JP2023131572A - Operation method of electric oven - Google Patents

Operation method of electric oven Download PDF

Info

Publication number
JP2023131572A
JP2023131572A JP2022036415A JP2022036415A JP2023131572A JP 2023131572 A JP2023131572 A JP 2023131572A JP 2022036415 A JP2022036415 A JP 2022036415A JP 2022036415 A JP2022036415 A JP 2022036415A JP 2023131572 A JP2023131572 A JP 2023131572A
Authority
JP
Japan
Prior art keywords
raw material
electric furnace
electrode
metal
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022036415A
Other languages
Japanese (ja)
Inventor
和也 前場
Kazuya Maeba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022036415A priority Critical patent/JP2023131572A/en
Publication of JP2023131572A publication Critical patent/JP2023131572A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method capable of stably dissolving a raw material through applying a stable electric power, in an operation of dissolving the raw material containing a lithium-ion battery waste using an electric oven.SOLUTION: An operation method of an electric oven having an electrode is for recovering a valuable metal from a raw material containing a lithium-ion battery waste. At a beginning of an operation, the electrode is dropped at a speed that allows the metal contained in the raw material charged into the electric oven to melt before making contact with the metal, and the raw material is processed by arc heating.SELECTED DRAWING: None

Description

本発明は、少なくとも廃リチウムイオン電池を含む原料を還元熔融して有価金属を含むメタルを回収する電気炉の操業方法に関する。 The present invention relates to a method for operating an electric furnace for recovering metals containing valuable metals by reducing and melting raw materials containing at least waste lithium ion batteries.

例えば三相交流式の電極を備えた電気炉を用いて、廃リチウムイオン電池等の原料から有価金属を回収する操業においては、操業を開始する際に、電気炉内に原料を装入した後、その電気炉に備えられている黒鉛電極等の電極を降下させ、原料と電極との間でアークを発生させることにより、アーク加熱によって原料の熔解を始める。 For example, in an operation that uses an electric furnace equipped with three-phase AC electrodes to recover valuable metals from raw materials such as waste lithium-ion batteries, when starting the operation, after charging the raw materials into the electric furnace, By lowering an electrode such as a graphite electrode provided in the electric furnace and generating an arc between the raw material and the electrode, melting of the raw material is started by arc heating.

ところが、操業を開始する際の電極の降下を、電流値一定による自動制御で行うと、電極間の抵抗値がその時々で大きく異なることから、例えば、抵抗が大きいときには電極がその抵抗を下げるために降下し過ぎることがあり、このときの抵抗が小さくなった場合には過電流となり、電気供給が遮断されて通電が停止してしまう。 However, if the lowering of the electrodes at the start of operation is automatically controlled by keeping the current value constant, the resistance between the electrodes will vary greatly from time to time. If the resistance at this time becomes small, an overcurrent will occur, cutting off the electricity supply and stopping the current flow.

このため、操業を開始するにあたり、安定して電力を印加し、安定して原料の熔解を始めることのできる技術が求められている。 For this reason, there is a need for technology that can stably apply electric power and stably start melting of raw materials when starting operations.

特許文献1には、炉内に挿設された主電極と炉底電極との間に直流電圧を印加し、その電極間に発生するプラズマアーク熱及びその電極間を流れる電流のジュール熱によって、焼却灰、飛灰、残渣等の廃棄物を熔融処理する廃棄物プラズマ熔融炉に関する技術が開示されている。具体的には、主電極と炉底電極との間の電圧、その電極間を流れる電流、主電極の挿設位置、被熔融物の供給状態、炉壁温度、冷却水温度、排ガス濃度、炉内温度、炉内圧力、冷却水流量、炉からの排ガス流量、排ガス濃度の少なくとも2つ以上の信号を取り込み、信号の変化状態の組み合わせにより炉内の熔融運転状態を把握し、炉制御装置により所定の運転制御を行う炉の運転制御方法が開示されている。 Patent Document 1 describes that a DC voltage is applied between a main electrode and a bottom electrode inserted in a furnace, and plasma arc heat generated between the electrodes and Joule heat of a current flowing between the electrodes are used to generate A technology related to a waste plasma melting furnace for melting waste such as incineration ash, fly ash, and residue has been disclosed. Specifically, the voltage between the main electrode and the bottom electrode, the current flowing between the electrodes, the insertion position of the main electrode, the supply status of the material to be melted, the furnace wall temperature, the cooling water temperature, the exhaust gas concentration, the furnace At least two signals of internal temperature, furnace pressure, cooling water flow rate, exhaust gas flow rate from the furnace, and exhaust gas concentration are captured, and the melting operation state in the furnace is grasped by the combination of signal changes, and the furnace control device A furnace operation control method that performs predetermined operation control is disclosed.

