JP2023132665A - Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet - Google Patents

Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet Download PDF

Info

Publication number
JP2023132665A
JP2023132665A JP2022038125A JP2022038125A JP2023132665A JP 2023132665 A JP2023132665 A JP 2023132665A JP 2022038125 A JP2022038125 A JP 2022038125A JP 2022038125 A JP2022038125 A JP 2022038125A JP 2023132665 A JP2023132665 A JP 2023132665A
Authority
JP
Japan
Prior art keywords
fcc
density
magnet
additive manufacturing
shaped body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022038125A
Other languages
Japanese (ja)
Inventor
信之 岡村
Nobuyuki Okamura
慎二 松下
Shinji Matsushita
俊哉 足達
Toshiya Adachi
正博 佐藤
Masahiro Sato
崇博 石井
Takahiro Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2022038125A priority Critical patent/JP2023132665A/en
Publication of JP2023132665A publication Critical patent/JP2023132665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide FCC magnets with various magnetic properties.SOLUTION: An FCC magnet has a density of 3.0 to 7.1 g/cm3, preferably has a void, and preferably has a residual magnetic flux density Br of 0.5 to 1.3T. The FCC magnet is obtained by producing a shaped body having a void portion using an additive manufacturing method and heat-treating the shaped body to obtain the FCC magnet according to claim 1, and the energy density in the additive manufacturing method is preferably 50 to 95 J/mm3.SELECTED DRAWING: Figure 5

Description

本発明は、FCC磁石体、FCC磁石体の製造方法、FCC複合磁石体およびFCC磁石体の磁気特性調整方法に関する。 The present invention relates to an FCC magnet, a method for manufacturing an FCC magnet, an FCC composite magnet, and a method for adjusting magnetic properties of an FCC magnet.

磁性材料は、硬質磁性材料と軟質磁性材料に区分される。そのうち、硬質磁性材料とは保磁力が大きく、外部磁場に対して減磁しにくい磁性材料を指し、代表的なものとして、フェライト磁石、NdFeB系磁石、SmCo系磁石、金属磁石などの永久磁石がある。中でも、金属磁石は、耐食性に優れ、比較的小物や複雑な形状の量産に向いているという利点を有している。そのような利点を有する金属磁石の例としては、鉄、クロム、コバルトを主成分とした磁石(鉄-クロム-コバルト系合金磁石、以下FCC磁石と称す)や、鉄、アルミニウム、ニッケル、コバルトを主成分とした磁石(以下、アルニコ磁石と称す)がある。 Magnetic materials are classified into hard magnetic materials and soft magnetic materials. Among these, hard magnetic materials refer to magnetic materials that have a large coercive force and are difficult to demagnetize in response to external magnetic fields. Typical examples include permanent magnets such as ferrite magnets, NdFeB magnets, SmCo magnets, and metal magnets. be. Among these, metal magnets have the advantage of being excellent in corrosion resistance and suitable for mass production of relatively small items and complex shapes. Examples of metal magnets with such advantages include magnets whose main components are iron, chromium, and cobalt (iron-chromium-cobalt alloy magnets, hereinafter referred to as FCC magnets), and magnets containing iron, aluminum, nickel, and cobalt. There is a magnet (hereinafter referred to as an alnico magnet) as a main component.

FCC磁石は、アルニコ磁石に比べ、高い残留磁束密度と最大エネルギー積を持つため、磁気性能に優れ、さらにコバルト含有量が少ないため、価格変動リスクを低減できる。また、FCC磁石は、アルニコ磁石と同様、残留磁束密度の温度係数が小さいため、温度安定性に優れるほか、原料にレアアースを使用していないため、調達安定性に優れ、製品適用し易いメリットがある。なお、FCC磁石は、ステッピングモーターやリレー、トルクリミッター、磁気センサー等に利用されている。 Compared to alnico magnets, FCC magnets have higher residual magnetic flux density and maximum energy product, so they have excellent magnetic performance.Furthermore, because they contain less cobalt, they can reduce the risk of price fluctuations. In addition, like alnico magnets, FCC magnets have a small temperature coefficient of residual magnetic flux density, so they have excellent temperature stability, and because they do not use rare earths as raw materials, they have excellent procurement stability and are easy to apply to products. be. Note that FCC magnets are used in stepping motors, relays, torque limiters, magnetic sensors, etc.

FCC磁石は、Fe、Cr、およびCoを含む金属材料を溶解し、冷却によって凝固した後、さらに、溶体化処理、磁場中熱処理、および時効処理などの熱処理工程を行うことによって製造され得る。これらの熱処理工程により、Fe-Cr-Co系合金中でスピノーダル分解が生じ、強磁性相の単磁区微粒子が非磁性マトリックス中に析出する。スピノーダル分解が生じるとき、特定方向の磁場を印加することにより、Fe-Cr-Co系合金に磁気異方性を与えることができる。従来のFCC磁石は鋳造法や圧延法で作製される。 FCC magnets can be manufactured by melting a metal material containing Fe, Cr, and Co, solidifying it by cooling, and then performing a heat treatment process such as solution treatment, heat treatment in a magnetic field, and aging treatment. These heat treatment steps cause spinodal decomposition in the Fe--Cr--Co alloy, and single-domain fine particles of the ferromagnetic phase are precipitated in the non-magnetic matrix. When spinodal decomposition occurs, magnetic anisotropy can be imparted to the Fe-Cr-Co alloy by applying a magnetic field in a specific direction. Conventional FCC magnets are manufactured by casting or rolling methods.

また、鋳造法や圧延法以外のFCC磁石の製造方法として、特許文献1や非特許文献1には、鉄-クロム-コバルト系合金材料を用いて、付加製造法(3次元積層造形法)によって、加工中の割れや欠けの低減に寄与し得る鉄-クロム-コバルト系積層合金を得ることが示されている。 In addition, as a manufacturing method for FCC magnets other than the casting method or the rolling method, Patent Document 1 and Non-Patent Document 1 disclose that an additive manufacturing method (three-dimensional additive manufacturing method) is used using an iron-chromium-cobalt alloy material. It has been shown that an iron-chromium-cobalt laminated alloy can be obtained which can contribute to reducing cracking and chipping during processing.

特開2021-42456号公報JP2021-42456A 特開平7-201623号公報Japanese Patent Application Publication No. 7-201623 国際公開第2007/135981号International Publication No. 2007/135981

大沼、他:鉄クロムコバルト磁石製造における金属積層造形法の適用、日立金属技報、vol.37、p54-61Onuma, et al.: Application of metal additive manufacturing method in production of iron-chromium-cobalt magnets, Hitachi Metals Technical Report, vol. 37, p54-61

高い残留磁束密度Bを持つFCC磁石であるが、そのBは異方性で1.3~1.4T程度、等方性で0.9T前後に限られており、その間の1~1.2T程度のBを持つFCC磁石は、実用化されていないと考えられる。FCC磁石で所望の磁気特性の磁石を得たい場合、磁石組成を調整し、それに合わせて上記熱処理工程の条件を検討することが考えられる。しかしながら、所望の磁気特性はそれらの調整によって一義的に得られるものではなく、このような磁気特性のFCC磁石を得、実用化できるまでには多くのハードルが予想される。 Although FCC magnets have a high residual magnetic flux density B r , the B r is limited to about 1.3 to 1.4 T for anisotropic and around 0.9 T for isotropic, and 1 to 1 in between. It is thought that an FCC magnet with a Br of about .2T has not been put into practical use. If it is desired to obtain a magnet with desired magnetic properties using an FCC magnet, it is conceivable to adjust the magnet composition and consider the conditions of the heat treatment process accordingly. However, desired magnetic properties cannot be uniquely obtained by adjusting them, and many hurdles are expected before an FCC magnet with such magnetic properties can be obtained and put into practical use.

