JP2023130950A - electric vehicle - Google Patents

electric vehicle Download PDF

Info

Publication number
JP2023130950A
JP2023130950A JP2022035562A JP2022035562A JP2023130950A JP 2023130950 A JP2023130950 A JP 2023130950A JP 2022035562 A JP2022035562 A JP 2022035562A JP 2022035562 A JP2022035562 A JP 2022035562A JP 2023130950 A JP2023130950 A JP 2023130950A
Authority
JP
Japan
Prior art keywords
battery
heat exchanger
vehicle
vehicle interior
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022035562A
Other languages
Japanese (ja)
Inventor
莉 張
Ri Cho
朋寛 東
Tomohiro Azuma
路之 斉川
Michiyuki Saikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2022035562A priority Critical patent/JP2023130950A/en
Publication of JP2023130950A publication Critical patent/JP2023130950A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To cool a battery without using electric power of the battery (without consuming electric power of the battery).SOLUTION: Outside air is cooled by utilizing condensed water occurring when an evaporator 6 for a passenger compartment is operated as an evaporator and a battery 11 is cooled by the cooled outside air SAb without using electric power (excluding power of a battery fan 14). In other words, a by-product (the condensed water) obtained by a heat pump system (a heat pump cycle) is effectively utilized to conduct thermal management (cooling) of the battery 11.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプサイクルの空調装置を備えた電動車両に関する。 The present invention relates to an electric vehicle equipped with a heat pump cycle air conditioner.

近年、車両の省エネと環境問題に伴い、エンジンと電動モータを併用して走行するハイブリッド電気自動車(HV、PHV、PHEV)や、電動モータのみで走行する電気自動車(BEV)等の電動車両が実用化されてきている。電動車両の空調装置としては、エンジンの排熱を十分に利用できないことから、ヒートポンプサイクルを用いた空調装置が提案されている(特許文献1)。 In recent years, due to energy saving and environmental issues in vehicles, electric vehicles such as hybrid electric vehicles (HV, PHV, PHEV) that use both an engine and an electric motor to run, and electric vehicles (BEV) that run only with an electric motor have come into practical use. It is becoming more and more popular. BACKGROUND ART As an air conditioner for an electric vehicle, an air conditioner using a heat pump cycle has been proposed since engine exhaust heat cannot be fully utilized (Patent Document 1).

電動車両のバッテリは、充放電中の発熱により温度が上昇し、放電容量や電圧が低下する虞があるため、温度が上昇した際には冷却を行って適切な温度に維持する必要がある。バッテリの冷却を行う場合、車室の空調装置にバッテリ冷却用の蒸発器を追加して設け、蒸発器で冷却した空気や水をバッテリに循環させてバッテリの温度上昇を抑制する技術が提案されている(特許文献2)。 The temperature of the battery of an electric vehicle increases due to heat generation during charging and discharging, and there is a risk that the discharge capacity and voltage will decrease, so when the temperature rises, it is necessary to cool it to maintain it at an appropriate temperature. When cooling the battery, a technology has been proposed in which an evaporator for cooling the battery is added to the air conditioner in the passenger compartment, and air and water cooled by the evaporator are circulated to the battery to suppress the temperature rise of the battery. (Patent Document 2).

特許文献2で提案された温度管理の技術を用いることで、バッテリ冷却用の蒸発器により空気や水を冷やし、冷却空気、冷却水としてバッテリの冷却を行うことができる。このため、車室の空調装置を拡張した形で、バッテリを適切な温度に維持することができる。 By using the temperature management technology proposed in Patent Document 2, air and water can be cooled by an evaporator for cooling the battery, and the battery can be cooled as cooling air and cooling water. Therefore, the battery can be maintained at an appropriate temperature using an expanded vehicle air conditioner.

しかし、従来のバッテリの冷却の技術では、空調装置の冷媒の圧力や温度を維持して循環させるための動力や、冷却用の空気や水を循環させるための動力が必要であり、バッテリに蓄えられた電気が動力源となっている。このため、バッテリの温度を管理するための消費電力が嵩み、特に、電動モータのみで走行する電気自動車(BEV)にあっては、走行距離に影響を及ぼす虞があるのが現状であった。 However, conventional battery cooling technology requires power to maintain and circulate the pressure and temperature of the refrigerant in the air conditioner, as well as power to circulate cooling air and water, which is stored in the battery. The generated electricity is the power source. For this reason, the power consumption to manage the temperature of the battery increases, which may affect the mileage, especially for electric vehicles (BEVs) that run only on electric motors. .

特開2015-101180号公報Japanese Patent Application Publication No. 2015-101180 特開2008-54379号公報Japanese Patent Application Publication No. 2008-54379

本発明は上記状況に鑑みてなされたもので、ヒートポンプシステムで得られる副産物を有効に利用してバッテリの温度管理(冷却)を行うことができる電動車両を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide an electric vehicle that can perform temperature management (cooling) of a battery by effectively utilizing byproducts obtained from a heat pump system.

上記目的を達成するための請求項1に係る本発明の電動車両は、車室内熱交換器、車室外熱交換器、車室用蒸発器を有し、圧縮手段、経路切換え手段、膨張手段を介して所望の状態にされた冷媒が循環されるヒートポンプサイクルと、車両の動力を得るための電力が貯められるバッテリとを備えた電動車両において、冷却源が供給されることで前記バッテリの冷却を行うバッテリ冷却手段と、前記車室用蒸発器が蒸発器として動作された際に生じる凝縮水を前記冷却源として前記バッテリ冷却手段に反映させる冷却源反映手段とを備えたことを特徴とする。 The electric vehicle of the present invention according to claim 1 for achieving the above object has a vehicle interior heat exchanger, a vehicle exterior heat exchanger, and a vehicle interior evaporator, and includes a compression means, a path switching means, and an expansion means. In an electric vehicle equipped with a heat pump cycle in which a refrigerant is circulated in a desired state through a heat pump cycle, and a battery in which electric power for obtaining power for the vehicle is stored, the battery is cooled by being supplied with a cooling source. and a cooling source reflection means that reflects condensed water generated when the vehicle interior evaporator is operated as an evaporator on the battery cooling means as the cooling source.

請求項1に係る本発明では、車室用蒸発器が蒸発器として動作された際に生じる凝縮水が冷却源反映手段によりバッテリ冷却手段に反映され、冷房時の副産物としてのドレン水を冷却用の冷却源として用いられる。これにより、ヒートポンプシステムで得られる副産物を有効に利用してバッテリの温度管理(冷却)を行うことが可能になり、バッテリの電力を用いることなく(バッテリの電力を消費することなく)バッテリの冷却を行うことができる。 In the present invention according to claim 1, condensed water generated when the vehicle interior evaporator is operated as an evaporator is reflected to the battery cooling means by the cooling source reflection means, and drain water as a byproduct during cooling is used for cooling. used as a cooling source. This makes it possible to effectively use the byproducts obtained from the heat pump system to manage (cool) the temperature of the battery, cooling the battery without using battery power (without consuming battery power). It can be performed.

バッテリ冷却手段としては、バッテリ用熱交換器を用い、冷媒の通路の外側に、水分を吸着させるための高分子吸着剤、デシカント材を設ける構成を適用したり、凝縮水をタンクなどの貯留手段に貯め、貯留された凝縮水をバッテリのケースに循環させる構成を適用したりすることができる。 As a battery cooling means, a battery heat exchanger is used, and a structure is applied in which a polymer adsorbent or desiccant material is provided outside the refrigerant passage to adsorb moisture, or a storage means such as a tank is used to store condensed water. It is also possible to apply a configuration in which the condensed water is stored in the battery case and the stored condensed water is circulated to the battery case.

そして、請求項2に係る本発明の電動車両は、請求項1に記載の電動車両において、前記バッテリ冷却手段は、前記バッテリに隣接して配される凝縮水保持手段と、前記凝縮水保持手段を通して外気を前記バッテリに送る送給手段とを有し、前記冷却源反映手段は、前記凝縮水を前記凝縮水保持手段に送る手段であることを特徴とする。 The electric vehicle of the present invention according to claim 2 is the electric vehicle according to claim 1, in which the battery cooling means includes a condensed water holding means disposed adjacent to the battery, and a condensed water holding means arranged adjacent to the battery. and a feeding means for sending outside air to the battery through the cooling source reflection means, and the cooling source reflection means is a means for sending the condensed water to the condensed water holding means.

請求項2に係る本発明では、凝縮水が凝縮水保持手段に保持され、外気が凝縮水保持手段に通されることで蒸発熱により外気が冷やされ、冷やされた外気によりバッテリが冷却される。凝縮水保持手段としては、外気に水分が接触できる状態に水分が保持される手段が用いられる。 In the present invention according to claim 2, the condensed water is held in the condensed water holding means, the outside air is cooled by the heat of evaporation by passing through the condensed water holding means, and the battery is cooled by the cooled outside air. . As the condensed water holding means, a means for holding moisture in a state where it can come into contact with the outside air is used.

