of energy saving, it causes a significant increase in equipment costs, and furthermore, operation management becomes complicated, and even from the examples in patent documents, no increase in STY has been obtained. No significant improvement has been achieved.
The importance of producing methanol from CO2 will increase in the future as a measure against global warming. Catalysts used for this purpose have been actively investigated, and some catalysts with higher activity values than the catalysts described in the present invention have been announced (Patent Document 6). However, the higher the catalyst activity, the higher the maximum temperature under the same conditions. Therefore, means that can control the maximum temperature will become increasingly important in the future. This is common to all cases in which exothermic and equilibrium reactions are carried out in a fixed bed catalytic reactor.

化学工学 Vol.46,No.9,55-65(1982)Chemical Engineering Vol. 46, No. 9, 55-65 (1982) Journal of catalysis Vol.107,165-172(1987)Journal of catalysis Vol. 107, 165-172 (1987) 三菱重工技報 Vol.35,No.6,384-387(1998)Mitsubishi Heavy Industries Technical Report Vol. 35, No. 6, 384-387 (1998) 触媒 Vol.35,No.6,485-401387(1993)Catalyst Vol. 35, No. 6,485-401387 (1993)

特開2020-63193号公報JP2020-63193A 特開平6ー312138号公報Japanese Patent Application Publication No. 6-312138

本発明は、固定層触媒反応器で当該気固触媒反応を行わせる際、最高温度を許容値以下に抑えながらSTYを増加できる固定層触媒反応器を提供することを課題とする。 An object of the present invention is to provide a fixed bed catalytic reactor that can increase STY while suppressing the maximum temperature to a permissible value or less when performing the gas-solid catalytic reaction in the fixed bed catalytic reactor.

請求項1に記載の固定層触媒反応器は、触媒存在下で発熱反応を生じる第1ガス及び第2ガスを反応させるための反応器であって、反応管と、前記反応管内に配置され、多数の孔が分散して設けられたフィード管と、前記反応管と前記フィード管との間に前記触媒が配置されて設けられた触媒固定層と、前記反応管と前記フィード管との間に第1ガスを一端側から供給する第1供給部と、 第2ガスを前記フィード管に供給する第2供給部と、前記反応管を加熱ないし冷却する加熱冷却部と、前記反応管と前記フィード管との間の反応混合ガスを他端側から排出する排出部と、を備え、前記第1ガスを前記触媒固定層に一方向に流動させつつ、前記第2ガスを前記フィード管から前記触媒固定層に対して分散した位置に供給して反応させることを特徴とする。 The fixed bed catalytic reactor according to claim 1 is a reactor for reacting a first gas and a second gas that cause an exothermic reaction in the presence of a catalyst, and includes a reaction tube, and a reactor disposed within the reaction tube, A feed pipe provided with a large number of dispersed holes, a fixed catalyst bed provided with the catalyst disposed between the reaction pipe and the feed pipe, and between the reaction pipe and the feed pipe. a first supply section that supplies a first gas from one end side; a second supply section that supplies a second gas to the feed tube; a heating and cooling section that heats or cools the reaction tube; a discharge section for discharging the reaction mixture gas between the feed pipe and the catalyst from the other end side, while causing the first gas to flow in one direction to the catalyst fixed bed, and flowing the second gas from the feed pipe to the catalyst fixed bed. It is characterized in that it is supplied to dispersed positions with respect to the fixed layer and reacted.

請求項2に記載の固定層触媒反応器は、請求項1に記載の構成に加え、反応器シェル内に前記加熱冷却部の熱交換室が区画されるとともに、前記熱交換室の両側に前記第1供給部の供給室と前記排出部の排出室とが区画され、前記フィード管及び前記触媒固定層を収容した前記反応管が前記熱交換室内に複数配置されるとともに、前記複数の反応管の両端側が前記供給室と前記排出室とに通気可能に連通している反応器を特徴とする。 A fixed bed catalytic reactor according to a second aspect of the present invention includes, in addition to the configuration according to the first aspect, a heat exchange chamber of the heating/cooling section is partitioned within the reactor shell, and the fixed bed catalytic reactor has a heat exchange chamber of the heating/cooling section defined on both sides of the heat exchange chamber. A supply chamber of the first supply section and a discharge chamber of the discharge section are partitioned, and a plurality of reaction tubes housing the feed pipe and the fixed catalyst bed are arranged in the heat exchange chamber, and a plurality of reaction tubes are arranged in the heat exchange chamber. The reactor is characterized in that both ends thereof communicate with the supply chamber and the discharge chamber in a ventilable manner.

請求項3に記載の固定層触媒反応器は、請求項2に記載の構成に加え、前記加熱冷却部は前記熱交換室に加圧沸騰水を供給して該熱交換室から加圧沸騰水と水蒸気の混相流を排出させて反応熱を回収する熱回収部を有する構造を特徴とする。 The fixed bed catalytic reactor according to claim 3 has the configuration according to claim 2, and further, the heating/cooling section supplies pressurized boiling water to the heat exchange chamber and discharges the pressurized boiling water from the heat exchange chamber. It is characterized by a structure that includes a heat recovery section that recovers reaction heat by discharging a multiphase flow of water vapor and water vapor.

請求項4に記載のプラントは、請求項1または2の構成に加え、前記の固定層触媒反応器と、反応混合ガスから反応生成成分を分離する分離部と、反応混合ガスから反応生成成分が分離された循環ガスを前記第1供給部に循環する循環部とを備えたことを特徴とする。 In addition to the configuration of claim 1 or 2, the plant according to claim 4 includes the fixed bed catalytic reactor, a separation section that separates a reaction product component from the reaction mixture gas, and a reaction product component that separates the reaction product component from the reaction mixture gas. and a circulation section that circulates the separated circulation gas to the first supply section.

請求項5に記載のプラントは、請求項4の構成に加え、前記第1ガスは水素含有ガス、前記循環ガスまたは水素を加えた循環ガスであり、前記第2ガスは二酸化炭素ガスまたは水素を加えた二酸化炭素含有ガスであり、前記反応生成物はメタノールであることを特徴とする。 In the plant according to claim 5, in addition to the configuration of claim 4, the first gas is a hydrogen-containing gas, the circulating gas, or a circulating gas to which hydrogen is added, and the second gas is carbon dioxide gas or hydrogen-added circulating gas. and the reaction product is methanol.

請求項6に記載の反応方法は、触媒存在下で発熱反応を生じる第1ガス及び第2ガスを、前記触媒を有する触媒固定層に冷却しつつ供給して反応させる反応方法において、多数の孔が分散して設けられたフィード管を前記触媒固定層に沿って配置し前記第1原料ガスを前記触媒固定層のガス流れ下流側に流動させつつ、前記第2ガスを前記フィード管から前記触媒固定層のガス流れ下流側に分散供給して反応させることを特徴とする。 The reaction method according to claim 6 is a reaction method in which a first gas and a second gas that cause an exothermic reaction in the presence of a catalyst are supplied to a fixed catalyst bed having the catalyst while being cooled and reacted. A feed pipe in which gases are dispersedly provided is arranged along the catalyst fixed bed, and while the first raw material gas flows downstream of the catalyst fixed bed, the second gas is passed from the feed pipe to the catalyst fixed bed. It is characterized by being distributed and supplied to the downstream side of the gas flow of the fixed bed for reaction.