そこで本発明は、種々の磁気特性を有するFCC磁石を提供することを目的とする。 Therefore, an object of the present invention is to provide FCC magnets having various magnetic properties.

なお、磁石を低密度化する技術については、NdFeB系磁石において、空隙部を有する磁石を製造する試みがなされている。例えば、特許文献2には低密度焼結磁石が、特許文献3にはHDDR法で作製した多孔質磁石が開示されている。双方とも空隙部を有する構造とすることによって、焼結時の収縮を抑えることを目的とするものであって、磁気特性を調整することを目的とするものではない。鋳造法や圧延法で製造されるFCC磁石に関して、低密度化によって磁気特性を調整するという試みがなされたことはない。 As for the technique of reducing the density of magnets, attempts have been made to manufacture NdFeB-based magnets having voids. For example, Patent Document 2 discloses a low-density sintered magnet, and Patent Document 3 discloses a porous magnet produced by the HDDR method. By forming both structures with voids, the purpose is to suppress shrinkage during sintering, and the purpose is not to adjust magnetic properties. Regarding FCC magnets manufactured by casting or rolling methods, no attempt has been made to adjust the magnetic properties by lowering the density.

発明者らは、付加製造法を用いて従来のFCC磁石の密度より低い種々の密度のFCC磁石の造形体を作製し、それらを熱処理することによって、種々の磁気特性を有するFCC磁石を容易に得ることができることを見出し、例えば、保磁力HcBが50kA/m前後で、かつ残留磁束密度Bが1.3Tより低いFCC磁石が得られることを見出した。 The inventors used an additive manufacturing method to fabricate FCC magnet shapes with various densities lower than that of conventional FCC magnets, and by heat-treating them, they easily produced FCC magnets with various magnetic properties. For example, it has been found that an FCC magnet having a coercive force H cB of around 50 kA/m and a residual magnetic flux density B r lower than 1.3 T can be obtained.

本発明のある実施形態におけるFCC磁石体は、密度が3.0~7.1g/cmであることを特徴とする。 The FCC magnet in an embodiment of the present invention is characterized by a density of 3.0 to 7.1 g/cm 3 .

前記FCC磁石体は空隙部を有することが好ましい。 Preferably, the FCC magnet has a gap.

前記FCC磁石体の残留磁束密度Bは0.5~1.3Tであることが好ましい。 The residual magnetic flux density B r of the FCC magnet is preferably 0.5 to 1.3T.

本発明のある実施形態におけるFCC磁石体の製造方法は、付加製造法を用いて空隙部を有する造形体を作製し、それらを熱処理することによって、密度が3.0~7.1g/cmであるFCC磁石体を得ることを特徴とする。 In an embodiment of the present invention, a method for manufacturing an FCC magnet body uses an additive manufacturing method to produce a shaped body having voids, and heat-treats the shaped body to achieve a density of 3.0 to 7.1 g/cm 3 . The present invention is characterized in that an FCC magnet body is obtained.

前記付加製造法におけるエネルギー密度は50~95J/mmであることが好ましい。 The energy density in the additive manufacturing method is preferably 50 to 95 J/mm 3 .

本発明の別の実施形態におけるFCC磁石体は、密度が6.0~7.1g/cmであることを特徴とする。 The FCC magnet body in another embodiment of the invention is characterized by a density of 6.0 to 7.1 g/cm 3 .

前記FCC磁石体は造形図面として設計された空隙を有さないことが好ましい。 Preferably, the FCC magnet body does not have any voids designed as a modeling drawing.

前記FCC磁石体の残留磁束密度Bは1.0~1.3Tであることが好ましい。 The residual magnetic flux density B r of the FCC magnet is preferably 1.0 to 1.3T.

本発明の別の実施形態におけるFCC磁石体の製造方法は、付加製造法を用いて、エネルギー密度が20~45J/mmで造形体を作製し、それらを熱処理することによって密度が6.0~7.1g/cmであるFCC磁石体を得ることを特徴とする。 In another embodiment of the present invention, a method for manufacturing an FCC magnet body uses an additive manufacturing method to produce shaped bodies with an energy density of 20 to 45 J/mm 3 , and heat-treats them to have a density of 6.0 J/mm 3 . The present invention is characterized by obtaining an FCC magnet body having a weight of ~7.1 g/cm 3 .

本発明のある実施形態におけるFCC複合磁石体は、少なくとも、空隙部を有する密度が3.0~7.1g/cm以下である低密度部と、密度が7.1g/cmを超える高密度部とを有することを特徴とする。 The FCC composite magnet in an embodiment of the present invention has at least a low-density part having a void and a density of 3.0 to 7.1 g/cm 3 or less, and a high-density part having a density of more than 7.1 g/cm 3 . It is characterized by having a density part.

本発明の別の実施形態におけるFCC複合磁石体は、少なくとも、造形図面として設計された空隙を有さず密度が6.0~7.1g/cm以下である低密度部と、密度が7.1g/cmを超える高密度部とを有することを特徴とする。 The FCC composite magnet according to another embodiment of the present invention has at least a low-density portion that does not have any voids and has a density of 6.0 to 7.1 g/cm 3 or less as designed as a modeling drawing, and a low-density portion that has a density of 7.0 g/cm 3 or less. It is characterized by having a high density portion exceeding .1 g/cm 3 .

前記FCC複合磁石体は、前記高密度部と前記低密度部が周期的に変化する構造であることが好ましい。 Preferably, the FCC composite magnet has a structure in which the high-density portion and the low-density portion change periodically.

本発明のある実施形態におけるFCC磁石体の磁気特性調整方法は、付加製造法を用いて空隙部を有する密度が3.0~7.0g/cmのFCC合金造形体を製造し、熱処理することによって、FCC磁石体の残留磁束密度Bを0.5~1.3Tとすることを特徴とする。 A method for adjusting the magnetic properties of an FCC magnet according to an embodiment of the present invention includes manufacturing an FCC alloy shaped body having a void and a density of 3.0 to 7.0 g/cm 3 using an additive manufacturing method, and heat-treating the shaped body. Accordingly, the residual magnetic flux density B r of the FCC magnet body is set to 0.5 to 1.3T.

本発明の別の実施形態におけるFCC磁石体の磁気特性調整方法は、付加製造法を用いて密度が6.0~7.0g/cmであるFCC合金造形体を製造し、熱処理することによって、FCC磁石体の残留磁束密度Bを1.0~1.3Tとすることを特徴とする。 A method for adjusting the magnetic properties of an FCC magnet according to another embodiment of the present invention is to manufacture an FCC alloy shaped body having a density of 6.0 to 7.0 g/cm 3 using an additive manufacturing method, and heat-treat the body. , the residual magnetic flux density B r of the FCC magnet is 1.0 to 1.3T.

本発明により、種々の磁気特性を有するFCC磁石を提供することができる。
例えば、従来は容易に得ることができなかった、保磁力HcBが50kA/m前後で、かつ残留磁束密度Bが1.3Tより低いFCC磁石を提供することができる。
さらに、従来のFCC磁石より密度の低い、すなわち、従来のFCC磁石よりも軽いFCC磁石を提供することができる。
According to the present invention, FCC magnets having various magnetic properties can be provided.
For example, it is possible to provide an FCC magnet with a coercive force H cB of around 50 kA/m and a residual magnetic flux density B r lower than 1.3 T, which has not been easily available in the past.
Furthermore, an FCC magnet can be provided that is less dense than conventional FCC magnets, ie, lighter than conventional FCC magnets.