また、請求項3に係る本発明の電動車両は、請求項2に記載の電動車両において、前記凝縮水保持手段はバッテリ用熱交換器であり、前記バッテリ用熱交換器は、媒体が流通する媒体経路(伝熱管)の外側に高分子吸着剤が配され、前記冷却源反映手段は、前記凝縮水を前記バッテリ用熱交換器に送ることで、前記高分子吸着剤に前記凝縮水を付着させる手段であることを特徴とする。 Further, in the electric vehicle of the present invention according to claim 3, in the electric vehicle according to claim 2, the condensed water holding means is a battery heat exchanger, and the battery heat exchanger is configured such that a medium flows through the battery heat exchanger. A polymer adsorbent is disposed outside the medium path (heat transfer tube), and the cooling source reflection means causes the condensed water to adhere to the polymer adsorbent by sending the condensed water to the battery heat exchanger. It is characterized by being a means for causing

請求項3に係る本発明では、バッテリ用熱交換器の媒体経路(伝熱管)の外側に配された高分子吸着剤に凝縮水が送られ、外気が接触できる状態に凝縮水が保持される。バッテリ用熱交換器に圧縮された媒体が送られることで、蒸発器として作動させてバッテリの冷却を行うこともできる。 In the present invention according to claim 3, the condensed water is sent to the polymer adsorbent placed outside the medium path (heat transfer tube) of the battery heat exchanger, and the condensed water is maintained in a state where it can contact the outside air. . By sending a compressed medium to the battery heat exchanger, it can also be operated as an evaporator to cool the battery.

また、請求項4に係る本発明の電動車両は、請求項3に記載の電動車両において、前記車両の車室内に、前記車室内熱交換器、前記車室用蒸発器が配され、前記車両の車室外に、前記車室外熱交換器、前記バッテリ、前記バッテリ用熱交換器が配され、前記車室内熱交換器の媒体経路の一方側には、前記圧縮手段で圧縮された媒体を送る経路が接続され、前記車室内熱交換器の媒体経路の他方側には、前記経路切換え手段が接続され、前記車室外熱交換器の媒体経路の他方側には、前記経路切換え手段が接続され、前記車室外熱交換器の媒体経路の一方側には、第1膨張弁を介して前記車室用蒸発器の媒体経路の他方側が接続されると共に、前記車室外熱交換器の媒体経路の一方側には、第2膨張弁を介して前記バッテリ用熱交換器の媒体経路の他方側が接続され、前記車室用蒸発器の媒体経路の一方側には、第3膨張弁を介して前記経路切換え手段が接続されると共に、前記バッテリ用熱交換器の媒体経路の一方側には前記経路切換え手段が接続され、前記経路切換え手段には、前記圧縮手段で圧縮された媒体が送られ、運転モードの指示の情報に基づいて、前記経路切換え手段、前記第1膨張弁、前記第2膨張弁、前記第3膨張弁の動作を制御する制御手段を備えたことを特徴とする。 Further, the electric vehicle of the present invention according to claim 4 is the electric vehicle according to claim 3, wherein the cabin heat exchanger and the cabin evaporator are disposed in the cabin of the vehicle, and the vehicle The vehicle exterior heat exchanger, the battery, and the battery heat exchanger are arranged outside the vehicle interior, and a medium compressed by the compression means is sent to one side of a medium path of the vehicle interior heat exchanger. The route switching means is connected to the other side of the medium route of the vehicle interior heat exchanger, and the route switching means is connected to the other side of the media route of the vehicle exterior heat exchanger. , one side of the medium path of the vehicle exterior heat exchanger is connected to the other side of the medium path of the vehicle interior evaporator via a first expansion valve, and the medium path of the vehicle exterior heat exchanger is connected to The other side of the medium path of the battery heat exchanger is connected to one side through a second expansion valve, and the medium path of the battery heat exchanger is connected to one side of the medium path of the vehicle compartment evaporator through a third expansion valve. A route switching means is connected to one side of the medium route of the battery heat exchanger, and the medium compressed by the compression means is sent to the route switching means, The present invention is characterized by comprising a control means for controlling the operation of the route switching means, the first expansion valve, the second expansion valve, and the third expansion valve based on information on the instruction of the operation mode.

請求項4に係る本発明では、車室内熱交換器、車室外熱交換器、車室用蒸発器、バッテリ用熱交換器で構成されるヒートポンプシステムを構築することができる。 In the present invention according to claim 4, it is possible to construct a heat pump system including a vehicle interior heat exchanger, a vehicle exterior heat exchanger, a vehicle interior evaporator, and a battery heat exchanger.

また、請求項5に係る本発明の電動車両は、請求項4に記載の電動車両において、
前記運転モードは、圧縮された媒体が前記車室外熱交換器に送られることで前記車室外熱交換器が凝縮器とされ、膨張された媒体が前記車室用蒸発器に送られることで前記車室用蒸発器が蒸発器とされ、前記車室用蒸発器で生じた前記凝縮水が前記バッテリ用熱交換器に反映された状態で、前記バッテリ用熱交換器に外気が通され、蒸発熱で冷やされた外気により前記バッテリを冷却する、冷房・バッテリ冷却モードを含み、
前記制御手段は、
前記冷房・バッテリ冷却モードが選択された場合、前記圧縮手段で圧縮された媒体を前記車室内熱交換器、前記車室外熱交換器、前記第1膨張弁、前記車室用蒸発器、前記第3膨張弁の順に送り、前記圧縮手段に循環させるように前記経路切換え手段を動作させると共に、前記第1膨張弁を絞り状態に動作させ、前記第2膨張弁を閉じ状態に動作させ、前記第3膨張弁を全開状態に動作させると共に、外気が前記バッテリ用熱交換器を通って前記バッテリに送られるようにすることを特徴とする。
Further, the electric vehicle of the present invention according to claim 5 is the electric vehicle according to claim 4, which includes:
The operation mode is such that the compressed medium is sent to the vehicle exterior heat exchanger, so that the vehicle exterior heat exchanger is used as a condenser, and the expanded medium is sent to the vehicle interior evaporator, so that the vehicle exterior heat exchanger functions as a condenser. A vehicle interior evaporator is used as an evaporator, and while the condensed water generated in the vehicle interior evaporator is reflected in the battery heat exchanger, outside air is passed through the battery heat exchanger and evaporates. including an air conditioning/battery cooling mode in which the battery is cooled by outside air cooled by heat;
The control means includes:
When the cooling/battery cooling mode is selected, the medium compressed by the compression means is transferred to the vehicle interior heat exchanger, the vehicle exterior heat exchanger, the first expansion valve, the vehicle interior evaporator, and the vehicle interior heat exchanger. 3 expansion valves in order, and operates the path switching means to circulate the gas to the compression means, operates the first expansion valve to the throttle state, operates the second expansion valve to the closed state, and operates the first expansion valve to the closed state. The present invention is characterized in that three expansion valves are operated in a fully open state, and outside air is sent to the battery through the battery heat exchanger.

請求項5に係る本発明では、ヒートポンプの構成により車室の冷房を行うと共に、電力を用いることなく凝縮水でバッテリの冷却を行うシステムを構成することができる。 In the present invention according to claim 5, it is possible to configure a system that cools the vehicle interior using the heat pump configuration and also cools the battery using condensed water without using electric power.

また、請求項6に係る本発明の電動車両は、請求項4もしくは請求項5に記載の電動車両において、前記運転モードは、前記車室用蒸発器で生じた前記凝縮水が前記バッテリ用熱交換器に反映された状態で、外気が前記バッテリ用熱交換器を通って前記バッテリに送られるようにするバッテリ冷却モードを含み、前記制御手段は、前記バッテリ冷却モードが選択された場合、外気が前記バッテリ用熱交換器を通って前記バッテリに送られる動作だけが実施されるようにすることを特徴とする。 Further, in the electric vehicle of the present invention according to claim 6, in the electric vehicle according to claim 4 or 5, the driving mode is such that the condensed water generated in the cabin evaporator is heated to heat the battery. a battery cooling mode configured to direct outside air through the battery heat exchanger to the battery, the control means configured to direct outside air to the battery when the battery cooling mode is selected; is characterized in that only operations are carried out in which the battery is sent to the battery through the battery heat exchanger.

請求項6に係る本発明では、車室冷房・バッテリ冷却モードの制御に加え、もしくは、車室冷房・バッテリ冷却モードの制御の有無によらず、外気がバッテリ用熱交換器を通ってバッテリに送られる動作だけが実施されるバッテリ冷却モードでバッテリを冷却することができる。 In the present invention according to claim 6, in addition to controlling the cabin cooling/battery cooling mode, or regardless of whether or not the cabin cooling/battery cooling mode is controlled, outside air passes through the battery heat exchanger and reaches the battery. The battery can be cooled in a battery cooling mode in which only sent operations are performed.

また、請求項7に係る本発明の電動車両は、請求項4から請求項6のいずれか一項に記載の電動車両において、
前記運転モードは、
圧縮された媒体が前記車室内熱交換器に送られることで前記車室内熱交換器が凝縮器とされると共に、圧縮された媒体が前記車室外熱交換器に送られることで前記車室外熱交換器が凝縮器とされ、膨張された媒体が前記バッテリ用熱交換器に送られることで前記バッテリ用熱交換器が蒸発器とされ、前記バッテリの熱が前記バッテリ用熱交換器で回収されて吸熱源とされる、車室暖房・除霜モードを含み、
前記制御手段は、
前記車室暖房・除霜モードが選択された場合、前記圧縮手段で圧縮された媒体を前記車室内熱交換器、前記車室外熱交換器、前記第2膨張弁、前記バッテリ用熱交換器、の順に送り、前記圧縮手段に循環させるように前記経路切換え手段を動作させると共に、前記第2膨張弁を絞り状態に動作させると共に、前記第1膨張弁、前記第2膨張弁を閉じ状態に動作させ、前記バッテリ用熱交換器を前記バッテリの熱が吸熱源とされる蒸発器としてヒートポンプサイクルを成立させ、凝縮器とされた前記車室外熱交換器の霜を除去することを特徴とする。
Further, the electric vehicle of the present invention according to claim 7 is the electric vehicle according to any one of claims 4 to 6,
The driving mode is
The compressed medium is sent to the vehicle interior heat exchanger, so that the vehicle interior heat exchanger is used as a condenser, and the compressed medium is sent to the vehicle exterior heat exchanger, so that the vehicle exterior heat exchanger is used as a condenser. The exchanger is a condenser, and the expanded medium is sent to the battery heat exchanger, thereby making the battery heat exchanger an evaporator, and the heat of the battery is recovered by the battery heat exchanger. Including cabin heating and defrosting mode, which is considered a heat absorption source.
The control means includes:
When the vehicle interior heating/defrosting mode is selected, the medium compressed by the compression means is transferred to the vehicle interior heat exchanger, the vehicle exterior heat exchanger, the second expansion valve, the battery heat exchanger, The route switching means is operated so that the compressor is circulated through the compression means, the second expansion valve is operated in a throttled state, and the first expansion valve and the second expansion valve are operated in a closed state. A heat pump cycle is established by using the battery heat exchanger as an evaporator in which the heat of the battery is used as a heat absorption source, and frost is removed from the vehicle exterior heat exchanger which is used as a condenser.