しかしながら、引用文献1には、廃リチウムイオン電池を含む原料を熔解するに際して、安定して電力を印加し、安定して原料の熔解を行うようにすることについては開示されていない。 However, Cited Document 1 does not disclose how to stably apply electric power and stably melt the raw material when melting the raw material including the waste lithium ion battery.

特開2000-2411号公報Japanese Patent Application Publication No. 2000-2411

本発明は、このような実情に鑑みて提案されたものであり、電気炉を用いた、廃リチウムイオン電池を含む原料を熔解する操業において、安定して電力を印加し、安定して原料を熔解させることができる方法を提供することを目的とする。 The present invention was proposed in view of the above circumstances, and is designed to stably apply electric power and stably melt raw materials in an operation that uses an electric furnace to melt raw materials including waste lithium-ion batteries. The purpose is to provide a method that can be melted.

本発明者による鋭意検討の結果、操業の開始において、電気炉に設けられる電極を、装入した原料に含まれるメタルに接触する前にメタルが熔解できる速度で少しずつ降下させ、その原料に対してアーク加熱を行うようにすることで、上述した課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies by the present inventor, at the start of operation, the electrode installed in the electric furnace is lowered little by little at a speed that allows the metal contained in the charged raw material to melt before it comes into contact with the metal contained in the charged raw material. The inventors have discovered that the above-mentioned problems can be solved by performing arc heating, and have completed the present invention.

(1)本発明の第1の発明は、廃リチウムイオン電池を含む原料から有価金属を回収するための、電極を備えた電気炉の操業方法であって、操業の開始において、前記電極を、前記電気炉内に装入した原料に含まれるメタルに接触する前に該メタルが熔解できる速度で降下させ、該原料をアーク加熱により処理する、電気炉の操業方法である。 (1) A first aspect of the present invention is a method for operating an electric furnace equipped with an electrode for recovering valuable metals from raw materials including waste lithium ion batteries, wherein at the start of operation, the electrode is This is a method of operating an electric furnace, in which the raw material charged into the electric furnace is lowered at a speed that allows the metal contained in the raw material to be melted before it comes into contact with the metal, and the raw material is treated by arc heating.

(2)本発明の第2の発明は、第1の発明において、前記廃リチウムイオン電池を破砕して篩分し、篩上として得られる箔状物を準備し、前記箔状物を追加原料として、前記電気炉内にさらに装入する、電気炉の操業方法である。 (2) In the second invention of the present invention, in the first invention, the waste lithium ion battery is crushed and sieved, a foil-like material obtained as a sieve is prepared, and the foil-like material is used as an additional raw material. This is a method of operating an electric furnace, in which the electric furnace is further charged into the electric furnace.

(3)本発明の第3の発明は、第1又は第2の発明において、前記電気炉は、三相交流式の電気炉である、電気炉の操業方法である。 (3) A third invention of the present invention is a method of operating an electric furnace according to the first or second invention, wherein the electric furnace is a three-phase AC electric furnace.

本発明によれば、電気炉を用いた、廃リチウムイオン電池を含む原料を熔解する操業において、安定して電力を印加し、安定して原料を熔解させることができる方法を提供することができる。 According to the present invention, it is possible to provide a method that can stably apply electric power and stably melt raw materials in an operation using an electric furnace to melt raw materials including waste lithium ion batteries. .

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 Hereinafter, a specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described. Note that the present invention is not limited to the following embodiments, and various changes can be made without departing from the gist of the present invention.

