JP2023129304A - Method for filling reaction tube with granule - Google Patents

Method for filling reaction tube with granule Download PDF

Info

Publication number
JP2023129304A
JP2023129304A JP2023024462A JP2023024462A JP2023129304A JP 2023129304 A JP2023129304 A JP 2023129304A JP 2023024462 A JP2023024462 A JP 2023024462A JP 2023024462 A JP2023024462 A JP 2023024462A JP 2023129304 A JP2023129304 A JP 2023129304A
Authority
JP
Japan
Prior art keywords
reaction tube
filling
reaction
granules
reaction tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023024462A
Other languages
Japanese (ja)
Inventor
宏透 伊藤
Hiroyuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2023129304A publication Critical patent/JP2023129304A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for filling a reaction tube with granules which can detect a substance inhibiting uniform filling in a multi-tube type reaction tube by a simple method, and can efficiently fill the reaction tube with granules in short time.SOLUTION: A method for filling a reaction tube with granules, which fills a plurality of reactions tubes that are arranged in a vertical direction and have inner diameters (D) with granules, falls a weight body composed of a spherical object having a diameter of 0.90 time or more and 0.99 time or less of the inner diameter (D), or a columnar object having a diameter of 0.90 time or more and 0.99 time or less of the inner diameter (D) into the plurality of reaction tubes through a linear body, and then fills the reaction tubes with granules.SELECTED DRAWING: Figure 1

Description

本発明は、複数本の反応管内に触媒等の粒状物を充填する方法に係り、例えば使用済み触媒を抜き出した後に、新たな触媒を再充填する場合などに採用される反応管への粒状物の充填方法に関する。 The present invention relates to a method of filling particulate matter such as a catalyst into a plurality of reaction tubes, such as when refilling a reaction tube with a new catalyst after extracting a used catalyst. Regarding the filling method.

不飽和アルデヒドや不飽和カルボン酸などの製造プロセス等の、触媒の存在下で接触気相反応を行なうプロセスでは、固定床多管式反応器が用いられている。 Fixed-bed multitubular reactors are used in processes that carry out catalytic gas phase reactions in the presence of catalysts, such as processes for producing unsaturated aldehydes and unsaturated carboxylic acids.

固相床多管式反応器への触媒の再充填方法として、特許文献1には、触媒の存在下での接触気相反応の際に用いられる固定床多管式反応器に触媒を再充填するにあたり、使用済み触媒抜き出し後に反応管内面を洗浄後乾燥し、新たな触媒を再充填する触媒の充填方法が記載されている。 As a method for refilling a solid bed multitubular reactor with a catalyst, Patent Document 1 describes a method for refilling a fixed bed multitubular reactor with a catalyst used in a catalytic gas phase reaction in the presence of a catalyst. In doing so, a catalyst filling method is described in which the inner surface of the reaction tube is washed and dried after removing the used catalyst, and then refilled with new catalyst.

反応管の内面は、未使用の反応管にあっては平滑であるが、一度反応に使用し使用済み触媒を抜き出した後の反応管には、触媒粉や反応副生物が付着して反応管内面が粗れていることがあり、触媒を均一に充填することを阻害する場合がある。特許文献1は、この反応管内面の付着物を洗浄除去することにより、触媒を均一に再充填しようとするものである。 The inner surface of the reaction tube is smooth when it is unused, but once the reaction tube has been used for a reaction and the used catalyst has been removed, catalyst powder and reaction by-products may adhere to the inside of the reaction tube. The surface may be rough, which may prevent uniform loading of the catalyst. Patent Document 1 attempts to refill the catalyst uniformly by cleaning and removing the deposits on the inner surface of the reaction tube.

特開2006-159197号公報Japanese Patent Application Publication No. 2006-159197

特許文献1のように反応管内面を洗浄しても、反応管内面に付着物が残留していた場合には、触媒の均一充填が阻害される。 Even if the inner surface of the reaction tube is cleaned as in Patent Document 1, if deposits remain on the inner surface of the reaction tube, uniform filling of the catalyst is inhibited.

本発明は、簡便な方法で、多管式反応管内の均一充填を阻害する付着物を検知することができ、短時間で効率よく粒状物を充填することが可能となる反応管への粒状物の充填方法を提供することを課題とする。 The present invention makes it possible to detect deposits that impede uniform filling in a multi-tubular reaction tube using a simple method, and to efficiently fill the reaction tube with particulate matter in a short time. The objective is to provide a filling method for

本発明は、以下の方法によって上記課題を達成するものである。 The present invention achieves the above object by the following method.

