JP2023127645A - Polyether ester amide composition and fiber - Google Patents

Polyether ester amide composition and fiber Download PDF

Info

Publication number
JP2023127645A
JP2023127645A JP2022031453A JP2022031453A JP2023127645A JP 2023127645 A JP2023127645 A JP 2023127645A JP 2022031453 A JP2022031453 A JP 2022031453A JP 2022031453 A JP2022031453 A JP 2022031453A JP 2023127645 A JP2023127645 A JP 2023127645A
Authority
JP
Japan
Prior art keywords
component
polyether ester
ester amide
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022031453A
Other languages
Japanese (ja)
Inventor
稜人 矢野
Ayato Yano
昂太郎 佐伯
Kotaro Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2022031453A priority Critical patent/JP2023127645A/en
Publication of JP2023127645A publication Critical patent/JP2023127645A/en
Pending legal-status Critical Current

Links

Abstract

To provide a polyether ester amide composition that, when employed as a fiber, exhibits excellent dye fastness, moisture absorption and desorption characteristics, and antistatic properties.SOLUTION: A polyether ester amide composition includes a dicarboxylic acid component (a), a polyamide component made from lactam or aminocarboxylic acid (b), and a polyethylene glycol component (c), with a melt viscosity of 100 Pa s or more and 200 Pa s or less, as measured at 265°C, and a water-soluble eluting component (WSC) of 10 wt.% or less.SELECTED DRAWING: None

Description

本発明は、繊維とした際の染色堅牢性・制電性・吸放湿性に優れたポリエーテルエステルアミド組成物に関するものである。 The present invention relates to a polyether ester amide composition that has excellent color fastness, antistatic properties, and moisture absorption and desorption properties when made into fibers.

従来、ポリエーテルエステルアミド組成物は、主に樹脂成形物の帯電防止剤として用いられ、優れた制電性を付与することが知られている。 Conventionally, polyether ester amide compositions have been mainly used as antistatic agents for resin molded articles, and are known to impart excellent antistatic properties.

制電性の特性発現として、特許文献1には熱可塑性ポリマーと、ポリアミドブロックとポリエーテルブロックを有するコポリマーと、ポリマー鎖中に少なくとも1種のイオン性官能基を有するポリマーまたはオリゴマーとから成る帯電防止性ポリマー組成物が例示されている。また、特許文献2には、熱可塑性ポリエステルにポリ(エチレンオキシド)グリコールを共重合したポリエーテルエステルアミドを配合することによって、色調を改善した熱可塑性ポリエステルが記載されている。 Patent Document 1 discloses an antistatic property consisting of a thermoplastic polymer, a copolymer having a polyamide block and a polyether block, and a polymer or oligomer having at least one type of ionic functional group in the polymer chain. Inhibitory polymer compositions are illustrated. Further, Patent Document 2 describes a thermoplastic polyester with improved color tone by blending polyether ester amide, which is a thermoplastic polyester copolymerized with poly(ethylene oxide) glycol.

また、特許文献3には、特定分子量のポリアミドとポリエーテル成分として高分子量のビスフェノール類のエチレンオキシド付加物から誘導されるポリエーテルエステルアミド、およびこのポリエーテルエステルアミドと熱可塑性樹脂とを特定比率とした樹脂組成物が例示されている。また、特許文献4には、特定分子量のポリオキシエチレングリコールとジカルボン酸、特定比率としたラクタムを均一に重合することによって、低硬度かつ透明で親水性を有したポリアミドエラストマーが記載されている。 Furthermore, Patent Document 3 describes a polyamide of a specific molecular weight, a polyether ester amide derived from an ethylene oxide adduct of a high molecular weight bisphenol as a polyether component, and a specific ratio of this polyether ester amide and a thermoplastic resin. Examples of resin compositions are shown. Further, Patent Document 4 describes a polyamide elastomer that has low hardness, transparency, and hydrophilicity by uniformly polymerizing polyoxyethylene glycol and dicarboxylic acid of a specific molecular weight, and lactam in a specific ratio.

また特許文献5には、ポリエーテルエステルアミドの分子量と分子量分布を制御することによって繊維とした際に優れた吸放湿性・制電性を示すポリエーテルエステルアミド組成物が例示されている。 Further, Patent Document 5 exemplifies a polyetheresteramide composition that exhibits excellent moisture absorbing and releasing properties and antistatic properties when made into fibers by controlling the molecular weight and molecular weight distribution of the polyetheresteramide.

特開2002-371189号公報Japanese Patent Application Publication No. 2002-371189 特開昭63-120754号公報Japanese Unexamined Patent Publication No. 63-120754 特開平7-330899号公報Japanese Patent Application Publication No. 7-330899 特開平4-146925号公報Japanese Patent Application Publication No. 4-146925 国際公開第2019-167541号International Publication No. 2019-167541

しかしながら、特許文献1および2に記載の方法によって得られる樹脂組成物は、繊維化した際に温度20℃・湿度40%RHの条件では比較的高い制電性が得られるものの、制電性の発現に必要な水分を保持するための吸放湿性が不足しているため、低温・低湿度(10℃・10%RH)の条件下ではその制電性が満足できるレベルにない。また、特許文献3に記載の方法で得られる樹脂組成物は、制電性を向上させるために、ポリエーテル成分として芳香族構造を持つポリエチレングリコールを使用しており、制電性は向上するものの、繊維化した際に吸放湿性が満足するレベルにないため、低温・低湿度(10℃・10%RH)の条件下ではその制電性が満足できるレベルにない。また、特許文献4に記載の方法で得られる樹脂組成物は、制電性を有しながら透明かつ親水性を発現させるために、組成物中の各成分の重量分率を制御しており、制電性は発現するものの、繊維化した際に吸放湿性が満足するレベルにないため、低温・低湿度(10℃・10%RH)の条件下ではその制電性が満足できるレベルにない。 However, although the resin compositions obtained by the methods described in Patent Documents 1 and 2 have relatively high antistatic properties under conditions of a temperature of 20°C and a humidity of 40% RH when made into fibers, they have poor antistatic properties. Because it lacks moisture absorption and desorption properties to retain the moisture necessary for development, its antistatic properties are not at a satisfactory level under low temperature and low humidity conditions (10° C., 10% RH). In addition, the resin composition obtained by the method described in Patent Document 3 uses polyethylene glycol having an aromatic structure as a polyether component in order to improve antistatic properties, and although the antistatic properties are improved, When it is made into fibers, its moisture absorption and release properties are not at a satisfactory level, so its antistatic properties are not at a satisfactory level under conditions of low temperature and low humidity (10° C., 10% RH). In addition, the resin composition obtained by the method described in Patent Document 4 controls the weight fraction of each component in the composition in order to exhibit transparency and hydrophilicity while having antistatic properties. Although it exhibits antistatic properties, its moisture absorption and desorption properties are not at a satisfactory level when it is made into fibers, so its antistatic properties are not at a satisfactory level under conditions of low temperature and low humidity (10°C, 10% RH). .

