JP2023133835A - Underground heat exchange device - Google Patents

Underground heat exchange device Download PDF

Info

Publication number
JP2023133835A
JP2023133835A JP2022039048A JP2022039048A JP2023133835A JP 2023133835 A JP2023133835 A JP 2023133835A JP 2022039048 A JP2022039048 A JP 2022039048A JP 2022039048 A JP2022039048 A JP 2022039048A JP 2023133835 A JP2023133835 A JP 2023133835A
Authority
JP
Japan
Prior art keywords
heat exchange
underground
heat
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022039048A
Other languages
Japanese (ja)
Inventor
真司 高杉
Shinji Takasugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geo System Co Ltd
Original Assignee
Geo System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geo System Co Ltd filed Critical Geo System Co Ltd
Priority to JP2022039048A priority Critical patent/JP2023133835A/en
Publication of JP2023133835A publication Critical patent/JP2023133835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To provide an underground heat exchange device capable of being constructed inexpensively and exhibiting a high heat exchange capacity.SOLUTION: An underground heat exchange device has an underground heat exchanger 110 that exchanges heat between a refrigerant and water stored underground, and uses the refrigerant whose heat has been exchanged in the underground heat exchanger 110 to further exchange heat with a predetermined heat pump device. The underground heat exchange device has a permeation chamber 140 that is excavated from the ground surface with a predetermined volume to store water such as rainwater. A heat exchange pipe through which the refrigerant flows as the underground heat exchanger 110 is disposed along the bottom surface of the permeation chamber 140, as a horizontally buried underground heat exchanger having a plurality of annular parts wound in an annular manner while being shifted so that some parts are preferably overlapped.SELECTED DRAWING: Figure 1

Description

本発明は、地中に溜められた水(雨水や地下水等)と熱交換した冷媒を空気調和機等のヒートポンプサイクルに利用する地中熱交換装置に関し、さらに詳しく言えば、安価に構築できるとともに、高い熱交換能力が発揮される地中熱交換装置に関するものである。 The present invention relates to an underground heat exchange device that uses a refrigerant that has undergone heat exchange with water stored underground (rainwater, groundwater, etc.) in a heat pump cycle of an air conditioner, etc. More specifically, it can be constructed at low cost, and , relates to an underground heat exchange device that exhibits high heat exchange capacity.

例えば特許文献1に記載されているように、一般的な地中熱交換システムは、一次冷媒が循環される一次熱交換回路と、空気調和機などの二次熱交換回路とを有し、一次熱交換回路側の一方の熱交換器を地中に埋設して、他方の熱交換器にて二次熱交換回路との間で熱交換することにより、二次熱交換回路で発生した熱と地中熱との間で熱交換するようにしている。 For example, as described in Patent Document 1, a general underground heat exchange system has a primary heat exchange circuit in which a primary refrigerant is circulated, and a secondary heat exchange circuit such as an air conditioner. By burying one heat exchanger on the heat exchange circuit side underground and exchanging heat with the secondary heat exchange circuit using the other heat exchanger, the heat generated in the secondary heat exchange circuit and It exchanges heat with underground heat.

通常、地中は一年を通して一定温度(約15℃前後)であるため、夏場はヒートポンプサイクルによって温められた冷媒の熱を地中に逃がし、冬場は冷やされた冷媒を地熱で温める。これにより、二次熱交換回路に設けられた圧縮機への負担を減らし、省電力およびCO排出量を大幅に減らすことができる。 Normally, the temperature underground is constant throughout the year (approximately 15 degrees Celsius), so in the summer, the heat from the refrigerant heated by the heat pump cycle is released underground, and in the winter, the cooled refrigerant is heated by geothermal heat. This reduces the load on the compressor provided in the secondary heat exchange circuit, making it possible to save power and significantly reduce CO2 emissions.

多くの場合、一次熱交換側の熱交換器は、地下水を含む地盤の中に地中約10~200mの深さに形成された直径150mm程度の熱交換井の中に一次冷媒を循環させた熱交換パイプ(φ30mm程度)を配置し、さらに熱交換井の内部に砂や砂利などで満たすことによって形成されている。これによれば、熱交換井の内部に地下水が満たされ、熱交換が促進される。 In most cases, the heat exchanger on the primary heat exchange side circulates the primary refrigerant in a heat exchange well with a diameter of about 150 mm that is formed at a depth of about 10 to 200 meters underground in the ground containing groundwater. It is formed by arranging heat exchange pipes (about 30 mm in diameter) and filling the inside of the heat exchange well with sand, gravel, etc. According to this, the inside of the heat exchange well is filled with groundwater, and heat exchange is promoted.

