JP2023131795A - Voltage controller and voltage control method - Google Patents

Voltage controller and voltage control method Download PDF

Info

Publication number
JP2023131795A
JP2023131795A JP2022036747A JP2022036747A JP2023131795A JP 2023131795 A JP2023131795 A JP 2023131795A JP 2022036747 A JP2022036747 A JP 2022036747A JP 2022036747 A JP2022036747 A JP 2022036747A JP 2023131795 A JP2023131795 A JP 2023131795A
Authority
JP
Japan
Prior art keywords
voltage
line
phase
series transformer
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022036747A
Other languages
Japanese (ja)
Inventor
謙治 苻川
Kenji Fukawa
直人 井深
Naoto Ibuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2022036747A priority Critical patent/JP2023131795A/en
Publication of JP2023131795A publication Critical patent/JP2023131795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a voltage controller capable of preventing magnetic saturation of an iron core of a series transformer, and a voltage control method.SOLUTION: A voltage controller 10 which is connected to a single-phase three-wire distribution line, changes an input phase of a semiconductor element after switching of a tap to constitute a tap switch 13a, to an optimum phase according to a combination of the taps before and after the switching. Accordingly, accumulation of a magnetic flux of an iron core constituting series transformers 11 and 12 can be suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、単相の配電線路に接続される電圧調整器による電圧調整時に、電圧調整器を構成する直列変圧器の鉄心が磁気飽和することを防止して、励磁突入電流が流れることを防止する電圧調整器とその電圧調整方法に関するものである。 The present invention prevents magnetic saturation of the iron core of the series transformer that constitutes the voltage regulator during voltage regulation by a voltage regulator connected to a single-phase power distribution line, thereby preventing the flow of excitation inrush current. This invention relates to a voltage regulator and its voltage regulation method.

単相の配電線路に接続される電圧調整器には、配電線路の二本の電圧線に二次巻線が接続される直列変圧器の一次巻線に印加する電圧をタップにより切り換え、該直列変圧器の二次巻線に誘起する電圧の極性と大きさを切り換えることにより、配電線路の出力電圧を調整するものが知られている。 A voltage regulator connected to a single-phase distribution line uses a tap to switch the voltage applied to the primary winding of a series transformer whose secondary winding is connected to two voltage lines of the distribution line. It is known to adjust the output voltage of a power distribution line by switching the polarity and magnitude of the voltage induced in the secondary winding of a transformer.

前記タップとしては、電磁接触器などの機械式接点を使用するもののほか、下記特許文献1に示されるような、半導体素子のスイッチングを利用したものが知られている。タップ切り換えに半導体素子を利用することによって、電圧調整器の小型化や、接点寿命の解消、接点開閉時の無音化が図れるメリットがある。 As the tap, there are known taps that use mechanical contacts such as electromagnetic contactors, as well as taps that utilize switching of semiconductor elements, as shown in Patent Document 1 listed below. The use of semiconductor elements for tap switching has the advantage of reducing the size of the voltage regulator, reducing the lifespan of the contacts, and eliminating noise when the contacts open and close.

特開2015-023593号公報Japanese Patent Application Publication No. 2015-023593

当該特許文献1記載の電圧調整器は、入力電圧を平衡させる電圧平衡器と、単相三線式の電圧線に直列接続されて、 タップの切り換えによって電圧の下降および上昇を調整する直列変圧器と、該変圧器の極性切換を行う開閉器、および、本装置の二次電圧の監視と前記開閉器の切り換え動作を制御する制御装置を備えて構成されており、前記開閉器は半導体素子によるスイッチングによって前記変圧器のタップ切換を行っている。 The voltage regulator described in Patent Document 1 includes a voltage balancer that balances input voltage, and a series transformer that is connected in series to a single-phase three-wire voltage line and adjusts voltage drop and rise by switching taps. , a switch that switches the polarity of the transformer, and a control device that monitors the secondary voltage of the device and controls the switching operation of the switch, and the switch is a switching device using a semiconductor element. The taps of the transformer are changed by.

当該構成の電圧調整器によれば、電圧平衡器によって単相三線式の配電線路における負荷のバランスをとりつつ、当該配電線路に電圧変動が生じた場合は 、制御装置の監視機能によってこれを検出し、開閉器の極性切換と直列変圧器タップの切換えによって、当該電圧変動を確実に解消することができる。 According to the voltage regulator with this configuration, while the voltage balancer balances the load on the single-phase three-wire distribution line, if a voltage fluctuation occurs on the distribution line, this is detected by the monitoring function of the control device. However, by switching the polarity of the switch and switching the series transformer tap, the voltage fluctuation can be reliably eliminated.

然るに、前記電圧調整器は、タップの切り換え時、電圧線に接続した直列変圧器を構成する鉄心が磁気飽和を起こす可能性がある。鉄心が磁気飽和を起こすと、直列変圧器に励磁突入電流が流れ、タップの切り換えを行う半導体素子が破壊される可能性が高い。 However, in the voltage regulator, when switching taps, there is a possibility that magnetic saturation may occur in the iron core that constitutes the series transformer connected to the voltage line. When the iron core becomes magnetically saturated, a magnetizing inrush current flows through the series transformer, which is likely to destroy the semiconductor elements that switch the taps.

鉄心の磁気飽和を防止するためには、鉄心断面積を増加させて磁束密度を下げることが可能であるが、装置の大型化や製品コストの上昇を招き、好ましくない。 In order to prevent magnetic saturation of the iron core, it is possible to increase the cross-sectional area of the iron core and lower the magnetic flux density, but this is not preferable because it increases the size of the device and increases the product cost.