[1] 鉛直方向に配置された、内径(D)を有する複数の反応管に、粒状物を充填する方法であって、
該内径(D)の0.90倍以上0.99倍以下の直径を有する球状物、又は、該内径(D)の0.90倍以上0.99倍以下の直径を有する円柱状物よりなる錘体を、線状体を介して、該複数の反応管内に落下させた後に、粒状物を充填する、反応管への粒状物の充填方法。
[1] A method of filling a plurality of vertically arranged reaction tubes having an inner diameter (D) with particulate matter,
Consisting of a spherical object having a diameter of 0.90 times or more and 0.99 times or less of the inner diameter (D), or a cylindrical object having a diameter of 0.90 times or more and 0.99 times or less of the inner diameter (D) A method for filling a reaction tube with particulate matter, which comprises dropping a weight body into the plurality of reaction tubes via a linear body, and then filling the reaction tube with particulate matter.

[2] 前記複数の反応管が、充填された粒状物を排出した後の反応管である[1]に記載の反応管への粒状物の充填方法。 [2] The method for filling a reaction tube with particulate matter according to [1], wherein the plurality of reaction tubes are reaction tubes after discharging the filled particulate matter.

[3] 前記球状物の密度が7.0g/cm以上9.8g/cm以下である[1]又は[2]に記載の反応管への粒状物の充填方法。 [3] The method for filling a reaction tube with a granular material according to [1] or [2], wherein the spherical material has a density of 7.0 g/cm 3 or more and 9.8 g/cm 3 or less.

[4] 前記円柱状物の密度が7.0g/cm以上9.8g/cm以下である[1]又は[2]に記載の反応管への粒状物の充填方法。 [4] The method for filling a reaction tube with a granular material according to [1] or [2], wherein the cylindrical material has a density of 7.0 g/cm 3 or more and 9.8 g/cm 3 or less.

[5] 前記複数の反応管の長さが2~10mである[1]~[4]のいずれかに記載の反応管への粒状物の充填方法。 [5] The method of filling particulate matter into a reaction tube according to any one of [1] to [4], wherein the plurality of reaction tubes have a length of 2 to 10 m.

[6] 前記複数の反応管の本数が5,000~80,000本である[1]~[5]のいずれかに記載の反応管への粒状物の充填方法。 [6] The method for filling a reaction tube with granules according to any one of [1] to [5], wherein the number of the plurality of reaction tubes is 5,000 to 80,000.

[7] 前記複数の反応管が不飽和アルデヒド製造用反応管である[1]~[6]のいずれかに記載の反応管への粒状物の充填方法。 [7] The method of filling particulate matter into a reaction tube according to any one of [1] to [6], wherein the plurality of reaction tubes are reaction tubes for producing an unsaturated aldehyde.

[8] 前記複数の反応管が不飽和カルボン酸製造用反応管である[1]~[6]のいずれかに記載の反応管への粒状物の充填方法。 [8] The method for filling a reaction tube with particulate matter according to any one of [1] to [6], wherein the plurality of reaction tubes are reaction tubes for producing an unsaturated carboxylic acid.

[9] 前記反応管は、充填された粒状物を排出し、洗浄し、乾燥させた後の反応管である[1]~[8]のいずれかの反応管への粒状物の充填方法。 [9] The method for filling a reaction tube with granules according to any one of [1] to [8], wherein the reaction tube is a reaction tube after the filled granules have been discharged, washed, and dried.

[10] 洗浄及び乾燥後の各反応管内に前記錘体を落下させ、
該錘体が通過した反応管内に前記粒状物を充填し、
該錘体が通過しなかった反応管については、錘体が落下して通過するようになるまで洗浄及び乾燥を行った後、粒状物を充填する[9]の反応管への粒状物の充填方法。
[10] Dropping the weight into each reaction tube after washing and drying,
Filling the reaction tube through which the weight passed, with the granular material,
The reaction tube through which the weight did not pass is washed and dried until the weight falls down and passes through, and then filled with particulate matter. Filling the reaction tube with particulate matter in [9] Method.

本発明に従って、錘体を反応管内に落下させ、反応管内面の付着物の有無を確認した後、粒状物を充填することにより、効率よく粒状物の充填作業を行うことができる。 According to the present invention, by dropping the weight into the reaction tube and filling the reaction tube with the granules after confirming the presence or absence of deposits on the inner surface of the reaction tube, it is possible to efficiently perform the filling operation of the granules.

本発明の方法を適用できる、固定床多管式反応器の概略的な縦断面図である。1 is a schematic longitudinal sectional view of a fixed bed multitubular reactor to which the method of the present invention can be applied. 実施例で用いた錘体の側面図である。FIG. 3 is a side view of a weight body used in Examples.