しかしながら、一般的な地下水位は、地下5~10m程度のところにあるため、熱交換井の内部が水で満たされるのも地下5~10mよりも下の位置となり、地表から地下水位までの間では、熱交換が十分発揮されてない。 However, since the general groundwater level is approximately 5 to 10 meters underground, the inside of the heat exchange well is filled with water at a location lower than 5 to 10 meters underground, and there is a gap between the ground surface and the groundwater level. In this case, heat exchange is not performed sufficiently.

また、別の観点として、都市部では地表面の多くがアスファルトなどの不透水層で覆われており、地表に降った雨の多くが地中に浸透することなく、下水道を介して海に戻されるため、地下水が減少している。 Another point of view is that in urban areas, much of the ground surface is covered with impermeable layers such as asphalt, and much of the rain that falls on the ground does not permeate into the ground and is returned to the sea via sewers. Groundwater is decreasing due to water leakage.

そこで、本出願人は、特許文献2において、熱交換井に雨水などの水を積極的に浸透させる水浸透手段を設けて、地表面から地下水位面に至るまでの間の熱交換井の空間に水を供給することを提案している。これによれば、より熱交換効率を高めることができるが、他方において、熱交換井を掘削するには1本あたりかなりのコストがかかる、という問題がある。 Therefore, in Patent Document 2, the present applicant provides a water infiltration means for actively infiltrating water such as rainwater into the heat exchange well, and the space of the heat exchange well from the ground surface to the groundwater level is provided. It is proposed to supply water to According to this, the heat exchange efficiency can be further improved, but on the other hand, there is a problem in that drilling a heat exchange well requires a considerable amount of cost per well.

特開2002-115873号公報Japanese Patent Application Publication No. 2002-115873 特許第4360690号公報Patent No. 4360690

したがって、本発明の課題は、安価に構築できるとともに、高い熱交換能力が発揮される地中熱交換装置を提供することにある。 Therefore, an object of the present invention is to provide an underground heat exchange device that can be constructed at low cost and exhibits high heat exchange ability.

上記課題を解決するため、本発明は、冷媒を地中に溜められた水との間で熱交換させる地中熱交換器を有し、上記地中熱交換器にて熱交換された上記冷媒を用いて、所定のヒートポンプ装置との間でさらに熱交換する地中熱交換装置において、
地表面から所定の容積をもって掘削され雨水等の水を貯留する浸透升を有し、上記地中熱交換器が水平埋設型として上記冷媒が流される熱交換パイプを上記浸透升の底面に沿って配設したことを特徴としている。
In order to solve the above problems, the present invention includes an underground heat exchanger that exchanges heat between a refrigerant and water stored underground, and the refrigerant is heat-exchanged in the underground heat exchanger. In a geothermal heat exchange device that further exchanges heat with a predetermined heat pump device using
The underground heat exchanger has a permeation tank excavated with a predetermined volume from the ground surface to store water such as rainwater, and the underground heat exchanger is a horizontally buried type, and a heat exchange pipe through which the refrigerant is flowed is installed along the bottom surface of the permeation tank. It is characterized by its placement.

本発明において、上記熱交換パイプを上記浸透升の底面に沿って配設するにあたって、螺旋型、蛇行型、シート型のいずれかが選択されることが好ましい。 In the present invention, when disposing the heat exchange pipe along the bottom surface of the permeation chamber, it is preferable that one of a spiral type, a meandering type, and a sheet type is selected.

また、本発明の好ましい態様によると、雨水等の水を上記浸透升に供給する水供給手段を備える。 Further, according to a preferred embodiment of the present invention, water supply means is provided for supplying water such as rainwater to the permeation tank.

また、上記浸透升の上面および内周面には透水シートが設けられることが好ましい。 Further, it is preferable that a water-permeable sheet is provided on the upper surface and inner circumferential surface of the permeation cell.