本発明は、このような問題を解消するためになされたものであり、直列変圧器を構成する鉄心の断面積を増加させることなく、鉄心の磁気飽和を回避し、電圧調整器を構成する半導体素子が破壊されることを効果的に防止することのできる電圧調整器と、その電圧調整方法を提供するものである。 The present invention has been made to solve such problems, and it is possible to avoid magnetic saturation of the iron core without increasing the cross-sectional area of the iron core that constitutes the series transformer, and to improve the reliability of semiconductors that constitute the voltage regulator. The present invention provides a voltage regulator that can effectively prevent elements from being destroyed, and a method for regulating the voltage.

請求項1記載の発明は、二本の電圧線からなる単相二線式の配電線路または二本の電圧線および一本の中性線からなる単相三線式の配電線路に接続され、前記電圧線に二次巻線が接続される直列変圧器と、該直列変圧器の一次巻線への印加電圧の極性と大きさを切り換える半導体式のタップ切換器と、前記直列変圧器より出力側において、単相二線式の場合は前記電圧線に、単相三線式の場合は前記電圧線と前記中性線に接続され、その接続位置の前記電圧線の電圧に応じて前記タップ切換器を切り換え制御する制御部を備えた電圧調整器に関し、前記制御部は、前記タップ切換器によるタップ切換開始時の前記半導体素子の投入位相を励磁電圧のピーク時にし、タップ切換後の前記半導体素子の投入位相を、タップ切換前後のタップの組み合わせに応じて変更するように構成したことに特長を有する。 The invention according to claim 1 is arranged such that the power distribution line is connected to a single-phase two-wire type distribution line consisting of two voltage lines or a single-phase three-wire type distribution line consisting of two voltage lines and one neutral line, and a series transformer with a secondary winding connected to a voltage line; a semiconductor tap changer that switches the polarity and magnitude of the voltage applied to the primary winding of the series transformer; and an output side from the series transformer. , the tap changer is connected to the voltage line in the case of a single-phase two-wire system, and to the voltage line and the neutral wire in the case of a single-phase three-wire system, and the tap changer is connected to the voltage line at the connection position. Regarding the voltage regulator, the control section sets the turning-on phase of the semiconductor element at the peak of the excitation voltage when the tap changer starts changing the taps, and controls the switching of the semiconductor element after the tap change. The present invention is characterized in that the closing phase of the switch is configured to be changed in accordance with the combination of taps before and after the tap is switched.

請求項2記載の発明は、請求項1記載の制御装置が、直列変圧器より出力側の二次線間電圧と直列変圧器の二次側電流の位相差に応じた前記直列変圧器の鉄心の最大磁束密度が、飽和磁束密度以下となるように、前記半導体素子の投入位相を決定することに特長を有する。 The invention according to claim 2 is characterized in that the control device according to claim 1 controls the iron core of the series transformer according to the phase difference between the secondary line voltage on the output side of the series transformer and the secondary side current of the series transformer. The present invention is characterized in that the input phase of the semiconductor element is determined such that the maximum magnetic flux density of the semiconductor element is equal to or less than the saturation magnetic flux density.

請求項3記載の発明は、二本の電圧線からなる単相二線式の配電線路または二本の電圧線および一本の中性線からなる単相三線式の配電線路の入力電圧に対して出力電圧を調整する電圧調整方法であって、出力電圧に応じて前記電圧線に二次巻線が接続される直列変圧器の一次巻線への印加電圧を半導体式タップ切換器で切り換え、当該直列変圧器の二次巻線に生じる誘起電圧の極性と大きさを調整する際、タップ切換開始時の前記半導体素子の投入位相を励磁電圧のピーク時にし、タップ切換後の前記半導体素子の投入位相を、前記タップ切換前後のタップの組み合わせに応じて変更することに特長を有する。 The invention according to claim 3 is directed to the input voltage of a single-phase two-wire distribution line consisting of two voltage lines or a single-phase three-wire distribution line consisting of two voltage lines and one neutral line. A voltage adjustment method for adjusting an output voltage by using a semiconductor tap changer to switch the voltage applied to a primary winding of a series transformer whose secondary winding is connected to the voltage line according to the output voltage, When adjusting the polarity and magnitude of the induced voltage generated in the secondary winding of the series transformer, the turning-on phase of the semiconductor element at the start of tap switching is set to the peak of the excitation voltage, and the turning-on phase of the semiconductor element after tap switching is adjusted. A feature is that the closing phase is changed according to the combination of taps before and after the tap switching.

請求項4記載の発明は、請求項3記載の半導体素子の投入位相を、直列変圧器より出力側の二次線間電圧と直列変圧器の二次側電流の位相差に応じた前記直列変圧器を構成する鉄心の最大磁束密度が、飽和磁束密度以下となるよう決定することに特長を有する。 The invention as set forth in claim 4 is characterized in that the turn-on phase of the semiconductor element as set forth in claim 3 is determined by the series transformer according to the phase difference between the secondary line voltage on the output side of the series transformer and the secondary current of the series transformer. The feature is that the maximum magnetic flux density of the iron core constituting the device is determined to be less than or equal to the saturation magnetic flux density.

請求項1記載の発明によれば、直列変圧器を構成する鉄心の断面積を増加させることなく、鉄心の磁気飽和を効果的に防止することができる。 According to the first aspect of the invention, magnetic saturation of the core can be effectively prevented without increasing the cross-sectional area of the core that constitutes the series transformer.