請求項1に記載の発明によれば、固定層触媒反応器で当該気固触媒反応を行わせる際、最高温度を許容値以下に抑えながらSTYを増加できる固定層触媒反応器を提供することができる。請求項2により本発明の反応器の大型化が図れる。請求項3により本発明の反応器からの反応熱が有効に回収される。請求項4により本発明の平衡反応全般への適用が図れる。請求項5により本発明のメタノール合成プラントへの適用が図れる。請求項6により触媒固定層で発熱反応を効率的に行わせることが可能となる。 According to the invention described in claim 1, it is possible to provide a fixed bed catalytic reactor that can increase STY while suppressing the maximum temperature to a permissible value or less when performing the gas-solid catalytic reaction in the fixed bed catalytic reactor. can. According to claim 2, the size of the reactor of the present invention can be increased. According to claim 3, the reaction heat from the reactor of the present invention is effectively recovered. According to claim 4, the present invention can be applied to equilibrium reactions in general. According to claim 5, the present invention can be applied to a methanol synthesis plant. According to the sixth aspect, it becomes possible to efficiently carry out an exothermic reaction in the fixed catalyst bed.

本発明の第1実施形態に係る固定層触媒反応器を用いたプラントのフローシートであり、反応管が一つの場合を示す。1 is a flow sheet of a plant using a fixed bed catalytic reactor according to a first embodiment of the present invention, and shows a case where there is one reaction tube. 本発明の第2実施形態に係る固定層触媒反応器を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a fixed bed catalytic reactor according to a second embodiment of the present invention. 比較例における従来の固定層触媒反応器を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a conventional fixed bed catalytic reactor in a comparative example. 実施例のシミュレーションで用いた速度式の計算値と反応速度の実測値との合致度を判定した結果を示すグラフである。It is a graph showing the result of determining the degree of agreement between the calculated value of the rate formula used in the simulation of the example and the measured value of the reaction rate. 実施例2の触媒固定層の下流方向の温度分布とそれと同じSTYとなる参考例2の温度分布のシミュレーションの結果を示すグラフである。7 is a graph showing the results of a simulation of the temperature distribution in the downstream direction of the fixed catalyst bed in Example 2 and the temperature distribution in Reference Example 2, which has the same STY.

以下本発明の実施形態について図を用いて説明する。発熱反応全般に適用できるもので
あるが本実施形態では、CO,CO,Hを固体触媒上で反応させるメタノール合成方法へ適用した例を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings. Although it can be applied to all exothermic reactions, in this embodiment, an example will be explained in which it is applied to a methanol synthesis method in which CO, CO 2 and H 2 are reacted on a solid catalyst.

[第1実施形態]
(プラントの構成)
図1に示すように、触媒存在下で発熱反応を生じる第1ガス及び第2ガスを反応させる固定層触媒反応器1と、反応器1に新たに供給する第1ガス供給ライン2と、新たに供給する第2ガス供給ライン3と、反応混合ガスを反応器1から排出する出口ガスライン4と、反応混合ガスから反応成分を分離する分離部5と、反応混合ガスから反応生成成分が分離された循環ガスを反応器1に循環ライン6aを通して循環する循環部6と反応成分を反応系外に抜き出す抜き出しライン7と、を有するプラントである。
メタノール合成に適用する場合において第1ガスは水素含有ガス、循環ガス又は水素を加えた循環ガスであり、第2ガスは二酸化炭素含有ガス又は水素を加えた二酸化炭素含有ガスであり、反応生成成分はメタノールないしはメタノールと水となる。
[First embodiment]
(Plant configuration)
As shown in FIG. 1, there is a fixed bed catalytic reactor 1 in which a first gas and a second gas that cause an exothermic reaction in the presence of a catalyst are reacted, a first gas supply line 2 that newly supplies the reactor 1, and a new a second gas supply line 3 that supplies the reaction mixture gas to the reactor 1, an outlet gas line 4 that discharges the reaction mixture gas from the reactor 1, a separation section 5 that separates the reaction components from the reaction mixture gas, and a separation section 5 that separates the reaction product components from the reaction mixture gas. This plant has a circulation part 6 that circulates the recycled gas to the reactor 1 through a circulation line 6a, and an extraction line 7 that extracts reaction components from the reaction system.
When applied to methanol synthesis, the first gas is a hydrogen-containing gas, a circulating gas, or a circulating gas to which hydrogen is added, and the second gas is a carbon dioxide-containing gas or a carbon dioxide-containing gas to which hydrogen is added, and the reaction product component becomes methanol or methanol and water.

(第1実施形態の反応器の構成)
固定層触媒反応器1は、反応管8と、反応管8内に配置され、多数の側孔9が分散した位置に設けられたフィード管10と、反応管8とフィード管10との間に触媒が配置されて設けられた触媒固定層11と、反応管8とフィード管10との間に第1ガスを一端側から供給する第1供給部12と、第2ガスをフィード管10に供給する第2供給部13と、反応管8を加熱ないしは冷却する加熱冷却部14と、反応管8とフィード管10の間の反応混合ガスを他端側から排出する排出部15と、を備えた反応器1である。
(Configuration of reactor of first embodiment)
The fixed bed catalytic reactor 1 includes a reaction tube 8, a feed tube 10 disposed within the reaction tube 8 and provided with a large number of side holes 9 at dispersed positions, and a reaction tube 8 and a feed tube 10 arranged between the reaction tube 8 and the feed tube 10. A catalyst fixed bed 11 in which a catalyst is arranged, a first supply section 12 that supplies a first gas from one end between the reaction tube 8 and the feed tube 10, and a second gas that supplies the second gas to the feed tube 10. a second supply section 13 for heating or cooling the reaction tube 8, a heating and cooling section 14 for heating or cooling the reaction tube 8, and a discharge section 15 for discharging the reaction mixture gas between the reaction tube 8 and the feed tube 10 from the other end side. This is reactor 1.

(第1実施形態の反応器の動作)
新たに反応系に供給されるH(メイクアップH)は加圧及び温度調整され、循環ガスと合流し、第1ガスとして反応器1に設置された第1供給部12から反応管8内の触媒固定層11に供給されて下流側に流動する。新たに反応系に供給されるCO、ないしはCO/COは第2ガスとして第2供給部13より触媒層内に設置されたフィード管10に供給される。このフィード管10には第1ガスの流動方向における分散した位置に多数の側孔9が設けられており、第2ガスは触媒層の中で第1ガス内に分散供給され、ともに下流側に流動し触媒層を通過して反応する。触媒層を通過したガスは反応管8他端の排出部15より反応混合ガスとして排出される。反応熱は反応管8外の加熱冷却部14を流れる熱媒によって除去される。上記反応混合ガスは分離部5で反応生成物のメタノール及びHOを分離された後、未反応のCO、CO、Hは循環ガスとして反応器1に循環される。分離されたメタノール及びHOは反応成分抜き出しライン7からプラントの精製系に送られる。
メイクアップHは側孔設計の都合上好ましい場合は第2ガスと一緒に側孔から供給しても良い。ここでの記述は循環ガスと合流して供給する方式で統一する。
(Operation of the reactor of the first embodiment)
H 2 (make-up H 2 ) newly supplied to the reaction system is pressurized and temperature-controlled, merges with the circulating gas, and flows as a first gas from the first supply section 12 installed in the reactor 1 to the reaction tube 8. The catalyst is supplied to the catalyst fixed bed 11 inside and flows downstream. CO 2 or CO 2 /CO newly supplied to the reaction system is supplied as a second gas from the second supply section 13 to the feed pipe 10 installed in the catalyst layer. This feed pipe 10 is provided with a large number of side holes 9 at dispersed positions in the flow direction of the first gas, and the second gas is distributed and supplied into the first gas in the catalyst layer, and both are distributed to the downstream side. It flows, passes through the catalyst layer, and reacts. The gas that has passed through the catalyst layer is discharged from the discharge section 15 at the other end of the reaction tube 8 as a reaction mixture gas. The reaction heat is removed by a heating medium flowing through the heating and cooling section 14 outside the reaction tube 8. After the reaction mixture gas is separated from the reaction products methanol and H 2 O in the separation section 5, unreacted CO 2 , CO, and H 2 are circulated to the reactor 1 as a circulating gas. The separated methanol and H 2 O are sent from the reaction component extraction line 7 to the purification system of the plant.
Make-up H2 may be supplied from the side hole together with the second gas if it is preferable due to the side hole design. The description here is unified based on the method of supplying the gas by merging it with the circulating gas.