そして、特許文献5に記載の方法で得られる樹脂組成物は、分子量・分子量分布((数平均分子量(Mn)/重量平均分子量(Mw))を制御することにより、吸放湿性・制電性を向上させるものの、繊維化した後に洗濯した際の色落ちが激しく、染色堅牢度が満足できるレベルにない。 The resin composition obtained by the method described in Patent Document 5 has moisture absorption and desorption properties and antistatic properties by controlling the molecular weight and molecular weight distribution ((number average molecular weight (Mn)/weight average molecular weight (Mw)). However, the color fading is severe when washed after being made into fibers, and the color fastness is not at a satisfactory level.

本発明者らは、繊維化した際に、極めて優れた吸放湿性・制電性を発現し、さらには、優れた染色堅牢性を発現するポリエーテルエステルアミド組成物を見出した。 The present inventors have discovered a polyether ester amide composition that exhibits extremely excellent moisture absorbing and desorbing properties and antistatic properties, and also exhibits excellent color fastness when made into fibers.

上記課題を解決するため、本発明は以下の構成からなる。
(1)ジカルボン酸成分(a)、ラクタムまたはアミノカルボン酸を原料とするポリアミド成分(b)、およびポリエチレングリコール成分(c)からなり、その溶融粘度が測定温度265℃において、100Pa・s以上、200Pa・s以下であり、かつ水溶性溶出成分(WSC)が10重量%以下であるポリエーテルエステルアミド組成物。
(2)ジカルボン酸成分(a)が芳香族ジカルボン酸であることを特徴とする(1)に記載のポリエーテルエステルアミド組成物。
(3)組成物中のポリエチレングリコールの数平均分子量が1000~5000であることを特徴とする(1)または(2)に記載のポリエーテルエスエルアミド組成物。
(4)(1)から(3)のいずれか1項に記載のポリエーテルエステルアミド組成物を構成成分として含む繊維。
In order to solve the above problems, the present invention consists of the following configuration.
(1) Consists of a dicarboxylic acid component (a), a polyamide component (b) made from lactam or aminocarboxylic acid, and a polyethylene glycol component (c), whose melt viscosity is 100 Pa·s or more at a measurement temperature of 265°C, 200 Pa·s or less, and a polyether ester amide composition having a water-soluble eluting component (WSC) of 10% by weight or less.
(2) The polyether ester amide composition according to (1), wherein the dicarboxylic acid component (a) is an aromatic dicarboxylic acid.
(3) The polyether ester amide composition according to (1) or (2), wherein the polyethylene glycol in the composition has a number average molecular weight of 1,000 to 5,000.
(4) A fiber containing the polyetheresteramide composition according to any one of (1) to (3) as a constituent component.

本発明のポリエーテルエステルアミド組成物は、繊維とした際に染色堅牢性、吸放湿性および制電性に優れたものを提供できる。 The polyether ester amide composition of the present invention can provide fibers with excellent color fastness, moisture absorption/release properties, and antistatic properties.

本発明のポリエーテルエステルアミド組成物は、ジカルボン酸成分(a)、ラクタムまたはアミノカルボン酸を原料とするポリアミド成分(b)、ポリエチレングリコール(PEG)成分(c)からなる。 The polyether ester amide composition of the present invention comprises a dicarboxylic acid component (a), a polyamide component (b) made from lactam or aminocarboxylic acid, and a polyethylene glycol (PEG) component (c).

本発明のポリエーテルエステルアミド組成物のジカルボン酸成分(a)は、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、ドデカン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸等があり、1種または2種以上を混合して用いることができる。好ましいジカルボン酸としては芳香族ジカルボン酸である。芳香族ジカルボン酸を使用するとベンゼン環同士の相互作用で結晶性が増加し、さらにポリマー鎖間の距離が近くなるため溶融粘度が上がり、優れた制電性・吸放湿性を発現する。さらに好ましい芳香族ジカルボン酸としてはテレフタル酸である。ジカルボン酸成分(a)はポリエーテルエステルアミド組成物中の組成量としては、好ましくは1~10重量%である。より好ましくは4.5~7.5重量%である。 The dicarboxylic acid component (a) of the polyether ester amide composition of the present invention includes aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, and dodecanoic acid, terephthalic acid, and isophthalic acid. , aromatic dicarboxylic acids such as 2,6-naphthalene dicarboxylic acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, and can be used alone or in combination of two or more. Preferred dicarboxylic acids are aromatic dicarboxylic acids. When aromatic dicarboxylic acids are used, crystallinity increases due to the interaction between benzene rings, and the distance between polymer chains becomes shorter, increasing melt viscosity and exhibiting excellent antistatic properties and moisture absorption and desorption properties. A more preferred aromatic dicarboxylic acid is terephthalic acid. The amount of dicarboxylic acid component (a) in the polyetheresteramide composition is preferably 1 to 10% by weight. More preferably, it is 4.5 to 7.5% by weight.

本発明のポリエーテルエステルアミド組成物のラクタムまたはアミノカルボン酸を原料とするポリアミド成分(b)は、ε-カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカノラクタム等のラクタム、ω-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸であり、1種または2種以上を混合して用いることができる。好ましいラクタムとしてはε-カプロラクタム、アミノカルボン酸としてはω-アミノカプロン酸である。本発明のポリエーテルエステルアミド組成中のポリアミド成分(b)の組成量は、好ましくは34重量%以上、59重量%以下である。より好ましくは35重量%以上、55重量%以下である。34重量%以上、59重量%以下であると、PEG成分(c)との重量比率が最適となり、優れた吸放湿性・制電性を発現しやすい。 The polyamide component (b) made from lactam or aminocarboxylic acid in the polyether ester amide composition of the present invention includes lactams such as ε-caprolactam, valerolactam, laurolactam, and undecanolactam, ω-aminocaproic acid, 11- These are aminocarboxylic acids such as aminoundecanoic acid and 12-aminododecanoic acid, and they can be used alone or in combination of two or more. A preferred lactam is ε-caprolactam, and a preferred aminocarboxylic acid is ω-aminocaproic acid. The compositional amount of the polyamide component (b) in the polyetheresteramide composition of the present invention is preferably 34% by weight or more and 59% by weight or less. More preferably, it is 35% by weight or more and 55% by weight or less. When the content is 34% by weight or more and 59% by weight or less, the weight ratio with the PEG component (c) becomes optimal, and excellent moisture absorbing and releasing properties and antistatic properties are likely to be exhibited.