本発明によれば、地表面から所定の容積をもって雨水等の水を貯留する浸透升を掘削し、上記浸透升の底面に沿って冷媒が流される熱交換パイプを配設するだけでよいことから、安価に構築できるとともに、高い熱交換能力が発揮される地中熱熱交換装置を提供することができる。 According to the present invention, it is only necessary to excavate an infiltration tank with a predetermined volume from the ground surface for storing water such as rainwater, and to install a heat exchange pipe through which a refrigerant flows along the bottom of the infiltration tank. Therefore, it is possible to provide a geothermal heat exchange device that can be constructed at low cost and exhibits high heat exchange ability.

本発明による地中熱交換装置の一実施形態を示す模式図。FIG. 1 is a schematic diagram showing an embodiment of a geothermal heat exchange device according to the present invention. 上記地中熱交換装置に適用される水平埋設型地中熱交換器の一例を示す模式的な平面図。FIG. 3 is a schematic plan view showing an example of a horizontally buried underground heat exchanger applied to the above-mentioned underground heat exchange device.

次に、図1および図2により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。 Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited thereto.

図1を参照して、この地中熱交換装置は、雨水等の水との間で熱交換を行う一次側熱交換回路100と、所定のヒートポンプ装置(この例では空気調和機)の一部に組み込まれる二次側熱交換回路200とを備えている。 Referring to FIG. 1, this underground heat exchange device includes a primary heat exchange circuit 100 that exchanges heat with water such as rainwater, and a part of a predetermined heat pump device (in this example, an air conditioner). The secondary heat exchange circuit 200 is incorporated in the secondary heat exchange circuit 200.

一次側熱交換回路100は、地中熱交換器110と、ポンプPを介して地中熱交換器110に一次側冷媒を循環させる循環パイプ120と、二次側熱交換回路200との間で熱交換を行うための熱交換器130とを備えている。 The primary heat exchange circuit 100 is configured between the underground heat exchanger 110, a circulation pipe 120 that circulates the primary refrigerant to the underground heat exchanger 110 via the pump P, and the secondary heat exchange circuit 200. A heat exchanger 130 for performing heat exchange is provided.

一次側熱交換回路100に用いられる一次側冷媒としては、冬場においても凍らないように不凍液が好適であるが、地熱温度が高い場合など、冷媒が凍らないような状況であれば、蒸留水などであってもよく、仕様に応じて任意に変更されてよい。 As the primary refrigerant used in the primary heat exchange circuit 100, antifreeze is suitable to prevent freezing even in winter, but if the refrigerant does not freeze, such as when the geothermal temperature is high, distilled water etc. may be changed arbitrarily according to the specifications.

地中熱交換器110は水平埋設型の熱交換器として、地表から所定の容積をもって形成された浸透升140の底面に沿って配設される。地下水が豊富な地域においては、浸透升140は、内部に地下水が流れるように地下水位深度よりも深く掘削されるが、通常の地域では例えば1~2m程度の深さであってよい。浸透升140は、建物の床下に設けられてもよい。 The underground heat exchanger 110 is a horizontally buried heat exchanger and is disposed along the bottom surface of a permeation chamber 140 formed from the ground surface with a predetermined volume. In areas where groundwater is abundant, the infiltration chamber 140 is excavated deeper than the groundwater level so that groundwater flows inside, but in normal areas it may be about 1 to 2 meters deep, for example. The infiltration cell 140 may be provided under the floor of a building.

好ましい態様として、浸透升140の内周面(底面が含まれてもよい)には、浸透升140内に土砂等が入り込まないようにするための透水シート(透水フィルタ)141が設けられる。 In a preferred embodiment, a water-permeable sheet (water-permeable filter) 141 is provided on the inner circumferential surface (which may include the bottom surface) of the seepage cell 140 to prevent earth and sand from entering the seepage cell 140.

また、浸透升140の上面は、透水シート142によって覆われる。浸透升140の上面に適用される透水シート142は、透水性アスファルトからなる路盤が好ましいが、これ以外に砂利や透水ブロックなどであってもよく、基本的に透水性を備えていれば、仕様に応じて任意に選択可能である。 Further, the upper surface of the permeation cell 140 is covered with a water-permeable sheet 142. The permeable sheet 142 applied to the upper surface of the infiltration box 140 is preferably a roadbed made of permeable asphalt, but it may also be made of gravel, permeable blocks, etc., as long as it is basically permeable. It can be arbitrarily selected depending on the situation.