本発明の実施例における造形体の写真である。It is a photograph of a shaped object in an example of the present invention. 本発明の実施例におけるFCC磁石体の密度と磁気特性の関係を示すグラフである。It is a graph showing the relationship between the density and magnetic properties of an FCC magnet body in an example of the present invention. 本発明の実施例における試験片の構成を示す図である。It is a figure showing the composition of the test piece in the example of the present invention. 本発明の実施例における試験片を図3のZ方向から見た写真である。4 is a photograph of a test piece in an example of the present invention viewed from the Z direction in FIG. 3. 本発明の実施例における試験片を図3のY方向から見た写真である。4 is a photograph of a test piece in an example of the present invention viewed from the Y direction in FIG. 3.

最初に、FCC磁石について詳しく説明する。FCC磁石は、Fe、Cr、およびCoを含む金属材料を溶解し、冷却によって凝固した後、さらに、溶体化処理、磁場中熱処理、および時効処理などの熱処理工程を行うことによって製造され得る。これらの熱処理工程により、Fe-Cr-Co系合金中でスピノーダル分解が生じ、強磁性相の単磁区微粒子が非磁性マトリックス中に析出する。スピノーダル分解が生じるとき、特定方向の磁場を印加することにより、Fe-Cr-Co系合金に磁気異方性を与えることができる。従来のFCC磁石は鋳造法や圧延法で作製される。鋳造法や圧延法の詳細は本明細書では省略する。 First, the FCC magnet will be explained in detail. FCC magnets can be manufactured by melting a metal material containing Fe, Cr, and Co, solidifying it by cooling, and then performing a heat treatment process such as solution treatment, heat treatment in a magnetic field, and aging treatment. These heat treatment steps cause spinodal decomposition in the Fe--Cr--Co alloy, and single-domain fine particles of the ferromagnetic phase are precipitated in the non-magnetic matrix. When spinodal decomposition occurs, magnetic anisotropy can be imparted to the Fe-Cr-Co alloy by applying a magnetic field in a specific direction. Conventional FCC magnets are manufactured by casting or rolling methods. Details of the casting method and rolling method are omitted in this specification.

以下、熱処理工程前におけるFe-Cr-Co系合金を単に「FCC合金」と称し、熱処理工程後の「FCC磁石」とは区別する。また本明細書においては、付加製造法によって造形したFCC合金を「FCC合金造形体」または単に「造形体」と称し、FCC合金造形体を熱処理して得られたFCC磁石を「FCC磁石体」と称する。また、FCC合金造形体、およびFCC磁石体は、これらに対し、切削加工、切断加工等を施したものを含むものとする。さらに、後述の、部分的に異なる密度を有するFCC磁石体をFCC複合磁石体と称する。 Hereinafter, the Fe-Cr-Co alloy before the heat treatment process will be simply referred to as "FCC alloy" to distinguish it from the "FCC magnet" after the heat treatment process. Further, in this specification, an FCC alloy shaped by the additive manufacturing method is referred to as an "FCC alloy shaped body" or simply a "shaped body", and an FCC magnet obtained by heat-treating the FCC alloy shaped body is referred to as an "FCC magnet body". It is called. Further, the FCC alloy shaped body and the FCC magnet body include those that have been subjected to cutting, cutting, etc. Further, an FCC magnet body having partially different densities, which will be described later, will be referred to as an FCC composite magnet body.

また、本明細書において「密度」とは、合金、磁石中の空隙部を含んだ「見かけ密度」のことを言う。そして、FCC磁石体の密度とは、FCC磁石体の(質量/外形の体積)として計算され、FCC磁石体内部の部分的な磁石密度とは区別される。さらに、本発明における「空隙部」とは、造形図面として設計された空隙のことを言い、合金、磁石中に通常含まれうる微小な空隙や、後述の積層造形条件を変化させる方法により造形体の密度を低下させたことによって生じうる微小な空隙とは区別される。一方、本発明において「造形図面として設計された空隙を有さない」とは、造形図面として設計された空隙、すなわち後述の、造形図面(3次元CADデータ)として設計されたオープンな空隙部やクローズな空隙部を有さないことを言い、合金、磁石中に通常含まれうる微小な空隙や、後述の積層造形条件を変化させる方法により造形体の密度を低下させたことによって生じうる微小な空隙は有していてもよいものとする。 Further, in this specification, "density" refers to "apparent density" including voids in the alloy and magnet. The density of the FCC magnet is calculated as (mass/volume of external shape) of the FCC magnet, and is distinguished from the partial magnet density inside the FCC magnet. Furthermore, the term "void" in the present invention refers to a void designed as a modeling drawing, such as a minute void that is normally included in an alloy or a magnet, or a molded object formed by changing the additive manufacturing conditions described below. It is distinguished from minute voids that may be created by reducing the density of On the other hand, in the present invention, "having no voids designed as a modeling drawing" refers to voids designed as a modeling drawing, that is, open voids designed as a modeling drawing (3D CAD data) as described below. This means that there are no closed voids, including microscopic voids that are normally included in alloys and magnets, and microscopic voids that may occur when the density of the modeled object is reduced by changing the additive manufacturing conditions described below. It is assumed that there may be voids.

本発明のFCC磁石体は、付加製造法(具体的に積層造形法または3次元積層造形法と呼ばれることもある)によって作製することができる。付加製造法では、切削による除去的な加工や、型に材料を流し込んで固める成形加工とは異なり、メッシュ形状やポーラス形状をはじめとする、かつては製造が困難であった形状を容易かつ正確に製造できる。付加製造法には様々な手法があるが、例えば、パウダーベッドフュージョン方式の積層造形法では、粉末材料を一層ずつ造形ステージ全体に敷き詰め、各層毎に3次元CADデータに対応した所定の箇所にレーザ等を照射し、粉末材料を溶融・凝固させて一体化する。これを繰り返して目的の造形体を得ることが出来る。付加製造法では、材料として、樹脂だけでなく金属を用いることもできる。出願人は特許文献1および特願2021-019881号において、代表例としてパウダーベッドフュージョン方式の積層造形法を用いてFCC合金およびFCC磁石を製造する方法を開示している。 The FCC magnet of the present invention can be manufactured by an additive manufacturing method (specifically, sometimes referred to as an additive manufacturing method or a three-dimensional additive manufacturing method). Unlike subtractive processing through cutting or molding processing where material is poured into a mold and hardened, additive manufacturing methods can easily and accurately produce shapes that were previously difficult to manufacture, such as mesh shapes and porous shapes. Can be manufactured. There are various methods of additive manufacturing, but for example, in the powder bed fusion additive manufacturing method, powder material is spread layer by layer over the entire printing stage, and each layer is irradiated with a laser at a predetermined location corresponding to the 3D CAD data. etc., to melt and solidify the powder materials and integrate them. By repeating this process, the desired shaped object can be obtained. In the additive manufacturing method, not only resin but also metal can be used as the material. In Patent Document 1 and Japanese Patent Application No. 2021-019881, the applicant discloses a method of manufacturing an FCC alloy and an FCC magnet using a powder bed fusion additive manufacturing method as a representative example.

以下、付加製造法によってFCC磁石体を製造する方法について詳細に説明する。 Hereinafter, a method for manufacturing an FCC magnet using an additive manufacturing method will be described in detail.