本発明のポリエーテルエステルアミド組成物のPEG成分(c)の組成量は、好ましくは40重量%以上、65重量%以下である。より好ましくは50重量%以上、60重量%以下である。40重量%以上、65重量%以下であると、ポリアミド成分(b)との重量比率が最適となり、優れた吸放湿性・制電性を発現しやすい。また、65重量%以下とすることで、WSCの増加を抑制することができ、染色堅牢性が良好となる。 The amount of the PEG component (c) in the polyetheresteramide composition of the present invention is preferably 40% by weight or more and 65% by weight or less. More preferably, it is 50% by weight or more and 60% by weight or less. When the content is 40% by weight or more and 65% by weight or less, the weight ratio with the polyamide component (b) becomes optimal, and excellent moisture absorbing and releasing properties and antistatic properties are easily exhibited. Further, by setting the content to 65% by weight or less, an increase in WSC can be suppressed and the color fastness becomes good.

本発明のポリエーテルエステルアミド組成物のPEGの数平均分子量は、1000~5000であることが好ましい。さらに好ましくは1100以上、3500以下、一層好ましくは1200以上、2500以下である。数平均分子量が1000~5000の範囲にあると、ポリマー中のPEG成分が水分を包含するのに最適となるため、優れた吸放湿性・制電性を示す。なお、PEG成分の数平均分子量は化学処理によって、ゲル浸透クロマトグラフィー(GPC)にて同定することができる。 The number average molecular weight of PEG in the polyetheresteramide composition of the present invention is preferably 1,000 to 5,000. More preferably, it is 1,100 or more and 3,500 or less, even more preferably 1,200 or more and 2,500 or less. When the number average molecular weight is in the range of 1,000 to 5,000, the PEG component in the polymer is optimal for containing water, and therefore exhibits excellent moisture absorption and desorption properties and antistatic properties. Note that the number average molecular weight of the PEG component can be identified by chemical treatment using gel permeation chromatography (GPC).

本発明のポリエーテルエステルアミド組成物のPEG成分(c)/ジカルボン酸成分(a)のモル比は1.10以上、1.30以下であることが好ましい。より好ましくは1.15以上、1.25以下である。この範囲にあることで優れた染色堅牢性を示す。 The molar ratio of PEG component (c)/dicarboxylic acid component (a) in the polyetheresteramide composition of the present invention is preferably 1.10 or more and 1.30 or less. More preferably, it is 1.15 or more and 1.25 or less. Within this range, excellent color fastness is exhibited.

本発明のポリエーテルエステルアミド組成物の溶融粘度は、測定温度265℃において、100Pa・s以上であることが、繊維とした際の染色堅牢性・制電性・吸放湿性を兼ね備えるために必須である。好ましくは100~150Pa・sである。この範囲にあると、ポリマー分子鎖中のポリアミド成分が結晶化されやすくなり、PEG成分が安定的にポリマー中に保持されるため、優れた制電性・吸放湿性を発現する。また、繊維化する際の紡糸が安定化し、複合糸の芯鞘比率が安定化する。溶融粘度が100Pa・s未満の場合、ポリマー分子鎖中のポリアミド成分が結晶化しにくくなり、PEG成分が保持されにくいため、優れた吸放湿性・制電性を発現しない。また、繊維化する際の紡糸が不安定となり、複合糸の芯鞘比率が安定化しない。 The melt viscosity of the polyether ester amide composition of the present invention at a measurement temperature of 265°C is required to be 100 Pa·s or more in order to have color fastness, antistatic properties, and moisture absorption and desorption properties when made into fibers. It is. Preferably it is 100 to 150 Pa·s. When it is within this range, the polyamide component in the polymer molecular chain is easily crystallized, and the PEG component is stably retained in the polymer, resulting in excellent antistatic properties and moisture absorption/desorption properties. In addition, spinning during fiberization is stabilized, and the core-sheath ratio of the composite yarn is stabilized. When the melt viscosity is less than 100 Pa·s, the polyamide component in the polymer molecular chain becomes difficult to crystallize, and the PEG component is difficult to be retained, so that excellent moisture absorption and desorption properties and antistatic properties are not exhibited. Furthermore, the spinning during fiberization becomes unstable, and the core/sheath ratio of the composite yarn is not stabilized.

本発明のポリエーテルエステルアミド組成物の水溶性溶出成分(WSC)は10重量%以下であることで、繊維化した際に優れた染色堅牢性を発現する。より好ましくは7.5重量%以下であり、さらに好ましくは5重量%以下である。WSCが10重量%以下であるとポリマー中に未反応で残存するPEGや低分子量のポリアミド成分が少ないため、繊維化した際に水や汗によるポリマーの溶出量が減り、優れた染色堅牢性を示しやすくなる。一方で、WSCが10重量%を超える場合、水溶性成分と一緒に定着した染色剤も溶出するため、色が落ちやすくなり染色堅牢度は低下する。 When the water-soluble leached component (WSC) of the polyether ester amide composition of the present invention is 10% by weight or less, it exhibits excellent color fastness when made into fibers. More preferably it is 7.5% by weight or less, and still more preferably 5% by weight or less. If the WSC is 10% by weight or less, there will be less unreacted PEG and low molecular weight polyamide components in the polymer, so when it is made into fibers, the amount of polymer elution due to water and sweat will be reduced, resulting in excellent dye fastness. It becomes easier to show. On the other hand, when WSC exceeds 10% by weight, the fixed dyeing agent is eluted together with the water-soluble components, so the color tends to fade and the color fastness decreases.