以下、図面を参照して本発明について詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

図1は、本発明の方法を好適に適用できる、固定床多管式反応器の概略的な縦断面図である。 FIG. 1 is a schematic vertical sectional view of a fixed bed multitubular reactor to which the method of the present invention can be suitably applied.

この固定床多管式反応器1は、触媒が充填された複数の反応管2を備える。この固定床多管式反応器1を用いた気相接触反応は、上記触媒が充填された反応管2内に所定の原料化合物を通過させながら、原料化合物を反応させ、目的化合物を得る反応である。 This fixed bed multitubular reactor 1 includes a plurality of reaction tubes 2 filled with a catalyst. This gas phase catalytic reaction using the fixed bed multi-tubular reactor 1 is a reaction in which a target compound is obtained by reacting a predetermined raw material compound while passing it through the reaction tube 2 filled with the catalyst. be.

反応管2は、直管状であり、鉛直に設置されている。反応管2の本数は、500本以上、特に5,000~80,000本程度とされることが多い。また、反応管2の長さは通常2m以上、好ましくは2~10mであり、より好ましくは2~6mである。 The reaction tube 2 has a straight tube shape and is installed vertically. The number of reaction tubes 2 is often 500 or more, particularly about 5,000 to 80,000. Further, the length of the reaction tube 2 is usually 2 m or more, preferably 2 to 10 m, and more preferably 2 to 6 m.

本実施の形態では、上記反応管2より使用済みの触媒を抜き出した後、触媒に接触する反応管2の内面を洗浄し、乾燥する。この際、反応管の上部又は下部より空気等のガスを反応管内に流通させ、乾燥を促してもよい。反応管2の内面を洗浄に用いる洗浄液としては、特に制限されるものではないが、入手が容易で大量に使用できるため、水が好ましく用いられる。特に、再冷水又はイオン交換水などの不純物が少ないものがよい。なお、洗浄液として、アルコールや従来公知の適宜の洗剤を含む水を用いてもよい。洗剤を用いた場合は、必要に応じ清浄水でリンスを行う。 In this embodiment, after the used catalyst is extracted from the reaction tube 2, the inner surface of the reaction tube 2 that comes into contact with the catalyst is washed and dried. At this time, drying may be promoted by flowing gas such as air into the reaction tube from the upper or lower part of the reaction tube. The cleaning liquid used to clean the inner surface of the reaction tube 2 is not particularly limited, but water is preferably used because it is easily available and can be used in large quantities. In particular, water with few impurities such as re-chilled water or ion-exchanged water is preferable. Note that water containing alcohol or a conventionally known appropriate detergent may be used as the cleaning liquid. If detergent is used, rinse with clean water as necessary.

反応管2の内面を洗浄する方法としては、特に制限されるものではないが、反応器の上
側又は下部から高圧水(ジェット洗浄水)を噴射して反応管2を洗浄する方法が好ましく用いられる。
The method for cleaning the inner surface of the reaction tube 2 is not particularly limited, but a method of cleaning the reaction tube 2 by injecting high-pressure water (jet cleaning water) from the upper or lower part of the reactor is preferably used. .

本実施の形態の方法では、上述のように反応管2を洗浄後、乾燥する。乾燥は自然乾燥や熱風による乾燥などを、特に制限されることなく適用することができる。 In the method of this embodiment, the reaction tube 2 is washed and then dried as described above. For drying, natural drying, drying with hot air, etc. can be applied without particular restriction.

本実施の形態の触媒の充填方法では、上述した洗浄および乾燥を行った後に、反応管2内に錘体を、線状体で吊り下げ、反応管2内を自重で落下移動させる。線状体としては、金属又は合成樹脂製の糸状物、ロープ、チェーンなどを用いることができるが、錘体を吊り下げて保持できるものであれば、これに限定されない。 In the catalyst filling method of this embodiment, after the above-mentioned cleaning and drying are performed, a weight body is suspended in the reaction tube 2 by a linear body, and is allowed to fall and move within the reaction tube 2 by its own weight. The linear body may be a metal or synthetic resin filament, a rope, a chain, etc., but is not limited to this as long as it can hang and hold the weight body.

錘体には、線状体を連結するためのフック状部分や線状体の通し穴などを設けておくことが好ましい。 It is preferable that the weight body is provided with a hook-shaped portion for connecting the linear body, a through hole for the linear body, and the like.