本実施の形態に係る方法は、三相交流式の電気炉等の電極を備えた電気炉を用いて、少なくとも廃リチウムイオン電池を含む原料に対して還元熔融処理を施し、その原料に含まれる有価金属を回収するための電気炉の操業方法である。 In the method according to the present embodiment, using an electric furnace equipped with electrodes such as a three-phase AC electric furnace, a reduction melting process is performed on a raw material containing at least a waste lithium ion battery, and the This is a method of operating an electric furnace to recover valuable metals.

この操業方法では、電気炉内に装入した廃リチウムイオン電池を含む原料を、電極に電圧を印加することで加熱して還元熔融し、その原料に含まれる有価金属から構成されるメタルと、不純物成分から構成されるスラグとからなる混合熔体を生成させる。生成した混合熔体は、比重差により、比重の小さなスラグが上層に、比重の大きなメタルが下層にそれぞれ分離する。そして、分離したスラグについては、電気炉を傾転することで、あるいはスラグホールからのタッピングにより排出して回収する。また、下層にある有価金属を含むメタルについては、電気炉の下部に設けられるメタルホールからタッピングにより排出して回収する。 In this operating method, raw materials including waste lithium ion batteries charged into an electric furnace are heated and reduced by applying voltage to the electrodes to melt them, and metals composed of valuable metals contained in the raw materials are removed. A mixed melt consisting of slag and impurity components is produced. Due to the difference in specific gravity, the resulting mixed melt separates slag with a lower specific gravity into an upper layer and metal with a higher specific gravity into a lower layer. The separated slag is then discharged and recovered by tilting the electric furnace or by tapping from the slag hole. Further, the metal containing valuable metals in the lower layer is discharged and recovered by tapping from a metal hole provided at the bottom of the electric furnace.

ここで、原料に含まれる廃リチウムイオン電池は、ニッケル(Ni)やコバルト(Co)を酸化物として含有するものである。したがって、電気炉において、廃リチウムイオン電池を含む原料を加熱して還元熔融処理の操業を行うことで、ニッケルやコバルト、銅(Cu)等の有価金属から構成されるメタル(合金)と、不純物成分により構成されるスラグとからなる熔体(熔融物)を生成することができる。 Here, the waste lithium ion battery contained in the raw material contains nickel (Ni) and cobalt (Co) as oxides. Therefore, by heating raw materials including waste lithium-ion batteries in an electric furnace and performing a reduction melting process, metals (alloys) composed of valuable metals such as nickel, cobalt, and copper (Cu) and impurities can be removed. It is possible to produce a molten body (melt) consisting of a slag constituted by the components.

原料に含まれる廃リチウムイオン電池は、電気炉に装入する前の前処理として、少なくとも破砕処理と、破砕処理により得られたものを篩分けする処理が行われ、これらの処理を経て、原料となる。このような前処理により、原料の廃リチウムイオン電池は、ある程度揃った形状になるものの、金属製錬において原料となる各種精鉱と比較すると、異なった様々な形状のものを多く含んでいる。 The waste lithium-ion batteries contained in the raw material are pretreated before being charged into the electric furnace, at least through crushing treatment and sieving of the crushed product.After these treatments, the raw material becomes. Through such pretreatment, waste lithium ion batteries used as raw materials have a uniform shape to some extent, but compared to various concentrates that are used as raw materials in metal smelting, they contain many different shapes.

そのため、電気炉内に廃リチウムイオン電池を含む原料を装入し、原料を熔解するために電流値一定の自動制御で黒鉛電極等の電極を降下していくと、熔融スラグが十分に形成されていないため、電極が未熔解の原料の中に潜ったところで、電流の流れるタイミングと電流が流れないタイミングが交差し、非常に大きな電流値のハンチングが生じて、電流上限値を超えてしまうことがある。これは、原料中に、不揃いの形状の金属(メタル)の箔等が含まれることによると考えられる。 Therefore, when raw materials including waste lithium-ion batteries are charged into an electric furnace and electrodes such as graphite electrodes are lowered under automatic control with a constant current value to melt the raw materials, a sufficient amount of molten slag is formed. Therefore, when the electrode is submerged into the unmelted material, the timing at which the current flows and the timing at which the current does not flow intersect, resulting in extremely large current hunting, which exceeds the upper limit of the current. There is. This is thought to be due to the fact that the raw material contains irregularly shaped metal foil or the like.