(第1実施形態の作用効果)
メタノール合成に適用する場合で説明する。COとCOの合計をCO/COで示す。従来の反応方式ではメイクアップCO/COとメイクアップH及び循環ガスは反応器1に第1供給部12から一緒に供給されるが、本発明では第1供給部12と第2供給部13から個別に供給される。メイクアップCO/COはフィード管10側側孔9を通して触媒層を流れるガスに分散供給される。これにより、供給されたCO/COのかなりの割合が反応した後に次のCO/COが供給されることになり、一度に供給する従来の方式に比べて、反応ガス中のCO/CO濃度が平滑化される。発生する反応熱はCO/CO濃度が大きいほど増加するので従来の方式と比べて温度上昇が平滑化され、温度ピーク値が大幅に低減することになる。従って同一反応条件においては従来の方式と比べて供給できるCO/CO量を増加できることになる。
(Operations and effects of the first embodiment)
This will be explained when applied to methanol synthesis. The sum of CO 2 and CO is expressed as CO 2 /CO. In the conventional reaction system, make-up CO 2 /CO, make-up H 2 and circulating gas are supplied together to the reactor 1 from the first supply section 12, but in the present invention, the make-up CO 2 /CO, the make-up H 2 and the circulating gas are supplied together from the first supply section 12 and the second supply section. 13 are supplied separately. The makeup CO 2 /CO is distributed and supplied to the gas flowing through the catalyst layer through the side hole 9 on the side of the feed pipe 10 . As a result, the next CO 2 /CO is supplied after a considerable proportion of the supplied CO 2 /CO has reacted, and the CO 2 /CO in the reaction gas is CO concentration is smoothed. Since the reaction heat generated increases as the CO 2 /CO concentration increases, the temperature rise is smoothed and the temperature peak value is significantly reduced compared to the conventional method. Therefore, under the same reaction conditions, the amount of CO 2 /CO that can be supplied can be increased compared to the conventional method.

[第2実施形態]
(第2実施形態の反応器の構成)
図2に示すような竪型反応器であり、反応器1のシェル内に加熱冷却部14の熱交換室16が固定管板等により区画されるとともに、熱交換室16の両側に第1供給部12の供給室17と排出部15の排出室18とが区画されている。
熱交換室16内には、フィード管10及び触媒固定層11を収容して第1実施形態と同様の反応管8が複数並列に配置されて反応管8群が形成され、各反応管8の両端が供給室17と排出室18とに通気可能に連通している
第2供給部13には、複数の反応管8内の各フィード管10に第2ガスを供給できる供給ヘッダー管13aが設けられている。
また加熱冷却部14には、反応管8を囲む熱交換室16の下部に熱媒として使用する熱媒加圧沸騰水が供給される入口ノズル14aと、熱交換室16の上部から沸騰水と水蒸気の混相流を排出させる出口14bが設けられ、図示しない熱回収部により反応熱を回収可能に構成されている。
その他は第1実施形態と同様である。
[Second embodiment]
(Configuration of reactor of second embodiment)
The reactor is a vertical reactor as shown in FIG. A supply chamber 17 of the section 12 and a discharge chamber 18 of the discharge section 15 are partitioned.
In the heat exchange chamber 16, a plurality of reaction tubes 8 similar to those in the first embodiment are arranged in parallel, accommodating the feed tubes 10 and the fixed catalyst bed 11, to form a group of reaction tubes 8. The second supply section 13, which has both ends communicating with the supply chamber 17 and the discharge chamber 18 in a ventilated manner, is provided with a supply header pipe 13a that can supply the second gas to each feed pipe 10 in the plurality of reaction tubes 8. It is being
The heating/cooling section 14 also includes an inlet nozzle 14a that supplies pressurized boiling water as a heating medium to the lower part of the heat exchange chamber 16 surrounding the reaction tube 8, and an inlet nozzle 14a that supplies boiling water from the upper part of the heat exchange chamber 16. An outlet 14b is provided for discharging the multiphase flow of water vapor, and the reaction heat can be recovered by a heat recovery section (not shown).
The rest is the same as the first embodiment.

(第2実施形態の動作)
第1ガスは第1供給部12から反応器1内に区画された第1供給部供給室17に供給され、複数設置された反応管8に流入する。第2ガスは 第2供給部13に接続した第2ガス供給ヘッダー管13aより各フィード管10に多数設置された側孔より触媒層を通過するガス中に分散供給され、下流に流動して行く。各反応管8を通過したガスは排出室18で合流し、排出部15より流出する。反応熱の除去のためシェル側に熱交換器室16が区画されて設置されており、熱媒体入口14aから加圧沸騰水が供給され、その一部は反応熱によって水蒸気に気化し、熱媒体出口14bから沸騰水と水蒸気の混相流が流出する。
(Operation of second embodiment)
The first gas is supplied from the first supply section 12 to a first supply section supply chamber 17 partitioned within the reactor 1, and flows into a plurality of reaction tubes 8. The second gas is distributed and supplied into the gas passing through the catalyst layer from the second gas supply header pipe 13a connected to the second supply part 13 through the side holes installed in each feed pipe 10, and flows downstream. . The gases that have passed through each reaction tube 8 join together in the discharge chamber 18 and flow out from the discharge section 15. A heat exchanger chamber 16 is partitioned and installed on the shell side to remove the heat of reaction, and pressurized boiling water is supplied from the heat medium inlet 14a, a part of which is vaporized into steam by the heat of reaction, and the heat medium is A multiphase flow of boiling water and steam flows out from the outlet 14b.

(第2実施形態の作用効果)
従来の反応方式では第1ガス、第2ガス、循環ガスは反応器1に入る前に合流し第1供給部供給室17に供給されるが、本発明では第1供給室17と第2供給部13に分離して供給される。第1実施形態と同じく、第1ガス中に供給された第2ガスのかなりの量が反応した後に次の第2ガスが供給されるので、反応混合ガス中の第2ガス濃度は一度に供給される場合に比べて平滑化され、触媒層の最高温度も許容温度以下に抑えられる。
(Operations and effects of the second embodiment)
In the conventional reaction method, the first gas, the second gas, and the circulating gas are combined before entering the reactor 1 and are supplied to the first supply section supply chamber 17, but in the present invention, the first gas, the second gas, and the circulating gas are connected to the first supply chamber 17 and the second supply chamber 17. It is separated and supplied to section 13. As in the first embodiment, the next second gas is supplied after a considerable amount of the second gas supplied in the first gas has reacted, so the concentration of the second gas in the reaction mixture gas is reduced at once. It is smoother than in the case where the catalyst layer is heated, and the maximum temperature of the catalyst layer is also suppressed to below the allowable temperature.

[発明の定量的効果]
この発明による効果は次の方法で計算した。
[Quantitative effect of invention]
The effects of this invention were calculated using the following method.