錘体としては、反応管2の内径(D)の0.90倍以上0.99倍以下の直径を有する球状物、又は、該内径(D)の0.90倍以上0.99倍以下の直径(b)(図2参照)を有する円柱状物を用いる。 The weight body may be a spherical object having a diameter of 0.90 times or more and 0.99 times or less of the inner diameter (D) of the reaction tube 2, or a spherical object with a diameter of 0.90 times or more and 0.99 times or less of the inner diameter (D). A cylindrical object having a diameter (b) (see Figure 2) is used.

錘体の密度は7.0g/cm以上9.8g/cm以下であることが好ましい。錘体はステンレスなどの金属製であることが好ましいが、これに限定されない。 The density of the weight body is preferably 7.0 g/cm 3 or more and 9.8 g/cm 3 or less. The weight body is preferably made of metal such as stainless steel, but is not limited thereto.

錘体が円柱状の場合、落下方向の先端側及び後端側の周縁がテーパ状となっていることが好ましい。 When the weight body is cylindrical, it is preferable that the peripheral edges on the leading end side and the rear end side in the falling direction are tapered.

図2は、後述の実施例で用いた錘体の側面図であり、落下方向の先端側及び後端側の周縁がテーパ状となっている。なお、図2中の寸法の比a/bは0.3~0.9、特に0.4~0.8であることが好ましい。また、c/dは0.0~0.99、特に0.3~0.7であることが好ましい。 FIG. 2 is a side view of a weight body used in an example described below, and the peripheral edges on the leading end side and the rear end side in the falling direction are tapered. The dimension ratio a/b in FIG. 2 is preferably 0.3 to 0.9, particularly 0.4 to 0.8. Further, c/d is preferably 0.0 to 0.99, particularly 0.3 to 0.7.

上記の洗浄により反応管2の内面の付着物が十分に除去されているときには、錘体は反応管2内を上端から下端までスムーズに落下して通過する。これにより、反応管2の内面が清浄であることが確認される。 When the deposits on the inner surface of the reaction tube 2 have been sufficiently removed by the above cleaning, the weight falls smoothly and passes through the reaction tube 2 from the upper end to the lower end. This confirms that the inner surface of the reaction tube 2 is clean.

錘体が落下途中で引っ掛かりスムーズに落下しなかったり、落下が停止した場合には、反応管2の内面に付着物が残留していることになるので、錘体を引き上げた後、この反応管2内を再度洗浄及び乾燥する。次いで、再度錘体を落下させてみる。錘体がスムーズに落下して通過するようになるまで反応管の洗浄及び乾燥を行う。 If the weight gets caught on the way down and does not fall smoothly, or if it stops falling, there may be some deposits left on the inner surface of the reaction tube 2. After pulling up the weight, remove the reaction tube. 2. Wash and dry the inside again. Next, try dropping the weight again. Wash and dry the reaction tube until the weight can fall smoothly and pass through.

このようにしてすべての反応管2内を錘体がスムーズに落下して通過するようになることが確認された後、新たな触媒を反応管2内に充填する。 After confirming that the weight bodies fall and pass smoothly through all the reaction tubes 2 in this manner, a new catalyst is filled into the reaction tubes 2.

各反応管2内に新たな触媒を充填する方法としては、特に制限されるものではない。 The method of filling new catalyst into each reaction tube 2 is not particularly limited.

各反応管2内に新たな触媒を充填する場合、反応管2の上部に空間部が残るように触媒を管内に充填するのが好ましい。 When filling each reaction tube 2 with a new catalyst, it is preferable to fill the reaction tube 2 with the catalyst so that a space remains in the upper part of the reaction tube 2.

このような本発明の触媒の充填方法によれば、固定床多管反応器の多数の反応管から、使用済みの触媒を抜き出して新たな触媒を再び充填する場合であっても、効率よく触媒充填作業を行なうことが可能となる。 According to the catalyst filling method of the present invention, even when a used catalyst is extracted from a large number of reaction tubes of a fixed bed multitubular reactor and new catalyst is refilled, the catalyst can be efficiently packed. It becomes possible to carry out filling work.

本発明は、不飽和アルデヒドや不飽和カルボン酸の製造用の固相床多管式反応器の反応管への粒状物の充填方法として好適であるが、これに限定されない。 The present invention is suitable as a method for filling particulates into reaction tubes of a solid phase bed multitubular reactor for producing unsaturated aldehydes and unsaturated carboxylic acids, but is not limited thereto.