そこで、本実施の形態に係る方法では、電流値一定の制御で電極を降下させるのではなく、操業の開始において、その電極を、電気炉内に装入した原料に含まれるメタルに接触する前にそのメタルが熔解できる速度で降下させ、原料をアーク加熱により処理する。ここで、電極を「メタルに接触する前にそのメタルが熔解できる速度での降下させる」とは、当該電気炉で許容される電流値の範囲内での電流値のハンチングに留まっている状態で電極を降下させることをいう。 Therefore, in the method according to the present embodiment, instead of lowering the electrode by controlling the current value to be constant, the electrode is lowered at the start of operation before it comes into contact with the metal contained in the raw material charged into the electric furnace. The metal is lowered at a speed that allows it to melt, and the raw material is treated by arc heating. Here, "lowering the electrode at a speed that allows the metal to melt before it comes into contact with the metal" means that the current value remains within the current value range allowed by the electric furnace. This refers to lowering the electrode.

すなわち、原料に含まれるメタル部分に対して、継続的にかつ安定してアーク加熱が生じるように、最低限の距離を維持しつつ少しずつ電極を降下させる。このときの電極の降下の操作は、電流値一定の自動制御ではなく、アーク加熱を行いながら手動により徐々に降下させることが好ましい。これにより、電流値のハンチングの振れ幅を効果的に抑えることができる。 That is, the electrode is lowered little by little while maintaining a minimum distance so that arc heating occurs continuously and stably on the metal part contained in the raw material. At this time, it is preferable that the lowering of the electrode be performed manually and gradually lowered while arc heating is being performed, rather than automatic control with a constant current value. This makes it possible to effectively suppress the hunting amplitude of the current value.

本実施の形態に係る方法では、このような電極の降下操作に基づき原料に対してアーク加熱を行うことにより、その原料から熔融メタルと熔融スラグとを少しずつ形成させ、上層の熔融スラグ層と下層の熔融メタル層とからなる熔融層を形成させる。そして、熔融スラグ層が形成すると、その熔融スラグ層は均一であって、ジュール加熱できる抵抗値を持つことから、熔融スラグ層に電極を浸けることが可能となる。したがって、上述したアーク加熱による操業から、電流値一定で電極の降下を自動制御させることのできるジュール加熱による操業に移行することができる。 In the method according to the present embodiment, molten metal and molten slag are gradually formed from the raw material by performing arc heating on the raw material based on the lowering operation of the electrode, and the upper molten slag layer and the molten slag layer are separated. A molten layer consisting of a lower molten metal layer is formed. When the molten slag layer is formed, the molten slag layer is uniform and has a resistance value that allows Joule heating, so that it becomes possible to immerse an electrode in the molten slag layer. Therefore, it is possible to shift from the above-mentioned operation using arc heating to operation using Joule heating, which can automatically control the descent of the electrode with a constant current value.

さらに、このような電気炉においては、前回の操業において排出されずに炉底に残存したメタル層が固化した固化メタル層が付着生成していることがある。このようなとき、次の操業の開始時に、電流値一定の自動制御で電極を降下していくと、電極を降下しすぎたときに固化メタル層を介して電流が流れ、有効に原料に対して電力を印加することができなくなることがある。この点においても、本実施の形態に係る方法によれば、操業開始から電力を安定して原料に印加することができ、好適である。 Furthermore, in such an electric furnace, a solidified metal layer, which is the solidified metal layer that remained at the bottom of the furnace without being discharged during the previous operation, may adhere and form. In such a case, when the next operation starts, if the electrode is automatically lowered to a constant current value, when the electrode is lowered too far, current will flow through the solidified metal layer, effectively blocking the raw material. It may become impossible to apply power. In this respect as well, the method according to the present embodiment is preferable because electric power can be stably applied to the raw material from the start of operation.