[反応速度式および温度分布算出式の決定]
(各反応の反応機構の想定)
(CO+3H→CHH+HOについて想定した反応機構)
[Determination of reaction rate formula and temperature distribution calculation formula]
(Assumption of reaction mechanism for each reaction)
(Reaction mechanism assumed for CO 2 + 3H 2 → CH 3 H + H 2 O)

ここで括弧で囲んだ種は推定される中間生成物を含む触媒への各吸着種、(A)は触媒活性点の空孔を表す。ここで記した中間生成物は分光学的方法等で確認されたものではないが、化学上の通説及び物質収支とは矛盾しないものである。一般的に中間生成物は矛盾しない範囲で想定することができる。想定の妥当性は反応機構から導かれる速度式からの計算値と実測値との合致度で判定される。本発明で想定した機構の合致度は後で、図4で示される。後述のように、この図から以後のシミュレーションに用いられる精度を有すると判定される。
は各成分の気相での分圧である。これらの記号は以下でも共通である。
Here, the species enclosed in parentheses are each adsorbed species on the catalyst including estimated intermediate products, and (A) represents the vacancy of the catalyst active site. Although the intermediate products described here have not been confirmed by spectroscopic methods, they are consistent with common chemical theory and mass balance. In general, intermediate products can be envisaged within a consistent range. The validity of the assumption is judged by the degree of agreement between the calculated value from the rate equation derived from the reaction mechanism and the measured value. The matching degree of the mechanism assumed in the present invention will be shown later in FIG. 4. As will be described later, it is determined from this figure that it has the accuracy to be used in subsequent simulations.
P i is the partial pressure of each component in the gas phase. These symbols are also common below.

(CO+H→CO+HO反応について想定した機構)
(Mechanism assumed for CO 2 + H 2 → CO + H 2 O reaction)

(CO+2H→CO+HO反応について想定した機構)
(Mechanism assumed for CO 2 + 2H 2 → CO + H 2 O reaction)

(速度式への変換)
これらの素反応からの速度式の導出は一般的に行われている Hougen-
Watson の取り扱いに従った。各速度式は次の式となった。fは各成分のフガシティーであり、高圧反応の場合は圧力ではなくてフガシティーを用いねばならない。Pからの変換はベルテロー式で行った。
記号の意味は下記である。
(Conversion to speed formula)
Derivation of rate equations from these elementary reactions is commonly done.
Follow Watson's instructions. Each speed formula was as follows. f i is the fugacity of each component, and in the case of high-pressure reactions, fugacity must be used instead of pressure. Conversion from P i was performed using the Berthelot formula.
The meanings of the symbols are as follows.

[速度式の諸定数の算出手順]
(K,K4、c以外の項目)
これらの式の諸定数のうちK,K4,c以外の項目は非特許文献2記載の実験条件を上記r~rの式に入れ、算出される反応速度値と表の実測データ値の差の二乗の合計値が最も少なくなる値とした。データの一部を下記に示す。
[Procedure for calculating constants of speed formula]
(Items other than K 3 , K 4, and c)
Among the constants in these equations, items other than K 3 , K 4, and c are calculated by entering the experimental conditions described in Non-Patent Document 2 into the equations r 1 to r 3 above, and using the calculated reaction rate values and the measured data in the table. The value that minimizes the sum of the squares of the differences in values was chosen. Some of the data is shown below.

(K,K,cの算出手順)
,K,cは非特許文献4に記載のグラフ(HOないしはCO添加量の反応速度の相対値への影響)からの読み取り値を上記のr式に代入し、上記相対値が最も合致する値を最小二乗法で求めた。
(Calculation procedure of K 3 , K 4 , c)
For K 3 , K 4 , and c, the values read from the graph (influence of the amount of H 2 O or CO added on the relative value of reaction rate) described in Non-Patent Document 4 are substituted into the above r1 equation, and the above relative The value that best matched the values was determined using the least squares method.

(諸定数の値)
諸定数として下記の値が得られた。式から算出される値と結果の一致度は図4に示す
ように寄与率は0.9965であり十分満足できるものであった。
(values of constants)
The following values were obtained as various constants. As shown in FIG. 4, the degree of agreement between the value calculated from the formula and the result was sufficiently satisfactory, with a contribution rate of 0.9965.

(触媒層温度分布の算出式)
温度分布を算出したdT/dL (T:温度、L:反応管長)の式を下記に示す。
ここで Vは反応ガス流量、Sは反応管断面積、Dは反応管内径、Cpは反応ガス平均比熱、Twは熱媒温度、Uは反応管とシェル側との総括伝熱係数である。
(Calculation formula for catalyst layer temperature distribution)
The formula for dT/dL (T: temperature, L: reaction tube length) used to calculate the temperature distribution is shown below.
Here, V is the reaction gas flow rate, S is the reaction tube cross-sectional area, D is the reaction tube inner diameter, Cp is the average specific heat of the reaction gas, Tw is the heating medium temperature, and U is the overall heat transfer coefficient between the reaction tube and the shell side.

(定常状態の物質収支の算出手順)
これらの式を用いて反応器ごとの反応系の定常状態の物質収支を推算した。
(1) 反応器の形状を選定し、充填層及びシェル側の伝熱係数を算出する定法、により、総括伝熱係数を推算した。熱媒は加圧沸騰水とした。総括伝熱係数値は反応管入口条件で120.7 J/s/K となった。以後の計算では全区間でこの値とした。
(2) 対象とするSTYを定め、それに相当するメイクアップCO量とH量を定めた。循環ガス中のCO、CO、Hをそれぞれ仮定し、メイクアップのCO、Hと合算し、入口ガス量とした。
(3) 沸騰水温度(T)、入口ガス温度(T)を定めた。
(4) 反応器を1mmごとの微小区間に分け、区間出口の各成分の量と温度をルンゲクッタ法で順次推算した。
(4) 出口ガスからメタノール、水を除いた残りのガス(CO,H,CO)は反応器にリサイクルされ、新規に供給されるCO,Hと合わさり入口ガスとなる。定常状態では仮定した組成と算出される値は一致せねばならない。その値を変数分析ツールのマイクロソフト社製の計算ソフト付属の機能のソルバーを用いて算出した。
(5) ソルバーが収斂しない場合は選定した条件では定常状態が成立しないことを示す。TとTを調整しても収斂しない場合は(2)で選定したSTYは達成できないと判定した。
(Steps for calculating steady state material balance)
Using these equations, we estimated the steady-state mass balance of the reaction system for each reactor.
(1) The shape of the reactor was selected, and the overall heat transfer coefficient was estimated using the standard method of calculating the heat transfer coefficient of the packed bed and shell side. The heating medium was pressurized boiling water. The overall heat transfer coefficient value was 120.7 J/s/K under the reaction tube inlet conditions. This value was used for all sections in subsequent calculations.
(2) The target STY was determined, and the corresponding amount of makeup CO 2 and H 2 was determined. It was assumed that CO 2 , CO, and H 2 in the circulating gas were added together with makeup CO 2 and H 2 to obtain the inlet gas amount.
(3) Boiling water temperature (T w ) and inlet gas temperature (T g ) were determined.
(4) The reactor was divided into minute sections of 1 mm each, and the amount and temperature of each component at the outlet of the sections were estimated sequentially using the Runge-Kutta method.
(4) The remaining gas (CO 2 , H 2 , CO) after removing methanol and water from the outlet gas is recycled to the reactor and combined with the newly supplied CO 2 and H 2 to become the inlet gas. In steady state, the assumed composition and the calculated value must match. The value was calculated using the solver function included in the calculation software manufactured by Microsoft, which is a variable analysis tool.
(5) If the solver does not converge, it indicates that a steady state does not hold under the selected conditions. If convergence does not occur even after adjusting T w and T g , it is determined that the STY selected in (2) cannot be achieved.