請求項7に係る本発明では、車室内熱交換器、及び、車室外熱交換器が、蒸発動作を行う凝縮器とされ、バッテリ用熱交換器がバッテリの熱を吸熱源とした蒸発器とされてヒートポンプサイクルが構築され、凝縮器とされた車室内熱交換器で暖房が行われると共に、凝縮器とされた車室外熱交換器の霜が除去される。 In the present invention according to claim 7, the vehicle interior heat exchanger and the vehicle exterior heat exchanger are a condenser that performs an evaporation operation, and the battery heat exchanger is an evaporator that uses battery heat as a heat absorption source. A heat pump cycle is constructed, and the heat exchanger serving as a condenser performs heating, and the frost is removed from the outside heat exchanger serving as a condenser.

本発明の電動車両は、ヒートポンプシステム(ヒートポンプサイクル)で得られる副産物(凝縮水)を有効に利用してバッテリの温度管理(冷却)を行うことが可能になる。この結果、バッテリの電力を用いることなく(バッテリの電力を消費することなく)バッテリの冷却を行うことが可能になり、航行距離を減少させることを抑制することができる。 The electric vehicle of the present invention can effectively manage the temperature (cooling) of the battery by effectively utilizing the byproduct (condensed water) obtained from the heat pump system (heat pump cycle). As a result, it becomes possible to cool the battery without using battery power (without consuming battery power), and it is possible to suppress a decrease in the cruising distance.

本発明の一実施例に係る電動車両における空調装置の全体構成図である。1 is an overall configuration diagram of an air conditioner in an electric vehicle according to an embodiment of the present invention. 冷房・バッテリ冷却モードにおける空調装置の概略系統図である。FIG. 2 is a schematic system diagram of an air conditioner in cooling/battery cooling mode. 冷房モードにおける空調装置の概略系統図である。FIG. 2 is a schematic system diagram of an air conditioner in cooling mode. 冷媒を用いないバッテリ冷却モードにおける空調装置の概略系統図である。FIG. 2 is a schematic system diagram of an air conditioner in a battery cooling mode that does not use refrigerant. 冷媒を用いたバッテリ冷却モードにおける空調装置の概略系統図である。FIG. 2 is a schematic system diagram of an air conditioner in a battery cooling mode using a refrigerant. 暖房・バッテリ加熱モードにおける空調装置の概略系統図である。It is a schematic system diagram of an air conditioner in heating/battery heating mode. 除湿防曇・暖房モードにおける空調装置の概略系統図である。FIG. 2 is a schematic system diagram of the air conditioner in dehumidification/antifogging/heating mode. 暖房・除霜モードにおける空調装置の概略系統図である。It is a schematic system diagram of an air conditioner in heating/defrosting mode.

図1に基づいて本発明の一実施例に係る電動車両を説明する。図1には本発明の一実施例に係る電動車両における空調装置の全体を概略的に示した概略系統を示してある。 An electric vehicle according to an embodiment of the present invention will be described based on FIG. FIG. 1 shows a schematic system that schematically shows the entire air conditioning system in an electric vehicle according to an embodiment of the present invention.

図1に示すように、本実施例の電動車両における空調装置1は、装置ケース2から車室3に空調用の流体が送風されるヒートポンプサイクルの装置とされている。即ち、装置ケース2の中には(車室内には)、媒体が伝熱管を流通する車室内熱交換器5、及び、車室用蒸発器6が配されている。装置ケース2の外には外気との間で熱交換されることで媒体の温度を調整する車室外熱交換器7が配されている。 As shown in FIG. 1, the air conditioner 1 in the electric vehicle of this embodiment is a heat pump cycle device in which air conditioning fluid is blown from a device case 2 to a vehicle interior 3. That is, inside the device case 2 (inside the vehicle interior), a vehicle interior heat exchanger 5 through which a medium flows through heat transfer tubes, and a vehicle interior evaporator 6 are arranged. Outside the device case 2 is arranged an exterior heat exchanger 7 that adjusts the temperature of the medium by exchanging heat with the outside air.

一方、電動車両には、走行用の電力を賄う(全部、もしくは、一部)バッテリ11が搭載され、バッテリ11に隣接してバッテリ冷却手段としてのバッテリ用熱交換器12が配されている。バッテリ用熱交換器12の媒体経路(伝熱管)の外側には、凝縮水保持手段として、水分を吸着させるための高分子吸着剤13が設けられている。 On the other hand, the electric vehicle is equipped with a battery 11 (in whole or in part) that supplies electric power for driving, and a battery heat exchanger 12 as a battery cooling means is disposed adjacent to the battery 11. A polymer adsorbent 13 for adsorbing moisture is provided outside the medium path (heat transfer tube) of the battery heat exchanger 12 as a condensed water holding means.

バッテリ用熱交換器12の媒体経路(伝熱管)の外側に配された高分子吸着剤13に凝縮水が送られることで、外気が接触できる状態に凝縮水が保持される。つまり、車室用蒸発器6が蒸発器として動作された際に、蒸発器の凝縮水が高分子吸着剤13に送られる(凝縮水が冷却源反映手段によりバッテリ冷却手段に反映される)。 By sending the condensed water to the polymer adsorbent 13 arranged outside the medium path (heat transfer tube) of the battery heat exchanger 12, the condensed water is maintained in a state where it can be contacted with the outside air. That is, when the vehicle interior evaporator 6 is operated as an evaporator, the condensed water of the evaporator is sent to the polymer adsorbent 13 (the condensed water is reflected on the battery cooling means by the cooling source reflecting means).

尚、バッテリ冷却手段としては、媒体経路(伝熱管)の外側に吸着剤を設けた熱交換器を適用したり、凝縮水をタンクなどの貯留手段に貯め、貯留された凝縮水をバッテリ11のケースに循環させる構成を適用したりすることができる。 As a battery cooling means, a heat exchanger with an adsorbent provided outside the medium path (heat transfer tube) may be used, or the condensed water may be stored in a storage means such as a tank, and the stored condensed water may be used to cool the battery 11. It is also possible to apply a configuration that circulates the case.

バッテリ11の近傍には、高分子吸着剤13が設けられたバッテリ用熱交換器12を通して外気をバッテリ11に送る、送給手段としてバッテリファン14が配されている。バッテリファン14の駆動により、凝縮水が保持された高分子吸着剤13を有するバッテリ用熱交換器12を通して、外気がバッテリ11に送られる。バッテリ用熱交換器12では凝縮水の蒸発熱により外気が冷やされ、冷やされた外気がバッテリ11に送られてバッテリ11が冷却される。 A battery fan 14 is disposed near the battery 11 as a feeding means that sends outside air to the battery 11 through a battery heat exchanger 12 provided with a polymer adsorbent 13 . By driving the battery fan 14, outside air is sent to the battery 11 through a battery heat exchanger 12 having a polymer adsorbent 13 holding condensed water. In the battery heat exchanger 12, the outside air is cooled by the heat of evaporation of the condensed water, and the cooled outside air is sent to the battery 11 to cool the battery 11.

即ち、車室用蒸発器6が蒸発器として動作された際の副産物(凝縮水)を利用して外気を冷やし、電力を用いずに(バッテリファン14の動力は除く)バッテリ11を冷却することができる。 That is, by-product (condensed water) when the vehicle interior evaporator 6 is operated as an evaporator is used to cool the outside air, and the battery 11 is cooled without using electric power (excluding the power of the battery fan 14). I can do it.

一方、媒体を圧縮する圧縮手段16が備えられ、圧縮手段16で圧縮された媒体(圧縮媒体)は、車室内熱交換器5に送られた後、経路切換え手段17を介して、車室外熱交換器7、もしくは、車室用蒸発器6(バッテリ用熱交換器12)のいずれかに供給が切り換えられる。 On the other hand, a compression means 16 for compressing the medium is provided, and the medium (compressed medium) compressed by the compression means 16 is sent to the vehicle interior heat exchanger 5 and then transferred to the vehicle exterior heat exchanger 5 via the route switching means 17. The supply is switched to either the exchanger 7 or the compartment evaporator 6 (battery heat exchanger 12).

つまり、車室内熱交換器5の媒体経路の一方側(図中上側)には、圧縮手段16で圧縮された媒体が送られる経路が接続され、車室内熱交換器5の媒体経路の他方側(図中下側)には、経路切換え手段17が接続されている。 That is, one side (upper side in the figure) of the medium path of the vehicle interior heat exchanger 5 is connected to a path through which the medium compressed by the compression means 16 is sent, and the other side of the medium path of the vehicle interior heat exchanger 5 is connected. A route switching means 17 is connected to the lower side in the figure.