また、以下の化合物について目的を損ねない範囲で含有してもよい。例えば、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(酸化チタン、硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、結晶核剤(タルク、シリカ、カオリン、クレー等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホン酸アミド等)、帯電防止剤(4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組合せ等)、充填剤(グラファイト、硫酸バリウム、硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化アンチモン、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉄、硫化亜鉛、亜鉛、鉛、ニッケル、アルミニウム、銅、鉄、ステンレス、ガラス繊維、炭素繊維、アラミド繊維、ベントナイト、モンモリロナイト、合成雲母等の粒子状、繊維状、針状、板状充填剤等)、他の重合体(他のポリアミド、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂、ポリスチレン等)を挙げることができる。 Further, the following compounds may be contained within the range that does not impair the purpose. For example, antioxidants, heat stabilizers (hindered phenols, hydroquinones, phosphites and their substituted products, copper halides, iodine compounds, etc.), weathering agents (resorcinols, salicylates, benzotriazoles, benzophenone) mold release agents and lubricants (aliphatic alcohols, aliphatic amides, aliphatic bisamides, bisurea and polyethylene wax, etc.), pigments (titanium oxide, cadmium sulfide, phthalocyanine, carbon black, etc.), dyes ( Nigrosine, aniline black, etc.), crystal nucleating agents (talc, silica, kaolin, clay, etc.), plasticizers (octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.), antistatic agents (quaternary ammonium salt type) Cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine amphoteric antistatic agents, etc.), flame retardants (hydroxides such as melamine cyanurate, magnesium hydroxide, aluminum hydroxide, etc.) materials, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene oxide, brominated polycarbonate, brominated epoxy resin, or a combination of these brominated flame retardants and antimony trioxide, etc.), fillers (graphite, barium sulfate, magnesium sulfate, etc.) , calcium carbonate, magnesium carbonate, antimony oxide, titanium oxide, aluminum oxide, zinc oxide, iron oxide, zinc sulfide, zinc, lead, nickel, aluminum, copper, iron, stainless steel, glass fiber, carbon fiber, aramid fiber, bentonite, Particulate, fibrous, needle-like, plate-like fillers such as montmorillonite and synthetic mica), other polymers (other polyamides, polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymers, polysulfone, polyether sulfone, ABS resin, SAN resin, polystyrene, etc.).

本発明のポリエーテルエステルアミド組成物は、例えば以下に示す方法にて得ることができる。 The polyetheresteramide composition of the present invention can be obtained, for example, by the method shown below.

まずは、得られるポリエーテルエステルアミド組成物に対する仕込み量として、ラクタムまたはアミノカルボン酸を原料とするポリアミド成分(b)を40~60重量%、ジカルボン酸成分(a)を1~10重量%、PEG成分(c)を35~50重量%添加して、ポリアミド成分とジカルボン酸成分を反応させ、両末端がカルボシキル基であるポリアミド成分を製造する。その製造方法として例えば、酸化による分解・劣化を抑制するため、複数回窒素置換を実施した後に、常圧(101.33kPa)、0.5L/分の窒素気流下で加熱する。加熱時の重合缶内温は好ましくは180℃以上、300℃以下、より好ましくは200℃以上、260℃以下である。加熱中にラクタムの開環・重合反応が起こると同時にジカルボン酸がアミノ末端基に反応し、末端封鎖することによって、両末端がカルボキシル基であるポリアミドが得られる。 First, the amounts to be added to the obtained polyether ester amide composition are 40 to 60% by weight of the polyamide component (b) made from lactam or aminocarboxylic acid, 1 to 10% by weight of the dicarboxylic acid component (a), and PEG. Component (c) is added in an amount of 35 to 50% by weight, and the polyamide component and dicarboxylic acid component are reacted to produce a polyamide component having carboxyl groups at both ends. As a manufacturing method thereof, for example, in order to suppress decomposition and deterioration due to oxidation, nitrogen substitution is performed multiple times, and then heating is performed under a nitrogen flow of 0.5 L/min at normal pressure (101.33 kPa). The temperature inside the polymerization vessel during heating is preferably 180°C or higher and 300°C or lower, more preferably 200°C or higher and 260°C or lower. During heating, a ring-opening/polymerization reaction of the lactam occurs, and at the same time, the dicarboxylic acid reacts with the amino terminal groups, and by blocking the terminals, a polyamide having carboxyl groups at both terminals is obtained.

このポリアミドに、重合触媒を添加して重縮合することにより、ポリアミドの両末端カルボシキル基とPEGのヒドロキシル基がエステル化反応することで、ポリエーテルエステルアミド組成物が得られる。 By adding a polymerization catalyst to this polyamide and polycondensing it, the carboxyl groups at both ends of the polyamide and the hydroxyl group of PEG undergo an esterification reaction, thereby obtaining a polyether ester amide composition.

本発明のポリエーテルエステルアミド組成物の製造において、ジカルボン酸成分(a)に対するPEG成分(c)の仕込み量のモル比((c)/(a))は0.8以上、0.9以下である。 In the production of the polyether ester amide composition of the present invention, the molar ratio ((c)/(a)) of the charged amount of the PEG component (c) to the dicarboxylic acid component (a) is 0.8 or more and 0.9 or less. It is.

この範囲にあることで共重合が効率よく進行し、短時間でより高重合度のポリエーテルエステルアミド組成物が得られる。すなわち、ポリマー中に残存する未反応PEG成分が減少し、WSCを10重量%以下に制御できる。 Within this range, copolymerization proceeds efficiently and a polyether ester amide composition with a higher degree of polymerization can be obtained in a short time. That is, the unreacted PEG component remaining in the polymer is reduced, and the WSC can be controlled to 10% by weight or less.

また、本発明のポリエーテルエステルアミド組成物の製造において、数平均分子量が1400~6000のPEGを用いる。この範囲にあることで、WSC、溶融粘度を所望の範囲に制御することができ、優れた吸放湿性、制電性、染色堅牢性が得られる。 Furthermore, in the production of the polyetheresteramide composition of the present invention, PEG having a number average molecular weight of 1,400 to 6,000 is used. By being within this range, WSC and melt viscosity can be controlled within desired ranges, and excellent moisture absorption and desorption properties, antistatic properties, and color fastness can be obtained.