(定常状態の物質収支の計算値と文献にある実測値との対比)
この方法で算出した物質収支が実測値と矛盾しないことは、非特許文献3記載の反応条件から同文献記載の実測のSTY値と触媒層最高温度のシミュレーションの結果から確認した。
未記載部分のうち、反応管内径は24.2mm、反応ガス入口温度及びヒーター温度は214℃と想定して、上記運転条件でのシミュレーション結果、メタノール生産量(STY)は0.357MeOH-kg/L/h、触媒層最高温度は239℃となり、実測値とほぼ十分な一致となった。
(Comparison of calculated values of steady state mass balance and actual measured values in the literature)
It was confirmed from the simulation results of the actually measured STY value and the maximum temperature of the catalyst layer described in the same literature based on the reaction conditions described in Non-Patent Document 3 that the mass balance calculated by this method does not contradict the actually measured value.
Assuming that the inner diameter of the reaction tube is 24.2 mm and the reaction gas inlet temperature and heater temperature are 214°C, the simulation result under the above operating conditions shows that the methanol production (STY) is 0.357 MeOH-kg/ L/h, the maximum temperature of the catalyst layer was 239°C, which was in almost sufficient agreement with the measured value.

[反応器型式に対応するSTY最大値の制約条件]
反応器型式の優劣は各種の制約条件下で取り得るSTY値で判定できる。実際の反応は運転条件の変動に対応するため余裕を持った条件で行われるが、優劣の比較のためには条件を同一にせねばならない。
条件として下記の値に統一する。
(1) リサイクルされるガス量はSV4,000/hrで統一する。これは反応器入口のCO,H,COの各量を仮定するときにこの条件を加えておくことによって対処した。 リサイクルされるガス量を増大させればSTYは増加するが、これは設備費額とエネルギー費額の増加につながる。同一の値とすることで効果の判定が明確になる。
(2) 触媒層最高温度(T)は250℃以下にする。触媒層の温度を高くすればSTYの増加に直結するので、反応器構造の優劣判定には同一の値とせねばならない。前記のように270℃以上では触媒の劣化が顕著になるので、運転条件の変動を考慮しTは250℃以下とする。
(3) 反応ガスのモル比(M) の最小値(M)は触媒層のすべての場所で4.5以上にする。
反応ガスのモル比(M)を、(新たに供給されるHのモル数+リサイクルされるHのモル数)/(新たに供給されるCOとCOのモル数+リサイクルされるCOとCOのモル数)のように定義する。
この反応に用いられる触媒の状態は活性を維持するためには還元状態である必要がある。このためには上記Mはある値(M)以上でなければならないがこの値は明らかでない。非特許文献2での実験での上記Mは4.2~10で行われている。反応器優劣の比較は同一の値に統一すれば良いのでM=4.5で統一した。平衡値が問題にならない範囲では、Mの値が化学量論比(この場合は3)に近づくほど反応率は増加するため同じTの場合でもSTYが増加する。比較のためには同じ値としておくことが必須である。
一方運転条件において、反応器入口ガス温度(T)及び反応管外部の熱媒温度(T)は調節が可能であるため、上記(1)、(2)、(3)の制約の範囲内でSTYが最大となる値を選定する。熱媒としては反応熱を熱エネルギーとして回収するため多くの場合沸騰水が使用される、この後の記述も沸騰水で統一するので熱媒温度は反応器を通してTとした。
[Restrictions on maximum STY value corresponding to reactor type]
The superiority or inferiority of reactor types can be determined by the STY values that can be obtained under various constraint conditions. Actual reactions are carried out under conditions with sufficient margin to accommodate fluctuations in operating conditions, but in order to compare superiority or inferiority, conditions must be kept the same.
The conditions should be unified to the following values.
(1) The amount of recycled gas will be unified at SV4,000/hr. This was addressed by adding this condition when assuming the amounts of CO 2 , H 2 , and CO at the reactor inlet. If the amount of recycled gas is increased, STY will increase, but this will lead to an increase in equipment costs and energy costs. By setting the values to be the same, the effect can be clearly determined.
(2) The maximum temperature (T m ) of the catalyst layer should be 250°C or less. Since increasing the temperature of the catalyst layer directly leads to an increase in STY, the same value must be used to determine the superiority or inferiority of the reactor structure. As mentioned above, the deterioration of the catalyst becomes significant at temperatures above 270°C, so T m is set at below 250°C in consideration of fluctuations in operating conditions.
(3) The minimum value (M m ) of the molar ratio ( M ) of the reaction gas is set to 4.5 or more at all locations in the catalyst layer.
The molar ratio (M) of the reaction gas is defined as (number of moles of newly supplied H 2 + number of moles of recycled H 2 )/(number of moles of newly supplied CO 2 and CO + recycled CO 2 and the number of moles of CO).
The catalyst used in this reaction must be in a reduced state in order to maintain its activity. For this purpose, M must be greater than or equal to a certain value (M m ), but this value is not clear. The above M in the experiment in Non-Patent Document 2 was 4.2 to 10. Since it is sufficient to use the same value when comparing the superiority of reactors, M m =4.5 was used. In a range where the equilibrium value is not a problem, the reaction rate increases as the value of M approaches the stoichiometric ratio (3 in this case), so STY increases even at the same T m . For comparison, it is essential to keep the same value.
On the other hand, under the operating conditions, the reactor inlet gas temperature (T g ) and the heat medium temperature outside the reaction tube (T w ) can be adjusted, so that the range of constraints (1), (2), and (3) above can be adjusted. Select the value with the maximum STY within the range. In many cases, boiling water is used as a heating medium in order to recover the heat of reaction as thermal energy.Since the descriptions that follow will also be based on boiling water, the temperature of the heating medium is assumed to be Tw through the reactor.

[STY最大値算出手順]
(1)メイクアップCO/CO,T,T を適当に定め、定常状態の物質収支を前記(定常状態の物質収支算出手順)で定め、T,M
を算出する。定常状態の成立が確認されれば、STYはメイクアップCO/COに相当する値で定まる。
(2) T,M の値が制約値に対して余裕があれば
メイクアップCO/COを増加させる。同時にTを増加させ、T,Mを算出する。以下Tが制約値を越えるまで繰り返す。
(3) Tが制約値を越えてもMにまだ余裕があればTwを低下させ、Tgを増加させる。
(4) T,Mともほぼ制約値になればそのSTYを最大値とする。
[STY maximum value calculation procedure]
(1) Make-up CO 2 /CO, T w , T g are determined appropriately, steady state mass balance is determined as described above (steady state mass balance calculation procedure), T m , M m
Calculate. If establishment of a steady state is confirmed, STY is determined to be a value corresponding to makeup CO 2 /CO.
(2) Make-up CO 2 /CO is increased if the values of T m and M m are within the constraint value. At the same time, T w is increased and T m and M m are calculated. The following steps are repeated until T m exceeds the constraint value.
(3) Even if T m exceeds the constraint value, if M m still has a margin, Tw is lowered and Tg is increased.
(4) If both T m and M m almost reach the constraint values, that STY is set as the maximum value.