浸透升140内には、砂利や砕石、あるいは透水ブロックが充填されていることが好ましい。これによれば、砂利などの間にできた空間に水が蓄えられる。浸透升140の形状は、通常の枡形以外に円筒状などであってもよく、その容積も、施工現場の状況や仕様に応じて任意に変更されてよい。 It is preferable that the permeation chamber 140 is filled with gravel, crushed stone, or permeable blocks. According to this, water is stored in the spaces created between gravel. The shape of the infiltration cell 140 may be cylindrical or the like other than the usual square shape, and its volume may also be arbitrarily changed depending on the conditions and specifications of the construction site.

浸透升140には、雨水等を浸透升140内に積極的に浸透させるための水供給手段160が設けられる。水供給手段160は、例えばビルBの屋上などに降り注いだ雨水を集めて排水する排水パイプ161と、排水パイプ161の他端側に接続される給水パイプ162とを備えている。 The infiltration cell 140 is provided with a water supply means 160 for actively infiltrating rainwater or the like into the infiltration cell 140. The water supply means 160 includes a drainage pipe 161 that collects and drains rainwater that has fallen on the roof of building B, for example, and a water supply pipe 162 that is connected to the other end of the drainage pipe 161.

この例において、排水パイプ161は、建物(ビル)Bの屋上に設置された雨水等の排水口に接続されているが、これ以外の場所に設置されていてもよい。また、雨水等の水を一時的に溜めておくタンクや、雨水を供給するポンプおよびその制御装置などに接続されていてもよい。 In this example, the drainage pipe 161 is connected to a drainage outlet for rainwater, etc. installed on the roof of building B, but it may be installed at a location other than this. Further, it may be connected to a tank that temporarily stores water such as rainwater, a pump that supplies rainwater, a control device thereof, and the like.

さらには、例えばプールや噴水などに接続しておき、その残り水を利用するようにしてもよく、また、工場排水や多くの水を使用する例えば水産施設等から排水される水が使用されてもよい。 Furthermore, it may be connected to a pool or fountain, for example, and the remaining water may be used, or the water drained from factory wastewater or from a fishery facility that uses a lot of water, for example, may be used. Good too.

図2を参照して、本実施形態における地中熱交換器110は螺旋型として、1本の熱交換パイプ111を平面に沿って一部分が重なるようにずらしながら環状に巻いた複数の環状部112を有し、水平埋設型の熱交換器として浸透升140の底面に沿って配設される。 Referring to FIG. 2, the underground heat exchanger 110 according to the present embodiment is of a spiral type, and has a plurality of annular parts 112 wound around one heat exchange pipe 111 in an annular shape while shifting the heat exchange pipe 111 so that some parts overlap with each other along a plane. It is disposed along the bottom surface of the permeation chamber 140 as a horizontally buried heat exchanger.

熱交換パイプ111は、熱交換効率のよい素材が好ましく用いられるが、耐食性や耐候性なども考慮して樹脂製パイプが最も好ましい。 For the heat exchange pipe 111, a material with good heat exchange efficiency is preferably used, but a resin pipe is most preferable in consideration of corrosion resistance and weather resistance.

地中熱交換器110に使用する熱交換パイプ111の長さLpは、環状部112の直径をd,環状部112のピッチ(ずらし量)をP,地中熱熱交換器110の長さをLとして、次式(1)により求められる。

Figure 2023133835000002
The length Lp of the heat exchange pipe 111 used in the underground heat exchanger 110 is determined by the following formula: d is the diameter of the annular portion 112, P is the pitch (shift amount) of the annular portion 112, and is the length of the underground heat exchanger 110. L1 is determined by the following equation (1).
Figure 2023133835000002

これによれば、熱交換パイプ111の単位面積当たりの敷設量をより多くする(より密にする)ことができるため、浸透升140内の水との熱交換能力が高められる。また、設置現場での敷設面積に応じて、単位ユニットを工場等で必要量を作製し、コンパクトに包装を行い設置現場に搬入することができる。 According to this, the amount of heat exchange pipes 111 laid per unit area can be increased (more densely laid), so the ability to exchange heat with the water in the permeation chamber 140 is increased. Further, depending on the installation area at the installation site, the necessary amount of units can be manufactured at a factory or the like, compactly packaged, and transported to the installation site.