車室外熱交換器7の媒体経路の他方側(図中上側)には、経路切換え手段17が接続され、車室外熱交換器7の媒体経路の一方側(図中下側)には、第1膨張弁21を介して車室用蒸発器6の媒体経路の他方側(図中下側)が接続されている。また、車室外熱交換器7の媒体経路の一方側(図中下側)には、第2膨張弁22を介してバッテリ用熱交換器12の媒体経路の他方側(図中下側)が接続されている。 A path switching means 17 is connected to the other side of the medium path of the vehicle exterior heat exchanger 7 (upper side in the figure), and a route switching means 17 is connected to one side of the medium path of the vehicle exterior heat exchanger 7 (lower side in the figure). The other side (lower side in the figure) of the medium path of the vehicle interior evaporator 6 is connected via the No. 1 expansion valve 21 . Furthermore, one side of the medium path of the vehicle exterior heat exchanger 7 (lower side in the figure) is connected to the other side of the medium path of the battery heat exchanger 12 (lower side in the figure) via the second expansion valve 22. It is connected.

また、車室用蒸発器6の媒体経路の一方側(図中上側)には、第3膨張弁23を介して経路切換え手段17が接続されると共に、バッテリ用熱交換器12の媒体経路の一方側(図中上側)には経路切換え手段17が接続されている。 Further, a path switching means 17 is connected to one side (upper side in the figure) of the medium path of the vehicle compartment evaporator 6 via a third expansion valve 23, and a path switching means 17 is connected to one side (upper side in the figure) of the medium path of the vehicle compartment evaporator 6. A path switching means 17 is connected to one side (upper side in the figure).

経路切換え手段17は、車室内熱交換器5の他方側(図中下側)につながる(圧縮手段16の出口側につながる)ポート17a、圧縮手段16の入口側につながるポート17b、車室外熱交換器7の他方側(図中上側)につながるポート17c、車室用蒸発器6(バッテリ用熱交換器12)の一方側(図中上側)につながるポート17dが備えられている。 The path switching means 17 includes a port 17a (connected to the outlet side of the compression means 16) connected to the other side (lower side in the figure) of the vehicle interior heat exchanger 5, a port 17b connected to the inlet side of the compression means 16, and a port 17b connected to the inlet side of the compression means 16, A port 17c connected to the other side (upper side in the figure) of the exchanger 7 and a port 17d connected to one side (upper side in the figure) of the cabin evaporator 6 (battery heat exchanger 12) are provided.

経路切換え手段17には、圧縮手段16で圧縮された媒体が送られ、制御手段25からの運転モードの指示の情報に基づいて、経路切換え手段17、第1膨張弁21、第2膨張弁22、第3膨張弁23の動作が制御される。また、制御手段25からの指示により、室外ファン26、室内ファン27が回転され、ダンパー28の位置がA位置、B位置に動作される(A位置では車室内熱交換器5を流通しない流路が開けられ、B位置では車室内熱交換器5を流通する流路が開けられる)。 The medium compressed by the compression means 16 is sent to the route switching means 17 , and the route switching means 17 , the first expansion valve 21 , and the second expansion valve 22 are sent to the route switching means 17 . , the operation of the third expansion valve 23 is controlled. Further, according to instructions from the control means 25, the outdoor fan 26 and the indoor fan 27 are rotated, and the damper 28 is moved to the A position and the B position (at the A position, the flow path does not flow through the vehicle interior heat exchanger 5). is opened, and at position B, a flow path flowing through the vehicle interior heat exchanger 5 is opened).

上記構成により、車室内熱交換器5、車室外熱交換器7、車室用蒸発器6、バッテリ用熱交換器12で構成されるヒートポンプシステムが構築される。 With the above configuration, a heat pump system is constructed which includes the vehicle interior heat exchanger 5, the vehicle exterior heat exchanger 7, the vehicle interior evaporator 6, and the battery heat exchanger 12.

図2から図7に基づいて上記構成の空調装置1の運転モードの主な具体例を説明する。 Main specific examples of the operation modes of the air conditioner 1 having the above configuration will be explained based on FIGS. 2 to 7.

図2には冷房・バッテリ冷却モードにおける空調装置の概略系統、図3には冷房モードにおける空調装置の概略系統、図4には冷媒を用いないバッテリ冷却モードにおける空調装置の概略系統、図5には冷媒を用いたバッテリ冷却モードにおける空調装置の概略系統、図6には暖房・バッテリ加熱モードにおける空調装置の概略系統、図7には除湿防曇・暖房モードにおける空調装置の概略系統、図8には暖房・除霜モードにおける空調装置の概略系統を示してある。 Figure 2 shows a schematic system of the air conditioner in cooling/battery cooling mode, Figure 3 shows a schematic system of the air conditioner in cooling mode, Figure 4 shows a schematic system of the air conditioner in battery cooling mode that does not use refrigerant, and Figure 5 shows a schematic system of the air conditioner in battery cooling mode that does not use refrigerant. 6 shows a schematic system of the air conditioner in battery cooling mode using refrigerant, FIG. 6 shows a schematic system of the air conditioner in heating/battery heating mode, FIG. 7 shows a schematic system of the air conditioner in dehumidifying/antifogging/heating mode, and FIG. shows a schematic system of the air conditioner in heating/defrosting mode.

図2に基づいて冷房・バッテリ冷却モードを説明する。冷房・バッテリ冷却モードは、長距離にわたり連続して高出力で走行を可能にして車室3を冷房するモードが想定されている。 The cooling/battery cooling mode will be explained based on FIG. 2. The air conditioning/battery cooling mode is assumed to be a mode in which the vehicle compartment 3 is cooled by allowing the vehicle to run continuously at high output over a long distance.

冷房・バッテリ冷却モードが実施される場合、制御手段25により、ポート17aとポート17cがつながり、ポート17bとポート17dがつながるように、経路切換え手段17の動作が制御される。そして、第1膨張弁21が絞り状態に動作され、第2膨張弁22が全閉状態に動作され、第3膨張弁23が全開状態に動作されると共に、バッテリファン14、室外ファン26、室内ファン27が回転され、ダンパー28がA位置に動作される。 When the cooling/battery cooling mode is implemented, the control means 25 controls the operation of the path switching means 17 so that the ports 17a and 17c are connected, and the ports 17b and 17d are connected. Then, the first expansion valve 21 is operated to the throttle state, the second expansion valve 22 is operated to the fully closed state, and the third expansion valve 23 is operated to the fully open state, and the battery fan 14, the outdoor fan 26, and the indoor The fan 27 is rotated and the damper 28 is moved to the A position.

圧縮手段16で圧縮された媒体が車室内熱交換器5を通過し、経路切換え手段17から車室外熱交換器7、第1膨張弁21、車室用蒸発器6、第3膨張弁23、経路切換え手段17の順に送られ、圧縮手段16に循環される。これにより、車室外熱交換器7が凝縮器として働き、車室用蒸発器6が蒸発器として働く。 The medium compressed by the compression means 16 passes through the vehicle interior heat exchanger 5, and is transferred from the route switching means 17 to the vehicle exterior heat exchanger 7, the first expansion valve 21, the vehicle interior evaporator 6, the third expansion valve 23, It is then sent to the route switching means 17 and circulated to the compression means 16. Thereby, the exterior heat exchanger 7 works as a condenser, and the compartment evaporator 6 works as an evaporator.

室内ファン27の駆動により、車室3内の還気RAが車室用蒸発器6で冷却され、車室3への送風SAcとされる。車室用蒸発器6の凝縮水がバッテリ用熱交換器12の高分子吸着剤13に吸着されて保持される。バッテリファン14の駆動により、凝縮水が保持された高分子吸着剤13を有するバッテリ用熱交換器12を通して、外気OAがバッテリ11に送られる。バッテリ用熱交換器12では凝縮水の蒸発熱により外気が冷やされ、冷やされた外気SAbがバッテリ11に送られてバッテリ11が冷却され、排気される(EA)。 By driving the indoor fan 27, the return air RA in the vehicle interior 3 is cooled by the vehicle interior evaporator 6, and is turned into air SAc to be blown into the vehicle interior 3. Condensed water from the vehicle evaporator 6 is adsorbed and held by the polymer adsorbent 13 of the battery heat exchanger 12. As the battery fan 14 is driven, outside air OA is sent to the battery 11 through the battery heat exchanger 12 having the polymer adsorbent 13 holding condensed water. In the battery heat exchanger 12, the outside air is cooled by the heat of evaporation of the condensed water, and the cooled outside air SAb is sent to the battery 11 to cool the battery 11 and exhaust the air (EA).

これにより、車室用蒸発器6が蒸発器として動作された際の副産物(凝縮水)を利用して外気を冷やし、電力を用いずに(バッテリファン14の動力は除く)、冷やされた外気SAbによりバッテリ11を冷却することができる。 As a result, the by-product (condensed water) when the cabin evaporator 6 is operated as an evaporator is used to cool the outside air, and the cooled outside air is generated without using electric power (excluding the power of the battery fan 14). The battery 11 can be cooled by SAb.

