JP2023128350A - Electrostatic chuck member and electrostatic chuck device - Google Patents

Electrostatic chuck member and electrostatic chuck device Download PDF

Info

Publication number
JP2023128350A
JP2023128350A JP2022032645A JP2022032645A JP2023128350A JP 2023128350 A JP2023128350 A JP 2023128350A JP 2022032645 A JP2022032645 A JP 2022032645A JP 2022032645 A JP2022032645 A JP 2022032645A JP 2023128350 A JP2023128350 A JP 2023128350A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
chuck member
electrode
electrostatic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022032645A
Other languages
Japanese (ja)
Other versions
JP7248167B1 (en
Inventor
勇貴 金原
Yuuki Kanehara
敏祥 乾
Binsho Inui
拓 一由
Taku ICHIYOSHI
徹 菅又
Toru Sugamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85726009&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2023128350(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2022032645A priority Critical patent/JP7248167B1/en
Application granted granted Critical
Publication of JP7248167B1 publication Critical patent/JP7248167B1/en
Publication of JP2023128350A publication Critical patent/JP2023128350A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide: an electrostatic chuck member capable of reducing problems caused by adhesion of charged foreign particles to its side surface; and an electrostatic chuck device having such an electrostatic chuck member.SOLUTION: An electrostatic chuck member has: a base whose one main surface is a mounting surface on which a plate sample is mounted; and an electrode for electrostatic adsorption disposed opposite the mounting surface or inside the base; where at least a portion of a side peripheral surface of the base that is continuous with the mounting surface has an arithmetic mean roughness Ra of 2 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、静電チャック部材及び静電チャック装置に関する。 The present invention relates to an electrostatic chuck member and an electrostatic chuck device.

従来、IC、LSI、VLSI等の半導体装置を製造する半導体製造工程において、シリコンウエハ等の板状試料は、静電チャック機能を備えた静電チャック部材に静電吸着により固定されて所定の処理が施される。このような工程においては、例えば静電チャック装置でシリコンウエハを固定した後、シリコンウエハにプラズマを用いたエッチング処理や成膜処理を施す。 Conventionally, in the semiconductor manufacturing process of manufacturing semiconductor devices such as IC, LSI, VLSI, etc., a plate-shaped sample such as a silicon wafer is fixed by electrostatic adsorption to an electrostatic chuck member with an electrostatic chuck function and subjected to a predetermined process. will be applied. In such a process, for example, after a silicon wafer is fixed using an electrostatic chuck device, the silicon wafer is subjected to an etching process or a film forming process using plasma.

上述のような製造工程において静電チャック装置を用いると、静電チャック部材にはウエハ残滓に代表される粒子状の異物(以下、異物粒子)が生じることがある。このような異物粒子は、半導体製造装置内で帯電し、静電チャック装置の表面に付着する。帯電した異物粒子(荷電性異物粒子)が付着した静電チャック装置では、製造工程中のプラズマ安定性が損なわれ、生産性が低下するおそれがある。また、異物粒子に起因して、プラズマ工程中に異常放電が生じ、プラズマの安定化を損ね、素子の歩留まり低下や静電チャック装置の絶縁破壊が生じる場合がある。 When an electrostatic chuck device is used in the manufacturing process as described above, particulate foreign matter (hereinafter referred to as foreign matter particles), typified by wafer residue, may be generated in the electrostatic chuck member. Such foreign particles are charged within the semiconductor manufacturing equipment and adhere to the surface of the electrostatic chuck device. In an electrostatic chuck device to which charged foreign particles (chargeable foreign particles) are attached, plasma stability during the manufacturing process may be impaired and productivity may be reduced. In addition, abnormal discharge occurs during the plasma process due to foreign particles, which impairs the stabilization of the plasma, which may cause a decrease in the yield of devices and dielectric breakdown of the electrostatic chuck device.

以上のような課題に対し、半導体の製造工程においては、異物粒子で汚染された静電チャック装置をプラズマ洗浄し、異物粒子を除去する処理が行われている(例えば、特許文献1参照)。 To address the above-mentioned problems, in semiconductor manufacturing processes, an electrostatic chuck device contaminated with foreign particles is subjected to plasma cleaning to remove the foreign particles (for example, see Patent Document 1).

特表2013-512564号公報Special Publication No. 2013-512564

近年、シリコンウエハから得られる半導体チップの歩留まり向上を目的として、静電チャック部材が有する静電吸着用電極を拡大する提案がなされている。静電吸着用電極を拡大させた静電チャック部材では、ウエハの載置面の中央と周縁とで吸着力の差が小さくなり、シリコンウエハの外周部分においても中央部分と同様の加工(エッチング処理)が可能となる。これにより、シリコンウエハの外周部分においても好適に半導体チップを製造可能となり、歩留まりが向上する。 In recent years, with the aim of improving the yield of semiconductor chips obtained from silicon wafers, proposals have been made to expand the number of electrostatic adsorption electrodes included in electrostatic chuck members. In an electrostatic chuck member with enlarged electrostatic adsorption electrodes, the difference in adsorption force between the center and the periphery of the wafer mounting surface becomes smaller, and the outer periphery of the silicon wafer is processed in the same manner as the center. ) becomes possible. This makes it possible to suitably manufacture semiconductor chips even on the outer periphery of the silicon wafer, improving yield.

一方で、静電吸着用電極が拡大すると、静電チャック部材の側面表面と静電吸着用電極との距離が近づき、静電チャック部材の側面表面の電界強度が増加する。そのため、静電吸着用電極を拡大させた静電チャック部材では、従来の静電チャックに比べ側面に荷電性異物粒子が静電吸着しやすい構成となる。 On the other hand, when the electrostatic chuck electrode expands, the distance between the side surface of the electrostatic chuck member and the electrostatic chuck electrode becomes closer, and the electric field strength on the side surface of the electrostatic chuck member increases. Therefore, in an electrostatic chuck member in which the electrostatic adsorption electrode is enlarged, charged foreign particles are more likely to be electrostatically adsorbed on the side surface than in a conventional electrostatic chuck.

特許文献1に記載の静電チャック部材では、プラズマ洗浄の効果を高めるために、周囲に傾斜部を設けている。しかし、この構成は、ウエハプロセス前の洗浄を効果的にする事は出来るが、製造プロセス中に荷電性異物粒子が静電チャック部材の側面に付着することを抑制するものではない。そのため、ウエハプロセス中に発生する異常放電による素子の歩留まり低下(生産性低下)や静電チャックの絶縁破壊などの問題を十分抑制できない、と言う課題があった。このため、ウエハプロセス中であっても静電チャック部材の側面に付着する荷電性異物粒子の影響を低減し、異常放電発生を抑制することが可能な静電チャック部材が求められていた。 In the electrostatic chuck member described in Patent Document 1, an inclined portion is provided around the periphery in order to enhance the effect of plasma cleaning. However, although this configuration can effectively perform cleaning before wafer processing, it does not prevent charged foreign particles from adhering to the side surface of the electrostatic chuck member during the manufacturing process. Therefore, there is a problem in that it is not possible to sufficiently suppress problems such as a reduction in device yield (reduction in productivity) and dielectric breakdown of the electrostatic chuck due to abnormal discharge that occurs during the wafer process. Therefore, there has been a need for an electrostatic chuck member that can reduce the influence of charged foreign particles adhering to the side surface of the electrostatic chuck member and suppress the occurrence of abnormal discharge even during wafer processing.

本発明はこのような事情に鑑みてなされたものであって、側面へ荷電性異物粒子が付着することで生じる課題、特にウエハプロセス中に発生する異常放電を低減させることが可能な静電チャック部材を提供することを目的とする。また、このような静電チャック部材を有する静電チャック装置を提供することを合わせて目的とする。 The present invention has been made in view of the above circumstances, and provides an electrostatic chuck that can reduce problems caused by charged foreign particles adhering to the side surfaces, particularly abnormal discharges that occur during wafer processing. The purpose is to provide parts. Another object of the present invention is to provide an electrostatic chuck device having such an electrostatic chuck member.

上記の課題を解決するため、本発明の一態様は、以下の態様を包含する。 In order to solve the above problems, one embodiment of the present invention includes the following embodiments.

[1]一主面が板状試料を載置する載置面である基体と、前記載置面とは反対側又は前記基体の内部に設けられた静電吸着用電極と、を有し、前記基体において前記載置面と連続する側周面の少なくとも一部は、算術平均粗さRaが2μm以下である静電チャック部材。 [1] A substrate having one main surface as a mounting surface on which a plate-shaped sample is placed, and an electrostatic adsorption electrode provided on the opposite side of the mounting surface or inside the substrate, In the electrostatic chuck member, at least a portion of a side circumferential surface continuous with the mounting surface of the base body has an arithmetic mean roughness Ra of 2 μm or less.

[2]前記載置面から下方に広がる領域において算術平均粗さRaが2μm以下であり、前記領域は、前記載置面の法線と直交する方向の断面視において、前記載置面から下方に前記静電吸着用電極の厚さ以上の広がりを有する[1]に記載の静電チャック部材。 [2] Arithmetic mean roughness Ra is 2 μm or less in a region extending downward from the mounting surface, and the region extends downward from the mounting surface in a cross-sectional view in a direction perpendicular to the normal to the mounting surface. The electrostatic chuck member according to [1], wherein the electrostatic chuck member has a width greater than the thickness of the electrostatic chuck electrode.

[3]前記側周面は、前記載置面の法線方向からの視野に露出する傾斜面を有する[1]又は[2]に記載の静電チャック部材。 [3] The electrostatic chuck member according to [1] or [2], wherein the side circumferential surface has an inclined surface exposed in the field of view from the normal direction of the mounting surface.

[4]前記側周面は、前記載置面の周縁部において周方向に設けられた凸曲面を有する[3]に記載の静電チャック部材。 [4] The electrostatic chuck member according to [3], wherein the side peripheral surface has a convex curved surface provided in the circumferential direction at the peripheral edge of the placement surface.

[5]前記側周面は、前記側周面の下端部において周方向に設けられ且つ外側に伸長する部分を有し、前記伸長する部分の上面は、凹曲面である[3]又は[4]に記載の静電チャック部材。 [5] The side circumferential surface has a portion that is provided in the circumferential direction and extends outward at the lower end of the side circumferential surface, and the upper surface of the extending portion is a concave curved surface [3] or [4] The electrostatic chuck member described in ].

[6]前記側周面は、前記法線方向に平行な主面と、前記主面と連続する前記凹曲面とを有し、前記法線方向と直交する方向において、前記主面から前記凹曲面の外側の端部までの距離は、前記静電吸着用電極の厚さ以上である[5]に記載の静電チャック部材。 [6] The side circumferential surface has a main surface parallel to the normal direction and the concave curved surface continuous with the main surface, and the concave surface extends from the main surface in a direction perpendicular to the normal direction. The electrostatic chuck member according to [5], wherein the distance to the outer end of the curved surface is greater than or equal to the thickness of the electrostatic chuck electrode.

[7]前記載置面と平行な方向において、前記静電吸着用電極の外周端部から、前記側周面までの距離は、1000μm以下である[1]から[6]のいずれか1項に記載の静電チャック部材。 [7] Any one of [1] to [6], wherein the distance from the outer peripheral end of the electrostatic adsorption electrode to the side peripheral surface in a direction parallel to the mounting surface is 1000 μm or less. The electrostatic chuck member described in .

[8][1]から[7]のいずれか1項に記載の静電チャック部材と、前記静電チャック部材を冷却し前記静電チャック部材の温度を調整するベース部材と、を有する静電チャック装置。 [8] An electrostatic device comprising the electrostatic chuck member according to any one of [1] to [7], and a base member that cools the electrostatic chuck member and adjusts the temperature of the electrostatic chuck member. Chuck device.

本発明によれば、側面へ荷電性異物粒子が付着することで生じる課題を低減可能な静電チャック部材を提供することができる。また、このような静電チャック部材を有する静電チャック装置を提供することができる。 According to the present invention, it is possible to provide an electrostatic chuck member that can reduce problems caused by charged foreign particles adhering to the side surface. Furthermore, an electrostatic chuck device having such an electrostatic chuck member can be provided.

図1は、実施形態の静電チャック部材10を示す断面図である。FIG. 1 is a sectional view showing an electrostatic chuck member 10 according to an embodiment. 図2は、第2実施形態に係る静電チャック部材20の説明図である。FIG. 2 is an explanatory diagram of an electrostatic chuck member 20 according to the second embodiment. 図3は、第2実施形態の変形例に係る静電チャック部材20Bの説明図である。FIG. 3 is an explanatory diagram of an electrostatic chuck member 20B according to a modification of the second embodiment. 図4は、第3実施形態に係る静電チャック部材30の説明図である。FIG. 4 is an explanatory diagram of an electrostatic chuck member 30 according to the third embodiment. 図5は、第4実施形態に係る静電チャック部材40の説明図である。FIG. 5 is an explanatory diagram of an electrostatic chuck member 40 according to the fourth embodiment. 図6は,変形例に係る静電チャック部材50の説明図である。FIG. 6 is an explanatory diagram of an electrostatic chuck member 50 according to a modification. 図7は、静電チャック装置を示す断面図である。FIG. 7 is a sectional view showing the electrostatic chuck device. 図8は、上述の静電チャック装置を有する半導体製造装置の説明図である。FIG. 8 is an explanatory diagram of a semiconductor manufacturing apparatus having the above-mentioned electrostatic chuck device.

[第1実施形態]
以下、図1を参照しながら、本発明の第1実施形態に係る静電チャック部材について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[First embodiment]
Hereinafter, an electrostatic chuck member according to a first embodiment of the present invention will be described with reference to FIG. Note that in all the drawings below, the dimensions and ratios of each component are changed as appropriate to make the drawings easier to read.

《静電チャック部材》
図1は、本実施形態の静電チャック部材10を示す断面図であり、載置面10xの法線と直交する方向の断面視野における図である。図1に示すように、静電チャック部材10は、一対のセラミックス板11,12と、一対のセラミックス板11,12の間に介在する静電吸着用電極13及び絶縁層15と、を備える。以下の説明では、静電吸着用電極を単に「電極」と略称する。
《Electrostatic chuck parts》
FIG. 1 is a cross-sectional view showing the electrostatic chuck member 10 of this embodiment, and is a view taken in a cross-sectional view in a direction perpendicular to the normal line of the mounting surface 10x. As shown in FIG. 1, the electrostatic chuck member 10 includes a pair of ceramic plates 11 and 12, an electrostatic chuck electrode 13 and an insulating layer 15 interposed between the pair of ceramic plates 11 and 12. In the following description, the electrostatic adsorption electrode will be simply referred to as "electrode".