[原料粉末]
本発明では、粉末状のFCC合金を原料として用いる。より詳細には、質量比で17~45%Cr、3~35%Co、5%以下の添加元素、残部はFeおよび不可避不純物からなるFCC合金であり、前記添加元素は、例えば、Ti、Mo、V、Si、およびAlからなる群から選択された少なくとも1種の元素である。前記添加元素は少なくともTiを含むことが好ましく、例えば、質量比で17~45%Cr、3~35%Co、0.1~5%Ti、残部はFeおよび不可避不純物からなる組成とすることが好ましく、20~40%Cr、5~14%Co、0.1~0.6%Ti、残部はFeおよび不可避不純物からなる組成とすることがより好ましい。Ti以外の元素を複合的に含有することもできる。目的とする組成のFCC合金が得られるように各元素の供給材料を所定量計量し混合してなる原材料をるつぼに装填し、高周波溶解し、るつぼ下のノズルから溶融した合金を落下させ、高圧アルゴンで噴霧してガスアトマイズ粉を作製する。このガスアトマイズ粉を分級して得られるFCC合金の粉末を付加製造法の原料粉末とする。
[Raw material powder]
In the present invention, a powdered FCC alloy is used as a raw material. More specifically, it is an FCC alloy consisting of 17 to 45% Cr, 3 to 35% Co, 5% or less of additional elements, and the remainder is Fe and unavoidable impurities, and the additional elements include, for example, Ti, Mo, etc. , V, Si, and Al. It is preferable that the additive element contains at least Ti, and for example, the composition may be made of 17 to 45% Cr, 3 to 35% Co, 0.1 to 5% Ti, and the balance is Fe and unavoidable impurities in terms of mass ratio. More preferably, the composition is 20 to 40% Cr, 5 to 14% Co, 0.1 to 0.6% Ti, and the balance is Fe and unavoidable impurities. It is also possible to contain elements other than Ti in combination. In order to obtain an FCC alloy with the desired composition, a predetermined amount of feed materials for each element are weighed and mixed. The raw materials are loaded into a crucible, melted by high frequency, and the molten alloy is dropped from a nozzle under the crucible and heated under high pressure. A gas atomized powder is produced by atomizing with argon. The FCC alloy powder obtained by classifying this gas atomized powder is used as the raw material powder for the additive manufacturing method.

[積層造形]
FCC合金の造形体を作製するにあたり、はじめに、造形体を層分割した3次元CADデータを作成する。次に、パウダーベッドフュージョン方式の積層造形機を用い、分割した層ごとにベースプレート上に供給した原料粉末をレーザ照射により高速溶融・急冷凝固させ、これを積層することでベースプレート上に3次元の造形体を作製する。最後に、造形体をベースプレートから切り離すことで、FCC合金の造形体を得る。
[Additive manufacturing]
In producing a shaped body of FCC alloy, first, three-dimensional CAD data in which the shaped body is divided into layers is created. Next, using a powder bed fusion type additive manufacturing machine, the raw material powder supplied onto the base plate in each divided layer is rapidly melted and rapidly solidified by laser irradiation, and then layered to form a three-dimensional model on the base plate. Create a body. Finally, the FCC alloy shaped body is obtained by separating the shaped body from the base plate.

種々の密度の造形体を作製する方法は大きく2種類の方法が考えられる。1つは、3次元CADデータで空隙部を有する造形図面を作成し、それによって空隙部を有する造形体を作製する方法であり、もう一つは、積層造形条件を変化させて粉末に与えるエネルギー密度を低くして粉末に未溶融状態を作ることによって造形体の密度を低下させる方法である。 There are two main methods for producing shaped bodies of various densities. One method is to create a modeling drawing with voids using 3D CAD data and thereby create a modeled object with voids, and the other method is to change the additive manufacturing conditions to apply energy to the powder. This is a method of lowering the density of a shaped object by lowering the density and creating an unfused state in the powder.

付加製造法によって作製した造形体の密度と熱処理後のFCC磁石体の密度はほとんど変化がないので、本発明においては密度が3.0~7.1g/cmであるFCC合金の造形体を作製する。FCC磁石の真密度は7.7g/cm程度、現在市販されている従来のFCC磁石や特許文献1記載の付加製造法によるFCC磁石の密度は真密度に近く7.5~7.6g/cm程度であり、本発明のFCC磁石体の密度はそれらより低い密度となる。 Since there is almost no change in the density of the shaped body produced by the additive manufacturing method and the density of the FCC magnet body after heat treatment, in the present invention, a shaped body of FCC alloy with a density of 3.0 to 7.1 g/cm 3 is used. Create. The true density of an FCC magnet is about 7.7 g/cm 3 , and the density of conventional FCC magnets currently on the market and FCC magnets manufactured by the additive manufacturing method described in Patent Document 1 is close to the true density, and is 7.5 to 7.6 g/cm 3 . cm3 , and the density of the FCC magnet of the present invention is lower than these.

ここで、積層造形条件は原料粉末の粒径や組成、造形体の大きさ・形状・特性、生産効率等を考慮して適宜定められる。本発明のFCC合金については、原料粉末を高速溶融させるためにレーザ照射によって投入するエネルギーの密度(熱源のエネルギー密度:J/mm)が20~95J/mmの範囲で、後述の方法により、密度が3.0~7.1g/cmの造形体を作製することができる。エネルギー密度が20J/mmより小さいと、造形体の強度が低く、磁石として実用に供することが困難になる。一方、 エネルギー密度が大き過ぎるとレーザ照射位置を中心とする広範囲の原料粉末が溶融し、造形体の形状を維持することが困難になる。磁気特性、特に角型比の低下や欠陥率の上昇を考慮すると、エネルギー密度は、35J/mm以上70J/mm以下の範囲が更に好ましい。さらに、このようなエネルギー密度を実現するためには、積層造形する際の原料粉末層の一層厚さは10~80μmとすることが好ましい。レーザの照射ビーム径は約0.1mmとすることが好ましい。レーザ出力は50~400Wとすることが好ましい。レーザ走査速度は400~2500mm/sとすることが好ましい。レーザ走査ピッチは0.04~0.15mmとすることが好ましい。ここで、 エネルギー密度E(J/mm)はレーザ出力P(W)、レーザ走査速度v(mm/s)、レーザ走査ピッチa(mm)、原料粉末層の一層厚さd(mm)を用いて式(1)から求められる。 Here, the additive manufacturing conditions are appropriately determined in consideration of the particle size and composition of the raw material powder, the size, shape, and characteristics of the molded object, production efficiency, and the like. Regarding the FCC alloy of the present invention, the energy density (heat source energy density: J/mm 3 ) input by laser irradiation in order to melt the raw material powder at high speed is in the range of 20 to 95 J/mm 3 and the method described below is used. , a shaped body with a density of 3.0 to 7.1 g/cm 3 can be produced. If the energy density is less than 20 J/mm 3 , the strength of the shaped body will be low and it will be difficult to put it to practical use as a magnet. On the other hand, if the energy density is too high, the raw material powder will melt over a wide range around the laser irradiation position, making it difficult to maintain the shape of the shaped object. In consideration of magnetic properties, particularly a decrease in squareness ratio and an increase in defect rate, the energy density is more preferably in the range of 35 J/mm 3 or more and 70 J/mm 3 or less. Furthermore, in order to achieve such an energy density, it is preferable that the thickness of each raw material powder layer during additive manufacturing is 10 to 80 μm. The laser irradiation beam diameter is preferably about 0.1 mm. The laser output is preferably 50 to 400W. The laser scanning speed is preferably 400 to 2500 mm/s. The laser scanning pitch is preferably 0.04 to 0.15 mm. Here, the energy density E (J/ mm3 ) is determined by the laser output P (W), the laser scanning speed v (mm/s), the laser scanning pitch a (mm), and the layer thickness d (mm) of the raw material powder layer. It is obtained from equation (1) using

E=P/(v×a×d) (1) E=P/(v×a×d) (1)

[空隙部を有する造形体を作製する方法]
空隙部を造形図面(3次元CADデータ)として設計する方法には、オープンな空隙部を設計する方法と、クローズな空隙部を設計する方法がある。
[Method of producing a shaped object having a void]
Methods for designing a void as a modeling drawing (three-dimensional CAD data) include a method for designing an open void and a method for designing a closed void.