重合触媒としてはチタン系の化合物を用いることが好ましい。チタン系の重合触媒を使用して重縮合することにより、よりポリマーの数平均分子量分布が制御され、吸湿・制電性に優れたポリエーテルエステルアミド組成物が得られる。チタン触媒は立体構造的にPEG成分の酸素元素と安定的な構造を形成しやすいと推定する。したがって、他の金属触媒種に比べ、反応中に触媒が均一に存在できるため、得られるポリマー鎖の長さがより均一となり、分子量分布が制御されると考えられる。特に好ましくはチタンテトラアルコキシド(Ti(OR)4)である。このアルキル基(R)としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、エチルヘキシル基、デシル基、ドデシル基またはヘキサドデシル基等がある。さらに好ましくはチタニウムテトラブトキサイドである。 It is preferable to use a titanium-based compound as the polymerization catalyst. By performing polycondensation using a titanium-based polymerization catalyst, the number average molecular weight distribution of the polymer can be further controlled, and a polyether ester amide composition with excellent moisture absorption and antistatic properties can be obtained. It is estimated that the titanium catalyst tends to form a stable structure with the oxygen element of the PEG component due to its steric structure. Therefore, compared to other metal catalyst species, the catalyst can be present more uniformly during the reaction, so it is thought that the length of the obtained polymer chains becomes more uniform and the molecular weight distribution is controlled. Particularly preferred is titanium tetraalkoxide (Ti(OR)4). Examples of the alkyl group (R) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an ethylhexyl group, a decyl group, a dodecyl group, and a hexadodecyl group. More preferred is titanium tetrabutoxide.

PEGや重合触媒の添加方法は、1回または複数回に分けてもよく、重合反応は減圧下で行い、好ましくは100℃以上、280℃以下、より好ましくは130℃以上、250℃以下で実施する。重合触媒がチタンテトラアルコキシド(Ti(OR)4)の場合は、触媒の加水分解を未然防止するため、減圧を開始する前に添加することが望ましい。また、重合反応は重縮合で生成する水を除去することで進行するため、650Pa以下の減圧条件で実施する。特に原料がε-カプロラクタムでは真空装置に飛散しやすいため、減圧速度は10kPa/分以下が好ましい。得られるポリエーテルエステルアミド組成物の重合度は重合機に備えられた撹拌機のトルクや電力を測定することで反応の終点を決定できる。 The addition method of PEG and the polymerization catalyst may be divided into one or more times, and the polymerization reaction is performed under reduced pressure, preferably at 100°C or higher and 280°C or lower, more preferably at 130°C or higher and 250°C or lower. do. When the polymerization catalyst is titanium tetraalkoxide (Ti(OR)4), it is desirable to add it before starting pressure reduction in order to prevent hydrolysis of the catalyst. Moreover, since the polymerization reaction proceeds by removing water produced by polycondensation, it is carried out under reduced pressure conditions of 650 Pa or less. In particular, when the raw material is ε-caprolactam, it is easy to scatter in the vacuum device, so the pressure reduction rate is preferably 10 kPa/min or less. The degree of polymerization of the resulting polyether ester amide composition can be determined by measuring the torque and power of a stirrer installed in a polymerization machine to determine the end point of the reaction.

重合反応中のPEGの熱分解を防ぐため、重合触媒添加後の重合時間は3時間以内にすることが好ましい。さらに好ましくは2時間30分以内である。 In order to prevent thermal decomposition of PEG during the polymerization reaction, the polymerization time after addition of the polymerization catalyst is preferably within 3 hours. More preferably, it is within 2 hours and 30 minutes.

重合反応を終了した後のポリエーテルエステルアミド組成物は公知の方法でペレタイズするが、本ポリマーは吸湿性が高く、水冷ではストランドが膨潤されるため、例えば冷却したベルト上にストランドを取り出し、空冷した後にペレタイズすることが望ましい。 After the polymerization reaction is completed, the polyether ester amide composition is pelletized by a known method. However, since this polymer is highly hygroscopic and the strands swell when cooled with water, the strands are taken out onto a cooled belt and cooled in the air. It is desirable to pelletize it after that.

得られたペレットは公知の溶融紡糸、複合紡糸の手法により繊維化することができる。耐久性などを付与するために通常芯鞘構造の複合繊維の芯部として使用される。例えば、ポリアミド(鞘部)とポリエーテルエステルアミド組成物(芯部)を別々に溶融しギヤポンプにて計量・輸送し、そのまま通常の方法で芯鞘構造をとるように複合流を形成して紡糸口金から吐出し、チムニー等の糸条冷却装置によって冷却風を吹き当てることにより糸条を室温まで冷却し、給油装置で給油するとともに集束し、第1流体交絡ノズル装置で交絡し、引き取りローラー、延伸ローラーを通過し、その際引き取りローラーと延伸ローラーの周速度の比に従って延伸する。さらに、糸条を延伸ローラーにより熱セットし、ワインダー(巻取装置)で巻き取る。 The obtained pellets can be made into fibers by known melt spinning and composite spinning techniques. It is usually used as the core of composite fibers with a core-sheath structure to impart durability. For example, polyamide (sheath part) and polyether ester amide composition (core part) are melted separately, measured and transported using a gear pump, and a composite flow is formed to form a core-sheath structure in the usual manner and then spun. The yarn is discharged from the nozzle, cooled to room temperature by blowing cooling air with a yarn cooling device such as a chimney, oiled and condensed with an oil supply device, entangled with a first fluid entangling nozzle device, taken up roller, It passes through a stretching roller and is stretched according to the ratio of the circumferential speeds of the take-off roller and the stretching roller. Furthermore, the yarn is heat set by a drawing roller and wound up by a winder (winding device).

本発明を実施例で更に具体的に説明する。実施例中の諸特性の測定方法は次のとおりである。 The present invention will be explained in more detail with reference to Examples. The methods for measuring the various properties in the examples are as follows.

[PEG数平均分子量]
組成物ペレットをアンモニア処理後、ゲル浸透クロマトグラフGPC(東ソー社:DP-8020、検出器:昭和電工社 RI201)を用いて23℃で測定した。
[PEG number average molecular weight]
After the composition pellet was treated with ammonia, it was measured at 23° C. using a gel permeation chromatograph GPC (Tosoh Corporation: DP-8020, detector: Showa Denko RI201).

[ポリアミド成分(b)、PEG成分(c)の定量]
組成物ペレットを重HFIP/重クロロホルム混液(1/1、v/v)に溶解させ、H-NMRを測定した。それぞれの成分に帰属されるピークより成分量を算出した。
[Quantification of polyamide component (b) and PEG component (c)]
The composition pellet was dissolved in a mixed solution of deuterated HFIP/deuterated chloroform (1/1, v/v), and 1 H-NMR was measured. The component amounts were calculated from the peaks attributed to each component.