一対のセラミックス板11,12、及び絶縁層15を合わせた構成は、本発明における基体に該当する。基体の一主面は、板状試料を載置する載置面10xである。載置面10xの周縁部には、ヘリウム(He)等の冷却ガスが漏れないように、この周縁部を一周するように、断面四角形状の環状突起部が設けられていてもよい。 The combination of the pair of ceramic plates 11 and 12 and the insulating layer 15 corresponds to the base in the present invention. One main surface of the base is a mounting surface 10x on which a plate-shaped sample is mounted. An annular protrusion having a square cross section may be provided around the peripheral edge of the mounting surface 10x to prevent cooling gas such as helium (He) from leaking.

なお、基体の一主面に微小突起を有する静電チャック部材においては、各微小突起の頂部に接する仮想面を載置面10xとする。また、このように設定した仮想面が凹面又は凸面である場合には、仮想面の平均二乗平面を載置面10xとする。 Note that in an electrostatic chuck member having microprotrusions on one principal surface of the base, a virtual surface in contact with the top of each microprotrusion is defined as the mounting surface 10x. Moreover, when the virtual surface set in this way is a concave surface or a convex surface, the mean square plane of the virtual surface is set as the mounting surface 10x.

静電チャック部材10において、電極13は基体の内部に設けられているがこれに限らない。静電チャック部材において、電極13は、載置面10xとは反対側に設けられていてもよい。 In the electrostatic chuck member 10, the electrode 13 is provided inside the base, but the invention is not limited thereto. In the electrostatic chuck member, the electrode 13 may be provided on the opposite side to the mounting surface 10x.

図1に示す断面図は、平面視において静電チャック部材10に外接する円のうち最小の円を想定したとき、この円の中心を含む仮想面により、静電チャック部材を切断した断面である。静電チャック部材10が平面視で略円形である場合、上記円の中心と、平面視における静電チャック部材の形状の中心とは凡そ一致する。 The cross-sectional view shown in FIG. 1 is a cross-section of the electrostatic chuck member taken by a virtual plane including the center of the smallest circle among the circles circumscribing the electrostatic chuck member 10 in a plan view. . When the electrostatic chuck member 10 is substantially circular in plan view, the center of the circle approximately coincides with the center of the shape of the electrostatic chuck member in plan view.

なお、本明細書において「平面視」とは、静電チャック部材の厚さ方向であるY方向から見た視野を指す。
また、「断面視」とは、載置面に垂直、且つ平面視において静電チャック部材に外接する円のうち最小の円を想定したとき、この円の中心を含む仮想面で切断したときの、断面と直交する方向の視野を指す。
Note that in this specification, "planar view" refers to a field of view viewed from the Y direction, which is the thickness direction of the electrostatic chuck member.
In addition, "cross-sectional view" means, when the smallest circle is assumed among the circles that are perpendicular to the mounting surface and circumscribe the electrostatic chuck member in plan view, when cut by an imaginary plane that includes the center of this circle. , refers to the field of view in the direction perpendicular to the cross section.

図1に示すように、静電チャック部材10は、セラミックス板11と、電極13及び絶縁層15と、セラミックス板12とがこの順に積層されている。すなわち、静電チャック部材10は、セラミックス板11とセラミックス板12が、電極13及び絶縁層15を介して、接合一体化されてなる接合体である。また、電極13及び絶縁層15は、セラミックス板11においてセラミックス板12と対向する接合面、及びセラミックス板12においてセラミックス板11と対向する接合面に接して設けられている。 As shown in FIG. 1, the electrostatic chuck member 10 includes a ceramic plate 11, an electrode 13 and an insulating layer 15, and a ceramic plate 12 stacked in this order. That is, the electrostatic chuck member 10 is a bonded body in which a ceramic plate 11 and a ceramic plate 12 are joined together via an electrode 13 and an insulating layer 15. Further, the electrode 13 and the insulating layer 15 are provided in contact with the bonding surface of the ceramic plate 11 facing the ceramic plate 12 and the bonding surface of the ceramic plate 12 facing the ceramic plate 11 .

(セラミックス板)
セラミックス板11,12は、平面視において外周の形状を同じくする。
(ceramic board)
The ceramic plates 11 and 12 have the same outer periphery shape in plan view.

セラミックス板11,12は、同一組成又は主成分が同一である。セラミックス板11,12は、絶縁性材料から構成されてもよいし、絶縁性材料と導電性材料の複合体から構成されてもよい。 The ceramic plates 11 and 12 have the same composition or the same main component. The ceramic plates 11 and 12 may be made of an insulating material, or may be made of a composite of an insulating material and a conductive material.

セラミックス板11,12に含まれる絶縁性材料は、特に限定されないが、例えば、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、酸化イットリウム(Y)、イットリウム・アルミニウム・ガーネット(YAG)等が挙げられる。なかでも、Al、AlNが好ましい。 The insulating material contained in the ceramic plates 11 and 12 is not particularly limited, but includes, for example, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), yttrium oxide (Y 2 O 3 ), yttrium aluminum garnet ( YAG), etc. Among them, Al 2 O 3 and AlN are preferred.

セラミックス板11,12に含まれる導電性材料は、特に限定されないが、例えば、炭化ケイ素(SiC)、酸化チタン(TiO)、窒化チタン(TiN)、炭化チタン(TiC)、炭素材料、希土類酸化物、希土類フッ化物等が挙げられる。炭素材料としては、カーボンナノチューブ(CNT)、カーボンナノファイバーが挙げられる。なかでも、SiCが好ましい。 The conductive material contained in the ceramic plates 11 and 12 is not particularly limited, but includes, for example, silicon carbide (SiC), titanium oxide (TiO 2 ), titanium nitride (TiN), titanium carbide (TiC), carbon material, and rare earth oxide. and rare earth fluorides. Examples of carbon materials include carbon nanotubes (CNT) and carbon nanofibers. Among them, SiC is preferred.

セラミックス板11,12の材料は、体積固有抵抗値が1013Ω・cm以上1017Ω・cm以下程度であり、機械的な強度を有し、しかも腐食性ガス及びそのプラズマに対する耐久性を有する材料であれば、特に限定されない。このような材料としては、例えば、Al焼結体、AlN焼結体、Al-SiC複合焼結体等が挙げられる。高温での誘電特性、高耐食性、耐プラズマ性、耐熱性の観点から、セラミックス板11,12の材料は、Al-SiC複合焼結体が好ましい。 The material of the ceramic plates 11 and 12 has a volume resistivity value of about 10 13 Ω·cm or more and 10 17 Ω·cm or less, has mechanical strength, and has durability against corrosive gas and its plasma. There are no particular limitations as long as it is a material. Examples of such materials include Al 2 O 3 sintered bodies, AlN sintered bodies, Al 2 O 3 -SiC composite sintered bodies, and the like. From the viewpoint of dielectric properties at high temperatures, high corrosion resistance, plasma resistance, and heat resistance, the material of the ceramic plates 11 and 12 is preferably an Al 2 O 3 --SiC composite sintered body.

セラミックス板11,12を構成する絶縁性材料の平均一次粒子径は、0.5μm以上3.0μm以下が好ましく、0.7μm以上2.0μm以下がより好ましく、1.0μm以上2.0μm以下がさらに好ましい。 The average primary particle diameter of the insulating material constituting the ceramic plates 11 and 12 is preferably 0.5 μm or more and 3.0 μm or less, more preferably 0.7 μm or more and 2.0 μm or less, and 1.0 μm or more and 2.0 μm or less. More preferred.

セラミックス板11,12を構成する絶縁性材料の平均一次粒子径が0.5μm以上3.0μm以下であれば、緻密で耐電圧性が高く、耐久性の高いセラミックス板11,12が得られる。 When the average primary particle size of the insulating material constituting the ceramic plates 11, 12 is 0.5 μm or more and 3.0 μm or less, the ceramic plates 11, 12 are dense, have high voltage resistance, and are highly durable.

セラミックス板11,12を構成する絶縁性材料の平均一次粒子径の測定方法は、次の通りである。日本電子社製の電解放出型走査電子顕微鏡(FE-SEM。日本電子株式会社製、JSM-7800F-Prime)で10000倍に拡大して、セラミックス板11,12の厚さ方向の切断面を観察し、インターセプト法により絶縁性材料200個の粒子径の平均を平均一次粒子径とする。 The method for measuring the average primary particle diameter of the insulating material constituting the ceramic plates 11 and 12 is as follows. Observe the cut surfaces of the ceramic plates 11 and 12 in the thickness direction using a field emission scanning electron microscope (FE-SEM, JEOL Ltd., JSM-7800F-Prime) at 10,000 times magnification. Then, the average of the particle diameters of 200 insulating materials is determined as the average primary particle diameter using the intercept method.

(静電吸着用電極)
電極13は、電荷を発生させて静電吸着力で板状試料を固定するために用いられる。電極13は、厚さ方向よりも厚さ方向と直交する方向に大きな広がりを有する薄型電極である。このような電極13は、電極層形成用ペーストを塗布し焼結することで形成される。得られる電極13の厚さは、電極層形成用ペーストの塗布厚さと、得られる電極13の厚さとの対応関係を予備実験により求めておくことにより、電極層形成用ペーストの塗布厚さを調整することで制御することができる。
(Electrostatic adsorption electrode)
The electrode 13 is used to generate charges and fix the plate-shaped sample by electrostatic attraction. The electrode 13 is a thin electrode that extends more in the direction perpendicular to the thickness direction than in the thickness direction. Such an electrode 13 is formed by applying an electrode layer forming paste and sintering it. The thickness of the obtained electrode 13 is adjusted by determining the correspondence between the coating thickness of the electrode layer forming paste and the thickness of the obtained electrode 13 through preliminary experiments. It can be controlled by

電極13は、導電性材料の粒子の焼結体、又は絶縁性セラミックスの粒子と導電性材料の粒子との複合体(焼結体)から構成される。 The electrode 13 is composed of a sintered body of conductive material particles or a composite (sintered body) of insulating ceramic particles and conductive material particles.

電極13が絶縁性セラミックスと導電性材料から構成される場合、これらの混合材料の体積固有抵抗値は10-6Ω・cm以上10-2Ω・cm以下程度であることが好ましい。 When the electrode 13 is made of an insulating ceramic and a conductive material, the volume resistivity of the mixed material is preferably about 10 −6 Ω·cm or more and 10 −2 Ω·cm or less.

電極13が絶縁性セラミックスと導電性材料との複合体から構成される場合、電極13において、導電性材料の含有量は、15質量%以上100質量%以下が好ましく、20質量%以上100質量%以下がより好ましい。導電性材料の含有量が上記下限値以上であれば、セラミックス板12に充分な誘電特性を発現できる。 When the electrode 13 is composed of a composite of insulating ceramics and a conductive material, the content of the conductive material in the electrode 13 is preferably 15% by mass or more and 100% by mass or less, and 20% by mass or more and 100% by mass. The following are more preferable. If the content of the conductive material is at least the above lower limit, the ceramic plate 12 can exhibit sufficient dielectric properties.

電極13に含まれる導電性材料は、導電性セラミックスであってもよく、金属や炭素材料等の導電性材料であってもよい。電極13に含まれる導電性材料は、SiC、TiO、TiN、TiC、タングステン(W)、炭化タングステン(WC)、モリブデン(Mo)、炭化モリブデン(MoC)、タンタル(Ta)、炭化タンタル(TaC、Ta)、炭素材料及び導電性複合焼結体からなる群から選択される少なくとも1種が好ましい。 The conductive material contained in the electrode 13 may be conductive ceramics, metal, carbon material, or the like. The conductive materials contained in the electrode 13 include SiC, TiO 2 , TiN, TiC, tungsten (W), tungsten carbide (WC), molybdenum (Mo), molybdenum carbide (Mo 2 C), tantalum (Ta), and tantalum carbide. At least one selected from the group consisting of (TaC, Ta 4 C 5 ), carbon materials, and conductive composite sintered bodies is preferable.

炭素材料としては、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー等が挙げられる。 Examples of the carbon material include carbon black, carbon nanotubes, carbon nanofibers, and the like.

導電性複合焼結体としては、例えば、Al-Ta、Al-W、Al-SiC、AlN-W、AlN-Ta等が挙げられる。 Examples of the conductive composite sintered body include Al 2 O 3 --Ta 4 C 5 , Al 2 O 3 --W, Al 2 O 3 --SiC, AlN-W, and AlN-Ta.

電極13に含まれる導電性材料が前記物質からなる群から選択される少なくとも1種であることにより、電極の導電率を担保できる。 When the conductive material contained in the electrode 13 is at least one selected from the group consisting of the above substances, the conductivity of the electrode can be ensured.

電極13に含まれる絶縁性セラミックスは、特に限定されないが、例えば、Al、AlN、窒化ケイ素(Si)、Y、YAG、サマリウム-アルミニウム酸化物(SmAlO)、酸化マグネシウム(MgO)及び酸化ケイ素(SiO)からなる群から選択される少なくとも1種が好ましい。 The insulating ceramics included in the electrode 13 are not particularly limited, but include, for example, Al 2 O 3 , AlN, silicon nitride (Si 3 N 4 ), Y 2 O 3 , YAG, samarium-aluminum oxide (SmAlO 3 ), At least one selected from the group consisting of magnesium oxide (MgO) and silicon oxide (SiO 2 ) is preferable.

電極13が、導電性材料と絶縁性材料からなることにより、セラミックス板11,12と電極13との接合強度が向上する。また、電極13が、導電性材料と絶縁性材料からなることにより、電極としての機械的強度が強くなる。 Since the electrode 13 is made of a conductive material and an insulating material, the bonding strength between the ceramic plates 11 and 12 and the electrode 13 is improved. Further, since the electrode 13 is made of a conductive material and an insulating material, the mechanical strength of the electrode is increased.

電極13に含まれる絶縁性材料が、Alであることにより、高温での誘電特性、高耐食性、耐プラズマ性、耐熱性が保たれる。 Since the insulating material contained in the electrode 13 is Al 2 O 3 , dielectric properties at high temperatures, high corrosion resistance, plasma resistance, and heat resistance are maintained.