オープンな空隙部を設計する方法とは、造形体表面と空隙部表面が連続、すなわち、空隙部が内部に独立せず外部に通じており、造形物取り出し後に粉末が造形体内部に残留しない設計方法である。これによって、造形体としての密度を低下させることができる。 The method of designing an open void is a design in which the surface of the modeled object and the surface of the void are continuous, that is, the void is not independent from the inside but communicates with the outside, and powder does not remain inside the model after the object is removed. It's a method. Thereby, the density of the shaped body can be reduced.

また、クローズな空隙部を設計する方法とは、造形体表面と空隙部表面が連続しておらず、すなわち、空隙部が内部に独立し外部に通じておらず、造形物取り出し後に粉末が造形体内部に残留する設計方法である。この方法によっても造形体としての密度を低下させることができる。 In addition, the method of designing a closed cavity means that the surface of the modeled object and the surface of the cavity are not continuous, that is, the cavity is independent inside and does not communicate with the outside, and after the object is taken out, the powder is This is a design method that allows it to remain inside the body. This method also allows the density of the shaped body to be reduced.

いずれも空隙部の形状や配置はどのようなものでもよい。例えば後述の実施例では、試験片に径が一律の貫通穴を複数設けているが、穴の形状は円形に限らず不定形でもよく、径は一律でなくてもよいし、貫通していなくてもよい。立体格子状や網目状でもよい。 In either case, the shape and arrangement of the voids may be arbitrary. For example, in the example described later, a plurality of through holes with a uniform diameter are provided in the test piece, but the shape of the holes is not limited to circular, but can be irregular, the diameter does not have to be uniform, and the holes do not have to be penetrating. It's okay. A three-dimensional lattice shape or a mesh shape may also be used.

この場合の積層造形条件は、エネルギー密度が50~95J/mmの範囲とすることが好ましく、60~80J/mmの範囲とすることがより好ましい。これにより、空隙部以外の部分の造形体密度を従来のFCC合金の密度と同等とし、空隙部も合わせた造形体全体の平均密度として3.0~7.1g/cmとする。また、後述の通り、エネルギー密度を前記範囲内で変化させることによって造形体の密度を調整してもよい。 In this case, the additive manufacturing conditions are such that the energy density is preferably in the range of 50 to 95 J/mm 3 , more preferably 60 to 80 J/mm 3 . As a result, the density of the shaped body in parts other than the voids is equal to that of conventional FCC alloys, and the average density of the entire shaped body including the voids is 3.0 to 7.1 g/cm 3 . Further, as described later, the density of the shaped body may be adjusted by changing the energy density within the above range.

空隙部を有する造形体を作製する方法によれば、空隙部以外の部分の合金の密度が従来のFCC合金の密度と同等であるため、残留磁束密度Bのみを従来のFCC磁石よりも低下させ、保磁力HcBや角型比Hの低下を極力抑えることができる。 According to the method of producing a shaped body having a void, the density of the alloy in the portion other than the void is equivalent to the density of a conventional FCC alloy, so only the residual magnetic flux density B r is lower than that of a conventional FCC magnet. This makes it possible to suppress a decrease in coercive force HcB and squareness ratio Hk as much as possible.

[積層造形条件を変化させて造形体の密度を低下させる方法]
この方法では、積層造形条件のエネルギー密度を変化させることによって、粉末に与えるエネルギー密度を低くして粉末に未溶融状態を作ることにより、造形体の密度を変化させることができる。エネルギー密度E(J/mm)は、上述の通りE=P/(v×a×d)として表され、レーザ出力Pを下げる、速度vを上げる等で、エネルギー密度を変化させることができる。
[Method of reducing the density of the modeled object by changing the additive manufacturing conditions]
In this method, by changing the energy density of the additive manufacturing conditions, the density of the shaped body can be changed by lowering the energy density applied to the powder and creating an unmolten state in the powder. The energy density E (J/mm 3 ) is expressed as E=P/(v×a×d) as described above, and the energy density can be changed by lowering the laser output P, increasing the speed v, etc. .

この場合、エネルギー密度を25~45J/mmの範囲で変化させることにより、造形体の密度を6.0~7.1g/cmとすることができる。造形体の強度、角型比の低下等を考慮すると、エネルギー密度を30~45J/mmの範囲で変化させ、造形体の密度を6.5~7.1g/cmとすることが好ましい。 In this case, by changing the energy density in the range of 25 to 45 J/mm 3 , the density of the shaped body can be set to 6.0 to 7.1 g/cm 3 . Considering the strength of the shaped body, the reduction in squareness ratio, etc., it is preferable to vary the energy density in the range of 30 to 45 J/mm 3 and set the density of the shaped body to 6.5 to 7.1 g/cm 3 . .

積層造形条件を変化させる方法によれば、造形体は内部に造形図面として設計された空隙を有さない。ただし、以上の積層造形条件を変化させて造形体の密度を低下させる方法と、前述の空隙部を造形図面として設計する方法とを組み合わせてもよい。すなわち、前述の通り、空隙部を有する造形体を成形するときの積層造形条件をエネルギー密度が50~95J/mmの範囲内で変化させて、種々の密度の造形体を形成してもよい。 According to the method of changing the additive manufacturing conditions, the molded object does not have a void designed as a molding drawing inside. However, the above method of changing the layered manufacturing conditions to reduce the density of the molded object and the method of designing the above-mentioned void portion as a molding drawing may be combined. That is, as mentioned above, the additive manufacturing conditions when molding a shaped body having voids may be varied within the energy density range of 50 to 95 J/mm 3 to form shaped bodies with various densities. .

[熱処理]
造形後には、造形体の溶体化処理、磁場中での熱処理、時効処理を行う。
[Heat treatment]
After modeling, the shaped body is subjected to solution treatment, heat treatment in a magnetic field, and aging treatment.

溶体化処理は、真空もしくは減圧雰囲気、または酸化性雰囲気(典型的には大気中)において、造形体の温度を600℃以上950℃以下、好ましくは700℃以上850℃以下の範囲で、例えば10分以上20分以下の間、維持する。この溶体化処理によってFCC系合金は、強磁性元素と非磁性元素との固溶体(α相)から構成された状態になる。 The solution treatment is performed in a vacuum or reduced pressure atmosphere, or in an oxidizing atmosphere (typically in the air), at a temperature of 600°C or more and 950°C or less, preferably 700°C or more and 850°C or less, for example, 10 Maintain for at least 20 minutes. Through this solution treatment, the FCC alloy becomes a state composed of a solid solution (α phase) of a ferromagnetic element and a nonmagnetic element.

磁場中熱処理は、例えば200kA/m以上の磁場中で造形体の温度を600℃以上700℃以下、好ましくは620℃以上660℃以下の範囲で、例えば60分以上90分以下の間、維持する。この磁場中熱処理によってFCC系合金では、スピノーダル分解が進行し、α1相(FeCo強磁性相)およびα2相(Cr非磁性相)の2相に分離した状態に変化する。スピノーダル分解が進行するときに磁場が印加されているため、強磁性のα1相が磁場の向きに整合して長く成長する。その結果、形状磁気異方性を発現させることができる。磁場中熱処理の雰囲気も大気中でよい。 The heat treatment in a magnetic field is performed by maintaining the temperature of the shaped object in a magnetic field of 200 kA/m or higher, for example, in a range of 600° C. or higher and 700° C. or lower, preferably 620° C. or higher and 660° C. or lower, for example, for 60 minutes or more and 90 minutes or less. . By this heat treatment in a magnetic field, spinodal decomposition progresses in the FCC alloy, and the alloy changes into a state where it is separated into two phases: α1 phase (FeCo ferromagnetic phase) and α2 phase (Cr nonmagnetic phase). Since a magnetic field is applied when spinodal decomposition progresses, the ferromagnetic α1 phase grows long in alignment with the direction of the magnetic field. As a result, shape magnetic anisotropy can be developed. The atmosphere for the magnetic field heat treatment may also be air.