以下実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

[実施例1]
鉛直方向に配置された、円筒状で、内径Dが25.4mm、長さが3.8mの27,000本の反応管と、該反応管の両端部が管板に同一円内に取り付けられた構造を有する多管式反応器の全反応管から、充填された粒状物を排出した。該粒状物は触媒を含む。該多管式反応器は、該粒状物を介し、約4年間プロピレンの気相接触酸化反応によりアクロレインを製造していた。
[Example 1]
27,000 cylindrical reaction tubes arranged vertically, with an inner diameter D of 25.4 mm and a length of 3.8 m, and both ends of the reaction tubes were attached to the tube plate in the same circle. The filled granules were discharged from all reaction tubes of a multi-tubular reactor having a similar structure. The granules contain a catalyst. The multi-tubular reactor produced acrolein through the gas phase catalytic oxidation reaction of propylene through the granules for about 4 years.

粒状物を排出した後、全反応管の内部を高圧水で洗浄した。次いで、熱風により全反応管の内部を充分に乾燥させた後、図2に示すステンレス塊(比重7.9g/cm)よりなる錘体を、ナイロン製の糸を介して各々の反応管の上部から落下させ、落下を阻害するものの有無を確認した。なお、b/D=24.4/25.4=0.96、a/b=15.1/24.4=0.62、c/d=21.0/40.0=0.53である。 After discharging the particulate matter, the inside of all reaction tubes was washed with high pressure water. Next, after sufficiently drying the inside of all reaction tubes with hot air, a weight body made of a stainless steel lump (specific gravity 7.9 g/cm 3 ) shown in FIG. 2 was inserted into each reaction tube through a nylon thread. We dropped it from above and checked to see if there was anything blocking it from falling. In addition, b/D=24.4/25.4=0.96, a/b=15.1/24.4=0.62, c/d=21.0/40.0=0.53. be.

落下を阻害するものがあった反応管は、内部を再度、高圧水で洗浄および乾燥し、次いで、落下を阻害するものの有無を確認する作業を、落下を阻害するものがなくなるまで続けた。16人による上記作業は約5時間を要した。 For reaction tubes in which something was blocking the fall, the inside was washed again with high-pressure water and dried, and then the process of checking for the presence of anything blocking the fall was continued until there was nothing blocking the fall. The above work by 16 people took about 5 hours.

この作業の後、全反応管に対して粒状物の充填作業を16人により実施した。粒状物の充填完了後、27,000本の全反応管に対して上側管板より巻き尺を反応管内に挿入し、巻き尺の先端が充填された粒状物の上面に達したときの手元の巻き尺の位置を確認し、目標充填層高に達しているかをチェックした。 After this operation, 16 people filled all the reaction tubes with granules. After filling the granules, insert a tape measure into the reaction tubes from the upper tube plate for all 27,000 reaction tubes. The position was confirmed and it was checked whether the target packed bed height was reached.

チェックした結果、目標充填層高に達していなかった反応管は161本であった。目標充填層高に達していない反応管については、充填された粒状物を反応管から排出し、再度、反応管に粒状物を充填し、前記と同様の手法で充填高さをチェックし、目標充填層高となるまで繰り返した。すべての反応管に目標充填層高に粒状物が充填された状態になった時点を、充填作業終了とした。なお、上記の目標充填層高に達しなかった原因は、主に充填忘れや二重充填等、ケアレスミスによるものと推定された。 As a result of checking, 161 reaction tubes did not reach the target packed bed height. For reaction tubes that have not reached the target packed bed height, discharge the filled granules from the reaction tube, fill the reaction tube with granules again, and check the filling height using the same method as above to reach the target. This process was repeated until the height of the packed bed was reached. The filling operation was completed when all reaction tubes were filled with granules to the target packed bed height. It is assumed that the reason for not reaching the above-mentioned target packed bed height was mainly due to careless mistakes such as forgetting to fill or double filling.

前記した多管式反応器における全反応管から充填された粒状物を排出し、全反応管内を洗浄、乾燥し、粒状物の再充填完了までに費やした作業日数は、12日間であった。 It took 12 days to discharge the filled granules from all reaction tubes in the multi-tubular reactor, wash and dry the insides of all reaction tubes, and complete refilling of the granules.

[実施例2]
鉛直方向に配置された、円筒状で、内径Dが27.2mm、長さが3.3mの27,000本の反応管と、該反応管の両端部が管板に同一円内に取り付けられた構造を有する多管式反応器の全反応管から、充填された粒状物を排出した。該粒状物は触媒を含む。該多管式反応管は、該粒状物を介し、約4年間アクロレインの気相接触酸化反応によるアクリル酸を製造していた。
[Example 2]
27,000 cylindrical reaction tubes with an inner diameter D of 27.2 mm and a length of 3.3 m arranged in the vertical direction, and both ends of the reaction tubes were attached to the tube plate in the same circle. The filled granules were discharged from all reaction tubes of a multi-tubular reactor having a similar structure. The granules contain a catalyst. The multitubular reaction tube had been producing acrylic acid through the gas phase catalytic oxidation reaction of acrolein for about 4 years through the granules.