[比較例の反応器]
比較例の既存型の反応器を図3に示す。
この比較例の反応器1では、図2に示すような第2実施形態の反応器と同様に、反応器1のシェル内に加熱冷却部14の熱交換室16が固定管板等により区画されるとともに、熱交換室16の両側に第1供給部12の供給室17と排出部15の排出室18とが区画されている。
また熱交換室16内には、触媒固定層11を収容した反応管8が複数並列に配置されて反応管8群が形成されていて、各反応管8の両端は供給室17と排出室18とに通気可能に連通している
さらに加熱冷却部14には、反応管8を囲む熱交換室16の下部に熱媒として使用する熱媒加圧沸騰水が供給される入口ノズル14aと、熱交換室16の上部から沸騰水と水蒸気の混相流を排出させる出口14bが設けられ、図示しない熱回収部により反応熱を回収可能に構成されている。
しかしながら、この比較例の反応器1では、図2に示す第2実施形態の反応器とは異なり、第2ガスを供給するための第2供給部は存在せず、各反応管内のフィード管や各フィード管に第2ガスを供給するための供給ヘッダー管は設けられていない。
第1ガスと第2ガスとが予め混合された混合ガスの状態で第1供給部12の供給室17に供給される。混合ガスが各反応管8に分配供給され、各反応管8内の触媒固定層11にて反応が進行しつつ下流に流動する。
図3には反応管4本の断面図を示しているが、反応管数に制約はなく、必要生産量で定まる。STYは触媒単位体積あたりの生産量であるから、STYの比較は反応管あたりの生産量の比較であり本数には無関係となる。従って反応管の断面積、長さ、使用する触媒粒径等を実施例と比較例で統一すれば反応器の優劣の比較が可能になる。
反応管内径は24.2mm、反応管長は4m、触媒粒径は3mmΦで統一した。
比較例でのSTY最大値の算出手順は上記3の手順と同じである。既存型の場合は反応器入口でMが最小となるので、Mは入口での値とした。
[Reactor of comparative example]
Figure 3 shows an existing reactor as a comparative example.
In the reactor 1 of this comparative example, similarly to the reactor of the second embodiment as shown in FIG. At the same time, a supply chamber 17 of the first supply section 12 and a discharge chamber 18 of the discharge section 15 are partitioned on both sides of the heat exchange chamber 16.
In addition, in the heat exchange chamber 16, a plurality of reaction tubes 8 containing the fixed catalyst bed 11 are arranged in parallel to form a reaction tube 8 group, and both ends of each reaction tube 8 are connected to a supply chamber 17 and a discharge chamber 18. Further, the heating/cooling section 14 has an inlet nozzle 14a through which pressurized boiling water is supplied as a heating medium to the lower part of the heat exchange chamber 16 surrounding the reaction tube 8, and An outlet 14b is provided for discharging a multiphase flow of boiling water and steam from the upper part of the exchange chamber 16, and the reaction heat can be recovered by a heat recovery section (not shown).
However, in the reactor 1 of this comparative example, unlike the reactor of the second embodiment shown in FIG. No supply header tube is provided for supplying the second gas to each feed tube.
The first gas and the second gas are supplied to the supply chamber 17 of the first supply unit 12 in a mixed gas state in which the first gas and the second gas are mixed in advance. The mixed gas is distributed and supplied to each reaction tube 8, and flows downstream while the reaction progresses in the fixed catalyst bed 11 in each reaction tube 8.
Although FIG. 3 shows a cross-sectional view of four reaction tubes, the number of reaction tubes is not limited and is determined by the required production amount. Since STY is the production amount per unit volume of catalyst, the comparison of STY is a comparison of the production amount per reaction tube and is unrelated to the number of tubes. Therefore, if the cross-sectional area and length of the reaction tube, the diameter of the catalyst particles used, etc. are the same between Examples and Comparative Examples, it becomes possible to compare the superiority of the reactor.
The inner diameter of the reaction tube was 24.2 mm, the length of the reaction tube was 4 m, and the catalyst particle diameter was 3 mmΦ.
The procedure for calculating the maximum STY value in the comparative example is the same as the procedure in step 3 above. In the case of the existing type, M is the minimum at the reactor inlet, so M m was taken as the value at the inlet.

[実施例の反応器]
実施例では、図2に示すような第2実施形態の反応器を使用した。
反応器図を図2に示す。図2では新規に供給されるCO(メイクアップCO)はフィード管上流側から4分割で供給されているが、分割数や分割間隔に制約はなく、温度分布の計算結果等から状況に応じて選択される。図の例ではメイクアップCOは上流側から750mm,1500mm,2250mm,3000mmの各位置から供給される。
各位置の側孔から供給される量はできるだけ均一であることが望ましい。触媒層の圧力は圧力損失のため上流側ほど大きいので、側孔径が同じ場合は上流と下流で供給量に差が生じる可能性があり、極端な場合は上流側と下流側で異なる孔径とせねばならないこともある。これは側孔で大きな圧力損失を生じさせることすなわち孔径を小さくすることによって回避できる。本実施例では側孔は1か所につき2個とし、孔径は0.1mmとした。小さな孔径の採用で最上流の側孔からの供給量と最下流のそれとの比の計算値は約0.94とほぼ同じ値となっている。このレベルの小さな孔径の必要性は反応管内径や触媒粒径で異なる。常に必要となる訳ではないが今回の場合はこの孔径が好ましい。
フィード管は外径6mm、内径3.4mmのSUSチューブとした。この挿入で反応管内の触媒量が減少する分反応管内径を大きくし、触媒量と触媒層内の反応ガス流速を比較例と同じとした。反応管内径は24.9mmとした。
[Reactor of Example]
In the examples, a reactor of the second embodiment as shown in FIG. 2 was used.
A diagram of the reactor is shown in Figure 2. In Figure 2, the newly supplied CO 2 (make-up CO 2 ) is supplied in four parts from the upstream side of the feed pipe, but there are no restrictions on the number of divisions or the interval between them, and the situation depends on the calculation results of temperature distribution, etc. selected accordingly. In the illustrated example, makeup CO 2 is supplied from positions 750 mm, 1500 mm, 2250 mm, and 3000 mm from the upstream side.
It is desirable that the amount supplied from the side holes at each position be as uniform as possible. The pressure in the catalyst layer is higher on the upstream side due to pressure loss, so if the side pore diameters are the same, there may be a difference in the supply amount between the upstream and downstream sides, and in extreme cases, the pore sizes on the upstream and downstream sides must be different. Sometimes it doesn't. This can be avoided by creating a large pressure loss in the side holes, that is, by reducing the hole diameter. In this example, the number of side holes was two per location, and the hole diameter was 0.1 mm. By adopting a small hole diameter, the calculated value of the ratio of the supply amount from the most upstream side hole to that from the most downstream side hole is approximately the same value of about 0.94. The necessity of this level of small pore size differs depending on the inner diameter of the reaction tube and catalyst particle size. Although not always necessary, this pore size is preferred in this case.
The feed tube was a SUS tube with an outer diameter of 6 mm and an inner diameter of 3.4 mm. This insertion reduced the amount of catalyst in the reaction tube, so the inner diameter of the reaction tube was increased, and the amount of catalyst and the flow rate of the reaction gas in the catalyst layer were kept the same as in the comparative example. The inner diameter of the reaction tube was 24.9 mm.

STY最大値の算出手順を下記に示す。
(1) 循環ガスの組成を最初に仮定するのは既存型のときの計算と同じである。反応器
入口で循環ガスとメイクアップHが合流し触媒層に入る。循環ガス中のCO及びCOが反応し、CHOH、HO、COが生成する。反応ガス中のCOは減少していく。温度は反応熱と沸騰水により除去される熱の差に相当する値だけ上昇していく。この様相を前記2記載の手法で計算していく。
(2) 計算がフィード管からのメイクアップCO/COが供給される地点に到達したら、その地点でのCO/COとメイクアップCO/CO量を合算させ、各成分の新たな組成を計算する。以下下流に向かって次の供給地点まで組成変化、温度変化を計算して行く。
(3) 次の供給地点からも同様に反応器出口まで順次計算させて行く。出口ガスから生成するCHOH、HOを減じた残りが循環ガスとなる。循環されるH、CO、COの量が計算される。
(4) 各成分の量が最初に仮定した量と十分な精度で合致するまで計算を繰り返す。
(5) 前記3記載の手順で取りえるSTYの最大値を求める。
(6) 実施例の場合、Mは最下流の供給口で最小となるので、Mはその値とした。
The procedure for calculating the STY maximum value is shown below.
(1) The composition of the circulating gas is assumed at the beginning, which is the same as the calculation for the existing type. At the inlet of the reactor, the circulating gas and the make-up H2 are combined and enter the catalyst bed. CO 2 and CO in the circulating gas react to produce CH 3 OH, H 2 O, and CO. CO 2 in the reaction gas decreases. The temperature increases by a value corresponding to the difference between the heat of reaction and the heat removed by the boiling water. This aspect is calculated using the method described in 2 above.
(2) When the calculation reaches the point where the makeup CO 2 /CO from the feed pipe is supplied, add up the CO 2 /CO at that point and the makeup CO 2 /CO amount and calculate the new composition of each component. Calculate. The composition changes and temperature changes are then calculated downstream to the next supply point.
(3) Perform calculations in the same way from the next supply point to the reactor outlet. The remainder after subtracting CH 3 OH and H 2 O produced from the outlet gas becomes the circulating gas. The amount of H 2 , CO 2 , CO that is circulated is calculated.
(4) Repeat the calculation until the amount of each component matches the initially assumed amount with sufficient accuracy.
(5) Find the maximum value of STY that can be obtained using the procedure described in 3 above.
(6) In the case of the example, since M is the minimum at the most downstream supply port, M m was set to that value.