請求項2記載の発明によれば、線間電圧と直列変圧器の二次側電流の位相差がどのような値をとっても、タップ切り換え時に直列変圧器を構成する鉄心の最大磁束密度を飽和磁束密度以下にすることが可能となる。 According to the invention as claimed in claim 2, no matter what value the phase difference between the line voltage and the secondary current of the series transformer takes, the maximum magnetic flux density of the iron core constituting the series transformer at the time of tap switching is set to the saturation magnetic flux. It becomes possible to lower the density.

請求項3記載の発明によれば、タップ切り換え時に直列変圧器にかかる電圧を制御して磁束の累積を抑えることができる。 According to the third aspect of the invention, accumulation of magnetic flux can be suppressed by controlling the voltage applied to the series transformer at the time of tap switching.

請求項4記載の発明によれば、タップ切り換えによる直列変圧器の磁束の累積を抑えられ、線間電圧と直列変圧器の二次側電流の位相差がどのような値をとっても、直列変圧器の鉄心の磁気飽和により突入電流が流れることを効果的に防止できる。 According to the invention set forth in claim 4, the accumulation of magnetic flux in the series transformer due to tap switching can be suppressed, and no matter what value the phase difference between the line voltage and the secondary current of the series transformer takes, the series transformer It is possible to effectively prevent inrush current from flowing due to magnetic saturation of the iron core.

本発明の電圧調整器を単相三線式配電線に接続した場合の回路図である。FIG. 2 is a circuit diagram when the voltage regulator of the present invention is connected to a single-phase three-wire distribution line. 本発明の電圧調整器を単相二線式配電線に接続した場合の回路図である。FIG. 2 is a circuit diagram when the voltage regulator of the present invention is connected to a single-phase two-wire distribution line.

以下、本発明の実施の形態を図1および図2により説明する。図1に示すように、本発明の電圧調整器10は、第1の電圧線3、第2の電圧線4及び中性線5からなる単相三線式の配電線路に、入力側の端子3a,4a,5a及び出力側の端子3b,4bを介して接続される。 Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. As shown in FIG. 1, the voltage regulator 10 of the present invention connects an input terminal 3a to a single-phase three-wire power distribution line consisting of a first voltage line 3, a second voltage line 4, and a neutral line 5. , 4a, 5a and output side terminals 3b, 4b.

電圧調整器10への入力電圧に関し、中性線5と第1の電圧線3との間の電圧は、中性線5と第2の電圧線4との間の電圧に対して極性が逆で大きさが同じである。 Regarding the input voltage to the voltage regulator 10, the voltage between the neutral wire 5 and the first voltage wire 3 has a polarity opposite to the voltage between the neutral wire 5 and the second voltage wire 4. The size is the same.

電圧調整器10は、第1の電圧線3及び第2の電圧線4に印加される電圧を平衡化する平衡器25と、出力側の電圧を昇圧または降圧する直列変圧器11,12、その直列変圧器11,12による昇圧または降圧を切り換えるタップ切換器13aと、該タップ切換器13aによる切り換えを制御する制御部13bを備える。 The voltage regulator 10 includes a balancer 25 that balances the voltages applied to the first voltage line 3 and the second voltage line 4, series transformers 11 and 12 that step up or step down the voltage on the output side, and It includes a tap changer 13a that switches between step-up and step-down voltage by the series transformers 11 and 12, and a control section 13b that controls the switching by the tap changer 13a.

端子3aと平衡器25間は第1入力線3cで繋がれており、平衡器25と直列変圧器11間は第1接続線3dで繋がれている。直列変圧器11と端子3b間は第1出力線3eで繋がれており、第1出力線3eとタップ切換器13aおよび制御部13b間は第1分岐線3fによって接続されている。 A first input line 3c connects the terminal 3a and the balancer 25, and a first connection line 3d connects the balancer 25 and the series transformer 11. A first output line 3e connects the series transformer 11 and the terminal 3b, and a first branch line 3f connects the first output line 3e, the tap changer 13a, and the control section 13b.

端子4aと平衡器25間は第2入力線4cで繋がれており、平衡器25と直列変圧器12間は第2接続線4dで繋がれている。直列変圧器12と端子4b間は第2出力線4eで繋がれており、第2出力線4eとタップ切換器13aおよび制御部13b間は第2分岐線4fによって接続されている。また、端子5aと平衡器25間は中性入力線5bで接続されている。 A second input line 4c connects the terminal 4a and the balancer 25, and a second connection line 4d connects the balancer 25 and the series transformer 12. A second output line 4e connects the series transformer 12 and the terminal 4b, and a second branch line 4f connects the second output line 4e to the tap changer 13a and the control section 13b. Further, the terminal 5a and the balancer 25 are connected by a neutral input line 5b.

直列変圧器11は一次巻線11aがタップ切換器13aおよび制御部13bに接続されており、第1接続線3dと第1出力線3eとを直列接続する二次巻線11bを備えている。直列変圧器11は、一次巻線11aの印加電圧に応じて、二次巻線11bに誘起電圧を生じさせ、その誘起電圧により第1接続線3dに対し第1出力線3eの電圧を昇圧または降圧する。 The series transformer 11 has a primary winding 11a connected to a tap changer 13a and a control section 13b, and a secondary winding 11b that connects a first connection line 3d and a first output line 3e in series. The series transformer 11 generates an induced voltage in the secondary winding 11b according to the voltage applied to the primary winding 11a, and uses the induced voltage to boost or increase the voltage of the first output line 3e with respect to the first connection line 3d. Lower blood pressure.