粒状物を抜き出した後、全反応管の内部を高圧水で洗浄した。次いで、熱風により全反応管の内部を充分に乾燥させた後、図2に示すステンレス塊(比重7.9g/cm)よりなる錘体を、ナイロン製の糸を介して各々の反応管の上部から落下させ、落下を阻害するものの有無を確認した。なお、b/D=25.2/27.2=0.93、a/b=15.6/25.2=0.62、c/d=20.4/40.0=0.51である。 After extracting the particulate matter, the inside of all reaction tubes was washed with high pressure water. Next, after sufficiently drying the inside of all reaction tubes with hot air, a weight body made of a stainless steel lump (specific gravity 7.9 g/cm 3 ) shown in FIG. 2 was inserted into each reaction tube through a nylon thread. We dropped it from above and checked to see if there was anything blocking it from falling. In addition, b/D=25.2/27.2=0.93, a/b=15.6/25.2=0.62, c/d=20.4/40.0=0.51. be.

落下を阻害するものがあった反応管は、内部を再度、高圧水で洗浄および乾燥し、次いで、落下を阻害するものの有無を確認する作業を、落下を阻害するものがなくなるまで続けた。16人による上記作業は約5時間を要した。 For reaction tubes in which something was blocking the fall, the inside was washed again with high-pressure water and dried, and then the process of checking for the presence of anything blocking the fall was continued until there was nothing blocking the fall. The above work by 16 people took about 5 hours.

この作業の後、全反応管に対して粒状物の充填作業を16人により実施した。粒状物の充填完了後、27,000本の全反応管に対して上側管板より巻き尺を反応管内に挿入し、巻き尺の先端が充填された粒状物の上面に達したとこの手元の巻き尺の位置を確認し、目標充填層高に達しているかをチェックした。チェックした結果、目標充填層高に達していなかった反応管は206本であった。目標充填層高に達していない反応管については、充填された粒状物を反応管から排出し、再度、反応管に粒状物を充填し、前記と同様の方法で充填高さをチェックし、目標充填層高となるまで繰り返した。すべての反応管に目標充填層高に粒状物が充填された状態になった時点を、充填作業終了とした。なお、上記の目標充填層高に達しなかった原因は、主に充填忘れや二重充填等、ケアレスミスによるものと推定された。 After this operation, 16 people filled all the reaction tubes with granules. After filling the granules, insert a tape measure into the reaction tubes from the upper tube plate for all 27,000 reaction tubes, and when the tip of the tape reaches the top of the filled granules, the tape measure in The position was confirmed and it was checked whether the target packed bed height was reached. As a result of checking, 206 reaction tubes did not reach the target packed bed height. For reaction tubes that have not reached the target packed bed height, discharge the filled granules from the reaction tube, fill the reaction tube with granules again, check the filling height in the same manner as above, and then This process was repeated until the height of the packed bed was reached. The filling operation was completed when all reaction tubes were filled with granules to the target packed bed height. It is assumed that the reason for not reaching the above-mentioned target packed bed height was mainly due to careless mistakes such as forgetting to fill or double filling.

前記した多管式反応器における全反応管から充填された粒状物を排出し、全反応管内を洗浄、乾燥し、粒状物の再充填完了までに費やした作業日数は、8日間であった。 The number of working days required to discharge the filled granules from all reaction tubes in the multitubular reactor described above, wash and dry the insides of all reaction tubes, and complete refilling of the granules was 8 days.

[比較例1]
実施例1において、錘体による内面チェックを行わなかったこと以外は実施例1と同様にして、16人による粒状物の排出、反応管内の洗浄、乾燥及び粒状物の再充填を行い、目標充填層高に達しているかをチェックした。その結果、目標充填層高に達していなかった反応管は529本であった。目標充填層高に達していない反応管は、ケアレスミスが原因であるものも含まれるが、粒状物を充填前の反応管内に充填を阻害するものがあったことが主原因であると推定された。
[Comparative example 1]
In Example 1, 16 people discharged the particulate matter, washed the inside of the reaction tube, dried it, and refilled the particulate matter in the same manner as in Example 1, except that the inner surface was not checked using the weight body, and the target filling was achieved. I checked to see if it had reached the height. As a result, 529 reaction tubes did not reach the target packed bed height. Although some of the reaction tubes that did not reach the target packed bed height were due to careless mistakes, it is assumed that the main cause was that there was something in the reaction tube that was blocking the filling before filling with particulates. Ta.