[PEG成分(c)/ジカルボン酸成分(a)のモル比]
組成物ペレットを重HFIP/重クロロホルム混液(1/1、v/v)に溶解させ、H-NMRを測定した。それぞれの成分に帰属されるピークよりPEG成分量(M1)とジカルボン酸成分量(M2)を算出し、各成分量とPEG分子量(MW1)およびジカルボン酸分子量(MW2)から以下の式を用いてモル比を算出した。
PEG成分(c)/ジカルボン酸成分(a)のモル比=(M1/MW1)/(M2/MW2)
[溶融粘度]
組成物ペレットを真空乾燥機にて110℃、4時間乾燥した後、フローテスタ(CFT-500Dリフレッシュ)を用いて測定温度265℃、荷重10kg、滞留時間8分、オリフィス0.5φ×1.0mmlの条件で測定した。
[Mole ratio of PEG component (c)/dicarboxylic acid component (a)]
The composition pellet was dissolved in a mixed solution of deuterated HFIP/deuterated chloroform (1/1, v/v), and 1 H-NMR was measured. Calculate the PEG component amount (M1) and dicarboxylic acid component amount (M2) from the peaks attributed to each component, and use the following formula from each component amount, PEG molecular weight (MW1), and dicarboxylic acid molecular weight (MW2). The molar ratio was calculated.
Molar ratio of PEG component (c)/dicarboxylic acid component (a) = (M1/MW1)/(M2/MW2)
[Melt viscosity]
After drying the composition pellet in a vacuum dryer at 110°C for 4 hours, it was measured using a flow tester (CFT-500D Refresh) at a temperature of 265°C, a load of 10 kg, a residence time of 8 minutes, orifice 0.5φ x 1.0 mml. Measured under the following conditions.

[WSC]
組成物ペレットを150μm~425μmのサイズに粉砕した後、秤量瓶に5g(W0)はかり取り、85℃で80分熱風乾燥する。そして乾燥後のチップ重量(W1)を測定し、粉砕ペレットの水分率を以下の式に従い計算する。
水分率(%)=W1/W0
次に、粉砕ペレット2g(W2)とイオン交換水300mlをフラスコに入れ、90℃の熱水に6時間浸けて冷却した後に孔径20~30μmのガラスフィルターで減圧濾過する。そして濾過後のガラスフィルターを75℃で16時間熱風乾燥、70℃、3torrで3時間真空乾燥し、ガラスフィルターに残存するペレット重量(W3)を測定する。そして、以下の式に従いWSCを計算する。
WSC(重量%)=[(W2-W3)/W2]×100-水分率×[100/(100-水分率)]
[吸放湿性(ΔMR)]
組成物ペレットを秤量瓶に1~2gはかり取り、110℃で2時間乾燥させた後の重量(W0)を測定し、次にペレットを20℃、相対湿度65%で24時間保持した後の重量(W65)を測定する。そして、ペレットを30℃、相対湿度90%で24時間保持した後の重量(W90)を測定する。そして、以下の式に従い計算したものである。ΔMRが8%以上で◎、5%以上8%未満で○、5%未満で×とした。
MR65(%)=[(W65-W0)/W0]×100
MR90(%)=[(W90-W0)/W0]×100
ΔMR(%)=MR90-MR65 。
[WSC]
After pulverizing the composition pellets to a size of 150 μm to 425 μm, 5 g (W0) is weighed into a weighing bottle and dried with hot air at 85° C. for 80 minutes. Then, the chip weight (W1) after drying is measured, and the moisture content of the crushed pellets is calculated according to the following formula.
Moisture percentage (%) = W1/W0
Next, 2 g (W2) of the crushed pellets and 300 ml of ion-exchanged water are placed in a flask, cooled by immersion in hot water at 90° C. for 6 hours, and then filtered under reduced pressure through a glass filter with a pore size of 20 to 30 μm. After filtration, the glass filter is dried with hot air at 75° C. for 16 hours and then vacuum dried at 70° C. and 3 torr for 3 hours, and the weight of the pellets remaining in the glass filter (W3) is measured. Then, WSC is calculated according to the following formula.
WSC (weight %) = [(W2-W3)/W2] x 100-moisture percentage x [100/(100-moisture percentage)]
[Moisture absorption/release properties (ΔMR)]
Weigh 1 to 2 g of the composition pellet into a weighing bottle, measure the weight (W0) after drying it at 110°C for 2 hours, and then measure the weight after holding the pellet at 20°C and 65% relative humidity for 24 hours. (W65) is measured. Then, the weight (W90) of the pellet after being held at 30° C. and 90% relative humidity for 24 hours is measured. Then, it was calculated according to the following formula. ΔMR was rated ◎ when it was 8% or more, ○ when it was 5% or more and less than 8%, and × when it was less than 5%.
MR65 (%) = [(W65-W0)/W0] x 100
MR90 (%) = [(W90-W0)/W0] x 100
ΔMR (%) = MR90-MR65.

[制電性]
繊維とした後に得られた織物を、JIS L1094(織物及び編物の帯電性試験方法、2014年)A法(半減期測定法)、B法(摩擦帯電圧測定法)に従い測定した。なお、環境条件は10℃×10%RH、摩擦布は綿(金巾3号)、たて方向で測定した。700V未満で◎、700以上1000V未満で○、1000V以上で×とした。
[Antistatic property]
The woven fabric obtained after being made into fibers was measured according to JIS L1094 (Test method for charging properties of woven and knitted fabrics, 2014) method A (half-life measurement method) and method B (frictional charging voltage measurement method). The environmental conditions were 10° C. x 10% RH, the friction cloth was cotton (Kinkin No. 3), and the measurements were made in the vertical direction. Less than 700V was rated as ◎, 700 or more and less than 1000V was rated as ○, and 1000V or more was rated as ×.

[染色堅牢度]
繊維とした後に得られた織物を、JIS L0844(洗濯に対する染色堅ろう度試験方法、2009年)、7.1項A法に準じ、表7中のA-2条件にて測定した。判定はJIS L0801(2009)10項(a)の視感法に従って、変退色について級判定を実施した。変退色判定の3級以上を◎、2級以上3級未満を○、2級未満を×とした。
[Color fastness]
The fabric obtained after being made into fibers was measured under A-2 conditions in Table 7 in accordance with JIS L0844 (Test method for dye fastness to washing, 2009), Section 7.1 A method. The grade was determined for discoloration and fading according to the visual perception method of JIS L0801 (2009) Section 10 (a). Grade 3 or higher in discoloration/fading judgment was rated ◎, grade 2 or higher but less than grade 3 was graded ○, and grade less than 2 was graded x.