直列変圧器12は一次巻線12aがタップ切換器13aおよび制御部13bに接続されており、第2接続線4dと第2出力線4eとを直列接続する二次巻線12bを備えている。直列変圧器12は、一次巻線12aの印加電圧に応じて、二次巻線12bに誘起電圧を生じさせ、その誘起電圧により第2接続線4dに対し第2出力線4eの電圧を昇圧または降圧する。 The series transformer 12 has a primary winding 12a connected to a tap changer 13a and a control section 13b, and a secondary winding 12b that connects a second connection line 4d and a second output line 4e in series. The series transformer 12 generates an induced voltage in the secondary winding 12b according to the voltage applied to the primary winding 12a, and uses the induced voltage to boost or increase the voltage of the second output line 4e with respect to the second connection line 4d. Lower blood pressure.

直列変圧器11の一次巻線11aの両端と、直列変圧器12の一次巻線12aの両端とは、一次巻線11a,12aそれぞれの印加電圧の極性が互いに逆になるように接続されている。 Both ends of the primary winding 11a of the series transformer 11 and both ends of the primary winding 12a of the series transformer 12 are connected such that the polarities of the voltages applied to the primary windings 11a and 12a are opposite to each other. .

さらに、一次巻線11aに対する二次巻線11bの巻数比と、一次巻線12aに対する二次巻線12bの巻数比とが同じであり、一次巻線11a,12aへの印加電圧に応じて、二次巻線11b,12bそれぞれに生じる誘起電圧は、大きさが同じで極性が逆になる。 Furthermore, the turns ratio of the secondary winding 11b to the primary winding 11a and the turns ratio of the secondary winding 12b to the primary winding 12a are the same, and depending on the voltage applied to the primary windings 11a and 12a, The induced voltages generated in each of the secondary windings 11b and 12b have the same magnitude and opposite polarity.

タップ切換器13aおよび制御部13bは、一次巻線11a,12aへの印加電圧の極性または大きさを切り換える機器であり、複数(例えば、5つ)の半導体素子SSR1~SSR5と、一次巻線11a,12a間の短絡を防止する回路(以下、短絡防止回路という)を構成する1つの半導体素子SSR6を備える。平衡器25とタップ切換器13aおよび制御部13bは中性出力線5cで接続されている。なお、短絡防止回路は、半導体素子SSR6および、これと直列接続されるブリッジ抵抗R(抵抗値Rb)によって構成される。 The tap changer 13a and the control unit 13b are devices that switch the polarity or magnitude of the voltage applied to the primary windings 11a and 12a, and are devices that switch the polarity or magnitude of the voltage applied to the primary windings 11a and 12a. , 12a (hereinafter referred to as a short-circuit prevention circuit) is provided with one semiconductor element SSR6. The balancer 25, tap changer 13a, and control section 13b are connected by a neutral output line 5c. Note that the short circuit prevention circuit is constituted by a semiconductor element SSR6 and a bridge resistor R (resistance value Rb) connected in series with the semiconductor element SSR6.

半導体素子SSR1~SSR5は、例えば、直列変圧器11,12の電圧調整幅を切り換えるタップ位置を有し、前述のごとく半導体素子が5つ(SSR1~SSR5)の場合、タップ位置1ではSSR1,5が投入され、タップ位置2ではSSR1,3が投入される。タップ位置3ではSSR2,5が投入され、タップ位置4ではSSR2,3が投入される。また、タップ位置5ではSSR2,4が投入されて、電圧調整器10の入力電圧に対する電圧調整幅を切り換える。 The semiconductor elements SSR1 to SSR5 have tap positions for switching the voltage adjustment range of the series transformers 11 and 12, for example. In the case of five semiconductor elements (SSR1 to SSR5) as described above, at tap position 1, the SSR1 and SSR5 is turned on, and at tap position 2, SSRs 1 and 3 are turned on. At tap position 3, SSRs 2 and 5 are turned on, and at tap position 4, SSRs 2 and 3 are turned on. Further, at tap position 5, SSRs 2 and 4 are turned on to switch the voltage adjustment width for the input voltage of the voltage regulator 10.

以上が本発明の電圧調整器10を単相三線式配電線路に接続した場合の構成の一例であるが、本発明の電圧調整器は単相二線式配電線に接続することもできる。図2は単相二線式配電線に本発明の電圧調整器100を接続した場合の回路図を例示する。 The above is an example of a configuration in which the voltage regulator 10 of the present invention is connected to a single-phase three-wire power distribution line, but the voltage regulator of the present invention can also be connected to a single-phase two-wire power distribution line. FIG. 2 illustrates a circuit diagram when the voltage regulator 100 of the present invention is connected to a single-phase two-wire power distribution line.

電圧調整器100は、第1の電圧線30、第2の電圧線40からなる単相二線式の配電線路に、入力側の端子30a,40aと出力側の端子30b,40bを介して接続される。 The voltage regulator 100 is connected to a single-phase two-wire power distribution line consisting of a first voltage line 30 and a second voltage line 40 via input side terminals 30a, 40a and output side terminals 30b, 40b. be done.

電圧調整器100は、第1の電圧線30及び第2の電圧線40に印加される電圧を平衡化する平衡器250と、出力側の電圧を昇圧または降圧する直列変圧器110,120、その直列変圧器110,120による昇圧または降圧を切り換えるタップ切換器130aと、該タップ切換器130aによる切り換えを制御する制御部130bを備える。 The voltage regulator 100 includes a balancer 250 that balances the voltages applied to the first voltage line 30 and the second voltage line 40, series transformers 110 and 120 that step up or step down the voltage on the output side, and It includes a tap changer 130a that switches between step-up and step-down voltage by the series transformers 110 and 120, and a control section 130b that controls the switching by the tap changer 130a.