地中熱交換器110は螺旋型以外に、熱交換パイプを床暖房やロードヒーティング等と同様にワイヤーメッシュ等に括り付けて蛇行状に施工する蛇行型や、2本のヘッダー管の間に複数本の熱交換パイプを並列に接続してなるシート型であってもよい。 In addition to the spiral type, the underground heat exchanger 110 may also be of the meandering type, in which heat exchange pipes are tied to wire mesh or the like, similar to floor heating or road heating, or installed between two header pipes. A sheet type formed by connecting a plurality of heat exchange pipes in parallel may also be used.

再び図1を参照して、二次熱交換回路200は、ビルB内に配置される室内機ユニット220と、各室内機ユニット220に接続された室外機ユニット210とを有し、それらが専用の配管を介して接続されている。 Referring again to FIG. 1, the secondary heat exchange circuit 200 includes an indoor unit 220 located in building B and an outdoor unit 210 connected to each indoor unit 220, which are dedicated to connected through piping.

室外機ユニット210には、内部に図示しないコンプレッサや四方弁などの冷凍サイクル機構が配置されている。室外機ユニット210には、さらに、一次熱交換回路100と二次熱交換回路200との間で熱交換を行う熱交換器130が設けられている。 The outdoor unit 210 is provided with a refrigeration cycle mechanism (not shown) such as a compressor and a four-way valve inside. The outdoor unit 210 is further provided with a heat exchanger 130 that exchanges heat between the primary heat exchange circuit 100 and the secondary heat exchange circuit 200.

この例において、熱交換器130は、一次冷媒管が組み込まれた金属製の熱交換板と、二次冷媒管が組み込まれた金属製の熱交換板とを互いに接触させることにより、熱交換を行う形式となっているが、一次冷媒を溜めたタンク内に二次冷媒管を配置して直接熱交換を行ってもよく、一次冷媒と二次冷媒との熱交換ができれば、その具体的な方法は特に限定されない。 In this example, the heat exchanger 130 performs heat exchange by bringing a metal heat exchange plate with a built-in primary refrigerant pipe into contact with a metal heat exchange plate with a built-in secondary refrigerant pipe. However, it is also possible to place a secondary refrigerant pipe inside the tank storing the primary refrigerant and perform direct heat exchange. The method is not particularly limited.

また、本実施形態においては、一次側熱交換回路100と二次側熱交換回路200との間で相互に雨水等の熱を熱交換するようにしているが、浸透升140の底部に配置される地中熱交換器110を二次側熱交換回路200の室外機側の熱交換器として用いることもできる。 Furthermore, in this embodiment, the primary heat exchange circuit 100 and the secondary heat exchange circuit 200 mutually exchange heat from rainwater, etc. The underground heat exchanger 110 can also be used as a heat exchanger on the outdoor unit side of the secondary heat exchange circuit 200.

さらには、本実施形態において、二次熱交換回路200はビル空調システムの冷凍サイクルに組み込まれているが、これ以外のヒートポンプ給湯システムなど冷媒と地熱との間で相互熱交換を行う基本構成を備えていれば、これら変形例も本発明に含まれる。 Furthermore, in this embodiment, the secondary heat exchange circuit 200 is incorporated in the refrigeration cycle of a building air conditioning system, but other basic configurations such as a heat pump hot water supply system that perform mutual heat exchange between refrigerant and geothermal heat may also be used. If provided, these modifications are also included in the present invention.

以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。当業者であるならば上記実施形態に加えられる変更もしくは改良も本発明の技術的範囲に含まれる。 Although the present invention has been described above using embodiments, the technical scope of the present invention is not limited to the description of the above embodiments. Changes or improvements made to the above-described embodiments by those skilled in the art also fall within the technical scope of the present invention.