目標充填層高に達していない反応管については、充填された粒状物を反応管から排出し、(排出が困難な場合は掻き出しにより、反応管から粒状物を抜き出し、)再度、反応管に粒状物を充填し、前記と同様の方法で充填高さをチェックし、目標充填層高となるまでこれを繰り返し、充填作業を終了した。 For reaction tubes that have not reached the target packed bed height, the filled granules are discharged from the reaction tube (if it is difficult to discharge, the granules are removed from the reaction tube by scraping), and the granules are poured into the reaction tube again. The material was filled, the filling height was checked in the same manner as above, and this was repeated until the target filling bed height was reached, and the filling operation was completed.

前記した多管式反応器における全反応管から充填された粒状物を排出し、全反応管内を洗浄、乾燥し、粒状物の再充填完了までに費やした作業日数は、20日間であった。 It took 20 days to discharge the filled granules from all reaction tubes in the multi-tubular reactor, wash and dry the insides of all reaction tubes, and complete refilling of the granules.

[比較例2]
実施例2において、錘体による内面チェックを行わなかったこと以外は実施例2と同様にして、16人による粒状物の排出、反応管内の洗浄、乾燥及び粒状物の再充填を行い、目標充填層高に達しているかをチェックした。その結果、目標充填層高に達していなかった反応管は277本であった。目標充填層高に達していない反応管は、ケアレスミスが原因であるものも含まれるが、粒状物を充填前の反応管内に充填を阻害するものがあったことが主原因であると推定された。
[Comparative example 2]
In Example 2, 16 people discharged the particulate matter, washed the inside of the reaction tube, dried it, and refilled the particulate matter in the same manner as in Example 2, except that the inner surface was not checked using the weight body, and the target filling was achieved. I checked to see if it had reached the height. As a result, 277 reaction tubes did not reach the target packed bed height. Although some of the reaction tubes that did not reach the target packed bed height were due to careless mistakes, it is assumed that the main cause was that there was something in the reaction tube that was blocking the filling before filling with particulates. Ta.

目標充填層高に達していない反応管については、充填された粒状物を反応管から排出し、(排出が困難な場合は掻き出しにより、反応管から粒状物を抜き出し、)再度、反応管に粒状物を充填し、前記と同様の方法で充填高さをチェックし、目標充填層高となるまでこれを繰り返し、充填作業を終了した。 For reaction tubes that have not reached the target packed bed height, the filled granules are discharged from the reaction tube (if it is difficult to discharge, the granules are removed from the reaction tube by scraping), and the granules are poured into the reaction tube again. The material was filled, the filling height was checked in the same manner as above, and this was repeated until the target filling bed height was reached, and the filling operation was completed.

前記した多管式反応器における全反応管から充填された粒状物を排出し、全反応管内を洗浄、乾燥し、粒状物の再充填完了までに費やした作業日数は、15日間であった。 It took 15 days to discharge the filled granules from all reaction tubes in the multi-tubular reactor, wash and dry the insides of all reaction tubes, and complete refilling of the granules.

1 固定床多管式反応器
2 反応管
3 上部管板
4 下部管板
6 上方鏡部
7 下方鏡部
1 Fixed bed multi-tubular reactor 2 Reaction tube 3 Upper tube sheet 4 Lower tube sheet 6 Upper mirror section 7 Lower mirror section

Claims (10)