端子30aと平衡器250間は第1入力線30cで繋がれており、平衡器250と直列変圧器110間は第1接続線30dで繋がれている。直列変圧器110と端子30b間は第1出力線30eで繋がれており、第1出力線30eとタップ切換器130aおよび制御部130b間は第1分岐線30fによって接続されている。 A first input line 30c connects the terminal 30a and the balancer 250, and a first connection line 30d connects the balancer 250 and the series transformer 110. A first output line 30e connects the series transformer 110 and the terminal 30b, and a first branch line 30f connects the first output line 30e, the tap changer 130a, and the control unit 130b.

端子40aと平衡器250間は第2入力線40cで繋がれており、平衡器250と直列変圧器120間は第2接続線40dで繋がれている。直列変圧器120と端子40b間は第2出力線40eで繋がれており、第2出力線40eとタップ切換器130aおよび制御部130b間は第2分岐線40fによって接続されている。 A second input line 40c connects the terminal 40a and the balancer 250, and a second connection line 40d connects the balancer 250 and the series transformer 120. A second output line 40e connects the series transformer 120 and the terminal 40b, and a second branch line 40f connects the second output line 40e to the tap changer 130a and the control unit 130b.

直列変圧器110は一次巻線110aがタップ切換器130aおよび制御部130bに接続されており、第1接続線30dと第1出力線30eとを直列接続する二次巻線110bを備えている。直列変圧器110は、一次巻線110aの印加電圧に応じて、二次巻線110bに誘起電圧を生じさせ、その誘起電圧により第1接続線30dに対し第1出力線30eの電圧を昇圧または降圧する。 The series transformer 110 has a primary winding 110a connected to a tap changer 130a and a control unit 130b, and a secondary winding 110b that connects a first connection line 30d and a first output line 30e in series. The series transformer 110 generates an induced voltage in the secondary winding 110b according to the voltage applied to the primary winding 110a, and uses the induced voltage to boost or increase the voltage of the first output line 30e with respect to the first connection line 30d. Lower blood pressure.

直列変圧器120は一次巻線120aがタップ切換器130aおよび制御部130bに接続されており、第2接続線40dと第2出力線40eとを直列接続する二次巻線120bを備えている。直列変圧器120は、一次巻線120aの印加電圧に応じて、二次巻線120bに誘起電圧を生じさせ、その誘起電圧により第2接続線40dに対し第2出力線40eの電圧を昇圧または降圧する。 The series transformer 120 has a primary winding 120a connected to a tap changer 130a and a control unit 130b, and a secondary winding 120b that connects a second connection line 40d and a second output line 40e in series. The series transformer 120 generates an induced voltage in the secondary winding 120b according to the voltage applied to the primary winding 120a, and uses the induced voltage to boost or increase the voltage of the second output line 40e with respect to the second connection line 40d. Lower blood pressure.

直列変圧器110の一次巻線110aの両端と、直列変圧器120の一次巻線120aの両端とは、一次巻線110a,120aそれぞれの印加電圧の極性が互いに逆になるように接続されている。 Both ends of the primary winding 110a of the series transformer 110 and both ends of the primary winding 120a of the series transformer 120 are connected such that the polarities of the voltages applied to the primary windings 110a and 120a are opposite to each other. .

さらに、一次巻線110aに対する二次巻線110bの巻数比と、一次巻線120aに対する二次巻線120bの巻数比とが同じであり、一次巻線110a,120aへの印加電圧に応じて、二次巻線110b,120bそれぞれに生じる誘起電圧は、大きさが同じで極性が逆になる。 Furthermore, the turn ratio of the secondary winding 110b to the primary winding 110a and the turn ratio of the secondary winding 120b to the primary winding 120a are the same, and depending on the voltage applied to the primary windings 110a and 120a, The induced voltages generated in each of the secondary windings 110b and 120b have the same magnitude and opposite polarity.

切換器130aおよび制御部130bは、一次巻線110a,120aへの印加電圧の極性または大きさを切り換える機器であり、複数(例えば、5つ)の半導体素子SSR1~SSR5と、一次巻線110a,120a間の短絡を防止する回路を構成する1つの半導体素子SSR6を備える。平衡器250とタップ切換器130aおよび制御部130bは出力線50cで接続されている。なお、短絡防止回路は、半導体素子SSR6および、これと直列接続されるブリッジ抵抗R(抵抗値Rb)によって構成される。 The switch 130a and the control unit 130b are devices that switch the polarity or magnitude of the voltage applied to the primary windings 110a and 120a, and are devices that switch the polarity or magnitude of the voltage applied to the primary windings 110a and 120a. One semiconductor element SSR6 is provided that constitutes a circuit that prevents short circuits between the terminals 120a. The balancer 250, tap changer 130a, and control section 130b are connected by an output line 50c. Note that the short circuit prevention circuit is constituted by a semiconductor element SSR6 and a bridge resistor R (resistance value Rb) connected in series with the semiconductor element SSR6.

半導体素子SSR1~SSR5は、例えば、直列変圧器110,120の電圧調整幅を切り換えるタップ位置を有し、前述のごとく半導体素子が5つ(SSR1~SSR5)の場合、タップ位置1ではSSR1,5が投入され、タップ位置2ではSSR1,3が投入される。タップ位置3ではSSR2,5が投入され、タップ位置4ではSSR2,3が投入される。また、タップ位置5ではSSR2,4が投入されて、電圧調整器110の入力電圧に対する電圧調整幅を切り換える。 The semiconductor elements SSR1 to SSR5 have, for example, tap positions for switching the voltage adjustment width of the series transformers 110 and 120, and when there are five semiconductor elements (SSR1 to SSR5) as described above, at tap position 1, SSR1 and SSR5 are switched. is turned on, and at tap position 2, SSRs 1 and 3 are turned on. At tap position 3, SSRs 2 and 5 are turned on, and at tap position 4, SSRs 2 and 3 are turned on. Further, at tap position 5, SSRs 2 and 4 are turned on to switch the voltage adjustment width for the input voltage of the voltage regulator 110.