電極13における導電性材料と絶縁性材料の含有量の比(配合比)は、特に限定されず、静電チャック部材10の用途に応じて適宜調整される。 The content ratio (mixing ratio) of the conductive material and the insulating material in the electrode 13 is not particularly limited, and is adjusted as appropriate depending on the use of the electrostatic chuck member 10.

(絶縁層)
絶縁層15は、セラミックス板11とセラミックス板12の間であって、電極13が形成された部分以外の位置において、セラミックス板11,12を相互に接合するために設けられた構成である。絶縁層15は、セラミックス板11とセラミックス板12との間(一対のセラミックス板の間)において、平面視で電極13の周囲に配置されている。
(insulating layer)
The insulating layer 15 is provided between the ceramic plates 11 and 12 at a position other than the portion where the electrode 13 is formed, in order to bond the ceramic plates 11 and 12 together. The insulating layer 15 is arranged between the ceramic plate 11 and the ceramic plate 12 (between the pair of ceramic plates) around the electrode 13 in plan view.

絶縁層15の形状(絶縁層15を平面視した場合の形状)は、特に限定されず、電極13の形状に応じて適宜調整される。絶縁層15の厚さ(Y方向の幅)は、電極13の厚さと等しくなっている。 The shape of the insulating layer 15 (the shape when the insulating layer 15 is viewed in plan) is not particularly limited, and is appropriately adjusted according to the shape of the electrode 13. The thickness of the insulating layer 15 (width in the Y direction) is equal to the thickness of the electrode 13.

絶縁層15は、絶縁性材料から構成されてもよいし、絶縁性材料と導電性材料の複合体から構成されてもよい。絶縁層15の体積固有抵抗値は、1013Ω・cm以上1017Ω・cm以下である。 The insulating layer 15 may be made of an insulating material, or may be made of a composite of an insulating material and a conductive material. The volume resistivity value of the insulating layer 15 is 10 13 Ω·cm or more and 10 17 Ω·cm or less.

絶縁層15を構成する絶縁性材料は、特に限定されないが、セラミックス板11,12の主成分と同じであることが好ましい。絶縁層15を構成する絶縁性材料は、例えば、Al、AlN、Si、Y、YAG、SmAlO、MgO及びSiOからなる群から選択される少なくとも1種であることが好ましい。絶縁層15を構成する絶縁性材料は、Alが好ましい。絶縁層15を構成する絶縁性材料が、Alであることにより、高温での誘電特性、高耐食性、耐プラズマ性、耐熱性が保たれる。 The insulating material constituting the insulating layer 15 is not particularly limited, but is preferably the same as the main component of the ceramic plates 11 and 12. The insulating material constituting the insulating layer 15 is, for example, at least one selected from the group consisting of Al 2 O 3 , AlN, Si 3 N 4 , Y 2 O 3 , YAG, SmAlO 3 , MgO, and SiO 2 . It is preferable that there be. The insulating material constituting the insulating layer 15 is preferably Al 2 O 3 . Since the insulating material constituting the insulating layer 15 is Al 2 O 3 , dielectric properties at high temperatures, high corrosion resistance, plasma resistance, and heat resistance are maintained.

絶縁層15を構成する導電性材料は、特に限定されないが、セラミックス板11,12の主成分と同じであることが好ましい。絶縁層15を構成する導電性材料は、例えば、SiC、TiO、TiN、TiC、W、WC、Mo、MoC及び炭素材料からなる群から選択される少なくとも1種が好ましい。炭素材料としては、例えば、カーボンナノチューブ、カーボンナノファイバー等が挙げられる。絶縁層15を構成する導電性材料は、SiCが好ましい。 The conductive material constituting the insulating layer 15 is not particularly limited, but is preferably the same as the main component of the ceramic plates 11 and 12. The conductive material constituting the insulating layer 15 is preferably at least one selected from the group consisting of, for example, SiC, TiO 2 , TiN, TiC, W, WC, Mo, Mo 2 C, and carbon materials. Examples of the carbon material include carbon nanotubes and carbon nanofibers. The conductive material constituting the insulating layer 15 is preferably SiC.

絶縁層15において、絶縁性材料の含有量は、80質量%以上96質量%以下が好ましく、80質量%以上95質量%以下がより好ましく、85質量%以上95質量%以下がさらに好ましい。絶縁性材料の含有量が上記下限値以上であれば、充分な耐電圧性が得られる。絶縁性材料の含有量が上記上限値以下であれば、絶縁層15に含有させる導電性材料の除電効果を充分に発現できる。 In the insulating layer 15, the content of the insulating material is preferably 80 mass% or more and 96 mass% or less, more preferably 80 mass% or more and 95 mass% or less, and even more preferably 85 mass% or more and 95 mass% or less. If the content of the insulating material is at least the above lower limit, sufficient voltage resistance can be obtained. If the content of the insulating material is below the above-mentioned upper limit, the static elimination effect of the conductive material contained in the insulating layer 15 can be sufficiently exhibited.

絶縁層15において、導電性材料の含有量は、4質量%以上20質量%以下が好ましく、5質量%以上20質量%以下がより好ましく、5質量%以上15質量%以下がさらに好ましい。導電性材料の含有量が上記下限値以上であれば、導電性材料の除電効果を充分に発現できる。導電性材料の含有量が上記上限値以下であれば、充分な耐電圧が得られる。 In the insulating layer 15, the content of the conductive material is preferably 4% by mass or more and 20% by mass or less, more preferably 5% by mass or more and 20% by mass or less, and even more preferably 5% by mass or more and 15% by mass or less. If the content of the conductive material is at least the above lower limit, the static elimination effect of the conductive material can be sufficiently exhibited. If the content of the conductive material is below the above upper limit, sufficient withstand voltage can be obtained.

絶縁層15を構成する絶縁性材料の平均一次粒子径は、0.5μm以上3.0μm以下が好ましく、0.7μm以上2.0μm以下がより好ましい。 The average primary particle diameter of the insulating material constituting the insulating layer 15 is preferably 0.5 μm or more and 3.0 μm or less, more preferably 0.7 μm or more and 2.0 μm or less.

絶縁層15を構成する絶縁性材料の平均一次粒子径が0.5μm以上であれば、充分な耐電圧性が得られる。一方、絶縁層15を構成する絶縁性材料の平均一次粒子径が3.0μm以下であれば、研削等の加工が容易である。 If the average primary particle diameter of the insulating material constituting the insulating layer 15 is 0.5 μm or more, sufficient voltage resistance can be obtained. On the other hand, if the average primary particle diameter of the insulating material constituting the insulating layer 15 is 3.0 μm or less, processing such as grinding is easy.

絶縁層15を構成する導電性材料の平均一次粒子径は、0.1μm以上1.0μm以下が好ましく、0.1μm以上0.8μm以下がより好ましい。
絶縁層15を構成する導電性材料の平均一次粒子径が0.1μm以上であれば、充分な耐電圧性が得られる。一方、絶縁層15を構成する導電性材料の平均一次粒子径が1.0μm以下であれば、研削等の加工が容易である。
The average primary particle diameter of the conductive material constituting the insulating layer 15 is preferably 0.1 μm or more and 1.0 μm or less, more preferably 0.1 μm or more and 0.8 μm or less.
If the average primary particle diameter of the conductive material constituting the insulating layer 15 is 0.1 μm or more, sufficient voltage resistance can be obtained. On the other hand, if the average primary particle diameter of the conductive material constituting the insulating layer 15 is 1.0 μm or less, processing such as grinding is easy.

絶縁層15を構成する絶縁性材料の平均一次粒子径及び導電性材料の平均一次粒子径の測定方法は、セラミックス板11,12を構成する絶縁性材料の平均一次粒子径及び導電性材料の平均一次粒子径の測定方法と同様である。 The method for measuring the average primary particle diameter of the insulating material and the average primary particle diameter of the conductive material constituting the insulating layer 15 is as follows: The method is the same as the method for measuring the primary particle diameter.

絶縁層15は、セラミックス板11,12と別体として設けられていてもよく、セラミックス板11,12のいずれか一方と一体的に形成された後、他方のセラミックス板と接合する構成であってもよい。本明細書において「一体的に形成されている」とは、1つの部材として形成されている(1つの部材である)ことを意味する。この意味において、「セラミックス板11,12のいずれか一方と一体的に形成された」構成とは、例えば、もともと2つの部材であったセラミックス板11と絶縁層15とを1つに「一体化」した構成とは異なる。セラミックス板と絶縁層とが一体的に形成された部材は、材料となるセラミックス板(凹部を有さないセラミックス板)の一面に、研削又は研磨により凹部加工をすることで形成することができる。 The insulating layer 15 may be provided separately from the ceramic plates 11, 12, or may be formed integrally with one of the ceramic plates 11, 12 and then bonded to the other ceramic plate. Good too. In this specification, "integrally formed" means formed as one member (one member). In this sense, a configuration that is "integrally formed with either one of the ceramic plates 11 and 12" means, for example, that the ceramic plate 11 and the insulating layer 15, which were originally two members, are "integrated" into one. ” This is different from the configuration. A member in which a ceramic plate and an insulating layer are integrally formed can be formed by processing a concave part by grinding or polishing on one surface of a ceramic plate (ceramic plate having no concave part).

さらに、絶縁層15は、セラミックス板11,12の両方と一体的に形成された構成であってもよい。 Furthermore, the insulating layer 15 may be formed integrally with both the ceramic plates 11 and 12.

セラミックス板11,12の両方と絶縁層とが一体的に形成された静電チャック部材は、以下の方法で形成することができる。 An electrostatic chuck member in which both the ceramic plates 11 and 12 and the insulating layer are integrally formed can be formed by the following method.

例えば、セラミックス板の原料である無機粒子の原料粉末(例えば、アルミナ粉末や、SiC粉末)を用いて、セラミックス板11,12と同等の形状を有し焼結させる前の仮成形体を形成し、得られた仮成形体の一方に、導電ペーストをスクリーン印刷した後、他方の仮成形体を重ねて積層体とする。その後、積層体をホットプレス焼成することで、セラミックス板11,12の両方と絶縁層とが一体的に形成された静電チャック部材が得られる。 For example, by using a raw material powder of inorganic particles (for example, alumina powder or SiC powder) that is a raw material for ceramic plates, a temporary molded body having the same shape as the ceramic plates 11 and 12 before sintering is formed. After screen printing a conductive paste on one of the obtained temporary moldings, the other temporary molding is stacked to form a laminate. Thereafter, by hot press firing the laminate, an electrostatic chuck member in which both the ceramic plates 11 and 12 and the insulating layer are integrally formed is obtained.

上記仮成形体は、プレス成形や、原料粉末のペーストを成形型に流し込むことで成形してもよく、無機粒子の原料粉末を用いて薄板状のグリーンシートを形成した後、グリーンシートを積層して成形してもよい。 The above temporary formed body may be formed by press molding or by pouring a paste of raw material powder into a mold, or by forming a thin green sheet using raw material powder of inorganic particles, and then laminating the green sheets. It may also be molded.

得られる電極13の厚さは、電極層形成用ペーストの塗布厚さと、得られる電極13の厚さとの対応関係を予備実験により求めておくことにより、電極層形成用ペーストの塗布厚さを調整することで制御することができる。 The thickness of the obtained electrode 13 is adjusted by determining the correspondence between the coating thickness of the electrode layer forming paste and the thickness of the obtained electrode 13 through preliminary experiments. It can be controlled by

(静電チャック部材の形状)
以下の説明においては、セラミックス板11の厚さを「厚さT1」、セラミックス板12の厚さを「厚さT2」、電極13の厚さを「厚さT3」とする。
(Shape of electrostatic chuck member)
In the following description, the thickness of the ceramic plate 11 will be referred to as "thickness T1," the thickness of the ceramic plate 12 as "thickness T2," and the thickness of the electrode 13 as "thickness T3."

セラミックス板11の厚さT1、及びセラミックス板12の厚さT2は、静電チャック部材10が採用される静電チャック装置や半導体製造装置の性能に応じて適宜設定される。一例として、厚さT1は100μm以上、900μm以下が好ましく、400μm以上600μm以下がより好ましい。また、厚さT2は下部セラミック板に形成する付加的な内部電極やヒーター等の有無によって大きく異なり、0.9mm以上4mm以下等が選ばれているが、これらに限定されない。 The thickness T1 of the ceramic plate 11 and the thickness T2 of the ceramic plate 12 are appropriately set according to the performance of the electrostatic chuck device or semiconductor manufacturing device in which the electrostatic chuck member 10 is employed. As an example, the thickness T1 is preferably 100 μm or more and 900 μm or less, more preferably 400 μm or more and 600 μm or less. Further, the thickness T2 varies greatly depending on the presence or absence of additional internal electrodes, heaters, etc. formed on the lower ceramic plate, and is selected to be 0.9 mm or more and 4 mm or less, but is not limited thereto.

電極13の厚さT3は、静電チャック部材10が採用される静電チャック装置や半導体製造装置の性能に応じて適宜設定される。一例として、厚さT3は5μm以上40μm以下が好ましく、10μm以上20μm以下がより好ましい。 The thickness T3 of the electrode 13 is appropriately set depending on the performance of the electrostatic chuck device or semiconductor manufacturing device in which the electrostatic chuck member 10 is employed. As an example, the thickness T3 is preferably 5 μm or more and 40 μm or less, more preferably 10 μm or more and 20 μm or less.

発明者らは、静電チャック部材に荷電性異物粒子が静電吸着することによる不具合(生産性低下、絶縁破壊)を抑制するため、鋭意検討した。その結果、発明者らは、静電チャック部材10の側周面10y(基体の側周面10y)に付着する荷電性異物粒子に着目し、側周面10yに付着する荷電性異物粒子を低減することで、効率的に上記不具合を抑制できると考えた。 The inventors have made extensive studies to suppress problems (reduction in productivity, dielectric breakdown) caused by electrostatic adsorption of charged foreign particles to an electrostatic chuck member. As a result, the inventors focused on the charged foreign particles adhering to the side circumferential surface 10y of the electrostatic chuck member 10 (the side circumferential surface 10y of the base body), and reduced the charged foreign particles adhering to the side circumferential surface 10y. We believe that by doing so, we can effectively suppress the above problems.

側周面10yに付着する荷電性異物粒子の量は、電極13を大型化し、電極13の外周端部から側周面10yまでのX方向の距離(幅D1)が短くなることにより多くなると考えられる。近年の電極13の大型化により、幅D1は、1mm以下(1000μm以下)とすることが求められている。 It is thought that the amount of charged foreign particles adhering to the side circumferential surface 10y increases by increasing the size of the electrode 13 and shortening the distance in the X direction (width D1) from the outer circumferential end of the electrode 13 to the side circumferential surface 10y. It will be done. Due to the recent increase in the size of the electrode 13, the width D1 is required to be 1 mm or less (1000 μm or less).