(実施例1)
窒素導入管、テフロンコートした撹拌棒を備えた耐圧ガラス製の200mLへそ付試験管に、12.7gのテレフタル酸(成分a)と、76.7gのε-カプロラクタム(成分b)と、11.4gの水と、数平均分子量1450のPEG(成分c)89.8gをそれぞれ添加した。試験管内を7回窒素置換した後、常圧(101.33kPa)、0.5L/分の窒素気流下で内温を250℃まで昇温し、20rpmで2時間撹拌し、ポリアミド成分とジカルボン酸成分を反応させ、両末端がカルボキシル基であるポリアミド成分を合成する。2時間後、重合触媒としてチタニウムテトラブトキサイド750ppm(チタン元素換算で220ppm)添加し、ポリアミドの両末端カルボキシル基とPEGのヒドロキシル基がエステル化反応することで、ポリエーテルエステルアミド組成物を得る。5kPa/分の速度の減圧速度で常圧(101.33kPa)から26.33kPaまで15分間かけて減圧し、さらに0.6kPa/分の速度の減圧速度で26.33kPaから130Paまで45分間かけて減圧した。130Paの圧力で2時間30分重合を行ったところで所定の撹拌機トルク到達したため、反応を終了した。その後、窒素で常圧に戻し、得られたポリマーはへそ部からストランドとして吐出し、空冷しながらセラミックカッタにてペレタイズした。得られたペレットを評価した結果、優れた吸放湿性を示した。結果を表1に示す。
(Example 1)
12.7 g of terephthalic acid (component a), 76.7 g of ε-caprolactam (component b), and 11. 4 g of water and 89.8 g of PEG (component c) having a number average molecular weight of 1450 were each added. After replacing the inside of the test tube with nitrogen seven times, the internal temperature was raised to 250°C under a nitrogen flow of 0.5 L/min at normal pressure (101.33 kPa), and the mixture was stirred at 20 rpm for 2 hours to separate the polyamide component and dicarboxylic acid. The components are reacted to synthesize a polyamide component having carboxyl groups at both ends. After 2 hours, 750 ppm of titanium tetrabutoxide (220 ppm in terms of titanium element) is added as a polymerization catalyst, and the carboxyl groups at both ends of the polyamide and the hydroxyl group of PEG undergo an esterification reaction to obtain a polyether ester amide composition. Depressurize from normal pressure (101.33 kPa) to 26.33 kPa over 15 minutes at a decompression rate of 5 kPa/min, and then from 26.33 kPa to 130 Pa over 45 minutes at a decompression rate of 0.6 kPa/min. The pressure was reduced. After polymerization was carried out at a pressure of 130 Pa for 2 hours and 30 minutes, the predetermined stirrer torque was reached and the reaction was terminated. Thereafter, the pressure was returned to normal pressure with nitrogen, and the obtained polymer was discharged as a strand from the navel, and pelletized with a ceramic cutter while cooling in air. The obtained pellets were evaluated and showed excellent moisture absorption and desorption properties. The results are shown in Table 1.

得られたポリエーテルエステルアミドペレットを芯部、硫酸相対粘度が2.71であるナイロン6ペレットを鞘部に用いた。芯部溶融部温度240℃、鞘部溶融部温度270℃にて溶融し、紡糸温度265℃、同心円芯鞘複合用口金から芯/鞘比率(重量部)=30/70になるように紡糸した。 The obtained polyether ester amide pellets were used for the core, and nylon 6 pellets having a sulfuric acid relative viscosity of 2.71 were used for the sheath. It was melted at a core melting zone temperature of 240°C and a sheath melting zone temperature of 270°C, and was spun at a spinning temperature of 265°C from a concentric core-sheath composite spinneret so that the core/sheath ratio (parts by weight) = 30/70. .

この時、得られる芯鞘複合繊維の総繊度が22dtexとなるようにギヤポンプの回転数を選定し、それぞれ9g/分の吐出量とした。そして糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油したのち、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を2339m/分、第2ロールである延伸ローラーの周速度を4210m/分で延伸、延伸ローラー150℃により熱セットを行い、巻き取り速度を4000m/分で巻き取り、22dtex10フィラメントの芯鞘複合繊維を得た。 At this time, the rotation speed of the gear pump was selected so that the total fineness of the obtained core-sheath composite fiber was 22 dtex, and the discharge rate was 9 g/min. Then, the yarn is cooled and solidified in the yarn cooling device, and after being lubricated with a non-water-containing oil agent by the oil supply device, it is entangled in the first fluid entangling nozzle device, and the circumferential speed of the first roll, which is the take-up roller, is set to 2339 m/min. , the second roll was drawn at a circumferential speed of 4210 m/min, the drawing roller was heat set at 150° C., and the film was wound at a winding speed of 4000 m/min to obtain a core-sheath composite fiber of 22 dtex 10 filaments.

(織物の製造)
該芯鞘複合繊維を経糸、緯糸に用い、経密度188本/2.54cm、緯密度155本/2.54cmに設定し平組織で製織した。
(Manufacture of textiles)
The core-sheath composite fibers were used for the warp and weft, and the weft density was set to 188 threads/2.54 cm and the weft density to 155 threads/2.54 cm, and weaving was carried out in a flat weave.

得られた生機地を常法に従って、1リットル当たり2gの苛性ソーダ(NaOH)を含む溶液でオープンソーパーにより精練し、シリンダー乾燥機にて120℃で乾燥し、次いで170℃にてプレセット、液流染色機により、酸性染料(Nylosan Blue-GFL167%(サンドス社製)1.0%owfを用いて98℃×60分染色処理、合成タンニン(ナイロンフィックス501 センカ社製)3g/lを用いて80℃×20分固着処理を施し、乾燥(120℃)、仕上げセット(175℃)した。その後、カレンダー加工(加工条件:シリンダー加工、加熱ロール表面温度180℃、加熱ロール加重147kN、布走行速度20m/分)を織物の両面に1回施し、密度が経210本/2.54cm、緯で160本/2.54cmである織物を得た。得られた織物を評価した結果、優れた制電性を示した。結果を表2に示す。 The obtained gray cloth was scoured with a solution containing 2 g of caustic soda (NaOH) per liter using an open soaper according to a conventional method, dried in a cylinder dryer at 120°C, and then preset at 170°C and subjected to liquid flow. Using a dyeing machine, dyeing was performed at 98°C for 60 minutes using an acid dye (Nylosan Blue-GFL167% (manufactured by Sandoz), 1.0% owf, and 80°C using a synthetic tannin (Nylon Fix 501, manufactured by Senka), 3 g/l. ℃ x 20 minutes, drying (120℃) and finishing setting (175℃).After that, calender processing (processing conditions: cylinder processing, heating roll surface temperature 180℃, heating roll load 147kN, cloth running speed 20m /min) was applied once on both sides of the fabric to obtain a fabric with a density of 210 lines/2.54 cm in the warp and 160 lines/2.54 cm in the weft.As a result of evaluating the obtained fabric, it was found that it had excellent antistatic properties. The results are shown in Table 2.