[実施例と比較例の取り得るSTYの定量的比較]
(実施例1と比較例1)
表1のαは触媒活性の指標であり、現行の触媒活性のときを1とする。
表3に示すようにこのときの触媒活性で、比較例1で取りえるSTYは0.528kg-MeOH/L/hとなる。一方実施例1で取りえるSTYは0.607kg-MeOH/L/hとなる。すなわち本特許を用いた場合のSTYは従来の方式と比べて、現行の触媒活性の場合は1.15倍になる。これに比例して反応系で必要なエネルギーコストも低減し、設備費等の固定費も関連して減少する。
[Quantitative comparison of possible STYs of Examples and Comparative Examples]
(Example 1 and Comparative Example 1)
α in Table 1 is an index of catalytic activity, and is set to 1 when the current catalytic activity is present.
As shown in Table 3, with the catalyst activity at this time, the STY obtained in Comparative Example 1 was 0.528 kg-MeOH/L/h. On the other hand, the STY obtained in Example 1 is 0.607 kg-MeOH/L/h. That is, the STY when using this patent is 1.15 times that of the conventional method when using the current catalyst activity. In proportion to this, the energy cost required for the reaction system is reduced, and fixed costs such as equipment costs are also reduced.

(実施例2と比較例2)
本発明は触媒活性が大きくなるほど効果が大きくなる。将来的にはより高活性な触媒が実用化されることは、特許文献6で同じ銅系の触媒で新たな成分の添加により従来品よりも大幅に高活性の触媒がすでに提案されていることなどから十分に予想されるので現状の活性の2倍(すなわちα=2)の場合も示す。
比較例2は既存の多管式熱交換器型の反応器の場合であり、実施例2は本発明の型の反応器の場合である。それぞれは前記の制約条件下(T≦250、M≧4.5)で取り得る最大値である。
表3のように将来、触媒活性が例えば現状の2倍に向上したときはこの効果は1.19倍とさらに増大するので産業上の有用性はさらに増加する。
(Example 2 and Comparative Example 2)
The effect of the present invention increases as the catalyst activity increases. The fact that more highly active catalysts will be put into practical use in the future is that Patent Document 6 has already proposed a catalyst with significantly higher activity than conventional products by adding new components to the same copper-based catalyst. Since it is fully expected from the above, a case where the activity is twice the current activity (ie, α=2) is also shown.
Comparative Example 2 is a case of an existing shell-and-tube heat exchanger type reactor, and Example 2 is a case of a reactor of the type of the present invention. Each is the maximum value that can be taken under the above-mentioned constraint conditions (T m ≦250, M m ≧4.5).
As shown in Table 3, in the future, when the catalytic activity is increased to, for example, twice the current level, this effect will further increase to 1.19 times, and the industrial usefulness will further increase.

[既存型の反応器で実施例1、2と同じSTYを得るための条件]
既存型式の反応器でも反応条件を過酷にすれば瞬間的には大きなSTYが得られる。しかし表3の参考例1及び2に示すように、実施例1及び2と同じSTYを得る反応条件では最高温度が許容温度を大きく超えるので触媒の劣化により一時期しか持続せず産業的には成立しない。今回方式の反応器がピーク温度の低減に寄与することひいてはSTYの実質な増大に寄与することが明らかである。今回方式の効果をさらに明確にするため、参考例2(点線)と実施例2(実線)の温度分布計算値を図5に示す。
[Conditions for obtaining the same STY as in Examples 1 and 2 using an existing reactor]
Even with existing reactors, if the reaction conditions are made harsher, a large STY can be obtained instantaneously. However, as shown in Reference Examples 1 and 2 in Table 3, under the reaction conditions to obtain the same STY as in Examples 1 and 2, the maximum temperature greatly exceeds the allowable temperature, so it only lasts for a short period of time due to catalyst deterioration, and is not commercially viable. do not. It is clear that the reactor of this type contributes to a reduction in peak temperature and thus to a substantial increase in STY. In order to further clarify the effect of this method, the calculated temperature distribution values for Reference Example 2 (dotted line) and Example 2 (solid line) are shown in FIG.

産業上の利用分野Industrial applications

COの有効利用についてはは反応によりMeOHに転換するのが現時点での主要ルートである。MeOHは従来の用途に加えて、燃料用、プラスチック用に用途が拡大している。従来は大気中に排出されていたCOの回収が進展し、COの供給が増加するのは必至であり、本発明の利用分野は拡大する。さらに本発明はメタノールの製造だけでなく、固定層での固体触媒反応で発熱反応を行わせる場合全般について大きな利用価値がある。具体的には触媒を用いる水素化反応、酸化反応等の分野である。本発明により最高温度の制約が緩和される。
酸化反応の中には許容温度の制約の他に、反応ガス組成の爆発範囲を避けるために、片方の反応物質の供給量を増加できない例も存在する。このような場合にも本発明は有効であり、供給量を増加させても本発明により分散供給させることが可能なため反応器内部の組成を爆発下限界以下に保つことができる。これらの用途も潜めている。
Regarding the effective use of CO2 , the main route at present is to convert it into MeOH through reaction. In addition to its conventional uses, MeOH is being used increasingly for fuels and plastics. As the recovery of CO 2 that was conventionally emitted into the atmosphere progresses, the supply of CO 2 will inevitably increase, and the field of application of the present invention will expand. Furthermore, the present invention has great utility not only in the production of methanol, but also in all cases where exothermic reactions are carried out by solid catalyst reactions in fixed beds. Specifically, the fields include hydrogenation reactions and oxidation reactions using catalysts. The present invention relaxes the maximum temperature restriction.
In addition to restrictions on allowable temperature in some oxidation reactions, there are also cases where it is not possible to increase the supply amount of one of the reactants in order to avoid an explosive range of reaction gas composition. The present invention is also effective in such cases, and even if the supply amount is increased, the present invention allows for distributed supply, so that the composition inside the reactor can be maintained below the lower explosive limit. These uses are also hidden.