従って、ヒートポンプシステム(ヒートポンプサイクル)で得られる副産物(凝縮水)を有効に利用してバッテリ11の温度管理(冷却)を行うことが可能になる。この結果、バッテリ11の電力を用いることなく(バッテリ11の電力を消費することなく)バッテリ11の冷却を行うことが可能になり、電動車両の航行距離の減少を抑制することが可能になる。 Therefore, it becomes possible to perform temperature control (cooling) of the battery 11 by effectively utilizing the by-product (condensed water) obtained from the heat pump system (heat pump cycle). As a result, it becomes possible to cool the battery 11 without using the electric power of the battery 11 (without consuming the electric power of the battery 11), and it becomes possible to suppress a decrease in the cruising distance of the electric vehicle.

図3に基づいて冷房モードを説明する。冷房モードは、短距離の走行の際(バッテリ11の冷却を行う必要がない)に車室3の冷房を実施するモードが想定されている。 The cooling mode will be explained based on FIG. 3. The cooling mode is assumed to be a mode in which the vehicle interior 3 is cooled during short-distance driving (there is no need to cool the battery 11).

冷房モードが実施される場合、制御手段25により、ポート17aとポート17cがつながり、ポート17bとポート17dがつながるように、経路切換え手段17の動作が制御される。そして、第1膨張弁21が絞り状態に動作され、第2膨張弁22が全閉状態に動作され、第3膨張弁23が全開状態に動作されると共に、バッテリファン14が停止され、室外ファン26、室内ファン27が回転され、ダンパー28がA位置に動作される。 When the cooling mode is implemented, the control means 25 controls the operation of the path switching means 17 so that the ports 17a and 17c are connected, and the ports 17b and 17d are connected. Then, the first expansion valve 21 is operated to the throttle state, the second expansion valve 22 is operated to the fully closed state, the third expansion valve 23 is operated to the fully open state, the battery fan 14 is stopped, and the outdoor fan 26, the indoor fan 27 is rotated, and the damper 28 is moved to the A position.

圧縮手段16で圧縮された媒体が車室内熱交換器5を通過し、経路切換え手段17から車室外熱交換器7、第1膨張弁21、車室用蒸発器6、第3膨張弁23、経路切換え手段17の順に送られ、圧縮手段16に循環される。これにより、車室外熱交換器7が凝縮器として働き、車室用蒸発器6が蒸発器として働く。 The medium compressed by the compression means 16 passes through the vehicle interior heat exchanger 5, and is transferred from the route switching means 17 to the vehicle exterior heat exchanger 7, the first expansion valve 21, the vehicle interior evaporator 6, the third expansion valve 23, It is then sent to the route switching means 17 and circulated to the compression means 16. Thereby, the exterior heat exchanger 7 works as a condenser, and the compartment evaporator 6 works as an evaporator.

室内ファン27の駆動により、車室3内の還気RAが車室用蒸発器6で冷却され、車室3への送風SAcとされる。車室用蒸発器6の凝縮水がバッテリ用熱交換器12の高分子吸着剤13に吸着されて保持されて溜められる。この場合、高分子の重さの3倍から4倍の水を溜めることができる。 By driving the indoor fan 27, the return air RA in the vehicle interior 3 is cooled by the vehicle interior evaporator 6, and is turned into air SAc to be blown into the vehicle interior 3. Condensed water from the evaporator 6 for the vehicle compartment is adsorbed and retained by the polymer adsorbent 13 of the heat exchanger 12 for the battery. In this case, water three to four times the weight of the polymer can be stored.

これにより、バッテリ11の冷却の必要が低い走行時に、車室用蒸発器6が蒸発器として動作された際の副産物(凝縮水)を溜めながら、車室3の冷房を行うことができる。 Thereby, during driving when the need for cooling the battery 11 is low, the vehicle interior 3 can be cooled while storing the by-product (condensed water) produced when the vehicle interior evaporator 6 is operated as an evaporator.

図4に基づいて凝縮水によるバッテリ冷却モードを説明する。凝縮水によるバッテリ冷却モードは、凝縮水が溜められている状態で、急速充電など車室3の冷房を必要とせず、バッテリ11の温度が上限を超えて(例えば、40℃から50℃)バッテリ11のみを冷却する場合が想定されている。 The battery cooling mode using condensed water will be explained based on FIG. 4. The battery cooling mode using condensed water does not require air conditioning of the passenger compartment 3, such as rapid charging, when condensed water is stored, and when the temperature of the battery 11 exceeds the upper limit (for example, from 40 degrees Celsius to 50 degrees Celsius), the battery cools. A case where only 11 is cooled is assumed.

凝縮水によるバッテリ冷却モードが実施される場合、圧縮手段16、経路切換え手段17、第1膨張弁21、第2膨張弁22、第3膨張弁23の動作が停止され、室外ファン26、室内ファン27の回転が停止され、バッテリファン14だけが回転されて、ダンパー28がA位置に動作される。 When the battery cooling mode using condensed water is implemented, the compression means 16, the path switching means 17, the first expansion valve 21, the second expansion valve 22, and the third expansion valve 23 are stopped, and the outdoor fan 26 and the indoor fan are stopped. 27 is stopped, only the battery fan 14 is rotated, and the damper 28 is moved to the A position.

バッテリファン14の駆動により、凝縮水が保持された高分子吸着剤13を有するバッテリ用熱交換器12を通して、外気OAがバッテリ11に送られる。バッテリ用熱交換器12では凝縮水の蒸発熱により外気が冷やされ、冷やされた外気SAbがバッテリ11に送られてバッテリ11が冷却され、排気される(EA)。 As the battery fan 14 is driven, outside air OA is sent to the battery 11 through the battery heat exchanger 12 having the polymer adsorbent 13 holding condensed water. In the battery heat exchanger 12, the outside air is cooled by the heat of evaporation of the condensed water, and the cooled outside air SAb is sent to the battery 11 to cool the battery 11 and exhaust the air (EA).

これにより、高分子吸着剤13に溜められた凝縮水を利用して外気OAを冷やし、電力を用いずに(バッテリファン14の動力は除く)、冷やされた外気SAbによりバッテリ11を冷却することができる。 As a result, the outside air OA is cooled using the condensed water stored in the polymer adsorbent 13, and the battery 11 is cooled by the cooled outside air SAb without using electric power (excluding the power of the battery fan 14). I can do it.

図5に基づいて冷媒によるバッテリ冷却モードを説明する(バッテリ用熱交換器12を蒸発器として動作させる)。冷媒によるバッテリ冷却モードは、凝縮水が溜められていない状態で、急速充電など車室3の冷房を必要とせず、バッテリ11の温度が上限を超えて(例えば、40℃から50℃)バッテリ11のみを冷却する場合が想定されている。 A battery cooling mode using a refrigerant will be explained based on FIG. 5 (the battery heat exchanger 12 is operated as an evaporator). In the battery cooling mode using refrigerant, when the temperature of the battery 11 exceeds the upper limit (for example, from 40 degrees Celsius to 50 degrees Celsius) and the temperature of the battery 11 exceeds the upper limit (for example, from 40 degrees Celsius to 50 degrees Celsius), the battery 11 It is assumed that only the

冷媒によるバッテリ冷却モードが実施される場合、制御手段25により、ポート17aとポート17cがつながり、ポート17bとポート17dがつながるように、経路切換え手段17の動作が制御される。そして、第1膨張弁21が全閉状態に動作され、第2膨張弁22が絞り状態に動作され、第3膨張弁23が全閉状態に動作されると共に、バッテリファン14、室外ファン26が回転され、室内ファン27が停止され、ダンパー28がA位置に動作される。 When the refrigerant-based battery cooling mode is implemented, the control means 25 controls the operation of the path switching means 17 so that the ports 17a and 17c are connected, and the ports 17b and 17d are connected. Then, the first expansion valve 21 is operated to a fully closed state, the second expansion valve 22 is operated to a throttled state, the third expansion valve 23 is operated to a fully closed state, and the battery fan 14 and the outdoor fan 26 are operated. The indoor fan 27 is stopped, and the damper 28 is moved to the A position.

圧縮手段16で圧縮された媒体が車室内熱交換器5を通過し、経路切換え手段17から車室外熱交換器7、第2膨張弁22、バッテリ用熱交換器12、経路切換え手段17の順に送られ、圧縮手段16に循環される。これにより、車室外熱交換器7が凝縮器として働き、バッテリ用熱交換器12が蒸発器として働く。 The medium compressed by the compression means 16 passes through the vehicle interior heat exchanger 5, and is transferred from the route switching means 17 to the vehicle exterior heat exchanger 7, the second expansion valve 22, the battery heat exchanger 12, and the route switching means 17 in this order. and circulated to compression means 16. Thereby, the vehicle exterior heat exchanger 7 functions as a condenser, and the battery heat exchanger 12 functions as an evaporator.

バッテリファン14の駆動により、外気OAが蒸発器として働くバッテリ用熱交換器12で冷却され、冷却された外気SAbがバッテリ11に送られてバッテリ11が冷却され、排気される(EA)。 As the battery fan 14 is driven, the outside air OA is cooled by the battery heat exchanger 12 that functions as an evaporator, and the cooled outside air SAb is sent to the battery 11 to cool the battery 11 and exhaust the air (EA).

これにより、高分子吸着剤13に凝縮水が溜められていない場合に、外気OAをバッテリ用熱交換器12で冷却し、冷却された外気SAbによりバッテリ11を冷却することができる。 Thereby, when no condensed water is stored in the polymer adsorbent 13, the outside air OA can be cooled by the battery heat exchanger 12, and the battery 11 can be cooled by the cooled outside air SAb.