1 空気調和機
100 一次側熱交換回路
110 地中熱熱交換器(水平式地中熱熱交換器)
111 熱交換パイプ
112 環状部
120 循環パイプ
130 熱交換器
140 浸透升
141,142 透水シート
160 水供給手段
162 給水パイプ
200 二次側熱交換回路
B 建物(ビル)
1 Air conditioner 100 Primary side heat exchange circuit 110 Geothermal heat exchanger (horizontal geothermal heat exchanger)
111 Heat exchange pipe 112 Annular part 120 Circulation pipe 130 Heat exchanger 140 Penetration cell 141, 142 Water permeable sheet 160 Water supply means 162 Water supply pipe 200 Secondary heat exchange circuit B Building

Claims (4)

冷媒を地中に溜められた水との間で熱交換させる地中熱交換器を有し、上記地中熱交換器にて熱交換された上記冷媒を用いて、所定のヒートポンプ装置との間でさらに熱交換する地中熱交換装置において、
地表面から所定の容積をもって掘削され雨水等の水を貯留する浸透升を有し、上記地中熱交換器として上記冷媒が流される熱交換パイプを上記浸透升の底面に沿って配設したことを特徴とする地中熱交換装置。
It has a geothermal heat exchanger that exchanges heat between a refrigerant and water stored underground, and uses the refrigerant heat-exchanged in the geothermal heat exchanger to connect the refrigerant to a predetermined heat pump device. In underground heat exchange equipment that further exchanges heat,
A permeation tank is excavated from the ground surface with a predetermined volume to store water such as rainwater, and a heat exchange pipe through which the refrigerant is flowed as the underground heat exchanger is arranged along the bottom of the permeation tank. A geothermal heat exchange device featuring:
上記熱交換パイプを上記浸透升の底面に沿って配設するにあたって、螺旋型、蛇行型、シート型のいずれかが選択されることを特徴とする請求項1に記載の地中熱交換装置。 2. The underground heat exchange device according to claim 1, wherein the heat exchange pipe is arranged in a spiral type, a meandering type, or a sheet type when disposed along the bottom surface of the permeation chamber. 雨水等の水を上記浸透升に供給する水供給手段を備えていることを特徴とする請求項1または2に記載の地中熱交換装置。 The underground heat exchange device according to claim 1 or 2, further comprising a water supply means for supplying water such as rainwater to the infiltration tank. 上記浸透升の上面および内周面には、透水シートが設けられていることを特徴とする請求項1ないし3のいずれか1項に記載の地中熱交換装置。 The underground heat exchange device according to any one of claims 1 to 3, wherein a water-permeable sheet is provided on the upper surface and inner circumferential surface of the permeation cell.
JP2022039048A 2022-03-14 2022-03-14 Underground heat exchange device Pending JP2023133835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022039048A JP2023133835A (en) 2022-03-14 2022-03-14 Underground heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022039048A JP2023133835A (en) 2022-03-14 2022-03-14 Underground heat exchange device

Publications (1)

Publication Number Publication Date
JP2023133835A true JP2023133835A (en) 2023-09-27

Family

ID=88143649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022039048A Pending JP2023133835A (en) 2022-03-14 2022-03-14 Underground heat exchange device

Country Status (1)

Country Link
JP (1) JP2023133835A (en)

Similar Documents

Publication Publication Date Title
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
Singh et al. An overview of ground-source heat pump technology
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP2007333295A (en) Heat storage system
JP2013137187A (en) Water utilization system
JP2007333296A (en) Heat storage system
JP4785098B2 (en) Underground heat exchanger buried structure
JP4882021B1 (en) Heat exchange system
JP4360690B1 (en) Rainwater infiltration type underground heat exchange system
JP2006207919A (en) Cooling/heating device and method using underground heat
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
JP2008304141A (en) Heat storage snow melting system using solar heat
KR20100128448A (en) A geothermal cooling and heating system using a base slab of building
JP2023133835A (en) Underground heat exchange device
JP5145465B1 (en) Underground heat exchange system
JP2010151351A (en) Underground heat exchanger burying structure
KR20160020609A (en) Temperature control system for road using solar heat and geothermal heat pump
JP2009257081A (en) Steel pipe pile for heat exchange
KR101220897B1 (en) equipment for exchanging terrestrial heat
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
JP4528029B2 (en) Underground snow melting tank with hollow tube embedded by rotary press-in method and snow melting equipment equipped with it
JP2009209637A (en) Method of constructing buried structure
Eu et al. Field experiment on performance of water source heat pump using underground rainwater tank as heat source