1 反応器
2 第1ガス供給ライン
3 第2ガス供給ライン
4 反応混合ガス出口ガスライン
5 分離部
6 循環部
6a 循環ライン
7 反応成分抜き出しライン
8 反応管
9 フィード管側孔(フィード管に設けられた多数の孔)
10 フィード管
11 触媒固定層
11a 触媒層受け皿
11b 触媒層押さえ
12 第1供給部
13 第2供給部
13a 第2ガス供給用ヘッダー管
14 加熱冷却部
14a 熱媒体入口
14b 熱媒体出口
15 反応混合ガス排出部
16 熱交換室
16a 熱交換室チューブシート
17 第1供給部供給室
18 反応混合ガス排出室
1 Reactor 2 First gas supply line 3 Second gas supply line 4 Reaction mixed gas outlet gas line 5 Separation section 6 Circulation section 6a Circulation line 7 Reaction component extraction line 8 Reaction tube 9 Feed tube side hole (provided in the feed tube) (many holes)
10 Feed pipe 11 Catalyst fixed bed 11a Catalyst bed tray 11b Catalyst bed holder 12 First supply section 13 Second supply section 13a Second gas supply header pipe
14 Heating and cooling section 14a Heat medium inlet 14b Heat medium outlet 15 Reaction mixed gas discharge section 16 Heat exchange chamber
16a Heat exchange chamber tube sheet
17 First supply section supply chamber
18 Reaction mixed gas discharge chamber

Claims (6)

触媒存在下で発熱反応を生じる第1ガス及び第2ガスを反応させるための反応器であって、
反応管と、
前記反応管内に配置され、多数の孔が分散して設けられたフィード管と、
前記反応管と前記フィード管との間に前記触媒が配置されて設けられた触媒固定層と、
前記反応管と前記フィード管との間に第1ガスを一端側から供給する第1供給部と、
前記第2ガスを前記フィード管に供給する第2供給部と、
前記反応管を加熱ないし冷却する加熱冷却部と、
前記反応管と前記フィード管との間の反応混合ガスを他端側から排出する排出部と、を備え、
前記第1ガスを前記触媒固定層に一方向に流動させつつ、前記第2ガスを前記フィード管から前記触媒固定層に対して前記一方向に分散した位置に供給して反応させる、固定層触媒反応器。
A reactor for reacting a first gas and a second gas that cause an exothermic reaction in the presence of a catalyst, the reactor comprising:
a reaction tube,
a feed tube disposed within the reaction tube and provided with a large number of dispersed holes;
a fixed catalyst bed provided with the catalyst disposed between the reaction tube and the feed tube;
a first supply section that supplies a first gas between the reaction tube and the feed tube from one end side;
a second supply section that supplies the second gas to the feed pipe;
a heating and cooling section that heats or cools the reaction tube;
a discharge part for discharging the reaction mixture gas between the reaction tube and the feed tube from the other end side,
A fixed bed catalyst, wherein the first gas is caused to flow in one direction through the catalyst fixed bed, and the second gas is supplied from the feed pipe to positions dispersed in the one direction with respect to the catalyst fixed bed for reaction. reactor.
反応器シェル内に前記加熱冷却部の熱交換室が区画されるとともに、前記熱交換室の両側に前記第1供給部の供給室と前記排出部の排出室とが区画され、
前記フィード管及び前記触媒固定層を収容した前記反応管が前記熱交換室内に複数配置されるとともに、前記複数の反応管の両端側が前記供給室と前記排出室とに通気可能に連通している、請求項1に記載の固定層触媒反応器。
A heat exchange chamber of the heating and cooling section is defined within the reactor shell, and a supply chamber of the first supply section and a discharge chamber of the discharge section are defined on both sides of the heat exchange chamber,
A plurality of reaction tubes containing the feed tube and the fixed catalyst bed are arranged in the heat exchange chamber, and both ends of the plurality of reaction tubes are in ventilated communication with the supply chamber and the discharge chamber. , a fixed bed catalytic reactor according to claim 1.
前記加熱冷却部は、前記熱交換室に加圧沸騰水を供給して該熱交換室から加熱沸騰水と水蒸気の混相流を排出させて反応熱を回収する熱回収部を有する、請求項2に記載の固定層触媒反応器。 2. The heating and cooling section includes a heat recovery section that supplies pressurized boiling water to the heat exchange chamber, discharges a multiphase flow of heated boiling water and steam from the heat exchange chamber, and recovers reaction heat. Fixed bed catalytic reactor described in . 前記請求項1乃至3の何れかに記載の固定層触媒反応器と、前記反応混合ガスから反応生成成分を分離する分離部と、前記反応混合ガスから反応生成成分が分離された循環ガスを前記第1供給部又は第2供給部に循環する循環部と、を備えたプラント。 The fixed bed catalytic reactor according to any one of claims 1 to 3, a separation section that separates a reaction product component from the reaction mixture gas, and a circulating gas from which the reaction product component has been separated from the reaction mixture gas. A plant comprising: a circulation section that circulates to a first supply section or a second supply section. 前記第1ガスは水素含有ガス、前記循環ガス又は水素を加えた前記循環ガスであり、前記第2ガスは二酸化炭素含有ガス又は水素を加えた二酸化炭素含有ガスであり、前記反応生成成分はメタノールである、請求項4に記載のプラント。 The first gas is a hydrogen-containing gas, the circulating gas, or the circulating gas to which hydrogen is added, the second gas is a carbon dioxide-containing gas or a carbon dioxide-containing gas to which hydrogen is added, and the reaction product component is methanol. The plant according to claim 4. 触媒存在下で発熱反応を生じる第1ガス及び第2ガスを、前記触媒を有する触媒固定層に冷却しつつ供給して反応させる反応方法において、
多数の孔が分散して設けられたフィード管を前記触媒固定層に沿って配置し、
前記第1原料ガスを前記触媒固定層に一方向に流動させつつ、前記第2ガスを前記フィード管から前記触媒固定層に対して前記一方向に分散した位置に供給して反応させる、触媒固定層を用いた反応方法。
A reaction method in which a first gas and a second gas that cause an exothermic reaction in the presence of a catalyst are supplied while being cooled to a fixed catalyst bed having the catalyst to react,
A feed pipe provided with a large number of dispersed holes is arranged along the catalyst fixed layer,
Fixing the catalyst, while causing the first raw material gas to flow in the fixed catalyst bed in one direction, supplying the second gas from the feed pipe to positions dispersed in the one direction with respect to the fixed catalyst bed for reaction. Reaction method using layers.
JP2022039484A 2022-03-14 2022-03-14 Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst Pending JP2023134125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022039484A JP2023134125A (en) 2022-03-14 2022-03-14 Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022039484A JP2023134125A (en) 2022-03-14 2022-03-14 Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst

Publications (1)

Publication Number Publication Date
JP2023134125A true JP2023134125A (en) 2023-09-27

Family

ID=88143748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022039484A Pending JP2023134125A (en) 2022-03-14 2022-03-14 Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst

Country Status (1)

Country Link
JP (1) JP2023134125A (en)

Similar Documents

Publication Publication Date Title
EP3402772B1 (en) Methanol process
AU2007245431B2 (en) Process for preparing liquid hydrocarbons
AU2016386958B2 (en) Methanol process
JP4970750B2 (en) Pseudoisothermal ammonia synthesis method
CN104411625A (en) Process for reforming hydrocarbons
EP3210961B1 (en) Methanol production method and methanol production apparatus
JP7052401B2 (en) Methane production equipment and methane production method
CN110177772B (en) Combined production of methanol, ammonia and urea
GB2560784A (en) Method for revamping a methanol process
CN102171171A (en) Method and system for the production of methanol
WO2019008317A1 (en) Methanol synthesis process
Jang et al. Tri-reformer with O2 side-stream distribution for syngas production
JP2023134125A (en) Fixed bed catalyst reactor, plant with fixed bed catalyst reactor, and reaction method with fixed bed catalyst
JPS6124372B2 (en)
JP6116801B2 (en) System or method for producing gasoline
Pretti et al. Simultaneous Process Design of a Cooled Tubular Fischer–Tropsch Reactor
Chang et al. Multi-objective Optimization of Mixed Membrane Reactors for Autothermal Reforming of Methane
CN117500748A (en) Method for producing synthesis gas using catalytic reverse water gas shift
KR20220007440A (en) Multi-layered tubular reactor for methanol synthesis from synthesis gas
Bîldea et al. SIMULATION AND OPTIMIZATION OF A METHANOL SYNTHESIS PLANT CONSIDERING THE EFFECT OF CATALYST DEACTIVATION
CN112437764A (en) Method for producing methanol in a reactor with a bypass
Partenie et al. Design and control of integrated styrene-aniline production plant
JPS627601A (en) Production of hydrogen from methanol