上記の如く構成した電圧調整器10(100)において、制御部13b(130b)によってタップ切換器13a(130a)のタップを切り換える際、直列変圧器11,12(110,120)の鉄心が磁気飽和を起こす場合がある。磁気飽和が起こった場合、直列変圧器11,12(110,120)に励磁突入電流が流れ、タップ切換器13a(130a)の半導体素子SSR1~SSR6が破壊される可能性が高い。磁気飽和を避けるためには、タップ切り換え時に直列変圧器11,12(110,120)にかかる電圧を抑制・制御して磁束の累積を抑えることが可能である。 In the voltage regulator 10 (100) configured as described above, when the control unit 13b (130b) switches the tap of the tap changer 13a (130a), the iron cores of the series transformers 11, 12 (110, 120) become magnetically saturated. may occur. When magnetic saturation occurs, an excitation inrush current flows through the series transformers 11, 12 (110, 120), and there is a high possibility that the semiconductor elements SSR1 to SSR6 of the tap changer 13a (130a) will be destroyed. In order to avoid magnetic saturation, it is possible to suppress and control the voltage applied to the series transformers 11, 12 (110, 120) at the time of tap switching to suppress the accumulation of magnetic flux.

例えば、タップ位置1からタップ位置5へ切り換える場合を例にとると、タップ切り換え前の状態では、半導体素子SSR1,SSR5がオンした状態にあり、切換開始指令を行った状態では、これに加えて半導体素子SSR6がオンした状態にある。この切り換え前の状態と切換開始指令を行ったタイミングでは、直列変圧器11,12(110,120)に加わる電圧はタップ位置に応じた電圧であり、例示の場合であればタップ位置1に応じた電圧となる。 For example, if we take the case of switching from tap position 1 to tap position 5, in the state before tap switching, semiconductor elements SSR1 and SSR5 are in the on state, and when the switching start command is issued, in addition to this, The semiconductor element SSR6 is in an on state. In this state before switching and at the timing when the switching start command is issued, the voltage applied to the series transformers 11, 12 (110, 120) is a voltage that corresponds to the tap position, and in the illustrated case, it corresponds to tap position 1. voltage.

ブリッジ状態では、切換開始指令に応じて、切り換え前にオン状態にあった半導体素子SSR1,SSR5がオフされ、SSR6のみがオンされた状態となる。つまり、ブリッジ状態とは、切換開始指令に応じて、SSR1~SSR5に流れる電流ISSR=0となった状態をいい、このタイミングで直列変圧器11,12(110,120)に加わる電圧は、直列変圧器11,12(110,120)の一次側電流I´の合計Is(=2×I´)×ブリッジ抵抗Rbの電圧がかかる。 In the bridge state, in response to the switching start command, the semiconductor elements SSR1 and SSR5, which were in the on state before switching, are turned off, and only SSR6 is turned on. In other words, the bridge state is a state in which the current I SSR flowing through SSR1 to SSR5 becomes 0 in response to the switching start command, and the voltage applied to the series transformers 11, 12 (110, 120) at this timing is: A voltage equal to the sum of the primary currents I' of the series transformers 11 and 12 (110, 120) Is (=2×I')×bridge resistance Rb is applied.

切換終了指令を行った状態では、切り換え後のタップ位置に対応する半導体素子と半導体素子SSR6がオンした状態にある。タップ位置1からタップ位置5への切り換えであれば、半導体素子SSR2,SSR4,SSR6がオンした状態にある。なお、切換終了指令とは、切り換え後のタップ位置に対応する投入SSRをオンし、SSR6をオフする指令をいう。また、切り換え後の状態では、切換終了指令に応じて、半導体素子SSR6がオフし、切り換え後のタップ位置に対応する半導体素子のみがオンした状態となる。タップ位置1からタップ位置5へ切り換える場合であれば、半導体素子SSR2,SSR4がオンした状態である。そして、切り換え後の状態では、において直列変圧器11,12(110,120)に加わる電圧は、タップ位置に応じた電圧であり、例示の場合であればタップ位置5に応じた電圧となる。 When the switching end command is issued, the semiconductor element corresponding to the tap position after switching and the semiconductor element SSR6 are in an on state. When switching from tap position 1 to tap position 5, semiconductor elements SSR2, SSR4, and SSR6 are in an on state. Note that the switching end command is a command to turn on the closing SSR and turn off the SSR 6 corresponding to the tap position after switching. Further, in the state after switching, the semiconductor element SSR6 is turned off in response to the switching end command, and only the semiconductor element corresponding to the tap position after switching is turned on. When switching from tap position 1 to tap position 5, semiconductor elements SSR2 and SSR4 are in an on state. In the state after switching, the voltage applied to the series transformers 11, 12 (110, 120) is a voltage that corresponds to the tap position, and in the illustrated case, a voltage that corresponds to tap position 5.

つまり、ブリッジ状態以外の各段階において直列変圧器11,12の一次側電圧Vsは回路の状態によって異なる。そのため、直列変圧器11,12の磁束密度を抑制するためには、タップ切換器13a(130a)によるタップ切換開始時の半導体素子の投入位相を励磁電圧のピーク時にするとともに状態移行のタイミングを制御することが重要であり、これにより、直列変圧器11,12を構成する鉄心の磁束の累積を抑制することが可能となる。 That is, in each stage other than the bridge state, the primary side voltage Vs of the series transformers 11 and 12 differs depending on the state of the circuit. Therefore, in order to suppress the magnetic flux density of the series transformers 11 and 12, the turning-on phase of the semiconductor element at the start of tap switching by the tap changer 13a (130a) is set to the peak of the excitation voltage, and the timing of state transition is controlled. This makes it possible to suppress the accumulation of magnetic flux in the iron cores that constitute the series transformers 11 and 12.