また、セラミックス板11の厚さT1との関係において、幅D1は、厚さT1の2倍以下とすることが求められている(D1/T1≦2)。このように幅D1が小さくなることにより、側周面10yに対して荷電性異物粒子が付着しやすくなっていた。 Furthermore, in relation to the thickness T1 of the ceramic plate 11, the width D1 is required to be equal to or less than twice the thickness T1 (D1/T1≦2). As the width D1 becomes smaller in this manner, charged foreign particles tend to adhere to the side circumferential surface 10y.

この点から、静電チャック部材の構成を検討した結果、発明者らは、(1)荷電性異物粒子が付着し得る側周面10yの表面積を低減させた構造、を採用することにより、課題を解決できると考え、発明を完成させた。さらに発明者は、(2)側周面10yに荷電性異物粒子が付着したとしても脱離させやすい構造、を採用することで、さらに課題を解決可能とする静電チャック部材を完成させた。 From this point of view, as a result of examining the structure of the electrostatic chuck member, the inventors have solved the problem by adopting (1) a structure that reduces the surface area of the side circumferential surface 10y to which charged foreign particles can adhere. He thought that he could solve the problem and completed his invention. Furthermore, the inventor has completed an electrostatic chuck member that can further solve the problem by adopting (2) a structure in which even if charged foreign particles adhere to the side circumferential surface 10y, they can be easily removed.

具体的には、静電チャック部材10(基体)において、載置面10xと連続する側周面10yは、少なくとも一部の算術平均粗さRaが2μm以下とすることにより、(1)側周面10yに対し荷電性異物粒子が付着しにくい構造となる。 Specifically, in the electrostatic chuck member 10 (substrate), the side peripheral surface 10y that is continuous with the mounting surface 10x has an arithmetic mean roughness Ra of at least a portion of 2 μm or less, so that (1) the side peripheral surface is The structure is such that charged foreign particles are difficult to adhere to the surface 10y.

静電チャック部材10は、側周面10yの周方向の一部において、算術平均粗さRaが2μm以下であってもよく、周方向の全部において算術平均粗さRaが2μm以下であってもよい。また、側周面10yの算術平均粗さRaは、周方向で一定であってもよく、周方向で異ならせてもよい。 The electrostatic chuck member 10 may have an arithmetic mean roughness Ra of 2 μm or less in a part of the circumferential direction of the side circumferential surface 10y, or may have an arithmetic mean roughness Ra of 2 μm or less in the entire circumferential direction. good. Further, the arithmetic mean roughness Ra of the side circumferential surface 10y may be constant in the circumferential direction or may be varied in the circumferential direction.

算術平均粗さRaは、表面粗さ・輪郭形状測定機(サーフコムNEX200、株式会社東京精密製)を用いて測定することができる。具体的には、静電チャック部材10の側周面10yのうち算術平均粗さRaを制御する領域について、高さ方向(y方向)の4カ所で算術平均粗さRaを測定する。さらに、静電チャック部材10を平面視したとき、周方向に90°毎の4カ所について、それぞれ同様の測定を行う。高さ方向4カ所、周方向4カ所でそれぞれ求めた算術平均粗さRaの測定値について、平均値を算出し、算術平均粗さRaとする。 The arithmetic mean roughness Ra can be measured using a surface roughness/contour shape measuring device (Surfcom NEX200, manufactured by Tokyo Seimitsu Co., Ltd.). Specifically, the arithmetic mean roughness Ra is measured at four locations in the height direction (y direction) in a region of the side peripheral surface 10y of the electrostatic chuck member 10 where the arithmetic mean roughness Ra is to be controlled. Furthermore, when the electrostatic chuck member 10 is viewed from above, similar measurements are performed at four locations at intervals of 90 degrees in the circumferential direction. The average value of the measured values of the arithmetic mean roughness Ra obtained at four locations in the height direction and four locations in the circumferential direction is calculated and set as the arithmetic mean roughness Ra.

従来の静電チャック装置に採用される静電チャック部材は、載置面のRaが0.05μm程度、好適には0.01~0.02μm程度の鏡面仕上げをされることがある。載置面に微少突起が設けられた静電チャック部材の場合、微小突起の先端のRaが上述のRaを満たすことがある。 An electrostatic chuck member used in a conventional electrostatic chuck device may be mirror-finished with a mounting surface Ra of about 0.05 μm, preferably about 0.01 to 0.02 μm. In the case of an electrostatic chuck member in which a microprotrusion is provided on the mounting surface, Ra of the tip of the microprotrusion may satisfy the above-mentioned Ra.

一方、従来の静電チャック部材では、側周面のRaは載置面よりは荒く仕上げられ、Raが3~4μm程度の面精度で仕上げられている。これは、静電チャック部材の製造にあたり、ウエハが直接接する載置面の加工精度に目が向けられる一方、板状試料を載置しない側周面については着目されていなかったことによる。そのため、従来の静電チャック部材では、生産効率を考慮した上で、側周面に対して必要最小限の研磨を施すにとどまっていた。しかし発明者らは、側周面のRaが3~4μm程度の面精度の場合、荷電性異物粒子が付着し得る表面積が非常に広いことに加え、側周面に近接した内部電極により更に荷電性異物粒子を吸着させやすい、多くの荷電性異物粒子を滞留させ易い、との着想を得た。 On the other hand, in the conventional electrostatic chuck member, the Ra of the side circumferential surface is rougher than that of the mounting surface, and the Ra is finished with a surface accuracy of about 3 to 4 μm. This is because, in manufacturing electrostatic chuck members, attention has been paid to the processing accuracy of the mounting surface in direct contact with the wafer, but no attention has been paid to the side circumferential surface on which the plate-shaped sample is not mounted. Therefore, in the conventional electrostatic chuck member, the side circumferential surface is only polished to the minimum necessary level in consideration of production efficiency. However, the inventors discovered that when the surface accuracy of the side circumferential surface is Ra of about 3 to 4 μm, the surface area to which charged foreign particles can adhere is extremely large, and the internal electrodes close to the side circumferential surface further increase the charging potential. The idea was that it would be easy to adsorb sexual foreign particles, and it would be easy to retain many charged foreign particles.

そこで、静電チャック部材10では、側周面10yのRaを従来よりも平滑な2μm以下とし、荷電性異物粒子が吸着される表面積を低減させた構造とし、側周面10yのRaを従来比半減させることにより、従来よりも側周面に付着し滞留する荷電性異物粒子を半分以下に大きく低減させることができる簡易で効果的な手段を考案した。 Therefore, in the electrostatic chuck member 10, the Ra of the side circumferential surface 10y is set to 2 μm or less, which is smoother than the conventional one, and the surface area on which charged foreign particles are adsorbed is reduced. We have devised a simple and effective means that can greatly reduce the amount of charged foreign particles that adhere to and stay on the side circumferential surface by more than half compared to the conventional method.

通常、荷電性異物粒子は、ウエハプロセス中に、静電チャック部材の表面に対して吸着及び脱離を繰り返していると想定される。ここで、荷電性異物粒子の単位表面積あたりの付着量が多くなると、荷電性異物粒子は、複数が凝集した凝集体として、静電チャック部材の表面に対して吸着及び脱離をすると想定される。このような凝集体が静電チャック部材の表面に吸着及び脱離する場合、初めてプラズマの安定性を損ね、製造される素子の歩留まりを低下させる原因となる「異常放電」が生じると考えられる。 Normally, it is assumed that charged foreign particles are repeatedly adsorbed and detached from the surface of the electrostatic chuck member during wafer processing. Here, when the amount of charged foreign particles attached per unit surface area increases, it is assumed that the charged foreign particles will adsorb to and detach from the surface of the electrostatic chuck member as an aggregate of a plurality of charged foreign particles. . When such aggregates are adsorbed to and desorbed from the surface of the electrostatic chuck member, it is thought that "abnormal discharge" occurs, which impairs the stability of the plasma and causes a decrease in the yield of manufactured devices.

すなわち、半導体製造装置において、ウエハプロセス中に静電チャック部材の側周面に荷電性異物粒子が付着する場合、荷電性異物粒子の単位表面積あたりの付着量が上記凝集体を形成するほど多くなるまでは異常放電は一切発生せず、上記凝集体を形成する閾値を超えて初めて異常放電が発生する。このような場合、荷電性異物粒子の付着量を低減し、例えば閾値未満とすると、異常放電の発生量を顕著に抑制することができ、高い効果が期待できる。「閾値」は、半導体製造装置の構成、ウエハの種類、ウエハプロセス条件など、種々の条件によって影響を受ける。 That is, in semiconductor manufacturing equipment, when charged foreign particles adhere to the side peripheral surface of an electrostatic chuck member during wafer processing, the amount of charged foreign particles attached per unit surface area increases as the above aggregates are formed. Until then, no abnormal discharge occurs at all, and abnormal discharge occurs only when the threshold for forming aggregates is exceeded. In such a case, if the amount of attached charged foreign particles is reduced to, for example, less than a threshold value, the amount of abnormal discharge generated can be significantly suppressed, and a high effect can be expected. The "threshold value" is influenced by various conditions such as the configuration of the semiconductor manufacturing equipment, the type of wafer, and wafer process conditions.

すなわち、荷電性異物粒子の付着量と異常放電の発生数とが線形関係でなく、閾値を有する対応関係であると考えられるため、側周面10yのRaを従来比で半減させるという簡便な手段により、異常放電の発生を大幅に抑制することが期待されるとの着想に発明者らは帰着した。 That is, since it is considered that the amount of attached charged foreign particles and the number of occurrences of abnormal discharge are not in a linear relationship but in a correspondence relationship having a threshold value, a simple means of reducing Ra of the side circumferential surface 10y by half compared to the conventional ratio is possible. The inventors came up with the idea that it is expected that the occurrence of abnormal discharge can be significantly suppressed.

側周面10yにおいてこのようなRaを有する領域AR1は、公知のバフ研磨やブラシ研磨により形成することができる。 The region AR1 having such Ra on the side circumferential surface 10y can be formed by known buffing or brushing.

側周面10yのRaは、1.5μm以下であることが好ましく、0.05μm以下がより好ましく、0.01~0.02μmがさらに好ましい。 Ra of the side peripheral surface 10y is preferably 1.5 μm or less, more preferably 0.05 μm or less, and even more preferably 0.01 to 0.02 μm.

側周面10yは、載置面10xから下方に広がる領域AR1において算術平均粗さRaが2μm以下であると好ましい。この領域AR1は、載置面10xから下方に電極13の厚さ以上の広がりを有する。すなわち、領域AR1のY方向の幅を符号T4としたとき、T4≧T3であると好ましい。 The side circumferential surface 10y preferably has an arithmetic mean roughness Ra of 2 μm or less in a region AR1 extending downward from the mounting surface 10x. This region AR1 extends downward from the mounting surface 10x by a thickness greater than the thickness of the electrode 13. That is, when the width of the region AR1 in the Y direction is represented by the symbol T4, it is preferable that T4≧T3.

荷電性異物粒子は、載置面10xよりも上方においてプラズマエッチング中に多く発生し、降下して側周面10yに付着する。そのため、側周面10yにおいては、相対的に上方の方が下方よりも荷電性異物粒子が付着しやすい。静電チャック部材10においては、高精度に研磨された領域AR1を側周面10yの上方に形成することで、効率的に側周面10yへの荷電性異物粒子の付着を抑制することができる。 Many charged foreign particles are generated during plasma etching above the mounting surface 10x, descend and adhere to the side circumferential surface 10y. Therefore, charged foreign particles are relatively more likely to adhere to the upper side of the side peripheral surface 10y than to the lower side. In the electrostatic chuck member 10, by forming the highly precisely polished region AR1 above the side circumferential surface 10y, it is possible to efficiently suppress the adhesion of charged foreign particles to the side circumferential surface 10y. .

また、側周面10yにおいて領域AR1を電極13の厚さよりも広くすることで、側周面10yにおいて電極13の厚さより広く荷電性異物粒子が付着することを抑制できる。そのため、側周面10yにおいて荷電性異物粒子に起因する微小放電を抑制でき、側周面10yにおける絶縁破壊を抑制することができる。 Furthermore, by making the region AR1 wider than the thickness of the electrode 13 on the side circumferential surface 10y, it is possible to suppress the charged foreign particles from adhering to the side circumferential surface 10y over a wider area than the thickness of the electrode 13. Therefore, micro discharges caused by charged foreign particles can be suppressed on the side circumferential surface 10y, and dielectric breakdown on the side circumferential surface 10y can be suppressed.

側周面10yの領域AR1が広がると、荷電性異物粒子の付着を抑制可能な範囲が広がることから、課題の解決には有利に働く。一方で、領域AR1を形成するためには従来の面精度(Ra3~4μm)での仕上げと比べ、多くの時間を要し且つコストも発生する。そのため、荷電性異物粒子の付着の抑制と、製造の要する労力(製造時間、コスト)とのバランスから、適切な広さの領域AR1を形成するとよい。 If the area AR1 of the side circumferential surface 10y is expanded, the range in which the adhesion of charged foreign particles can be suppressed is expanded, which is advantageous in solving the problem. On the other hand, forming the region AR1 takes more time and costs more than finishing with conventional surface precision (Ra 3 to 4 μm). Therefore, it is preferable to form the region AR1 with an appropriate size in view of the balance between suppressing the adhesion of charged foreign particles and the labor required for manufacturing (manufacturing time, cost).

荷電性異物粒子の付着抑制の観点からは、領域AR1は、広い方が好ましい。例えば、領域AR1は、載置面10xから下方にセラミックス板11の厚さT1以上に形成されていてもよく(T4≧T1)、セラミックス板11と電極13とを合わせた幅以上に形成されていてもよく(T4≧T1+T3)、側周面10y全体が領域AR1であってもよい(T4=T1+T3+T2)。 From the viewpoint of suppressing the adhesion of charged foreign particles, it is preferable that the region AR1 be wide. For example, the region AR1 may be formed downward from the mounting surface 10x to have a thickness equal to or greater than the thickness T1 of the ceramic plate 11 (T4≧T1), and may be formed to have a width equal to or greater than the combined width of the ceramic plate 11 and the electrode 13. (T4≧T1+T3), and the entire side peripheral surface 10y may be the area AR1 (T4=T1+T3+T2).