図6に基づいて暖房・バッテリ加熱モードを説明する。暖房・バッテリ加熱モードは、冬季の走行時や、低温時の起動の際に車室3の暖房を行ったり、バッテリ11を加熱したりする場合が想定されている。 The heating/battery heating mode will be explained based on FIG. 6. The heating/battery heating mode is assumed to be used to heat the vehicle interior 3 or heat the battery 11 when driving in winter or when starting at low temperatures.

暖房・バッテリ加熱モードが実施される場合、制御手段25により、ポート17aとポート17dがつながり、ポート17cとポート17bがつながるように、経路切換え手段17の動作が制御される。そして、第1膨張弁21が全閉状態に動作され、第2膨張弁22が絞り状態に動作され、第3膨張弁23が全閉状態に動作されると共に、バッテリファン14、室外ファン26、室内ファン27が回転され、ダンパー28がB位置に動作される。 When the heating/battery heating mode is implemented, the control means 25 controls the operation of the path switching means 17 so that the ports 17a and 17d are connected, and the ports 17c and 17b are connected. Then, the first expansion valve 21 is operated to a fully closed state, the second expansion valve 22 is operated to a throttled state, the third expansion valve 23 is operated to a fully closed state, and the battery fan 14, the outdoor fan 26, The indoor fan 27 is rotated and the damper 28 is moved to the B position.

圧縮手段16で圧縮された媒体が車室内熱交換器5を通り、経路切換え手段17からバッテリ用熱交換器12、第2膨張弁22、車室外熱交換器7、経路切換え手段17の順に送られ、圧縮手段16に循環される。これにより、車室内熱交換器5、及び、バッテリ用熱交換器12が凝縮器として働き、車室外熱交換器7が蒸発器として働く。 The medium compressed by the compression means 16 passes through the vehicle interior heat exchanger 5 and is sent from the route switching means 17 to the battery heat exchanger 12, the second expansion valve 22, the vehicle exterior heat exchanger 7, and the route switching means 17 in this order. and circulated to the compression means 16. Thereby, the vehicle interior heat exchanger 5 and the battery heat exchanger 12 function as a condenser, and the vehicle exterior heat exchanger 7 functions as an evaporator.

室内ファン27の駆動により、車室3内の還気RAが車室用蒸発器6を通過して車室内熱交換器5で暖められ、車室3への送風SAcとされる。バッテリファン14の駆動により、外気OAがバッテリ用熱交換器12で暖められ、高温となった外気SAbがバッテリ11に送られてバッテリ11が加熱され、排気される(EA)。 By driving the indoor fan 27, return air RA in the vehicle interior 3 passes through the vehicle interior evaporator 6, is warmed by the vehicle interior heat exchanger 5, and is turned into air SAc to be blown to the vehicle interior 3. By driving the battery fan 14, the outside air OA is warmed by the battery heat exchanger 12, and the high-temperature outside air SAb is sent to the battery 11 to heat the battery 11 and exhaust the air (EA).

尚、室内ファン27、または、バッテリファン14を停止させることにより、バッテリ11の加熱、または、車室3の暖房を単独で行うことができる。 Note that by stopping the indoor fan 27 or the battery fan 14, heating of the battery 11 or heating of the vehicle interior 3 can be performed independently.

図7に基づいて除湿防曇・暖房モードを説明する。除湿防曇・暖房モードは、低温で湿度が高い外気の条件での走行時に、除湿、曇り止め、暖房を行う場合が想定されている。 The dehumidification/antifogging/heating mode will be explained based on FIG. 7. The dehumidifying/anti-fogging/heating mode is intended to perform dehumidification, anti-fog, and heating when driving in low-temperature, high-humidity outdoor conditions.

除湿防曇・暖房モードが実施される場合、制御手段25により、ポート17aとポート17dがつながり、ポート17cとポート17bがつながるように、経路切換え手段17の動作が制御される。そして、第1膨張弁21が絞り状態に動作され、第2膨張弁22が全閉状態に動作され、第3膨張弁23が絞り状態に動作されると共に、バッテリファン14が停止され、室外ファン26、室内ファン27が回転され、ダンパー28がB位置に動作される。 When the dehumidification/antifogging/heating mode is implemented, the control means 25 controls the operation of the path switching means 17 so that the ports 17a and 17d are connected, and the ports 17c and 17b are connected. Then, the first expansion valve 21 is operated to a throttled state, the second expansion valve 22 is operated to a fully closed state, the third expansion valve 23 is operated to a throttled state, the battery fan 14 is stopped, and the outdoor fan 26, the indoor fan 27 is rotated, and the damper 28 is moved to the B position.

圧縮手段16で圧縮された媒体が車室内熱交換器5を通り、経路切換え手段17から第3膨張弁23、車室用蒸発器6、第1膨張弁21、車室外熱交換器7、経路切換え手段17の順に送られ、圧縮手段16に循環される。これにより、車室内熱交換器5が凝縮器として働き、車室用蒸発器6、車室外熱交換器7が蒸発器として働く。 The medium compressed by the compression means 16 passes through the vehicle interior heat exchanger 5, and is transferred from the route switching means 17 to the third expansion valve 23, the vehicle interior evaporator 6, the first expansion valve 21, the vehicle exterior heat exchanger 7, and the route. The signal is then sent to the switching means 17 and circulated to the compression means 16. Thereby, the cabin heat exchanger 5 functions as a condenser, and the cabin evaporator 6 and the cabin exterior heat exchanger 7 function as evaporators.

室内ファン27の駆動により、車室3内の還気RAが車室用蒸発器6で除湿され、車室内熱交換器5で暖められ、暖められて除湿された車室3への送風SAc(暖められて除湿された送風SAc)とされる。暖められて除湿された送風SAcとされることで、車室3が暖房されると共に、除湿された空気となってフロントガラスやウインドウガラスなどの曇りが防止される。 By driving the indoor fan 27, the return air RA in the vehicle interior 3 is dehumidified by the vehicle interior evaporator 6, warmed by the vehicle interior heat exchanger 5, and the heated and dehumidified air SAc ( The air is heated and dehumidified (SAc). The heated and dehumidified air SAc heats the vehicle interior 3, and the dehumidified air prevents the windshield, window glass, etc. from fogging up.

図8に基づいてバッテリ蓄熱による暖房・除霜モードを説明する。 The heating/defrosting mode using battery heat storage will be explained based on FIG. 8.

ヒートポンプシステムにより暖房モードを実施する場合(車室内熱交換器5を凝縮器として動作させる場合)、車室外熱交換器7を凝縮器として動作させ、大気から吸熱を行う必要がある(吸熱源が必要になる)。このため、暖房モードを継続して実施すると、車室外熱交換器7に霜が付着する。大気からの吸熱能力を維持するため、霜を除去する(除霜する)必要がある。 When implementing the heating mode with the heat pump system (when operating the vehicle interior heat exchanger 5 as a condenser), it is necessary to operate the vehicle exterior heat exchanger 7 as a condenser and absorb heat from the atmosphere (when the heat absorption source is ). Therefore, if the heating mode is continued, frost will adhere to the vehicle exterior heat exchanger 7. In order to maintain the ability to absorb heat from the atmosphere, it is necessary to remove frost (defrost).

バッテリ11の放・充電の繰り返しによりバッテリ11が発熱する。この発熱した熱を所定の範囲(例えば、20℃から40℃)で蓄熱し、暖房モードを実施する場合、バッテリ11の熱を吸熱源として利用し(バッテリ用熱交換器12を蒸発器として動作させ)、車室内熱交換器5、及び、車室外熱交換器7を凝縮器として動作させて車室3の暖房と車室外熱交換器7の霜取り(除霜)を実施している。 By repeatedly discharging and charging the battery 11, the battery 11 generates heat. When this generated heat is stored in a predetermined range (for example, 20°C to 40°C) and the heating mode is implemented, the heat of the battery 11 is used as a heat absorption source (the battery heat exchanger 12 operates as an evaporator). The vehicle interior heat exchanger 5 and vehicle exterior heat exchanger 7 are operated as condensers to heat the vehicle interior 3 and defrost the vehicle exterior heat exchanger 7.

つまり、暖房モードを実施する際に、車室3の暖房を継続しながら(暖房を停止することなく)車室外熱交換器7の除霜が実施されるようになっている。したがって、暖房モードにおけるヒートポンプシステムを維持した状態で、車室外熱交換器7を凝縮器として動作できるようにし、車室外熱交換器7の除霜を行いながら車室3の暖房を行うことが可能になっている。 That is, when implementing the heating mode, defrosting of the vehicle exterior heat exchanger 7 is carried out while continuing the heating of the vehicle interior 3 (without stopping the heating). Therefore, while maintaining the heat pump system in the heating mode, the vehicle exterior heat exchanger 7 can be made to operate as a condenser, and the vehicle interior 3 can be heated while defrosting the vehicle exterior heat exchanger 7. It has become.

バッテリ蓄熱による暖房・除霜モードが実施される場合、制御手段25により、ポート17aとポート17cがつながり、ポート17dとポート17bがつながるように、経路切換え手段17の動作が制御される。そして、第1膨張弁21が全閉状態に動作され、第2膨張弁22が絞り状態に動作され、第3膨張弁23が全閉状態に動作されると共に、バッテリファン14が逆向きに回転され、室外ファン26が停止され、室内ファン27が回転され、ダンパー28がB位置に動作される。 When the heating/defrosting mode using battery heat storage is implemented, the control means 25 controls the operation of the path switching means 17 so that the ports 17a and 17c are connected, and the ports 17d and 17b are connected. Then, the first expansion valve 21 is operated to a fully closed state, the second expansion valve 22 is operated to a throttled state, the third expansion valve 23 is operated to a fully closed state, and the battery fan 14 rotates in the opposite direction. Then, the outdoor fan 26 is stopped, the indoor fan 27 is rotated, and the damper 28 is moved to the B position.