時効処理は400℃以上670℃以下の温度範囲で行う。時効処理では、磁場中熱処理の温度よりも5~30℃程度低い時効処理開始温度(例えば570~670℃)から時効処理終了温度(例えば400~600℃)まで、毎時1~7℃、好ましくは毎時2~6℃の降温速度で行う制御冷却の過程が含まれていることが好ましい。磁場中熱処理の温度から、いったん時効処理開始温度未満まで降温させてもよい。その場合は、時効処理開始温度まで昇温してから冷却を開始する。これによって、α1相とα2相の組成差を拡大させ、よりFeCoに富む相とCrに富む相に分離することができるため、α1相をより磁場方向に成長させて保磁力を高くすることが可能になる。時効処理の雰囲気も大気中でよい。 The aging treatment is performed at a temperature range of 400°C or higher and 670°C or lower. In the aging treatment, the aging treatment is performed at 1 to 7 degrees Celsius per hour, preferably from an aging treatment start temperature (for example, 570 to 670 degrees Celsius) that is about 5 to 30 degrees Celsius lower than the temperature of the heat treatment in a magnetic field, to an aging treatment end temperature (for example, 400 to 600 degrees Celsius). Preferably, a controlled cooling process is included at a rate of temperature drop of 2 to 6° C. per hour. The temperature may be lowered from the temperature of heat treatment in a magnetic field to below the aging treatment start temperature. In that case, cooling is started after the temperature is raised to the aging treatment start temperature. This increases the compositional difference between the α1 phase and α2 phase, allowing them to be separated into a FeCo-rich phase and a Cr-rich phase, making it possible to grow the α1 phase more in the direction of the magnetic field and increase the coercive force. It becomes possible. The atmosphere for the aging treatment may also be air.

前述の通り、熱処理前後で磁石密度はほとんど変わらず、以上の方法により、密度が3.0~7.1g/cmのFCC磁石体を作製することができる。また、磁石組成にもよるが、熱処理後の磁気特性は、保磁力HcBは48~50kA/m程度に保ったまま、残留磁束密度Bが0.5~1.3T程度となり、磁石組成や熱処理条件を種々の条件に調整することなく、種々の磁気特性のFCC磁石体を作製できる。 As mentioned above, the magnet density is almost unchanged before and after heat treatment, and by the above method, an FCC magnet body with a density of 3.0 to 7.1 g/cm 3 can be produced. Although it depends on the magnet composition, the magnetic properties after heat treatment are such that the coercive force H cB is maintained at about 48 to 50 kA/m, and the residual magnetic flux density B r is about 0.5 to 1.3 T. FCC magnet bodies with various magnetic properties can be produced without adjusting heat treatment conditions to various conditions.

[FCC複合磁石体]
付加製造法によれば、積層時にエネルギー密度を変えたり、空隙のある部分とない部分を組み合わせたCADデータを用いて造形することによって、部分的に異なる密度を有するFCC複合磁石体を作製することが可能である。例えば、積層時にエネルギー密度を変える方法によれば、少なくとも、密度が6.0~7.1g/cmである低密度部分と、密度が7.1g/cmを超える高密度部分とを有するFCC複合磁石体を得ることができる。また、空隙のある部分とない部分を組み合わせる方法によれば、少なくとも、空隙部を有し密度が3.0~7.1g/cmである低密度部分と、密度が7.1g/cmを超える高密度部分とを有するFCC複合磁石体を得ることができる。さらに、これらの高密度部分と低密度部分が周期的に変化する構造のFCC複合磁石体を作製することができる。このようなFCC複合磁石体は、例えば、エンコーダの磁気スケールなどへの応用が期待できる。
[FCC composite magnet]
According to the additive manufacturing method, FCC composite magnets with partially different densities can be created by changing the energy density during lamination or by modeling using CAD data that combines parts with and without voids. is possible. For example, according to a method of changing energy density during lamination, there is at least a low-density portion with a density of 6.0 to 7.1 g/cm 3 and a high-density portion with a density of more than 7.1 g/cm 3 An FCC composite magnet can be obtained. Furthermore, according to the method of combining parts with and without voids, at least a low-density part with voids and a density of 3.0 to 7.1 g/cm 3 and a density of 7.1 g/cm 3 It is possible to obtain an FCC composite magnet having a high-density portion exceeding . Furthermore, it is possible to produce an FCC composite magnet having a structure in which these high-density portions and low-density portions change periodically. Such an FCC composite magnet can be expected to be applied to, for example, a magnetic scale of an encoder.

実施例1では、レーザ照射条件を変えてエネルギー密度が異なる造形体試験片を作製することによって、密度の異なる試験片を作製した。 In Example 1, test pieces with different densities were produced by changing the laser irradiation conditions to produce shaped test pieces with different energy densities.

組成が質量%で、10.1%のCo、24.5%のCr、0.2%のTi、0.5%のC、残部Feとなるように各元素の供給材料を所定量計量し混合してなる原材料をるつぼに装填し、真空中で高周波溶解し、るつぼ下の直径5mmノズルから溶融した合金を落下させ、高圧アルゴンで噴霧してガスアトマイズ粉を作製した。このガスアトマイズ粉を分級して10~60μmのFCC合金粉末を得た。これを原料粉末とした。 A predetermined amount of the feed material of each element was weighed so that the composition was 10.1% Co, 24.5% Cr, 0.2% Ti, 0.5% C, and the balance Fe in mass%. The mixed raw materials were loaded into a crucible, subjected to high frequency melting in a vacuum, and the molten alloy was dropped from a 5 mm diameter nozzle under the crucible and sprayed with high pressure argon to produce gas atomized powder. This gas atomized powder was classified to obtain FCC alloy powder of 10 to 60 μm. This was used as a raw material powder.

パウダーベッドフュージョン方式の3次元積層造形機(EOS社製EOS-M290)を用い、S45C製ベースプレート上に供給した原料粉末をレーザ照射による高速溶融・急冷凝固させて、レーザ出力(W)およびエネルギー密度J/mmが表1、その他の条件が
・原料粉末層の一層厚さ/0.04mm
・レーザビーム径/約0.1mm
・レーザ走査速度/800mm/s
・走査ピッチ/0.09mm
の積層造形条件で1辺が約10mmの造形体を作製した。
Using a powder bed fusion type three-dimensional additive manufacturing machine (EOS-M290 manufactured by EOS), the raw material powder supplied onto the S45C base plate is rapidly melted and rapidly solidified by laser irradiation, and the laser output (W) and energy density are determined. J/mm 3 is shown in Table 1, other conditions are: Thickness of raw material powder layer/0.04mm
・Laser beam diameter/approx. 0.1mm
・Laser scanning speed/800mm/s
・Scanning pitch/0.09mm
A shaped body having a side of approximately 10 mm was produced under the following additive manufacturing conditions.

Figure 2023132665000002
Figure 2023132665000002

造形体の熱処理として、先ず、溶体化処理900℃、1.3時間、次いで、260kA/mの磁界中、620℃、2.5時間、更に、時効処理625℃、1.2時間を施した。その後、5℃/分程度で冷却した。 As for the heat treatment of the shaped body, first, solution treatment was performed at 900°C for 1.3 hours, then in a magnetic field of 260 kA/m, 620°C for 2.5 hours, and further aging treatment was performed at 625°C for 1.2 hours. . Thereafter, it was cooled at a rate of about 5° C./min.