また、本実施の形態に係る方法では、廃リチウムイオン電池を破砕して篩分し、篩上として得られる箔状物を準備しておき、最初に電気炉内に装入された原料に続き、その箔状物を追加の原料として電気炉内にさらに装入することが好ましい。 Furthermore, in the method according to the present embodiment, a waste lithium ion battery is crushed and sieved, and a foil-like material obtained as a sieve is prepared, and then Preferably, the foil-like material is further charged into the electric furnace as an additional raw material.

廃リチウムイオン電池を破砕して得られる箔状物は、不揃いの形状を有し、銅(Cu)等の金属やカーボン粉が含まれるが、例えば、比較的融点の低いアルミニウム(Al)が含まれている。そのため、電気炉の操業を開始し、原料の熔解が始まって電極周りの温度が上昇してきたときに、その箔状物を追加原料として装入すると、アルミニウムを含む熔融物が容易に形成され、これが酸化してアルミナとなる等して、熔融スラグ層が安定的にかつ迅速に形成されるようになり、電流値のハンチングの振れ幅をより効果的に抑えることができる。 The foil-like material obtained by crushing waste lithium-ion batteries has an irregular shape and contains metals such as copper (Cu) and carbon powder, but it also contains aluminum (Al), which has a relatively low melting point. It is. Therefore, when the electric furnace starts operating and the material begins to melt and the temperature around the electrode rises, if the foil-like material is charged as an additional material, a molten material containing aluminum will be easily formed. As this oxidizes to become alumina, a molten slag layer is stably and quickly formed, and the hunting amplitude of the current value can be suppressed more effectively.

なお、その箔状物に含まれる銅は、同様に比較的融点の低い金属であり、熔融物となった後、酸化されることなく、熔融メタル層を構成することとなる。 Note that the copper contained in the foil-like material is also a metal with a relatively low melting point, and after becoming a molten material, it will constitute a molten metal layer without being oxidized.

また、操業を行う電気炉としては、特に限定されないが、例えば、黒鉛電極を備えた三相交流式の電気炉を例示できる。三相交流式電気炉としては、例えばサブマージドアーク炉がある。サブマージドアーク炉は、複数の電極が被加熱物中に埋没(サブマージ)しており、アーク放電による加熱と共にジュール熱(電気抵抗熱)を利用する。 Further, the electric furnace to be operated is not particularly limited, but for example, a three-phase AC electric furnace equipped with a graphite electrode can be exemplified. An example of a three-phase AC electric furnace is a submerged arc furnace. A submerged arc furnace has a plurality of electrodes buried (submerged) in the object to be heated, and utilizes Joule heat (electrical resistance heat) as well as heating by arc discharge.

具体的には、サブマージドアーク炉では、電極先端と被加熱物との間にアーク放電が発生し、そのアークにより被加熱物(原料)が加熱される。またそれと同時に、被加熱物を介して電極~電極間(電極~被加熱物~電極間)に電流が流れ、ジュール熱によっても被加熱物(スラグ)が発熱する。サブマージドアーク炉では、スラグへの連続的な加熱が可能になり、スラグ下部に位置するメタルはスラグからの伝熱により加熱される。このように、サブマージドアーク炉では、少ない投入電力で効率的に加熱することができるという利点がある。 Specifically, in a submerged arc furnace, arc discharge occurs between an electrode tip and an object to be heated, and the object to be heated (raw material) is heated by the arc. At the same time, a current flows between the electrodes (between the electrodes, the object to be heated, and the electrodes) via the object to be heated, and the object to be heated (slag) also generates heat due to Joule heat. In a submerged arc furnace, continuous heating of the slag is possible, and the metal located below the slag is heated by heat transfer from the slag. In this way, the submerged arc furnace has the advantage of being able to heat efficiently with less input power.

以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail by showing examples, but the present invention is not limited to the following examples.

[実施例1]
廃リチウムイオン電池を含む原料に対して粉砕処理を施し、その後、篩分処理を行って、篩下の粉状の処理原料(粉状物)と、篩上の箔状の処理原料(箔状物)とを、混合しない状態で別々に準備した。
[Example 1]
The raw materials containing waste lithium-ion batteries are pulverized, and then sieved to separate the powdered raw materials under the sieve (powder) and the foil-shaped raw materials on the sieve. (2) were prepared separately without mixing.