以上のような構成の静電チャック部材10によれば、側周面10yへ荷電性異物粒子が付着することで生じる課題(生産性低下、絶縁破壊)を低減可能となる。 According to the electrostatic chuck member 10 configured as described above, it is possible to reduce problems (reduction in productivity, dielectric breakdown) caused by the adhesion of charged foreign particles to the side circumferential surface 10y.

[第2実施形態]
図2は、第2実施形態に係る静電チャック部材20の説明図である。以後の各実施形態においては、第1実施形態の静電チャック部材10と共通する材料を用いることができ、形状が異なる。以後の各実施形態において、第1実施形態と共通する構成要素については、詳細な説明は省略する。
[Second embodiment]
FIG. 2 is an explanatory diagram of an electrostatic chuck member 20 according to the second embodiment. In each of the subsequent embodiments, the same material as the electrostatic chuck member 10 of the first embodiment can be used, but the shapes are different. In each of the subsequent embodiments, detailed explanations of components common to the first embodiment will be omitted.

図2に示すように、静電チャック部材20は、一対のセラミックス板21,22と、一対のセラミックス板21,22の間に介在する静電吸着用電極23及び絶縁層25と、を備える。一対のセラミックス板21,22、及び絶縁層25を合わせた構成は、本発明の基体に該当する。 As shown in FIG. 2, the electrostatic chuck member 20 includes a pair of ceramic plates 21 and 22, an electrostatic chuck electrode 23 and an insulating layer 25 interposed between the pair of ceramic plates 21 and 22. The combination of the pair of ceramic plates 21 and 22 and the insulating layer 25 corresponds to the base of the present invention.

静電チャック部材20の側周面20yの上端部分は、面取りされ載置面20xの法線方向からの視野に露出する凸曲面20aが形成されている。図2の視野において、凸曲面20aは、載置面20xと重なる仮想面S1との交点αから、Y方向と平行であり側周面20yと重なる仮想面S2との交点βまでの領域である。 The upper end portion of the side circumferential surface 20y of the electrostatic chuck member 20 is chamfered to form a convex curved surface 20a exposed in the normal direction of the mounting surface 20x. In the visual field of FIG. 2, the convex curved surface 20a is an area from the intersection α with the virtual surface S1 that overlaps with the mounting surface 20x to the intersection β with the virtual surface S2 that is parallel to the Y direction and overlaps with the side circumferential surface 20y. .

本明細書において、「凸曲面」とは、側周面のうち、断面視において+y方向に凸の曲面を指す。
一方、後述する「傾斜面」とは、側周面のうち、断面視において傾き一定の面を指す。
In this specification, a "convex curved surface" refers to a curved surface of the side circumferential surface that is convex in the +y direction in a cross-sectional view.
On the other hand, the "slanted surface" described later refers to a surface of the side circumferential surface that has a constant inclination in cross-sectional view.

静電チャック部材20は、側周面20yの周方向の一部において凸曲面20aが形成されていてもよく、周方向の全部において凸曲面20aが形成されていてもよい。また、凸曲面20aの曲率は、周方向で一定であってもよく、周方向で異ならせてもよい。 In the electrostatic chuck member 20, the convex curved surface 20a may be formed in a part of the side peripheral surface 20y in the circumferential direction, or the convex curved surface 20a may be formed in the entire circumferential direction. Further, the curvature of the convex curved surface 20a may be constant in the circumferential direction, or may be varied in the circumferential direction.

静電チャック部材が角部を有していると、板状試料を吸着させるための静電界が角部に集中しやすく、この静電界に引き寄せられる荷電性異物粒子も強固に付着しやすい。一方で、静電チャック部材20のように角部が面取りされ、凸曲面20aとなっていると、上述の静電界が凸曲面20aで分散し特定の箇所に集中しにくくなる。その結果、荷電性異物粒子の付着箇所が分散し、単位表面積あたりの荷電性異物粒子の数が減少する結果、異常放電を抑制しやすい。 When the electrostatic chuck member has corners, the electrostatic field for adsorbing the plate-shaped sample tends to concentrate on the corners, and charged foreign particles attracted by this electrostatic field also tend to adhere firmly. On the other hand, if the corners of the electrostatic chuck member 20 are chamfered to form a convex curved surface 20a, the above-mentioned electrostatic field is dispersed by the convex curved surface 20a and becomes difficult to concentrate at a specific location. As a result, the locations where charged foreign particles are attached are dispersed, and the number of charged foreign particles per unit surface area is reduced, making it easier to suppress abnormal discharge.

また、角部を曲面化すると、形成される凸曲面20aの面積は、交点αから仮想面S1と仮想面S2とを辿って交点βに至る面、すなわち、角部を曲面化しない場合に存在する面の面積よりも小さい。上述のように、静電チャック部材の角部には荷電性異物粒子が付着しやすいところ、角部を曲面化すると荷電性異物粒子が付着し得る部分の表面積を減らすことができるため、異常放電を抑制する構成として好適である。 Furthermore, when a corner is curved, the area of the convex curved surface 20a that is formed is a surface that traces the virtual surfaces S1 and S2 from the intersection α to the intersection β, that is, the area that exists when the corner is not curved. smaller than the area of the surface. As mentioned above, charged foreign particles tend to adhere to the corners of the electrostatic chuck member, and by making the corners curved, the surface area to which charged foreign particles can adhere can be reduced, thereby preventing abnormal discharge. This is suitable as a configuration for suppressing.

凸曲面20aの曲率半径は、電極23の厚さT3以上であると好ましい。凸曲面20aの曲率を電極23の厚さT3より大きくすることで、プラズマ処理時に凸曲面20aでの電界の集中を抑制することができ、荷電性異物粒子の特定部分(例えば角部)への固着の集中を抑制することができる。 The radius of curvature of the convex curved surface 20a is preferably equal to or greater than the thickness T3 of the electrode 23. By making the curvature of the convex curved surface 20a larger than the thickness T3 of the electrode 23, it is possible to suppress the concentration of electric field on the convex curved surface 20a during plasma processing, and prevent charged foreign particles from reaching specific parts (for example, corners). Concentration of adhesion can be suppressed.

凸曲面20aの曲率半径は、次の方法で求める。
まず、静電チャック部材の測定したい部分(凸曲面)について、載置面に垂直、且つ平面視において静電チャック部材に外接する円のうち最小の円を想定したとき、この円の中心を含む仮想面で切断する。断面を1000番以上の砥石で研削してもよい。
The radius of curvature of the convex curved surface 20a is determined by the following method.
First, regarding the part (convex curved surface) of the electrostatic chuck member that you want to measure, assume the smallest circle that is perpendicular to the mounting surface and circumscribes the electrostatic chuck member in plan view, and that includes the center of this circle. Cut on a virtual plane. The cross section may be ground with a grindstone of No. 1000 or higher.

次いで、得られた断面の拡大写真を撮像する。拡大倍率は、実体鏡を用いて測定したい凸曲面を観察し、凸曲面の大きさに応じて設定する。拡大倍率は、得られた写真から適切に曲率半径が測定できる倍率であり、例えば40倍から200倍の範囲から適宜選択する。
得られた拡大写真から、凸曲面の曲率半径を測定する。
Next, an enlarged photograph of the obtained cross section is taken. The magnification is set according to the size of the convex curved surface to be measured by observing the convex curved surface using a stereoscope. The magnification is a magnification that allows the radius of curvature to be appropriately measured from the obtained photograph, and is appropriately selected from the range of, for example, 40 times to 200 times.
The radius of curvature of the convex curved surface is measured from the obtained enlarged photograph.

凸曲面20aは、第1実施形態の静電チャック部材10における領域AR1と同様に、算術平均粗さRaが2μm以下であると好ましい。凸曲面20aの算術平均粗さRaが2μm以下であることにより、凸曲面20aであることによる効果と、面精度を高めることによる効果との両方の効果が得られ、効果的に荷電性異物粒子の付着を抑制することができる。凸曲面20aのRaは、上述の領域AR1と同様、1.5μm以下であることが好ましく、0.05μm以下がより好ましく、0.01~0.02μmがさらに好ましい。 The convex curved surface 20a preferably has an arithmetic mean roughness Ra of 2 μm or less, similar to the region AR1 in the electrostatic chuck member 10 of the first embodiment. By setting the arithmetic mean roughness Ra of the convex curved surface 20a to 2 μm or less, both the effect of the convex curved surface 20a and the effect of increasing the surface precision can be obtained, and charged foreign particles can be effectively removed. adhesion can be suppressed. Like the above-mentioned region AR1, Ra of the convex curved surface 20a is preferably 1.5 μm or less, more preferably 0.05 μm or less, and even more preferably 0.01 to 0.02 μm.

以上のような構成の静電チャック部材20によっても、側周面20yへ荷電性異物粒子が付着することで生じる課題(生産性低下、絶縁破壊)を低減可能となる。 The electrostatic chuck member 20 configured as described above also makes it possible to reduce problems (reduction in productivity, dielectric breakdown) caused by the adhesion of charged foreign particles to the side circumferential surface 20y.

なお、図2では面取りして形成される面を、連続した曲面である凸曲面20aとして示しているが、これに限らない。 In addition, although the surface formed by chamfering is shown as a convex curved surface 20a that is a continuous curved surface in FIG. 2, it is not limited to this.

図3は、本実施形態の変形例に係る静電チャック部材20Bの説明図である。図3に示すように、静電チャック部材20Bは、一対のセラミックス板26,22と、一対のセラミックス板26,22の間に介在する静電吸着用電極23及び絶縁層25と、を備える。 FIG. 3 is an explanatory diagram of an electrostatic chuck member 20B according to a modification of this embodiment. As shown in FIG. 3, the electrostatic chuck member 20B includes a pair of ceramic plates 26 and 22, an electrostatic chuck electrode 23 and an insulating layer 25 interposed between the pair of ceramic plates 26 and 22.

図3に示す静電チャック部材20Bの側周面は、仮想面S1と仮想面S2とに沿う角部を直線的に面取りした傾斜面20bを有する。さらに、面取りにより生じる新たな2つの角部を、外に凸となる曲面(凸曲面)に加工している。「2つの角部」とは、載置面30xと重なる仮想面S1と傾斜面20bとの交点γの位置に形成される角部と、Y方向と平行であり側周面20yと重なる仮想面S2と傾斜面20bとの交点δの位置に形成される角部と、を指す。この場合、曲面加工で形成される凸曲面の曲率半径r1,r2は、それぞれ電極23の厚さT3以上であると好ましい。 The side circumferential surface of the electrostatic chuck member 20B shown in FIG. 3 has an inclined surface 20b in which corners along the imaginary plane S1 and the imaginary plane S2 are chamfered linearly. Furthermore, the two new corners created by chamfering are processed into outwardly convex curved surfaces (convex curved surfaces). "Two corners" are a corner formed at the intersection γ of the virtual surface S1 and the inclined surface 20b that overlaps with the mounting surface 30x, and a virtual surface that is parallel to the Y direction and overlaps with the side circumferential surface 20y. This refers to the corner formed at the intersection δ between S2 and the inclined surface 20b. In this case, it is preferable that the curvature radii r1 and r2 of the convex curved surface formed by the curved surface processing are each greater than or equal to the thickness T3 of the electrode 23.

以上のような構成の静電チャック部材20Bにおいては、面取り前には1つであった角部を、面取りにより2つとすることで、上述した静電界の集中を分散している。さらに、面取り加工で形成される角部をそれぞれ曲面に加工しているため、側周面20yへ荷電性異物粒子が付着することで生じる課題(生産性低下、絶縁破壊)を低減可能となる。 In the electrostatic chuck member 20B having the above configuration, the corner portion, which had one corner before chamfering, is reduced to two by chamfering, thereby dispersing the concentration of the electrostatic field described above. Furthermore, since the corners formed by chamfering are each processed into curved surfaces, it is possible to reduce problems (reduced productivity, dielectric breakdown) caused by charged foreign particles adhering to the side circumferential surface 20y.

なお、上述した「2つの角部」を更に直線的に面取りし、新たに生じる角部を凸曲面に加工してもよい。 Note that the above-mentioned "two corners" may be further linearly chamfered, and the newly formed corners may be processed into convex curved surfaces.

[第3実施形態]
図4は、第3実施形態に係る静電チャック部材30の説明図である。図4に示すように、静電チャック部材30は、一対のセラミックス板31,32と、一対のセラミックス板31,32の間に介在する静電吸着用電極33及び絶縁層35と、を備える。一対のセラミックス板31,32、及び絶縁層35を合わせた構成は、本発明の基体に該当する。
[Third embodiment]
FIG. 4 is an explanatory diagram of an electrostatic chuck member 30 according to the third embodiment. As shown in FIG. 4, the electrostatic chuck member 30 includes a pair of ceramic plates 31 and 32, an electrostatic chuck electrode 33 and an insulating layer 35 interposed between the pair of ceramic plates 31 and 32. The combination of the pair of ceramic plates 31 and 32 and the insulating layer 35 corresponds to the base of the present invention.

静電チャック部材30の側周面30yの上端部分は、面取りされ載置面30xの法線方向からの視野に露出する凸曲面30aが形成されている。凸曲面30aは、第2実施形態の凸曲面20aと同様の構成を採用できる。 The upper end portion of the side circumferential surface 30y of the electrostatic chuck member 30 is chamfered to form a convex curved surface 30a exposed in the normal direction of the mounting surface 30x. The convex curved surface 30a can have the same configuration as the convex curved surface 20a of the second embodiment.

また、側周面30yは、側周面30yの下端部において外側に伸長する部分30zを有している。この部分30zの上面は、静電チャック部材30の周方向に設けられた凹曲面30bである。すなわち、側周面30yは、上端側の凸曲面30aと、下端側の凹曲面30bと、凸曲面30aと凹曲面30bとを接続する主面30cとで形成されている。主面30cは、Y方向に延びる面である。 Further, the side circumferential surface 30y has a portion 30z extending outward at the lower end of the side circumferential surface 30y. The upper surface of this portion 30z is a concave curved surface 30b provided in the circumferential direction of the electrostatic chuck member 30. That is, the side peripheral surface 30y is formed of a convex curved surface 30a on the upper end side, a concave curved surface 30b on the lower end side, and a main surface 30c connecting the convex curved surface 30a and the concave curved surface 30b. The main surface 30c is a surface extending in the Y direction.