圧縮手段16で圧縮された媒体が車室内熱交換器5を通り、経路切換え手段17から車室外熱交換器7、第2膨張弁22、バッテリ用熱交換器12、経路切換え手段17の順に送られ、圧縮手段16に循環される。これにより、車室内熱交換器5、車室外熱交換器7が凝縮器として働き、バッテリ用熱交換器12が蒸発器として働く。 The medium compressed by the compression means 16 passes through the vehicle interior heat exchanger 5 and is sent from the route switching means 17 to the vehicle exterior heat exchanger 7, the second expansion valve 22, the battery heat exchanger 12, and the route switching means 17 in this order. and circulated to the compression means 16. Thereby, the vehicle interior heat exchanger 5 and the vehicle exterior heat exchanger 7 function as a condenser, and the battery heat exchanger 12 functions as an evaporator.

室内ファン27の駆動により、車室3内の還気RAが車室用蒸発器6を通過して車室内熱交換器5で暖められ、車室3への送風SAcとされ、車室3が暖房される。そして、凝縮器として働く車室外熱交換器7に付着した霜が除去される。一方、バッテリファン14の逆向の回転により、外気OAがバッテリ11の熱により加熱される。ヒートポンプサイクルを維持するために、加熱された外気OAを、蒸発器として働くバッテリ用熱交換器12で放熱させることでバッテリ用熱交換器12の冷媒を蒸発させる。放熱された外気OAは排気される(EA)。 By driving the indoor fan 27, the return air RA in the vehicle interior 3 passes through the vehicle interior evaporator 6, is warmed by the vehicle interior heat exchanger 5, and is turned into air SAc to the vehicle interior 3, so that the vehicle interior 3 is heated. Heated. Then, frost adhering to the vehicle exterior heat exchanger 7, which functions as a condenser, is removed. On the other hand, as the battery fan 14 rotates in the opposite direction, the outside air OA is heated by the heat of the battery 11 . In order to maintain the heat pump cycle, the refrigerant in the battery heat exchanger 12 is evaporated by radiating heat from the heated outside air OA in the battery heat exchanger 12 that functions as an evaporator. The radiated outside air OA is exhausted (EA).

このため、車室外熱交換器7の除霜を行いながら、車室3の暖房を継続させることが可能になっている。即ち、車室内熱交換器5、及び、車室外熱交換器7が凝縮器とされ、バッテリ用熱交換器12がバッテリ11の熱を吸熱源とした蒸発器とされてヒートポンプサイクルが構築され、凝縮器とされた車室内熱交換器5で暖房が行われると共に、凝縮器とされた車室外熱交換器7に付着した霜が除去される。 Therefore, it is possible to continue heating the vehicle interior 3 while defrosting the exterior heat exchanger 7. That is, the heat exchanger 5 inside the vehicle and the heat exchanger 7 outside the vehicle are used as condensers, and the battery heat exchanger 12 is used as an evaporator that uses the heat of the battery 11 as a heat absorption source to construct a heat pump cycle. Heating is performed by the vehicle interior heat exchanger 5 which serves as a condenser, and frost adhering to the vehicle exterior heat exchanger 7 which serves as a condenser is removed.

尚、バッテリ11の蓄熱の温度を所定の温度範囲に維持するため、温度検出手段を設け、発熱した熱を所定の範囲(例えば、20℃から40℃)に保つように、冷却を行いながら蓄熱することも可能である。 In order to maintain the temperature of the heat stored in the battery 11 within a predetermined temperature range, a temperature detection means is provided, and the heat is stored while being cooled so as to keep the generated heat within a predetermined range (for example, 20°C to 40°C). It is also possible to do so.

上述した電動車両の空調装置1は、車室用蒸発器6が蒸発器として動作された際の副産物(凝縮水)を利用して外気を冷やし、電力を用いずに(バッテリファン14の動力は除く)、冷やされた外気SAbによりバッテリ11を冷却することができる。 The electric vehicle air conditioner 1 described above cools outside air by using the byproduct (condensed water) when the vehicle interior evaporator 6 is operated as an evaporator, without using electric power (the power of the battery fan 14 is ), the battery 11 can be cooled by the cooled outside air SAb.

従って、ヒートポンプシステム(ヒートポンプサイクル)で得られる副産物(凝縮水)を有効に利用してバッテリ11の温度管理(冷却)を行うことが可能になる。この結果、バッテリ11の電力を用いることなく(バッテリ11の電力を消費することなく)バッテリ11の冷却を行うことが可能になり、電動車両の航行距離の減少を抑制することが可能になる。 Therefore, it becomes possible to perform temperature control (cooling) of the battery 11 by effectively utilizing the by-product (condensed water) obtained from the heat pump system (heat pump cycle). As a result, it becomes possible to cool the battery 11 without using the electric power of the battery 11 (without consuming the electric power of the battery 11), and it becomes possible to suppress a decrease in the cruising distance of the electric vehicle.

本発明は、ヒートポンプサイクルの空調装置を備えた電動車両の産業分野で利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of electric vehicles equipped with heat pump cycle air conditioners.

1 空調装置
2 装置ケース
3 車室
5 車室内熱交換器
6 車室用蒸発器
7 車室外熱交換器
11 バッテリ
12 バッテリ用熱交換器
13 高分子吸着剤
14 バッテリファン
16 圧縮手段
17 経路切換え手段
21 第1膨張弁
22 第2膨張弁
23 第3膨張弁
25 制御手段
26 室外ファン
27 室内ファン
28 ダンパー
1 Air conditioner 2 Equipment case 3 Vehicle interior 5 Vehicle interior heat exchanger 6 Vehicle interior evaporator 7 Vehicle exterior heat exchanger 11 Battery 12 Battery heat exchanger 13 Polymer adsorbent 14 Battery fan 16 Compression means 17 Path switching means 21 First expansion valve 22 Second expansion valve 23 Third expansion valve 25 Control means 26 Outdoor fan 27 Indoor fan 28 Damper

Claims (7)