[磁気特性]
着磁後、造形体の磁気特性評価は、B-Hトレーサーを用いて行った。各造形体のB-H曲線を求め、B-H曲線より、表1の通りであった。なお、表1の密度は、熱処理後の造形体の正確な寸法と重量から割り出したものである。
[Magnetic properties]
After magnetization, the magnetic properties of the shaped body were evaluated using a BH tracer. The BH curve of each shaped body was determined, and the results were as shown in Table 1 from the BH curve. Note that the densities in Table 1 were determined from the exact dimensions and weight of the shaped bodies after heat treatment.

表1より、エネルギー密度が25J/mm未満では、造形時に崩れてしまい、造形体が形成できない条件があった(No.1-1および1-3)。さらに、No.1-2は角型性が低く(H=14.1kA/m)、異方性FCC磁石として実用に供することが難しい値であった(以上、比較例)。エネルギー密度が25~42J/mmでは、造形結果は良好で、Bを1Tまで下げることができ、その他の磁気特性も実用上問題なく、密度が6.0~7.1g/cmで、従来は簡単に得られなかった磁気特性のFCC磁石体が得られたことが確認できた(No.1-4~8、実施例)。また、エネルギー密度が45J/mm以上では、造形結果は良好であったが、密度および磁気特性は従来のFCC磁石とあまり差がないものであった(参考例)。 As shown in Table 1, when the energy density was less than 25 J/mm 3 , there were conditions in which the molded object collapsed during modeling and the molded object could not be formed (Nos. 1-1 and 1-3). Furthermore, No. No. 1-2 had low squareness (H k =14.1 kA/m), a value that made it difficult to put it to practical use as an anisotropic FCC magnet (the above are comparative examples). When the energy density is 25 to 42 J/cm 3 , the printing results are good, B r can be lowered to 1 T, and other magnetic properties have no practical problems, and when the density is 6.0 to 7.1 g/cm 3 . It was confirmed that FCC magnets with magnetic properties that could not be easily obtained in the past were obtained (Nos. 1-4 to 8, Examples). Further, when the energy density was 45 J/mm 3 or more, the modeling results were good, but the density and magnetic properties were not much different from conventional FCC magnets (reference example).

実施例2では、図1のように空隙部の穴径の異なる造形図面(3次元CADデータ)を作成し、表2の通り、造形体試験片内部に異なる径の貫通した穴を形成することによって、3種類の密度(平均密度)の異なる試験片を作製した。表2には、穴径の他、穴径から計算した空隙部の体積割合、熱処理後の造形体の正確な寸法と重量から割り出した密度を示す。実施例2におけるレーザ出力は200W、エネルギー密度は69.4J/mm、その他の造形条件は実施例1と同様とした。造形後、実施例1と同様に熱処理および磁気特性の評価を行った。 In Example 2, modeling drawings (three-dimensional CAD data) with different hole diameters in the void portion are created as shown in Figure 1, and penetrating holes with different diameters are formed inside the shaped object test piece as shown in Table 2. Test specimens with three different densities (average densities) were prepared. Table 2 shows, in addition to the hole diameter, the volume ratio of the void portion calculated from the hole diameter, and the density determined from the exact dimensions and weight of the shaped body after heat treatment. In Example 2, the laser output was 200 W, the energy density was 69.4 J/mm 3 , and other modeling conditions were the same as in Example 1. After modeling, heat treatment and evaluation of magnetic properties were performed in the same manner as in Example 1.

Figure 2023132665000003
Figure 2023132665000003

図1および表2の通り、空隙部を造形図面(3次元CADデータ)として設計する方法によって、密度(平均密度)の異なる試験片を作製できた。造形結果は全て良好で、磁気特性も保磁力や角型性をほとんど低下させることなくBの値を0.5T付近まで落とすことができることがわかった。 As shown in FIG. 1 and Table 2, test pieces with different densities (average densities) could be produced by designing the voids as modeling drawings (three-dimensional CAD data). All of the molding results were good, and it was found that the magnetic properties could be reduced to around 0.5T with almost no decrease in coercive force or squareness .

図2は実施例1および実施例2における磁石密度とBの関係を表したグラフである。実施例1、2ともに、磁石密度とBは相関があるが、その傾きは実施例2の方が緩やかであり、実施例1-2(磁気特性結果は不合格)と実施例2-2の比較に見られるように、同程度の密度でよりBの高いFCC磁石体を作製できることが確認できた。さらに、実施例1-4、1-5と実施例2-2の比較に見られるように、同程度のBでより密度の低い(軽い)FCC磁石体を作製できることが確認できた。また実施例2では、実施例1よりも低い密度まで造形可能であり、空隙部の大きさを調整することによって密度が3.0~7.1g/cmで、Bが0.5~1.3TであるFCC磁石体を作製できることが確認できた。 FIG. 2 is a graph showing the relationship between magnet density and Br in Examples 1 and 2. In both Examples 1 and 2, there is a correlation between magnet density and B r , but the slope is gentler in Example 2. As can be seen in the comparison, it was confirmed that an FCC magnet body with a higher Br could be produced with the same density. Furthermore, as seen in the comparison between Examples 1-4 and 1-5 and Example 2-2, it was confirmed that a lower density (lighter) FCC magnet can be produced with the same amount of Br . Furthermore, in Example 2, it is possible to print to a lower density than in Example 1, and by adjusting the size of the void, the density is 3.0 to 7.1 g/cm 3 and B r is 0.5 to 7.1 g/cm 3 . It was confirmed that a 1.3T FCC magnet could be produced.

実施例3では、図3のように、異なる密度の低密度部1と高密度部2を組み合わせた試験片を作製した。試験片は最初にX方向の寸法がx2の高密度部1を造形し、その後矢印の方向にX方向の寸法が各々x3の低密度部2と高密度部1を交互に造形した。造形条件は表3の通りである。高密度部1は実施例1-16と同じ造形条件、低密度部2はそれよりエネルギー密度を低くするか、実施例1-16と同じ造形条件で空隙部を設ける方法で造形した。図4は作製した試験片を図3のZ方向から見た写真、図5は図3のY方向から見た写真である。 In Example 3, as shown in FIG. 3, a test piece was prepared in which a low-density part 1 and a high-density part 2 of different densities were combined. For the test piece, first, a high-density part 1 having a dimension in the X direction of x2 was formed, and then a low-density part 2 and a high-density part 1 each having a dimension in the X direction of x3 were alternately formed in the direction of the arrow. The modeling conditions are shown in Table 3. The high-density portion 1 was molded under the same molding conditions as in Example 1-16, and the low-density portion 2 was molded by lowering the energy density or by providing a void under the same molding conditions as in Example 1-16. FIG. 4 is a photograph of the prepared test piece viewed from the Z direction of FIG. 3, and FIG. 5 is a photograph of the prepared test piece viewed from the Y direction of FIG.

Figure 2023132665000004
Figure 2023132665000004

ここで、高密度部1と低密度部2の各々の正確な密度を測定するには試験片を破壊して高密度部1と低密度部2に分けなければならず、これらの密度は測定困難であるが、高密度部1は造形条件が実施例1-16と同じであることからその密度は7.55g/cm前後、低密度部2は、造形条件が高密度部1と同じで、穴を有しており、穴径から計算した空隙部の体積割合が実施例2-2と2-3の間(密度3.68~5.70g/cm)であるか、または、造形条件のエネルギー密度が実施例1-4(密度6.24g/cm)と同じであるので、それらの密度は高密度部1より低いと考えられ、高密度部1と低密度部2が周期的に変化する構造のFCC複合磁石体が作製できることが確認できた。 Here, in order to accurately measure the density of each of the high-density part 1 and the low-density part 2, it is necessary to break the test piece and divide it into high-density part 1 and low-density part 2, and these densities cannot be measured. Although it is difficult, since the printing conditions for high-density part 1 are the same as those in Example 1-16, its density is around 7.55 g/ cm3 , and for low-density part 2, the printing conditions are the same as for high-density part 1. and has a hole, and the volume ratio of the void calculated from the hole diameter is between Examples 2-2 and 2-3 (density 3.68 to 5.70 g/cm 3 ), or Since the energy density of the modeling conditions is the same as in Example 1-4 (density 6.24 g/cm 3 ), their density is considered to be lower than that of high-density part 1, and high-density part 1 and low-density part 2 are It was confirmed that an FCC composite magnet with a periodically changing structure could be produced.