静電チャック部材30は、側周面30yの周方向の一部において、凸曲面30aが形成されていてもよく、周方向の全部において凸曲面30aが形成されていてもよい。また、凸曲面30aの曲率は、周方向で一定であってもよく、周方向で異ならせてもよい。 In the electrostatic chuck member 30, a convex curved surface 30a may be formed in a part of the side peripheral surface 30y in the circumferential direction, or a convex curved surface 30a may be formed in the entire circumferential direction. Moreover, the curvature of the convex curved surface 30a may be constant in the circumferential direction, or may be varied in the circumferential direction.

また、静電チャック部材30は、側周面30yの周方向の一部において、凹曲面30bが形成されていてもよく、周方向の全部において凹曲面30bが形成されていてもよい。また、凹曲面30bの曲率は、周方向で一定であってもよく、周方向で異ならせてもよい。 Further, in the electrostatic chuck member 30, a concave curved surface 30b may be formed in a part of the side peripheral surface 30y in the circumferential direction, or a concave curved surface 30b may be formed in the entire circumferential direction. Moreover, the curvature of the concave curved surface 30b may be constant in the circumferential direction, or may be varied in the circumferential direction.

一般に、静電チャック部材の側周面の下部は、プラズマクリーニング時にプラズマが届きにくく、荷電性異物粒子が付着していたとしても除去しにくいことが知られている。対して,静電チャック部材30では、側周面30yの下端側に凹曲面30bが形成され、平面視において視野に露出している。これにより、側周面30yの下端側のプラズマクリーニングが容易となる。また、プラズマクリーニングにより側周面30yから離脱させた荷電性異物粒子はY方向に飛び出すことになるため、側周面30yの近傍に漂いにくく、再付着を抑制しやすい。 Generally, it is known that plasma does not easily reach the lower part of the side peripheral surface of an electrostatic chuck member during plasma cleaning, and even if charged foreign particles are attached, it is difficult to remove them. On the other hand, in the electrostatic chuck member 30, a concave curved surface 30b is formed on the lower end side of the side circumferential surface 30y, and is exposed to the field of view in plan view. This facilitates plasma cleaning of the lower end side of the side circumferential surface 30y. In addition, since the charged foreign particles detached from the side peripheral surface 30y by plasma cleaning fly out in the Y direction, they are less likely to drift near the side peripheral surface 30y, and re-adhesion can be easily suppressed.

凹曲面30bの曲率半径は、電極33の厚さT3以上であると好ましい。 The radius of curvature of the concave curved surface 30b is preferably greater than or equal to the thickness T3 of the electrode 33.

凹曲面30bは、第1実施形態の静電チャック部材10における領域AR1と同様に、算術平均粗さRaが2μm以下であると好ましい。凹曲面30bの算術平均粗さRaが2μm以下であることにより、凹曲面30bであることによる効果と、面精度を高めることによる効果との両方の効果が得られ、効果的に荷電性異物粒子の付着を抑制することができる。凹曲面30bのRaは、上述の領域AR1と同様、1.5μm以下であることが好ましく、0.05μm以下がより好ましく、0.01~0.02μmがさらに好ましい。 The concave curved surface 30b preferably has an arithmetic mean roughness Ra of 2 μm or less, similar to the area AR1 in the electrostatic chuck member 10 of the first embodiment. Since the arithmetic mean roughness Ra of the concave curved surface 30b is 2 μm or less, both the effect of the concave curved surface 30b and the effect of increasing the surface precision can be obtained, and charged foreign particles can be effectively removed. adhesion can be suppressed. Like the above-mentioned region AR1, Ra of the concave curved surface 30b is preferably 1.5 μm or less, more preferably 0.05 μm or less, and even more preferably 0.01 to 0.02 μm.

載置面30xの法線方向と直交する方向において、主面30cから凹曲面30bの外側の端部までの距離(X方向における部分30zの幅D2)は、電極33の厚さT3以上であると好ましい。 In the direction orthogonal to the normal direction of the mounting surface 30x, the distance from the main surface 30c to the outer end of the concave curved surface 30b (width D2 of the portion 30z in the X direction) is equal to or greater than the thickness T3 of the electrode 33. and preferable.

以上のような構成の静電チャック部材30によっても、側周面30yへ荷電性異物粒子が付着することで生じる課題(生産性低下、絶縁破壊)を低減可能となる。 The electrostatic chuck member 30 configured as described above can also reduce problems (reduction in productivity, dielectric breakdown) caused by the attachment of charged foreign particles to the side circumferential surface 30y.

なお、本実施形態においては、主面30cをY方向と平行な面としたが、これに限らない。主面30cも平面視の視野に露出する傾斜面としてもよい。 In addition, in this embodiment, although the main surface 30c was made into the surface parallel to the Y direction, it is not limited to this. The main surface 30c may also be an inclined surface exposed to the field of view in plan view.

[第4実施形態]
図5は、第4実施形態に係る静電チャック部材40の説明図である。図5に示すように、静電チャック部材40は、一対のセラミックス板41,42と、一対のセラミックス板41,42の間に介在する静電吸着用電極43及び絶縁層45と、を備える。一対のセラミックス板41,42、及び絶縁層45を合わせた構成は、本発明の基体に該当する。
[Fourth embodiment]
FIG. 5 is an explanatory diagram of an electrostatic chuck member 40 according to the fourth embodiment. As shown in FIG. 5, the electrostatic chuck member 40 includes a pair of ceramic plates 41 and 42, an electrostatic adsorption electrode 43 and an insulating layer 45 interposed between the pair of ceramic plates 41 and 42. The combination of the pair of ceramic plates 41 and 42 and the insulating layer 45 corresponds to the base of the present invention.

側周面40yは、上端から下端まで連続した直線状の傾斜面である。側周面40yは、第1実施形態の静電チャック部材10における領域AR1と同様に、算術平均粗さRaが2μm以下であると好ましい。側周面40yのRaは、上述の領域AR1と同様、1.5μm以下であることが好ましく、0.05μm以下がより好ましく、0.01~0.02μmがさらに好ましい。 The side circumferential surface 40y is a continuous linear slope from the upper end to the lower end. The side circumferential surface 40y preferably has an arithmetic mean roughness Ra of 2 μm or less, similar to the region AR1 in the electrostatic chuck member 10 of the first embodiment. Ra of the side peripheral surface 40y is preferably 1.5 μm or less, more preferably 0.05 μm or less, and even more preferably 0.01 to 0.02 μm, similar to the above-mentioned region AR1.

静電チャック部材40は、側周面40yの周方向の一部が傾斜面であってもよく、周方向の全部が傾斜面であってもよい。また、傾斜面の傾斜角は、周方向で一定であってもよく、周方向で異ならせてもよい。 In the electrostatic chuck member 40, a part of the side peripheral surface 40y in the circumferential direction may be an inclined surface, or the entire circumferential direction may be an inclined surface. Further, the inclination angle of the inclined surface may be constant in the circumferential direction or may be varied in the circumferential direction.

また、断面視における側周面40yと載置面40xとの交点αが、外に凸となる曲面に加工してもよい。この場合、曲面加工で形成される曲面の曲率半径は、電極43の厚さT3以上であると好ましい。 Further, the intersection α between the side circumferential surface 40y and the mounting surface 40x in a cross-sectional view may be processed into a curved surface that is convex outward. In this case, the radius of curvature of the curved surface formed by curved surface processing is preferably equal to or greater than the thickness T3 of the electrode 43.

静電チャック部材40は、側周面40yの周方向の一部において上記交点αの一部が外に凸となる曲面に加工されていてもよく、上記交点αの全部が外に凸となる曲面に加工されていてもよい。また、交点αにおける曲率は、周方向で一定であってもよく、周方向で異ならせてもよい。 The electrostatic chuck member 40 may be processed into a curved surface in which a part of the intersection α is outwardly convex on a part of the side peripheral surface 40y in the circumferential direction, and all of the above intersections α are outwardly convex. It may be processed into a curved surface. Further, the curvature at the intersection α may be constant in the circumferential direction or may be different in the circumferential direction.

静電チャック部材40において、セラミックス板42の上面と側周面40yとの交点42aから、セラミックス板42のX方向の端部42bまでの幅D2は、電極43の厚さT3以上であると好ましい。幅D2が厚さT3以上であると、側周面40yにおいて電極43の厚さより広く荷電性異物粒子が付着することを抑制でき、効果的に絶縁破壊を抑制できる。 In the electrostatic chuck member 40, the width D2 from the intersection 42a of the upper surface of the ceramic plate 42 and the side peripheral surface 40y to the end 42b of the ceramic plate 42 in the X direction is preferably equal to or larger than the thickness T3 of the electrode 43. . When the width D2 is greater than or equal to the thickness T3, it is possible to suppress the charged foreign particles from adhering to a wider area than the thickness of the electrode 43 on the side circumferential surface 40y, and it is possible to effectively suppress dielectric breakdown.

また、平面視における側周面40yの幅D3は、静電チャック部材40の全体厚さ(T1+T2+T3)以下であると好ましい。すなわち、側周面40yの傾斜角θは、45°以上90°未満であると好ましい。このような形状であると、載置面40xが小さくなりすぎず、実用性と荷電性異物粒子の付着抑制とを両立した静電チャック部材となる。また、傾斜面の加工に過度な工程負担が生じにくい。 Further, the width D3 of the side circumferential surface 40y in plan view is preferably equal to or less than the total thickness of the electrostatic chuck member 40 (T1+T2+T3). That is, the inclination angle θ of the side circumferential surface 40y is preferably 45° or more and less than 90°. With such a shape, the mounting surface 40x does not become too small, resulting in an electrostatic chuck member that is both practical and suppresses the adhesion of charged foreign particles. In addition, excessive process burden is less likely to occur in machining the inclined surface.

以上のような構成の静電チャック部材40によっても、側周面40yへ荷電性異物粒子が付着することで生じる課題(生産性低下、絶縁破壊)を低減可能となる。 The electrostatic chuck member 40 configured as described above also makes it possible to reduce problems (reduction in productivity, dielectric breakdown) caused by the adhesion of charged foreign particles to the side circumferential surface 40y.

(変形例)
なお、上述した各実施形態においては、側周面の全面がY方向と平行又は平面視で露出する傾斜面であることとしたが、これに限らない。
(Modified example)
In each of the embodiments described above, the entire side circumferential surface is parallel to the Y direction or is an inclined surface exposed in plan view, but the present invention is not limited to this.

図6は,変形例に係る静電チャック部材50の説明図である。図6に示すように、静電チャック部材50は、一対のセラミックス板51,52と、一対のセラミックス板51,52の間に介在する静電吸着用電極43及び絶縁層55と、を備える。一対のセラミックス板51,52、及び絶縁層55を合わせた構成は、本発明の基体に該当する。 FIG. 6 is an explanatory diagram of an electrostatic chuck member 50 according to a modification. As shown in FIG. 6, the electrostatic chuck member 50 includes a pair of ceramic plates 51 and 52, an electrostatic adsorption electrode 43 and an insulating layer 55 interposed between the pair of ceramic plates 51 and 52. The combination of the pair of ceramic plates 51 and 52 and the insulating layer 55 corresponds to the base of the present invention.

図6に示す断面において、側周面50yは、外側に(X方向に)凸の曲面である。側周面50yは、第1実施形態の静電チャック部材10における領域AR1と同様に、算術平均粗さRaが2μm以下であると好ましい。側周面50yのRaは、上述の領域AR1と同様、1.5μm以下であることが好ましく、0.05μm以下がより好ましく、0.01~0.02μmがさらに好ましい。 In the cross section shown in FIG. 6, the side circumferential surface 50y is a curved surface that is convex outward (in the X direction). The side circumferential surface 50y preferably has an arithmetic mean roughness Ra of 2 μm or less, similar to the region AR1 in the electrostatic chuck member 10 of the first embodiment. Ra of the side circumferential surface 50y is preferably 1.5 μm or less, more preferably 0.05 μm or less, and even more preferably 0.01 to 0.02 μm, similar to the above-mentioned region AR1.

静電チャック部材50は、側周面50yの周方向の一部において外側に凸の曲面であってもよく、周方向の全部において外側に凸の曲面であってもよい。また、側周面50yの曲率は、周方向で一定であってもよく、周方向で異ならせてもよい。 The electrostatic chuck member 50 may have an outwardly convex curved surface in a part of the circumferential direction of the side peripheral surface 50y, or may have an outwardly convex curved surface in the entire circumferential direction. Further, the curvature of the side circumferential surface 50y may be constant in the circumferential direction, or may be varied in the circumferential direction.

このような静電チャック部材50においては、側周面に角が無く電界集中を効果的に分散できる。そのため、プラズマ処理時に側周面50yに対する荷電性異物粒子の固着、及び放電による絶縁破壊を抑制できる。 In such an electrostatic chuck member 50, there are no corners on the side circumferential surface, and electric field concentration can be effectively dispersed. Therefore, adhesion of charged foreign particles to the side peripheral surface 50y and dielectric breakdown due to discharge can be suppressed during plasma processing.

[静電チャック装置]
以下、図7を参照しながら、本発明の一実施形態に係る静電チャック装置について説明する。以下の説明では、上述の静電チャック部材10を有する静電チャック装置について説明するが、静電チャック装置には、上述した他の静電チャック部材もそれぞれ採用可能である。以下の説明においては、第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Electrostatic chuck device]
Hereinafter, an electrostatic chuck device according to an embodiment of the present invention will be described with reference to FIG. In the following description, an electrostatic chuck device having the above-described electrostatic chuck member 10 will be described, but the other electrostatic chuck members described above can also be employed in the electrostatic chuck device. In the following description, components common to those in the first embodiment are given the same reference numerals, and detailed description thereof will be omitted.

図7は、本実施形態の静電チャック装置を示す断面図である。静電チャック装置100は、円板状の静電チャック部材10と、静電チャック部材10を冷却し所望の温度に調整する円板状のベース部材103と、これら静電チャック部材10及びベース部材103を接合・一体化する接着剤層104と、を有している。 FIG. 7 is a sectional view showing the electrostatic chuck device of this embodiment. The electrostatic chuck device 100 includes a disc-shaped electrostatic chuck member 10, a disc-shaped base member 103 that cools the electrostatic chuck member 10 and adjusts it to a desired temperature, and the electrostatic chuck member 10 and the base member. 103 and an adhesive layer 104 that joins and integrates them.

以下の説明においては、静電チャック部材10側を「上」、ベース部材103側を「下」として記載し、各構成の相対位置を表すことがある。 In the following description, the electrostatic chuck member 10 side will be referred to as "upper" and the base member 103 side will be referred to as "lower" to indicate the relative positions of each component.