車室内熱交換器、車室外熱交換器、車室用蒸発器を有し、圧縮手段、経路切換え手段、膨張手段を介して所望の状態にされた冷媒が循環されるヒートポンプサイクルと、
車両の動力を得るための電力が貯められるバッテリとを備えた電動車両において、
冷却源が供給されることで前記バッテリの冷却を行うバッテリ冷却手段と、
前記車室用蒸発器が蒸発器として動作された際に生じる凝縮水を前記冷却源として前記バッテリ冷却手段に反映させる冷却源反映手段とを備えた
ことを特徴とする電動車両。
A heat pump cycle that includes a vehicle interior heat exchanger, a vehicle exterior heat exchanger, and a vehicle interior evaporator, and in which refrigerant that has been brought into a desired state through a compression means, a path switching means, and an expansion means is circulated;
In an electric vehicle equipped with a battery that stores electric power for obtaining power of the vehicle,
a battery cooling means that cools the battery by being supplied with a cooling source;
An electric vehicle comprising: cooling source reflecting means for reflecting condensed water generated when the vehicle interior evaporator is operated as an evaporator on the battery cooling means as the cooling source.
請求項1に記載の電動車両において、
前記バッテリ冷却手段は、
前記バッテリに隣接して配される凝縮水保持手段と、前記凝縮水保持手段を通して外気を前記バッテリに送る送給手段とを有し、
前記冷却源反映手段は、
前記凝縮水を前記凝縮水保持手段に送る手段である
ことを特徴とする電動車両。
The electric vehicle according to claim 1,
The battery cooling means includes:
comprising a condensed water holding means disposed adjacent to the battery, and a feeding means for sending outside air to the battery through the condensed water holding means,
The cooling source reflecting means includes:
An electric vehicle, characterized in that the electric vehicle is a means for sending the condensed water to the condensed water holding means.
請求項2に記載の電動車両において、
前記凝縮水保持手段はバッテリ用熱交換器であり、
前記バッテリ用熱交換器は、
媒体が流通する媒体経路の外側に高分子吸着剤が配され、
前記冷却源反映手段は、
前記凝縮水を前記バッテリ用熱交換器に送ることで、前記高分子吸着剤に前記凝縮水を付着させる手段である
ことを特徴とする電動車両。
The electric vehicle according to claim 2,
The condensed water holding means is a battery heat exchanger,
The battery heat exchanger includes:
A polymer adsorbent is placed outside the media path through which the media flows.
The cooling source reflecting means includes:
The electric vehicle is characterized in that the condensed water is made to adhere to the polymer adsorbent by sending the condensed water to the battery heat exchanger.
請求項3に記載の電動車両において、
前記車両の車室内に、前記車室内熱交換器、前記車室用蒸発器が配され、
前記車両の車室外に、前記車室外熱交換器、前記バッテリ、前記バッテリ用熱交換器が配され、
前記車室内熱交換器の媒体経路の一方側には、前記圧縮手段で圧縮された媒体を送る経路が接続され、
前記車室内熱交換器の媒体経路の他方側には、前記経路切換え手段が接続され、
前記車室外熱交換器の媒体経路の他方側には、前記経路切換え手段が接続され、
前記車室外熱交換器の媒体経路の一方側には、第1膨張弁を介して前記車室用蒸発器の媒体経路の他方側が接続されると共に、前記車室外熱交換器の媒体経路の一方側には、第2膨張弁を介して前記バッテリ用熱交換器の媒体経路の他方側が接続され、
前記車室用蒸発器の媒体経路の一方側には、第3膨張弁を介して前記経路切換え手段が接続されると共に、前記バッテリ用熱交換器の媒体経路の一方側には前記経路切換え手段が接続され、
前記経路切換え手段には、前記圧縮手段で圧縮された媒体が送られ、
運転モードの指示の情報に基づいて、前記経路切換え手段、前記第1膨張弁、前記第2膨張弁、前記第3膨張弁の動作を制御する制御手段を備えた
ことを特徴とする電動車両。
The electric vehicle according to claim 3,
The vehicle interior heat exchanger and the vehicle interior evaporator are arranged in a vehicle interior of the vehicle,
The exterior heat exchanger, the battery, and the battery heat exchanger are arranged outside the vehicle,
A path for sending the medium compressed by the compression means is connected to one side of the medium path of the vehicle interior heat exchanger,
The route switching means is connected to the other side of the medium route of the vehicle interior heat exchanger,
The route switching means is connected to the other side of the medium route of the vehicle exterior heat exchanger,
One side of the medium path of the vehicle outside heat exchanger is connected to the other side of the medium path of the vehicle interior evaporator via a first expansion valve, and one side of the medium path of the vehicle outside heat exchanger is connected to the other side of the medium path of the vehicle interior evaporator. The other side of the medium path of the battery heat exchanger is connected to the side via a second expansion valve,
The path switching means is connected to one side of the medium path of the vehicle interior evaporator via a third expansion valve, and the path switching means is connected to one side of the medium path of the battery heat exchanger. is connected,
A medium compressed by the compression means is sent to the path switching means,
An electric vehicle, comprising: a control means for controlling operations of the route switching means, the first expansion valve, the second expansion valve, and the third expansion valve based on information about a driving mode instruction.
請求項4に記載の電動車両において、
前記運転モードは、
圧縮された媒体が前記車室外熱交換器に送られることで前記車室外熱交換器が凝縮器とされ、膨張された媒体が前記車室用蒸発器に送られることで前記車室用蒸発器が蒸発器とされ、前記車室用蒸発器で生じた前記凝縮水が前記バッテリ用熱交換器に反映された状態で、前記バッテリ用熱交換器に外気が通され、蒸発熱で冷やされた外気により前記バッテリを冷却する、冷房・バッテリ冷却モードを含み、
前記制御手段は、
前記冷房・バッテリ冷却モードが選択された場合、
前記圧縮手段で圧縮された媒体を前記車室内熱交換器、前記車室外熱交換器、前記第1膨張弁、前記車室用蒸発器、前記第3膨張弁の順に送り、前記圧縮手段に循環させるように前記経路切換え手段を動作させると共に、前記第1膨張弁を絞り状態に動作させ、前記第2膨張弁を閉じ状態に動作させ、前記第3膨張弁を全開状態に動作させると共に、外気が前記バッテリ用熱交換器を通って前記バッテリに送られるようにする
ことを特徴とする電動車両。
The electric vehicle according to claim 4,
The driving mode is
The compressed medium is sent to the vehicle exterior heat exchanger, so that the vehicle exterior heat exchanger is used as a condenser, and the expanded medium is sent to the vehicle interior evaporator, which serves as the vehicle interior evaporator. is used as an evaporator, and the condensed water generated in the vehicle interior evaporator is reflected in the battery heat exchanger, and outside air is passed through the battery heat exchanger and cooled by the heat of evaporation. including a cooling/battery cooling mode in which the battery is cooled by outside air;
The control means includes:
When the cooling/battery cooling mode is selected,
The medium compressed by the compression means is sent to the vehicle interior heat exchanger, the vehicle exterior heat exchanger, the first expansion valve, the vehicle interior evaporator, and the third expansion valve in this order, and is circulated to the compression means. At the same time, the first expansion valve is operated in a throttled state, the second expansion valve is operated in a closed state, and the third expansion valve is operated in a fully open state. is sent to the battery through the battery heat exchanger.
請求項4もしくは請求項5に記載の電動車両において、
前記運転モードは、
前記車室用蒸発器で生じた前記凝縮水が前記バッテリ用熱交換器に反映された状態で、外気が前記バッテリ用熱交換器を通って前記バッテリに送られるようにするバッテリ冷却モードを含み、
前記制御手段は、
前記バッテリ冷却モードが選択された場合、
外気が前記バッテリ用熱交換器を通って前記バッテリに送られる動作だけが実施されるようにする
ことを特徴とする電動車両。
In the electric vehicle according to claim 4 or claim 5,
The driving mode is
The battery cooling mode includes a battery cooling mode in which outside air is sent to the battery through the battery heat exchanger while the condensed water generated in the vehicle interior evaporator is reflected in the battery heat exchanger. ,
The control means includes:
If the battery cooling mode is selected,
An electric vehicle characterized in that only an operation in which outside air is sent to the battery through the battery heat exchanger is performed.
請求項4から請求項6のいずれか一項に記載の電動車両において、
前記運転モードは、
圧縮された媒体が前記車室内熱交換器に送られることで前記車室内熱交換器が凝縮器とされると共に、圧縮された媒体が前記車室外熱交換器に送られることで前記車室外熱交換器が凝縮器とされ、膨張された媒体が前記バッテリ用熱交換器に送られることで前記バッテリ用熱交換器が蒸発器とされ、前記バッテリの熱が前記バッテリ用熱交換器で回収されて吸熱源とされる、車室暖房・除霜モードを含み、
前記制御手段は、
前記車室暖房・除霜モードが選択された場合、
前記圧縮手段で圧縮された媒体を前記車室内熱交換器、前記車室外熱交換器、前記第2膨張弁、前記バッテリ用熱交換器、の順に送り、前記圧縮手段に循環させるように前記経路切換え手段を動作させると共に、前記第2膨張弁を絞り状態に動作させると共に、前記第1膨張弁、前記第2膨張弁を閉じ状態に動作させ、前記バッテリ用熱交換器を前記バッテリの熱が吸熱源とされる蒸発器としてヒートポンプサイクルを成立させ、凝縮器とされた前記車室外熱交換器の霜を除去する
ことを特徴とする電動車両。

The electric vehicle according to any one of claims 4 to 6,
The driving mode is
The compressed medium is sent to the vehicle interior heat exchanger, so that the vehicle interior heat exchanger is used as a condenser, and the compressed medium is sent to the vehicle exterior heat exchanger, so that the vehicle exterior heat exchanger is used as a condenser. The exchanger is a condenser, and the expanded medium is sent to the battery heat exchanger, thereby making the battery heat exchanger an evaporator, and the heat of the battery is recovered by the battery heat exchanger. Including cabin heating and defrosting mode, which is considered a heat absorption source.
The control means includes:
When the cabin heating/defrosting mode is selected,
The medium compressed by the compression means is sent to the vehicle interior heat exchanger, the vehicle exterior heat exchanger, the second expansion valve, and the battery heat exchanger in this order, and is circulated through the compression means. The switching means is operated, the second expansion valve is operated in the throttled state, and the first expansion valve and the second expansion valve are operated in the closed state, so that the heat exchanger for the battery is operated to remove the heat of the battery. An electric vehicle characterized in that a heat pump cycle is established as an evaporator serving as a heat absorption source, and frost is removed from the exterior heat exchanger serving as a condenser.

JP2022035562A 2022-03-08 2022-03-08 electric vehicle Pending JP2023130950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022035562A JP2023130950A (en) 2022-03-08 2022-03-08 electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022035562A JP2023130950A (en) 2022-03-08 2022-03-08 electric vehicle

Publications (1)

Publication Number Publication Date
JP2023130950A true JP2023130950A (en) 2023-09-21

Family

ID=88050310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022035562A Pending JP2023130950A (en) 2022-03-08 2022-03-08 electric vehicle

Country Status (1)

Country Link
JP (1) JP2023130950A (en)

Similar Documents

Publication Publication Date Title
CN110525169B (en) Integrated passenger cabin heat pump air conditioner and three-electric heating management system for pure electric vehicle
US11179994B2 (en) Heat pump for automobile
JP5949522B2 (en) Temperature control device
JP6060797B2 (en) Thermal management system for vehicles
US11186137B2 (en) Heat pump system for vehicle
JP5860361B2 (en) Thermal management system for electric vehicles
KR101448656B1 (en) Air conditioner for electric vehicle
US11458812B2 (en) Heat pump system for vehicle
US20190145675A1 (en) Heat pump system for vehicle
WO2020031568A1 (en) Vehicle air conditioning device
CN107757298B (en) Enhanced vapor injection heat pump air-conditioning system and electric vehicle comprising same
JP2007069733A (en) Heating element cooling system using air conditioner for vehicle
US11479077B2 (en) Heat pump system for vehicle
JP2014051269A (en) Heat pump system for vehicle and method of controlling the same
JP2012201360A (en) Heat pump system for vehicle and control method thereof
JP2013217631A (en) Refrigeration cycle device
JP2019119437A (en) Vehicular cooling system
JP2014037178A (en) Thermal management system for electric vehicle
US20220111698A1 (en) Thermal management system for vehicle
US11505034B2 (en) Heat pump system for vehicle
JP2020142789A (en) Heat management system
JP2013184592A (en) Refrigerating cycle device for air-conditioning vehicle and for temperature-conditioning parts constituting vehicle
JP2011152808A (en) Air conditioner of vehicle
JP2014037179A (en) Thermal management system for electric vehicle
CN108638785B (en) Novel electric automobile heat pump air conditioning system based on phase change energy storage defrosting and control method thereof