二次線間電圧Vと直列変圧器11,12の二次側電流Iとの位相差θの値によって、ブリッジ状態への移行タイミングは変化する。切り換え前のタップ位置と、二次線間電圧Vと直列トランス11,12の二次側電流Iとの位相差θごとの、二次線間電圧Vに対する半導体素子SSR1~SSR5に流れる電流ISSRの位相のズレθSSRをすべてのタップ切換パターンについて把握する。そのうえで、半導体素子SSRの最適な投入位相と負荷の力率(二次線間電圧Vと直列変圧器11,12の二次側電流Iとの位相差θ)を変化させて、最大磁束密度を求める。 The timing of transition to the bridge state changes depending on the value of the phase difference θ between the secondary line voltage V 2 and the secondary current I of the series transformers 11 and 12. Current flowing through the semiconductor elements SSR1 to SSR5 with respect to the secondary line voltage V 2 for each tap position before switching and the phase difference θ between the secondary line voltage V 2 and the secondary current I of the series transformers 11 and 12 I Understand the phase shift θ SSR for all tap switching patterns . Then, by changing the optimal closing phase of the semiconductor element SSR and the power factor of the load (the phase difference θ between the secondary line voltage V 2 and the secondary current I of the series transformers 11 and 12), the maximum magnetic flux density is seek.

そして、すべてのタップ切換パターンにおいて最適な切換終了位相を選択すれば、どのような線間電圧Vと相電流Iの位相差であったとしても、直列変圧器を構成する鉄心の飽和磁束密度以下とすることができ、磁気飽和を回避できる。 If the optimal switching end phase is selected for all tap switching patterns, no matter what the phase difference between the line voltage V2 and the phase current I, the saturation magnetic flux density of the iron core that constitutes the series transformer will be reduced. or less, and magnetic saturation can be avoided.

以上説明したように、本発明の電圧調整器および電圧調整方法によれば、直列変圧器の鉄心の断面積を増加させることなく、タップ切換終了時の磁束密度を抑制でき、装置の小型化およびコストの抑制が可能となる。 As explained above, according to the voltage regulator and voltage regulating method of the present invention, the magnetic flux density at the end of tap switching can be suppressed without increasing the cross-sectional area of the iron core of the series transformer, and the device can be downsized and It becomes possible to suppress costs.

また、磁気飽和を回避し、励磁突入電流によって電圧調整器の半導体素子が破壊されることを確実に防止できる。 Furthermore, magnetic saturation can be avoided, and damage to the semiconductor element of the voltage regulator caused by excitation inrush current can be reliably prevented.

配電線路に直列変圧器によって接続される、半導体素子を利用した電圧調整器に利用可能である。 It can be used in a voltage regulator using a semiconductor device that is connected to a power distribution line by a series transformer.

3,30 第1の電圧線
3a, 4a, 5a,30a, 40a, 50a 入力側の端子
3b,4b, 30b,40b 出力側の端子
3c, 30c 第1入力線
3d, 30d 第1接続線
3e, 30e 第1出力線
3f, 30f 第1分岐線
4,40 第2の電圧線
4c, 40c 第2入力線
4d, 40d 第2接続線
4e, 40e 第2出力線
4f, 40f 第2分岐線
5 中性線
5b 中性入力線
5c 中性出力線
10,100 電圧調整器
11,12, 110,120 直列変圧器
11a,12a, 110a,120a 一次巻線
11b,12b, 110b,120b 二次巻線
13a,130a タップ切換器
13b,130b 制御部
25,250 平衡器
50c 出力線
R ブリッジ抵抗
SSR1~SSR6 半導体素子
3,30 First voltage line 3a, 4a, 5a,30a, 40a, 50a Input side terminal 3b,4b, 30b,40b Output side terminal 3c, 30c First input line 3d, 30d First connection line 3e, 30e First output line 3f, 30f First branch line 4,40 Second voltage line 4c, 40c Second input line 4d, 40d Second connection line 4e, 40e Second output line 4f, 40f Second branch line 5 Medium Neutral wire 5b Neutral input wire 5c Neutral output wire 10,100 Voltage regulator 11, 12, 110, 120 Series transformer 11a, 12a, 110a, 120a Primary winding 11b, 12b, 110b, 120b Secondary winding 13a ,130a Tap changer 13b,130b Control section 25,250 Balancer 50c Output line R Bridge resistance SSR1 to SSR6 Semiconductor element

Claims (4)