[静電チャック部材]
静電チャック部材10は、上述したセラミックス板11,12、電極13、絶縁層15の他、電極13に接するようにベース部材103の固定孔115内に設けられた給電用端子116を有している。
[Electrostatic chuck member]
The electrostatic chuck member 10 includes, in addition to the ceramic plates 11 and 12, the electrodes 13, and the insulating layer 15 described above, a power supply terminal 116 provided in the fixing hole 115 of the base member 103 so as to be in contact with the electrode 13. There is.

[給電用端子]
給電用端子116は、電極13に電圧を印加するための部材である。
給電用端子116の数、形状等は、電極13の形態、すなわち単極型か、双極型かにより決定される。
[Power supply terminal]
The power supply terminal 116 is a member for applying voltage to the electrode 13.
The number, shape, etc. of the power feeding terminals 116 are determined depending on the form of the electrode 13, that is, whether it is a monopolar type or a bipolar type.

給電用端子116の材料は、耐熱性に優れた導電性材料であれば特に制限されない。給電用端子116の材料としては、熱膨張係数が電極13及びセラミックス板12の熱膨張係数に近似した材料であることが好ましく、例えば、コバール合金、ニオブ(Nb)等の金属材料、各種の導電性セラミックスが好適に用いられる。 The material of the power supply terminal 116 is not particularly limited as long as it is a conductive material with excellent heat resistance. The material for the power supply terminal 116 is preferably a material whose thermal expansion coefficient is close to that of the electrode 13 and the ceramic plate 12, such as a Kovar alloy, a metal material such as niobium (Nb), or various conductive materials. Preferably, ceramics are used.

[導電性接着層]
導電性接着層117は、ベース部材103の固定孔115内及びセラミックス板12の貫通孔118内に設けられている。また、導電性接着層117は、電極13と給電用端子116の間に介在して、電極13と給電用端子116を電気的に接続している。
[Conductive adhesive layer]
The conductive adhesive layer 117 is provided in the fixing hole 115 of the base member 103 and in the through hole 118 of the ceramic plate 12. Further, the conductive adhesive layer 117 is interposed between the electrode 13 and the power feeding terminal 116 to electrically connect the electrode 13 and the power feeding terminal 116.

導電性接着層117を構成する導電性接着剤は、炭素繊維、金属粉等の導電性物質と樹脂を含む。 The conductive adhesive constituting the conductive adhesive layer 117 includes a conductive substance such as carbon fiber and metal powder, and resin.

導電性接着剤に含まれる樹脂としては、熱応力により凝集破壊を起こし難い樹脂であれば特に限定されず、例えば、シリコーン樹脂、アクリル樹脂、エポシキ樹脂、フェノール樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂等が挙げられる。
これらの中でも、伸縮度が高く、熱応力の変化によって凝集破壊し難い点から、シリコーン樹脂が好ましい。
The resin contained in the conductive adhesive is not particularly limited as long as it does not easily cause cohesive failure due to thermal stress, such as silicone resin, acrylic resin, epoxy resin, phenol resin, polyurethane resin, unsaturated polyester resin, etc. can be mentioned.
Among these, silicone resins are preferred because they have a high degree of expansion and contraction and are difficult to cause cohesive failure due to changes in thermal stress.

[ベース部材]
ベース部材103は、金属及びセラミックスの少なくとも一方からなる厚みのある円板状の部材である。ベース部材103の躯体は、プラズマ発生用内部電極を兼ねた構成とされている。ベース部材103の躯体の内部には、水、Heガス、Nガス等の冷却媒体を循環させる流路121が形成されている。
[Base member]
The base member 103 is a thick disc-shaped member made of at least one of metal and ceramics. The frame of the base member 103 is configured to also serve as an internal electrode for plasma generation. A flow path 121 is formed inside the frame of the base member 103 to circulate a cooling medium such as water, He gas, N2 gas, or the like.

ベース部材103の躯体は、外部の高周波電源122に接続されている。また、ベース部材103の固定孔115内には、その外周が絶縁材料123により囲繞された給電用端子116が、絶縁材料123を介して固定されている。給電用端子116は、外部の直流電源124に接続されている。 The frame of the base member 103 is connected to an external high frequency power source 122. Further, a power supply terminal 116 whose outer periphery is surrounded by an insulating material 123 is fixed in the fixing hole 115 of the base member 103 via the insulating material 123. The power supply terminal 116 is connected to an external DC power supply 124.

ベース部材103を構成する材料は、熱伝導性、導電性、加工性に優れた金属、又はこれらの金属を含む複合材であれば特に制限されない。ベース部材103を構成する材料としては、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、チタン(Ti)等が好適に用いられる。 The material constituting the base member 103 is not particularly limited as long as it is a metal with excellent thermal conductivity, electrical conductivity, and workability, or a composite material containing these metals. As the material constituting the base member 103, for example, aluminum (Al), copper (Cu), stainless steel (SUS), titanium (Ti), etc. are suitably used.

ベース部材103における少なくともプラズマに曝される面は、アルマイト処理又はポリイミド系樹脂による樹脂コーティングが施されていることが好ましい。また、ベース部材103の全面が、前記のアルマイト処理又は樹脂コーティングが施されていることがより好ましい。 At least the surface of the base member 103 that is exposed to plasma is preferably subjected to an alumite treatment or a resin coating using a polyimide resin. Further, it is more preferable that the entire surface of the base member 103 is subjected to the above-mentioned alumite treatment or resin coating.

ベース部材103にアルマイト処理又は樹脂コーティングを施すことにより、ベース部材103の耐プラズマ性が向上するとともに、異常放電が防止される。したがって、ベース部材103の耐プラズマ安定性が向上し、また、ベース部材103の表面傷の発生も防止できる。 By applying alumite treatment or resin coating to the base member 103, the plasma resistance of the base member 103 is improved and abnormal discharge is prevented. Therefore, the plasma resistance stability of the base member 103 is improved, and the occurrence of surface scratches on the base member 103 can also be prevented.

[接着剤層]
接着剤層104は、静電チャック部材10と、ベース部材103とを接着一体化する構成である。
[Adhesive layer]
The adhesive layer 104 is configured to bond and integrate the electrostatic chuck member 10 and the base member 103 together.

接着剤層104の厚さは、100μm以上かつ200μm以下が好ましく、130μm以上かつ170μm以下がより好ましい。
接着剤層104の厚さが上記の範囲内であれば、静電チャック部材10とベース部材103との間の接着強度を充分に保持できる。また、静電チャック部材10とベース部材103との間の熱伝導性を充分に確保できる。
The thickness of the adhesive layer 104 is preferably 100 μm or more and 200 μm or less, more preferably 130 μm or more and 170 μm or less.
If the thickness of the adhesive layer 104 is within the above range, the adhesive strength between the electrostatic chuck member 10 and the base member 103 can be maintained sufficiently. Further, sufficient thermal conductivity between the electrostatic chuck member 10 and the base member 103 can be ensured.

接着剤層104は、例えば、シリコーン系樹脂組成物を加熱硬化した硬化体、アクリル樹脂、エポキシ樹脂等で形成されている。
シリコーン系樹脂組成物は、シロキサン結合(Si-O-Si)を有するケイ素化合物であり、耐熱性、弾性に優れた樹脂であるので、より好ましい。
The adhesive layer 104 is formed of, for example, a cured product obtained by heating and curing a silicone resin composition, an acrylic resin, an epoxy resin, or the like.
A silicone-based resin composition is a silicon compound having a siloxane bond (Si-O-Si), and is a resin with excellent heat resistance and elasticity, so it is more preferable.

このようなシリコーン系樹脂組成物としては、特に、熱硬化温度が70℃~140℃のシリコーン樹脂が好ましい。 As such a silicone resin composition, a silicone resin having a thermosetting temperature of 70°C to 140°C is particularly preferable.

ここで、熱硬化温度が70℃を下回ると、静電チャック部材10とベース部材103とを対向させた状態で接合する際に、接合過程で硬化が充分に進まず、作業性に劣るため好ましくない。一方、熱硬化温度が140℃を超えると、静電チャック部材10及びベース部材103との熱膨張差が大きく、静電チャック部材10とベース部材103との間の応力が増加し、これらの間で剥離が生じることがあるため好ましくない。 Here, if the thermosetting temperature is lower than 70° C., curing will not progress sufficiently during the bonding process when the electrostatic chuck member 10 and the base member 103 are bonded while facing each other, resulting in poor workability, which is preferable. do not have. On the other hand, when the thermosetting temperature exceeds 140°C, the difference in thermal expansion between the electrostatic chuck member 10 and the base member 103 is large, and the stress between the electrostatic chuck member 10 and the base member 103 increases, and the stress between the electrostatic chuck member 10 and the base member 103 increases. This is not preferable because peeling may occur.

すなわち、熱硬化温度が70℃以上であると、接合過程で作業性に優れ、熱硬化温度が140℃以下であると、静電チャック部材10とベース部材103との間で剥離し難いため好ましい。 That is, when the thermosetting temperature is 70°C or higher, workability is excellent in the bonding process, and when the thermosetting temperature is 140°C or lower, separation between the electrostatic chuck member 10 and the base member 103 is difficult to occur, which is preferable. .

本実施形態の静電チャック装置100によれば、上述した静電チャック部材10を有するため、静電チャック部材の側周面において、絶縁破壊(放電)の発生を抑制できる。 According to the electrostatic chuck device 100 of this embodiment, since it includes the electrostatic chuck member 10 described above, it is possible to suppress the occurrence of dielectric breakdown (discharge) on the side peripheral surface of the electrostatic chuck member.

なお、静電チャック装置100は、静電チャック部材の周囲を囲むフォーカスリングを有してもよい。その場合、フォーカスリングの形状は、静電チャック部材の側周面の形状に合わせて相補的な形状に変更してもよい。 Note that the electrostatic chuck device 100 may include a focus ring surrounding the electrostatic chuck member. In that case, the shape of the focus ring may be changed to a complementary shape in accordance with the shape of the side peripheral surface of the electrostatic chuck member.

[半導体製造装置]
図8は、上述の静電チャック装置を有する半導体製造装置の説明図である。半導体製造装置1000は、静電チャック装置100と、真空チャンバ200と、上部電極300と、磁石400と、ガス供給手段500と、真空ポンプ600と、プラズマ安定化システム700と、を有する。
[Semiconductor manufacturing equipment]
FIG. 8 is an explanatory diagram of a semiconductor manufacturing apparatus having the above-mentioned electrostatic chuck device. The semiconductor manufacturing apparatus 1000 includes an electrostatic chuck device 100, a vacuum chamber 200, an upper electrode 300, a magnet 400, a gas supply means 500, a vacuum pump 600, and a plasma stabilization system 700.

真空チャンバ200は、静電チャック装置100を収容し、内部でプラズマ処理を行う反応場として用いられる。真空チャンバ200は、半導体製造装置に用いられる公知の構成を採用することができる。真空チャンバ200は、板状試料の出し入れを行う不図示のゲートを有する。 The vacuum chamber 200 accommodates the electrostatic chuck device 100 and is used as a reaction field for performing plasma processing inside. The vacuum chamber 200 can employ a known configuration used in semiconductor manufacturing equipment. The vacuum chamber 200 has a gate (not shown) through which a plate-shaped sample is taken in and taken out.

上部電極300は、真空チャンバ200内に収容され、真空チャンバ200内にプラズマを発生させる際に静電チャック装置100と協働して用いられる対向電極である。上部電極300は、不図示の電源に接続される。 The upper electrode 300 is a counter electrode that is housed within the vacuum chamber 200 and is used in cooperation with the electrostatic chuck device 100 when generating plasma within the vacuum chamber 200. The upper electrode 300 is connected to a power source (not shown).

磁石400は、真空チャンバ200の周囲に配置され、真空チャンバ200内の上部電極300と静電チャック装置100との間の空間に縦方向の磁界を発生させる。 The magnet 400 is arranged around the vacuum chamber 200 and generates a vertical magnetic field in the space between the upper electrode 300 and the electrostatic chuck device 100 in the vacuum chamber 200.

ガス供給手段500は、真空チャンバ200内にプラズマガスGを供給する。ガス供給手段500は、例えば、上部電極300に設けられたガス孔から、真空チャンバ200内にプラズマガスGを供給する。 Gas supply means 500 supplies plasma gas G into vacuum chamber 200 . The gas supply means 500 supplies plasma gas G into the vacuum chamber 200 from a gas hole provided in the upper electrode 300, for example.

真空ポンプ600は、真空チャンバ200内の気体を排気し、プラズマを発生させる雰囲気を整える。真空ポンプ600は、例えば、真空チャンバ200において静電チャック装置100よりも下方に接続されている。 The vacuum pump 600 exhausts the gas in the vacuum chamber 200 and prepares an atmosphere for generating plasma. For example, the vacuum pump 600 is connected below the electrostatic chuck device 100 in the vacuum chamber 200.

プラズマ安定化システム700は、半導体製造装置1000において発生させるプラズマの状態を変動させる種々の外的要因を検出し、補償することで、プラズマの状態を安定させる。プラズマ安定化システム700は、検出器710と、検出器710による検出結果に基づいて半導体製造装置1000を制御する制御部720と、を有する。 The plasma stabilization system 700 stabilizes the plasma state by detecting and compensating for various external factors that change the state of the plasma generated in the semiconductor manufacturing apparatus 1000. The plasma stabilization system 700 includes a detector 710 and a control section 720 that controls the semiconductor manufacturing apparatus 1000 based on the detection result by the detector 710.

検出器710は、真空チャンバ200内のプラズマの様子を直接又は間接的に検出する。検出器710は、1つであってもよく、複数であってもよい。検出器710により検出される項目としては、例えば、真空チャンバ200内の真空度、プラズマの色、プラズマの温度、上部電極300と静電チャック装置100が有するプラズマ発生用内部電極(不図示)との間の電気容量、上部電極300とプラズマ発生用内部電極との間のインダクタンスなどが挙げられる。 Detector 710 directly or indirectly detects the state of plasma within vacuum chamber 200. The number of detectors 710 may be one or more. Items detected by the detector 710 include, for example, the degree of vacuum in the vacuum chamber 200, the color of the plasma, the temperature of the plasma, and the plasma generation internal electrode (not shown) of the upper electrode 300 and the electrostatic chuck device 100. Examples include the capacitance between the upper electrode 300 and the internal electrode for plasma generation, and the like.