本発明は、例えば、保磁力HcBが50kA/m前後で、残留磁束密度Bが1.3Tより低いFCC磁石体が得られる、という点において、産業上の利用可能性を有する。 The present invention has industrial applicability in that, for example, an FCC magnet having a coercive force H cB of around 50 kA/m and a residual magnetic flux density B r lower than 1.3 T can be obtained.

1 高密度部
2 低密度部
1 High density part 2 Low density part

Claims (14)

密度が3.0~7.1g/cmであることを特徴とするFCC磁石体。 An FCC magnet having a density of 3.0 to 7.1 g/cm 3 . 空隙部を有することを特徴とする請求項1記載のFCC磁石体。 The FCC magnet according to claim 1, characterized in that it has a cavity. 残留磁束密度Bは0.5~1.3Tである、請求項1または2記載のFCC磁石体。 The FCC magnet according to claim 1 or 2, wherein the residual magnetic flux density B r is 0.5 to 1.3T. 付加製造法を用いて空隙部を有する造形体を作製し、それらを熱処理することによって、請求項1記載のFCC磁石体を得ることを特徴とする、FCC磁石体の製造方法。 2. A method for producing an FCC magnet, which comprises producing a shaped body having a void using an additive manufacturing method, and heat-treating the shaped body, thereby obtaining the FCC magnet according to claim 1. 前記付加製造法におけるエネルギー密度は50~95J/mmである、請求項4記載のFCC磁石体の製造方法。 5. The method for manufacturing an FCC magnet according to claim 4, wherein the energy density in the additive manufacturing method is 50 to 95 J/mm 3 . 密度が6.0~7.1g/cmであることを特徴とするFCC磁石体。 An FCC magnet having a density of 6.0 to 7.1 g/cm 3 . 造形図面として設計された空隙を有さないことを特徴とする請求項6記載のFCC磁石体。 7. The FCC magnet according to claim 6, characterized in that it does not have any voids designed as a modeling drawing. 残留磁束密度Bが1.0~1.3Tであること請求項6記載のFCC磁石体。 The FCC magnet according to claim 6, wherein the residual magnetic flux density B r is 1.0 to 1.3T. 付加製造法を用いて、エネルギー密度が20~45J/mmで造形体を作製し、それらを熱処理することによって請求項6記載のFCC磁石体を得ることを特徴とする、FCC磁石体の製造方法。 Production of an FCC magnet body, characterized in that the FCC magnet body according to claim 6 is obtained by producing shaped bodies with an energy density of 20 to 45 J/mm 3 using an additive manufacturing method and heat-treating them. Method. 少なくとも、空隙部を有し密度が3.0~7.1g/cm以下である低密度部と、密度が7.1g/cmを超える高密度部とを有することを特徴とするFCC複合磁石体。 FCC composite characterized by having at least a low-density part having voids and a density of 3.0 to 7.1 g/cm 3 or less, and a high-density part having a density of more than 7.1 g/cm 3 magnetic body. 少なくとも、密度が6.0~7.1g/cm以下である低密度部と、密度が7.1g/cmを超える高密度部とを有することを特徴とするFCC複合磁石体。 An FCC composite magnet having at least a low-density part with a density of 6.0 to 7.1 g/cm 3 or less and a high-density part with a density of more than 7.1 g/cm 3 . 高密度部と低密度部が周期的に変化する構造である、請求項9または10記載のFCC複合磁石体。 The FCC composite magnet according to claim 9 or 10, wherein the high-density portion and the low-density portion have a structure that changes periodically. 付加製造法を用いて空隙部を有する密度が3.0~7.0g/cmのFCC合金造形体を製造し、熱処理することによって、FCC磁石体の残留磁束密度Bを0.5~1.3Tとすることを特徴とするFCC磁石体の磁気特性調整方法。 By manufacturing an FCC alloy shaped body having a density of 3.0 to 7.0 g/cm 3 with voids using an additive manufacturing method and heat treating it, the residual magnetic flux density B r of the FCC magnet body can be reduced to 0.5 to 7.0 g/cm 3 . A method for adjusting the magnetic properties of an FCC magnet, characterized by setting it to 1.3T. 付加製造法を用いて密度が6.0~7.0g/cmであるFCC合金造形体を製造し、熱処理することによって、FCC磁石体の残留磁束密度Bを1.0~1.3Tとすることを特徴とするFCC磁石体の磁気特性調整方法。 By manufacturing an FCC alloy shaped body with a density of 6.0 to 7.0 g/cm 3 using an additive manufacturing method and heat treating it, the residual magnetic flux density B r of the FCC magnet body can be reduced to 1.0 to 1.3 T. A method for adjusting magnetic properties of an FCC magnet, characterized by:
JP2022038125A 2022-03-11 2022-03-11 Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet Pending JP2023132665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022038125A JP2023132665A (en) 2022-03-11 2022-03-11 Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022038125A JP2023132665A (en) 2022-03-11 2022-03-11 Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet

Publications (1)

Publication Number Publication Date
JP2023132665A true JP2023132665A (en) 2023-09-22

Family

ID=88065050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022038125A Pending JP2023132665A (en) 2022-03-11 2022-03-11 Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet

Country Status (1)

Country Link
JP (1) JP2023132665A (en)

Similar Documents

Publication Publication Date Title
Chaudhary et al. Additive manufacturing of magnetic materials
KR102121181B1 (en) Method of manufacturing soft magnetic dust core and soft magnetic dust core
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
JP2004204296A (en) BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
KR20200104288A (en) Stainless steel powder for molding
KR102323140B1 (en) Method for manufacturing Fe based soft magnetic alloy and Fe based soft magnetic alloy therefrom
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
Shen et al. Fabrication of large-size Fe-based glassy cores with good soft magnetic properties by spark plasma sintering
TWI478184B (en) Powder mixture for dust cores, dust cores and manufacturing method for dust cores
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JP2023132665A (en) Fcc magnet, fcc magnet manufacturing method, fcc composite magnet, and method for adjusting magnetic properties of fcc magnet
US20200020481A1 (en) Magnet manufacturing by additive manufacturing using slurry
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2018170483A (en) R-t-b based rare earth sintered magnet alloy, and method for manufacturing r-t-b based rare earth sintered magnet
WO2022172995A1 (en) Iron-chromium-cobalt alloy magnet and method for producing same
JP2021042456A (en) Iron-chromium-cobalt-based laminated hard magnetic material and method for producing the same
JP3848217B2 (en) Sintered soft magnetic material and manufacturing method thereof
JP6370827B2 (en) Manufacturing method of sintered magnet
JP2023081465A (en) Magnet filter formed of iron-chrome-cobalt based magnet and production method thereof
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JP7108014B2 (en) Fe-based alloy powder
KR20230041640A (en) Fe-based soft magnetic alloy and method for manufacturing thereof
WO2022209466A1 (en) Method for producing r-t-b-based sintered magnet
JP7238504B2 (en) Bulk body for rare earth magnet
JP2024518146A (en) Magnetic field sensitive member, its manufacturing method and use