熔融炉として三相交流式電気炉の一つであるサブマージドアーク炉を用いて、原料に対して還元熔融処理を行った。 A submerged arc furnace, which is one of three-phase AC electric furnaces, was used as a melting furnace to perform reduction melting treatment on the raw materials.

具体的には、先ず、予熱操業として、電気炉内に1時間あたり合計30kg(粉状の処理原料24kg、箔状の処理原料6kg)の装入速度で3時間に亘って原料を装入し(原料装入計90kg)、還元熔融処理に付した。原料装入においては、初めに、合計30kgの原料のうち6kgの箔状の処理原料と24kgの粉状の処理原料を装入し、この上にカーボン粉1kgを装入したあと、通電を開始した。湯溜まりの生成を確認した後、旋回式の炉蓋を閉じ、次に、箔状の処理原料と粉状の処理原料とを電極側方に設けられている装入口から装入した。これを3時間に亘って繰り返し行いながら還元熔融処理を施した。 Specifically, first, as a preheating operation, raw materials were charged into the electric furnace over a period of 3 hours at a charging rate of 30 kg in total (24 kg of powdered raw materials, 6 kg of foiled raw materials) per hour. (Total raw material charge: 90 kg) was subjected to reduction melting treatment. When charging raw materials, first, 6 kg of foil-shaped raw materials and 24 kg of powdered raw materials are charged out of a total of 30 kg of raw materials, and after charging 1 kg of carbon powder on top of this, electricity is started. did. After confirming the formation of a puddle, the rotary furnace lid was closed, and then the foil-shaped raw material and powdered raw material were charged through the charging port provided on the side of the electrode. This process was repeated over a period of 3 hours to carry out the reduction melting process.

このとき、通電の開始に際しては、黒鉛電極を、電気炉内に装入した原料に含まれるメタルに接触する前にそのメタルが熔解できる速度で徐々に降下させ、原料をアーク加熱となるように処理した。このように、黒鉛電極を少しずつ降下させてアーク加熱としていることで、印加する電流値は電流上限値を超えることは無く、ハンチングは電流上限値に対しておよそ20%~80%の範囲に収まっていた。 At this time, when starting energization, the graphite electrode is gradually lowered at a speed that allows the metal contained in the raw material charged into the electric furnace to melt before it comes into contact with it, so that the raw material is heated by an arc. Processed. In this way, by lowering the graphite electrode little by little and performing arc heating, the applied current value does not exceed the current upper limit value, and hunting is within the range of approximately 20% to 80% of the current upper limit value. It was settled.

次に、箔状物6kgを含む30kgの原料を、電気炉の左右に設けられている原料装入用シュートから追加で装入した。これにより、ハンチングの程度は、電流上限値に対しておよそ30%~60%の範囲となり、ハンチングの程度はさらに収まっていた。その後、さらに30kgの原料を追加で装入し、これを熔解した。 Next, 30 kg of raw materials including 6 kg of foil-like material were additionally charged from raw material charging chutes provided on the left and right sides of the electric furnace. As a result, the degree of hunting was within a range of approximately 30% to 60% of the upper limit of the current, and the degree of hunting was further reduced. Thereafter, 30 kg of raw material was additionally charged and melted.

その後、熔融スラグ層が形成されたことを確認し、黒鉛電極をスラグ層に浸漬させ、アーク加熱による操業からジュール加熱による操業へ移行した。そして、そのままの状態で21時間の予熱操業を経て、定常操業に移行した。 Thereafter, it was confirmed that a molten slag layer had been formed, the graphite electrode was immersed in the slag layer, and the operation was shifted from arc heating to Joule heating. Then, after 21 hours of preheating operation in that state, steady operation was started.

[比較例1]
電気炉内に装入した原料に対して、ジュール加熱となるように、その電気炉に設けられている黒鉛電極を降下させたこと以外は、実施例1と同様にして行った。
[Comparative example 1]
Example 1 was carried out in the same manner as in Example 1, except that the graphite electrode provided in the electric furnace was lowered so that the raw material charged into the electric furnace was heated by Joule.