鉛直方向に配置された、内径(D)を有する複数の反応管に、粒状物を充填する方法であって、
該内径(D)の0.90倍以上0.99倍以下の直径を有する球状物、又は、該内径(D)の0.90倍以上0.99倍以下の直径を有する円柱状物よりなる錘体を、線状体を介して、該複数の反応管内に落下させた後に、粒状物を充填する、反応管への粒状物の充填方法。
A method of filling a plurality of vertically arranged reaction tubes having an inner diameter (D) with particulate matter,
Consisting of a spherical object having a diameter of 0.90 times or more and 0.99 times or less of the inner diameter (D), or a cylindrical object having a diameter of 0.90 times or more and 0.99 times or less of the inner diameter (D) A method for filling a reaction tube with particulate matter, which comprises dropping a weight body into the plurality of reaction tubes via a linear body, and then filling the reaction tube with particulate matter.
前記複数の反応管が、充填された粒状物を排出した後の反応管である請求項1に記載の反応管への粒状物の充填方法。 2. The method for filling a reaction tube with granules according to claim 1, wherein the plurality of reaction tubes are reaction tubes after the filled granules have been discharged. 前記球状物の密度が7.0g/cm以上9.8g/cm以下である請求項1に記載の反応管への粒状物の充填方法。 The method for filling a reaction tube with a granular material according to claim 1, wherein the density of the spherical material is 7.0 g/cm 3 or more and 9.8 g/cm 3 or less. 前記円柱状物の密度が7.0g/cm以上9.8g/cm以下である請求項1に記載の反応管への粒状物の充填方法。 The method for filling a reaction tube with particulate matter according to claim 1, wherein the density of the columnar material is 7.0 g/cm 3 or more and 9.8 g/cm 3 or less. 前記複数の反応管の長さが2~10mである請求項1に記載の粒状物の充填方法。 The method for filling particulate matter according to claim 1, wherein the length of the plurality of reaction tubes is 2 to 10 m. 前記複数の反応管の本数が5,000~80,000本である請求項1に記載の反応管への粒状物の充填方法。 The method for filling a reaction tube with particulate matter according to claim 1, wherein the number of the plurality of reaction tubes is 5,000 to 80,000. 前記複数の反応管が不飽和アルデヒド製造用反応管である請求項1に記載の反応管への粒状物の充填方法。 The method for filling a reaction tube with particulate matter according to claim 1, wherein the plurality of reaction tubes are reaction tubes for producing an unsaturated aldehyde. 前記複数の反応管が不飽和カルボン酸製造用反応管である請求項1に記載の反応管への粒状物の充填方法。 The method for filling a reaction tube with particulate matter according to claim 1, wherein the plurality of reaction tubes are reaction tubes for producing an unsaturated carboxylic acid. 前記反応管は、充填された粒状物を排出し、洗浄し、乾燥させた後の反応管である請求項1の反応管への粒状物の充填方法。 2. The method for filling a reaction tube with granules according to claim 1, wherein the reaction tube is a reaction tube after the filled granules have been discharged, washed, and dried. 洗浄及び乾燥後の各反応管内に前記錘体を落下させ、
該錘体が通過した反応管内に前記粒状物を充填し、
該錘体が通過しなかった反応管については、錘体が落下して通過するようになるまで洗浄及び乾燥を行った後、粒状物を充填する請求項9の反応管への粒状物の充填方法。
Dropping the weight into each reaction tube after washing and drying,
Filling the reaction tube through which the weight passed, with the granular material,
Filling the reaction tube with particulate matter according to claim 9, wherein the reaction tube through which the weight body did not pass is washed and dried until the weight body falls and passes through, and then is filled with particulate matter. Method.
JP2023024462A 2022-03-03 2023-02-20 Method for filling reaction tube with granule Pending JP2023129304A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032539 2022-03-03
JP2022032539 2022-03-03

Publications (1)

Publication Number Publication Date
JP2023129304A true JP2023129304A (en) 2023-09-14

Family

ID=87972741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023024462A Pending JP2023129304A (en) 2022-03-03 2023-02-20 Method for filling reaction tube with granule

Country Status (1)

Country Link
JP (1) JP2023129304A (en)

Similar Documents

Publication Publication Date Title
JP2019514880A (en) Method of carrying out heterogeneous catalytic reaction
US11291968B2 (en) Reactor comprising a nozzle for cleaning fluid, a kit and a method
RU2007136895A (en) REACTOR FILLING METHOD
JP2023129304A (en) Method for filling reaction tube with granule
JP5036192B2 (en) Catalyst filling method
US7597529B2 (en) Method for filling a vertical tube with catalyst particles
JP2002001017A (en) Solid removing device
JP2007307448A (en) Fluidized bed device
US8729278B2 (en) Phthalic anhydride process
US3391707A (en) Apparatus for regenerating materials
CA1067836A (en) Filtering apparatus and method
JP2004536696A (en) Method and apparatus for filling vertical tubes with granular solids
US20220032244A1 (en) Flow distributor and reactor using such flow distributor
JP2010179923A (en) Storage container
JP7287312B2 (en) Method for filling granular material into multitubular reactor
JP6398974B2 (en) Method for producing (meth) acrylic acid
CN106660037B (en) The recovery method of inert substance and acrylic acid is prepared using by the inert substance that this method recycles
WO2020203049A1 (en) Granulated substance loading method
JP2008024644A (en) Fixed bed reaction apparatus and use thereof
JP4194359B2 (en) Gas phase catalytic oxidation method
JP5500775B2 (en) Fixed bed reactor
CN105582862B (en) A kind of gas-liquid partition tray for up-flow reactor
CN216727172U (en) Reactor for producing methyl methacrylate by taking methanol and methyl propionate as raw materials
JP6657086B2 (en) Method for removing cobalt deposits in a reactor for high pressure hydroformylation of olefins
TWI796749B (en) Fixed-bed multi-tubular reactor for alkenyl acetate manufacture