制御部720は、検出器710により検出される各項目の検出値、又は検出値の単位時間あたりの変化量に基づいて、半導体製造装置1000を制御する。制御部720は、上記項目の検出値と、真空チャンバ200内で発生するプラズマの状態と、の対応関係を予め記憶している。制御部720は、検出値と上記対応関係とに基づいて、プラズマの状態が予め定めた範囲に収まるように、半導体製造装置1000をフィードバック制御する。フィードバック制御する項目は、例えば、半導体製造装置内の温度、真空度、バイアス電圧が挙げられる。 The control unit 720 controls the semiconductor manufacturing apparatus 1000 based on the detection value of each item detected by the detector 710 or the amount of change in the detection value per unit time. The control unit 720 stores in advance the correspondence between the detected values of the above items and the state of plasma generated within the vacuum chamber 200. The control unit 720 performs feedback control of the semiconductor manufacturing apparatus 1000 based on the detected value and the above-mentioned correspondence relationship so that the plasma state falls within a predetermined range. Items to be feedback-controlled include, for example, the temperature, degree of vacuum, and bias voltage within the semiconductor manufacturing apparatus.

これらにより、プラズマ安定化システム700は、半導体製造装置1000におけるプラズマ状態の長期的な変動を抑制し、状態を安定化させることができる。 As a result, the plasma stabilization system 700 can suppress long-term fluctuations in the plasma state in the semiconductor manufacturing apparatus 1000 and stabilize the state.

このようなプラズマ安定化システムは、半導体製造装置を用いた製造プロセス全体に航プラズマ状態の変動抑制には効果的である。一方、プラズマ安定化システムは、ウエハプロセス中の異常放電のように、極めて短い時間発生する変動要因に対しては、状態変動を抑制する効果が無かった。 Such a plasma stabilization system is effective in suppressing fluctuations in the plasma state throughout the manufacturing process using semiconductor manufacturing equipment. On the other hand, the plasma stabilization system was not effective in suppressing state fluctuations for fluctuation factors that occur for an extremely short period of time, such as abnormal discharge during wafer processing.

一方で、半導体製造装置1000は、上述の静電チャック装置100を有するため、ウエハはプロセス中に発生する異常放電を抑制することができる。そのため、半導体製造装置1000は、プラズマ安定化システム700を有することにより、長期的にも短期的にもプラズマを安定させることが可能となる。 On the other hand, since the semiconductor manufacturing apparatus 1000 includes the electrostatic chuck device 100 described above, the wafer can suppress abnormal discharge that occurs during the process. Therefore, by including the plasma stabilization system 700, the semiconductor manufacturing apparatus 1000 can stabilize plasma both in the long term and in the short term.

なお、制御部720は、プラズマ安定化システム700の固有の構成であってもよく、半導体製造装置1000の制御を行う制御装置が、機能を兼ねていてもよい。 Note that the control unit 720 may be a unique configuration of the plasma stabilization system 700, or a control device that controls the semiconductor manufacturing apparatus 1000 may also have the function.

このような半導体製造装置1000においては、例えば、真空チャンバ200の排気口の位置(真空ポンプ600の接続位置)によって、静電チャック部材10の側周面における荷電性異物粒子の付着しやすさの傾向が異なることがある。半導体製造装置1000について経験的に上記傾向が判明している場合、静電チャック部材10は、荷電性異物粒子が付着しやすい位置の側周面について、その他の側周面よりも算術平均粗さRaを小さくしておく等、荷電性異物粒子の付着を抑制する構成を採用するとよい。 In such a semiconductor manufacturing apparatus 1000, for example, the ease with which charged foreign particles adhere to the side surface of the electrostatic chuck member 10 is determined by the position of the exhaust port of the vacuum chamber 200 (the connection position of the vacuum pump 600). Trends may vary. When the above-mentioned tendency has been empirically determined for the semiconductor manufacturing apparatus 1000, the electrostatic chuck member 10 has a side circumferential surface at a position where charged foreign particles are likely to adhere, and has a higher arithmetic mean roughness than other side circumferential surfaces. It is preferable to adopt a configuration that suppresses the adhesion of charged foreign particles, such as by keeping Ra small.

本実施形態の半導体製造装置1000によれば、上述した静電チャック装置100を有するため、絶縁破壊(放電)の発生を抑制できる。 According to the semiconductor manufacturing apparatus 1000 of this embodiment, since it includes the electrostatic chuck device 100 described above, the occurrence of dielectric breakdown (discharge) can be suppressed.

また、半導体製造装置1000は、静電チャック装置100により異常放電(プラズマの短期的な変動)を抑制すると共に、プラズマ安定化システム700により、プラズマの長期的な変動を抑制可能である。そのため、安定したプラズマ処理が可能となり、歩留まりが改善した半導体製造装置とすることができる。 Furthermore, the semiconductor manufacturing apparatus 1000 can suppress abnormal discharge (short-term fluctuations in plasma) using the electrostatic chuck device 100, and can suppress long-term fluctuations in plasma using the plasma stabilization system 700. Therefore, stable plasma processing is possible, and a semiconductor manufacturing apparatus with improved yield can be achieved.

以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
また、上記説明ではシリコンウエハを用いて説明したが、本発明の静電チャック部材で処理可能なウエハはシリコンだけでなく、インジウムリン系であってもガリウムひ素系であっても他の材料であってもよいことは明らかである。
Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to these examples. The various shapes and combinations of the constituent members shown in the above example are merely examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention.
In addition, although the above explanation uses silicon wafers, wafers that can be processed with the electrostatic chuck member of the present invention are not only silicon, but also other materials such as indium phosphide or gallium arsenide. It is clear that it is possible.

10,20,20B,30,40,50…静電チャック部材、10x,20x,30x,40x…載置面、10y,20y,30y,40y,50y…側周面、13,23,33,43…静電吸着用電極(電極)、20a,30a…凸曲面、30b…凹曲面、30c…主面、30z…部分、42b…端部、100…静電チャック装置、103…ベース部材、AR1…領域、r1,r2…曲率半径、T1,T2,T3…厚さ 10, 20, 20B, 30, 40, 50... Electrostatic chuck member, 10x, 20x, 30x, 40x... Placement surface, 10y, 20y, 30y, 40y, 50y... Side peripheral surface, 13, 23, 33, 43 ...electrode for electrostatic attraction (electrode), 20a, 30a...convex curved surface, 30b...concave curved surface, 30c...principal surface, 30z...part, 42b...end part, 100...electrostatic chuck device, 103...base member, AR1... Region, r1, r2...radius of curvature, T1, T2, T3...thickness

Claims (8)

一主面が板状試料を載置する載置面である基体と、
前記載置面とは反対側又は前記基体の内部に設けられた静電吸着用電極と、を有し、
前記基体において前記載置面と連続する側周面の少なくとも一部は、算術平均粗さRaが2μm以下である静電チャック部材。
a base whose one main surface is a mounting surface on which a plate-shaped sample is mounted;
an electrostatic adsorption electrode provided on the opposite side of the mounting surface or inside the base;
In the electrostatic chuck member, at least a portion of a side circumferential surface continuous with the mounting surface of the base body has an arithmetic mean roughness Ra of 2 μm or less.
前記載置面から下方に広がる領域において算術平均粗さRaが2μm以下であり、
前記領域は、前記載置面の法線と直交する方向の断面視において、前記載置面から下方に前記静電吸着用電極の厚さ以上の広がりを有する請求項1に記載の静電チャック部材。
The arithmetic mean roughness Ra is 2 μm or less in a region extending downward from the placement surface,
The electrostatic chuck according to claim 1, wherein the region extends downward from the mounting surface by a thickness greater than or equal to the thickness of the electrostatic adsorption electrode when viewed in a cross section in a direction perpendicular to the normal line of the mounting surface. Element.
前記側周面は、前記載置面の法線方向からの視野に露出する傾斜面を有する請求項1又は2に記載の静電チャック部材。 The electrostatic chuck member according to claim 1 or 2, wherein the side circumferential surface has an inclined surface exposed to the field of view from the normal direction of the mounting surface. 前記側周面は、前記載置面の周縁部において周方向に設けられた凸曲面を有する請求項3に記載の静電チャック部材。 The electrostatic chuck member according to claim 3, wherein the side circumferential surface has a convex curved surface provided in the circumferential direction at the peripheral edge of the placement surface. 前記側周面は、前記側周面の下端部において周方向に設けられ且つ外側に伸長する部分を有し、
前記伸長する部分の上面は、凹曲面である請求項3又は4に記載の静電チャック部材。
The side circumferential surface has a portion provided in the circumferential direction and extending outward at the lower end of the side circumferential surface,
The electrostatic chuck member according to claim 3 or 4, wherein the upper surface of the extending portion is a concave curved surface.
前記側周面は、前記法線方向に平行な主面と、前記主面と連続する前記凹曲面とを有し、
前記法線方向と直交する方向において、前記主面から前記凹曲面の外側の端部までの距離は、前記静電吸着用電極の厚さ以上である請求項5に記載の静電チャック部材。
The side circumferential surface has a main surface parallel to the normal direction and the concave curved surface continuous with the main surface,
The electrostatic chuck member according to claim 5, wherein a distance from the main surface to an outer end of the concave curved surface in a direction perpendicular to the normal direction is equal to or greater than the thickness of the electrostatic chuck electrode.
前記載置面と平行な方向において、前記静電吸着用電極の外周端部から、前記側周面までの距離は、1000μm以下である請求項1から6のいずれか1項に記載の静電チャック部材。 The electrostatic capacitor according to any one of claims 1 to 6, wherein the distance from the outer peripheral end of the electrostatic adsorption electrode to the side peripheral surface in a direction parallel to the mounting surface is 1000 μm or less. Chuck member. 請求項1から7のいずれか1項に記載の静電チャック部材と、
前記静電チャック部材を冷却し前記静電チャック部材の温度を調整するベース部材と、を有する静電チャック装置。
The electrostatic chuck member according to any one of claims 1 to 7,
An electrostatic chuck device comprising: a base member that cools the electrostatic chuck member and adjusts the temperature of the electrostatic chuck member.
JP2022032645A 2022-03-03 2022-03-03 Electrostatic chuck member and electrostatic chuck device Active JP7248167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022032645A JP7248167B1 (en) 2022-03-03 2022-03-03 Electrostatic chuck member and electrostatic chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022032645A JP7248167B1 (en) 2022-03-03 2022-03-03 Electrostatic chuck member and electrostatic chuck device

Publications (2)

Publication Number Publication Date
JP7248167B1 JP7248167B1 (en) 2023-03-29
JP2023128350A true JP2023128350A (en) 2023-09-14

Family

ID=85726009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022032645A Active JP7248167B1 (en) 2022-03-03 2022-03-03 Electrostatic chuck member and electrostatic chuck device

Country Status (1)

Country Link
JP (1) JP7248167B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179262A (en) * 2002-11-25 2004-06-24 Kyocera Corp Electrostatic chuck and manufacturing method therefor
JP2005158962A (en) * 2003-11-25 2005-06-16 Ngk Spark Plug Co Ltd Electrostatic chuck and method for manufacturing the same
JP2006054379A (en) * 2004-08-13 2006-02-23 Komatsu Electronic Metals Co Ltd Suction tool and polishing apparatus
JP2009099897A (en) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd Plasma deposition apparatus
JP2013512564A (en) * 2009-11-30 2013-04-11 ラム リサーチ コーポレーション Electrostatic chuck with inclined side walls
JP2018022871A (en) * 2016-07-20 2018-02-08 Toto株式会社 Electrostatic chuck
WO2019065710A1 (en) * 2017-09-29 2019-04-04 住友大阪セメント株式会社 Electrostatic chuck device
JP2020107881A (en) * 2018-12-27 2020-07-09 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
JP2020526936A (en) * 2017-07-17 2020-08-31 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Electrostatic chuck and plasma processing equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179262A (en) * 2002-11-25 2004-06-24 Kyocera Corp Electrostatic chuck and manufacturing method therefor
JP2005158962A (en) * 2003-11-25 2005-06-16 Ngk Spark Plug Co Ltd Electrostatic chuck and method for manufacturing the same
JP2006054379A (en) * 2004-08-13 2006-02-23 Komatsu Electronic Metals Co Ltd Suction tool and polishing apparatus
JP2009099897A (en) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd Plasma deposition apparatus
JP2013512564A (en) * 2009-11-30 2013-04-11 ラム リサーチ コーポレーション Electrostatic chuck with inclined side walls
JP2018022871A (en) * 2016-07-20 2018-02-08 Toto株式会社 Electrostatic chuck
JP2020526936A (en) * 2017-07-17 2020-08-31 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Electrostatic chuck and plasma processing equipment
WO2019065710A1 (en) * 2017-09-29 2019-04-04 住友大阪セメント株式会社 Electrostatic chuck device
JP2020107881A (en) * 2018-12-27 2020-07-09 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus

Also Published As

Publication number Publication date
JP7248167B1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP4417197B2 (en) Susceptor device
KR102174964B1 (en) Electrostatic chuck device
KR101800337B1 (en) Electrostatic chuck device
JP6686879B2 (en) Electrostatic chuck device
KR101986266B1 (en) Electrostatic chuck device
JP5011736B2 (en) Electrostatic chuck device
JP2020035905A (en) Electrostatic chuck device and manufacturing method therefor
JP7322922B2 (en) Manufacturing method of ceramic joined body
JP7020238B2 (en) Electrostatic chuck device
WO2023188632A1 (en) Electrostatic chuck member, electrostatic chuck device, and method for manufacturing electrostatic chuck member
JP2023128350A (en) Electrostatic chuck member and electrostatic chuck device
JP2019165184A (en) Electrostatic chuck device
JP7415732B2 (en) electrostatic chuck device
CN111446197B (en) Electrostatic chuck and electrostatic chuck device including the same
JP2024033170A (en) Electrostatic chuck member and electrostatic chuck device
JPWO2020170514A1 (en) Electrostatic chuck device
JP7388575B2 (en) Ceramic bonded body, electrostatic chuck device
CN111837329A (en) Electrostatic chuck device
JP7327713B1 (en) Ceramic bonded body, electrostatic chuck device, and method for manufacturing ceramic bonded body
TWI836170B (en) Ceramic joint body, electrostatic chuck device, and method for manufacturing ceramic joint body
JP2021158236A (en) Electrostatic chuck device
JP2021145114A (en) Susceptor and electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7248167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150