その結果、原料に含まれる金属が熔解する前にその金属に接触するような状態で黒鉛電極を降下させたため、金属と接した際には大電流が流れ、金属から離れると電流値は急減するといったように、電流値のハンチングの振れ幅が大きく、電流上限値を超える電流で流れ、電気供給が遮断された。そのため、通電を停止せざるを得なくなった。
As a result, because the graphite electrode was lowered so that it came into contact with the metal contained in the raw material before it melted, a large current flowed when it came into contact with the metal, but the current value rapidly decreased when it was separated from the metal. As shown in the figure, the hunting amplitude of the current value was large, the current flowed at a current exceeding the upper limit value, and the electricity supply was cut off. As a result, we had no choice but to turn off the electricity.

Claims (3)

廃リチウムイオン電池を含む原料から有価金属を回収するための、電極を備えた電気炉の操業方法であって、
操業の開始において、前記電極を、前記電気炉内に装入した原料に含まれるメタルに接触する前に該メタルが熔解できる速度で降下させ、該原料をアーク加熱により処理する、
電気炉の操業方法。
A method for operating an electric furnace equipped with electrodes for recovering valuable metals from raw materials including waste lithium ion batteries, the method comprising:
At the start of operation, the electrode is lowered at a speed that allows the metal contained in the raw material charged into the electric furnace to melt before it comes into contact with the raw material, and the raw material is treated by arc heating.
How to operate an electric furnace.
前記廃リチウムイオン電池を破砕して篩分し、篩上として得られる箔状物を準備し、
前記箔状物を追加原料として、前記電気炉内にさらに装入する、
請求項1に記載の電気炉の操業方法。
Crushing and sieving the waste lithium ion battery, preparing a foil-like material obtained as a sieve,
further charging the foil-like material into the electric furnace as an additional raw material;
The method of operating an electric furnace according to claim 1.
前記電気炉は、三相交流式の電気炉である、
請求項1又は2に記載の電気炉の操業方法。


The electric furnace is a three-phase AC electric furnace,
The method of operating an electric furnace according to claim 1 or 2.


JP2022036415A 2022-03-09 2022-03-09 Operation method of electric oven Pending JP2023131572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022036415A JP2023131572A (en) 2022-03-09 2022-03-09 Operation method of electric oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022036415A JP2023131572A (en) 2022-03-09 2022-03-09 Operation method of electric oven

Publications (1)

Publication Number Publication Date
JP2023131572A true JP2023131572A (en) 2023-09-22

Family

ID=88065809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022036415A Pending JP2023131572A (en) 2022-03-09 2022-03-09 Operation method of electric oven

Country Status (1)

Country Link
JP (1) JP2023131572A (en)

Similar Documents

Publication Publication Date Title
BR112019005038B1 (en) A METHOD TO PRODUCE TITANIUM-ALUMINUM-VANADIUM ALLOY
WO2022019172A1 (en) Method for recovering valuable metal
JP7400589B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP7338326B2 (en) Methods of recovering valuable metals
JP7354903B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP2021031762A (en) Process for recovering valuable metal
JP2022117640A (en) Method for recovering valuable metal
JP6958659B2 (en) How to recover valuable metals
JP7400333B2 (en) How to recover valuable metals
JP2023131572A (en) Operation method of electric oven
WO2023026854A1 (en) Electric furnace and method for producing valuable metal
JP2021031761A (en) Process for recovering valuable metal
JP2023028122A (en) Manufacturing method of valuable metal
JP7342989B2 (en) Manufacturing method of valuable metals
WO2023286387A1 (en) Production method for valuable metals
JP2023131482A (en) Method for operating electric furnace
WO2023286386A1 (en) Method for producing valuable metal
WO2023157397A1 (en) Production method for valuable metals
JP7006739B1 (en) Alloy powder and its manufacturing method, and recovery method of valuable metal
JP7192934B1 (en) Valuable metal manufacturing method
WO2024048248A1 (en) Method for recovering valuable metals
WO2024070500A1 (en) Valuable metal production method
JP2023121702A (en) Method for producing valuable metal
JP2023092074A (en) Manufacturing method of valuable metal
JP2023108902A (en) Electric furnace operation method