二本の電圧線からなる単相二線式の配電線路または二本の電圧線および一本の中性線からなる単相三線式の配電線路に接続され、前記電圧線に二次巻線が接続される直列変圧器と、該直列変圧器の一次巻線への印加電圧の極性と大きさを切り換える半導体式のタップ切換器と、前記直列変圧器より出力側において、単相二線式の場合は前記電圧線に、単相三線式の場合は前記電圧線と前記中性線に接続され、その接続位置の前記電圧線の電圧と前記中性線間の電圧に応じて前記タップ切換器を切り換え制御する制御部を備え、該制御部は、前記タップ切換器によるタップ切換開始時の前記半導体素子の投入位相を励磁電圧のピーク時にし、タップ切換後の前記半導体素子の投入位相を、タップ切換前後のタップの組み合わせに応じて変更するように構成したことを特徴とする電圧調整器。 It is connected to a single-phase two-wire distribution line consisting of two voltage lines or a single-phase three-wire distribution line consisting of two voltage lines and one neutral line, and a secondary winding is connected to the voltage line. A series transformer to be connected, a semiconductor type tap changer for switching the polarity and magnitude of the voltage applied to the primary winding of the series transformer, and a single-phase two-wire type tap changer on the output side from the series transformer. In the case of a single-phase three-wire system, the tap changer is connected to the voltage line, and in the case of a single-phase three-wire system, it is connected to the voltage line and the neutral line, and the tap changer is connected to the voltage line and the neutral line at the connection position. The controller includes a control unit that controls switching of the semiconductor element, and sets the closing phase of the semiconductor element at the peak of the excitation voltage when the tap changer starts changing the taps, and sets the closing phase of the semiconductor element after the tap switching to: A voltage regulator characterized in that the voltage regulator is configured to change according to the combination of taps before and after changing the taps. 前記制御装置は、前記直列変圧器より出力側の二次線間電圧と直列変圧器の二次側電流の位相差に応じた、前記直列変圧器を構成する鉄心の最大磁束密度が、飽和磁束密度以下となるよう、前記半導体素子の投入位相を決定することを特徴とする請求項1記載の電圧調整器。 The control device is configured such that a maximum magnetic flux density of an iron core constituting the series transformer is a saturation magnetic flux according to a phase difference between a secondary line voltage on the output side of the series transformer and a secondary current of the series transformer. 2. The voltage regulator according to claim 1, wherein the turning-on phase of the semiconductor element is determined so that the density is less than or equal to the density. 二本の電圧線からなる単相二線式の配電線路または二本の電圧線および一本の中性線からなる単相三線式の配電線路の入力電圧に対して出力電圧を調整する電圧調整方法であって、出力電圧に応じて前記電圧線に二次巻線が接続される直列変圧器の一次巻線への印加電圧を半導体式のタップで切り換え、当該直列変圧器の二次巻線に生じる誘起電圧の極性と大きさを調整する際、前記タップ切換開始時の前記半導体素子の投入位相を励磁電圧のピーク時にし、前記タップ切換後の半導体素子の投入位相を、前記タップ切換前後のタップの組み合わせに応じて変更することを特徴とする電圧調整器の電圧調整方法。 Voltage adjustment that adjusts the output voltage to the input voltage of a single-phase two-wire distribution line consisting of two voltage lines or a single-phase three-wire distribution line consisting of two voltage lines and one neutral line. The method comprises switching the voltage applied to the primary winding of a series transformer whose secondary winding is connected to the voltage line in accordance with the output voltage with a semiconductor tap; When adjusting the polarity and magnitude of the induced voltage generated at A voltage adjustment method for a voltage regulator, characterized in that the voltage is changed according to a combination of taps. 前記半導体素子の投入位相を、前記直列変圧器より出力側の二次線間電圧と直列変圧器の二次側電流の位相差に応じた、前記直列変圧器を構成する鉄心の最大磁束密度が、飽和磁束密度以下となるよう決定することを特徴とする請求項3記載の電圧調整器の電圧調整方法。 The maximum magnetic flux density of the iron core constituting the series transformer is determined by adjusting the turning-on phase of the semiconductor element according to the phase difference between the secondary line voltage on the output side of the series transformer and the secondary current of the series transformer. 4. The voltage regulating method for a voltage regulator according to claim 3, wherein the voltage is determined to be equal to or less than the saturation magnetic flux density.
JP2022036747A 2022-03-10 2022-03-10 Voltage controller and voltage control method Pending JP2023131795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022036747A JP2023131795A (en) 2022-03-10 2022-03-10 Voltage controller and voltage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022036747A JP2023131795A (en) 2022-03-10 2022-03-10 Voltage controller and voltage control method

Publications (1)

Publication Number Publication Date
JP2023131795A true JP2023131795A (en) 2023-09-22

Family

ID=88064743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022036747A Pending JP2023131795A (en) 2022-03-10 2022-03-10 Voltage controller and voltage control method

Country Status (1)

Country Link
JP (1) JP2023131795A (en)

Similar Documents

Publication Publication Date Title
JP7252412B2 (en) coil drive
KR19990087233A (en) Three-Phase Voltage Automatic Switching Method and Apparatus in Power-Saving Transformers
CA3108349A1 (en) Current control apparatus
KR100797054B1 (en) Transformation circuit for auto controlling voltage
JP2023131795A (en) Voltage controller and voltage control method
US6762594B1 (en) Limiting ring current in short circuits between adjacent partial windings by increasing leakage impedance
JP2008099468A (en) Method for detecting turn-off of thyristor
US20050017696A1 (en) Method and device for regulating electric voltage
JP6666295B2 (en) Thyristor type automatic voltage regulator
CA2676497C (en) Controlling transient response of a power supply
US6137391A (en) Flux-controlled type variable transformer
JP2016046307A (en) Automatic voltage adjusting device
JP2010192813A (en) Three-phase voltage-controlling transformer assembly
EA007309B1 (en) System for voltage stabilization of power supply lines
KR200396104Y1 (en) Apparatus for saving consumption of electric power
KR100650608B1 (en) Large capacity automatic power control system
JP3030612B2 (en) Power saving device
KR100198831B1 (en) Linear power controlling device
RU2245600C1 (en) Step-by-step ac voltage regulation device
KR100539069B1 (en) Apparatus for saving consumption of electric power
JP2006223083A (en) Device to control magnetic flux of transformer in each iron core using direct current
JPH0524967Y2 (en)
JP7165798B1 (en) Voltage output device
JP2704571B2 (en) AC switchgear
JP2002218652A (en) Automatic voltage regulator