(実施例2、3)
各成分の仕込み量を表1に示す処方として溶融粘度、WSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、実施例1対比、染色堅牢性が若干劣るものの吸放良好な湿性・制電性を兼ね備えていた。結果を表1に示す。
(Examples 2 and 3)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that the amounts of each component were as shown in Table 1, and the melt viscosity and WSC were changed. As a result of carrying out the same evaluation as in Example 1, it was found that although the dyeing fastness was slightly inferior compared to Example 1, it had good moisture absorption and antistatic properties with good absorption and release properties. The results are shown in Table 1.

(実施例4,5)
各成分の仕込み量を表1に示す処方としてWSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、実施例1対比、吸放湿性・制電性が若干劣るものの優れた染色堅牢性を兼ね備えていた。結果を表1に示す。
(Examples 4 and 5)
A polyether ester amide composition and a woven fabric were obtained in the same manner as in Example 1, except that the WSC was changed so that the amounts of each component were as shown in Table 1. As a result of performing the same evaluation as in Example 1, it was found that although the moisture absorbing and releasing properties and antistatic properties were slightly inferior compared to Example 1, it had excellent color fastness. The results are shown in Table 1.

(実施例6~9)
PEGの数平均分子量を2200、3000、4200、5600とし、各成分の仕込み量を表1に示す処方として溶融粘度、WSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、実施例1対比、染色堅牢性が若干劣るものの良好な吸放湿性・制電性を兼ね備えていた。結果を表1に示す。
(Examples 6 to 9)
Polyether ester amide was prepared in the same manner as in Example 1, except that the number average molecular weight of PEG was 2200, 3000, 4200, and 5600, and the amounts of each component were as shown in Table 1, and the melt viscosity and WSC were changed. A composition and a fabric were obtained. As a result of the same evaluation as in Example 1, it was found that although the color fastness was slightly inferior compared to Example 1, it had good moisture absorption and desorption properties and antistatic properties. The results are shown in Table 1.

(実施例10)
ジカルボン酸成分(a)をアジピン酸とし、各成分の仕込み量を表2に示す処方とした以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、実施例1対比若干劣るものの、染色堅牢性・吸放湿性・制電性を兼ね備えていた。結果を表2に示す。
(Example 10)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that adipic acid was used as the dicarboxylic acid component (a) and the amounts of each component were as shown in Table 2. As a result of the same evaluation as in Example 1, it was found that although it was slightly inferior to Example 1, it had color fastness, moisture absorption and desorption properties, and antistatic properties. The results are shown in Table 2.

(実施例11)
ジカルボン酸成分(a)をセバシン酸とし、各成分の仕込み量を表2に示す処方とした以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、実施例1対比若干劣るものの、染色堅牢性・吸放湿性・制電性を兼ね備えていた。結果を表2に示す。
(Example 11)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that sebacic acid was used as the dicarboxylic acid component (a) and the amounts of each component were as shown in Table 2. As a result of the same evaluation as in Example 1, it was found that although it was slightly inferior to Example 1, it had color fastness, moisture absorption and desorption properties, and antistatic properties. The results are shown in Table 2.

(実施例12)
ポリアミド成分(b)をアミノウンデカン酸とし、各成分の仕込み量を表2に示す処方とした以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、実施例1対比若干劣るものの、染色堅牢性・吸放湿性・制電性を兼ね備えていた。結果を表2に示す。
(Example 12)
A polyether ester amide composition and a woven fabric were obtained in the same manner as in Example 1, except that the polyamide component (b) was aminoundecanoic acid and the amounts of each component were as shown in Table 2. As a result of the same evaluation as in Example 1, it was found that although it was slightly inferior to Example 1, it had color fastness, moisture absorption and desorption properties, and antistatic properties. The results are shown in Table 2.

(比較例1、2)
各成分の仕込み量を表2に示す処方として組成物の溶融粘度、WSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、比較例1は吸放湿性・制電性が劣っていた。比較例2は染色堅牢性が劣っていた。結果を表2に示す。
(Comparative Examples 1 and 2)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that the amounts of each component were as shown in Table 2, and the melt viscosity and WSC of the composition were changed. As a result of performing the same evaluation as in Example 1, Comparative Example 1 was found to be inferior in moisture absorption and desorption properties and antistatic properties. Comparative Example 2 had poor color fastness. The results are shown in Table 2.

(比較例3)
ジカルボン酸成分(a)をアジピン酸、重合触媒を酸化ジルコニウムとし、各成分の仕込み量を表2に示す処方として溶融粘度を変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、染色堅牢性を示したが、吸放湿性・制電性で劣っていた。結果を表1に示す。
(Comparative example 3)
Polyether ester amide was prepared in the same manner as in Example 1, except that the dicarboxylic acid component (a) was adipic acid, the polymerization catalyst was zirconium oxide, and the amounts of each component were as shown in Table 2, and the melt viscosity was changed. A composition and a fabric were obtained. As a result of the same evaluation as in Example 1, the dyeing fastness was shown, but the moisture absorption and desorption properties and antistatic properties were poor. The results are shown in Table 1.

(比較例4、5)
各成分の仕込み量を表2に示す処方としてWSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、吸放湿性・制電性は示したが、染色堅牢度が劣っていた。結果を表2に示す。
(Comparative Examples 4 and 5)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that the WSC was changed so that the amounts of each component were as shown in Table 2. As a result of performing the same evaluation as in Example 1, it showed moisture absorption and desorption properties and antistatic properties, but the color fastness was poor. The results are shown in Table 2.

(比較例6)
各成分の仕込み量を表2に示す処方として溶融粘度、WSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、染色堅牢性・吸放湿性・制電性が劣っていた。結果を表2に示す。
(Comparative example 6)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that the amounts of each component were as shown in Table 2, and the melt viscosity and WSC were changed. As a result of the same evaluation as in Example 1, the color fastness, moisture absorption and desorption properties, and antistatic properties were poor. The results are shown in Table 2.

(比較例7)
仕込むPEGの数平均分子量を300とし、各成分の仕込み量を表2に示す処方として溶融粘度を変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、染色堅牢性を示したが、吸放湿性・制電性が劣っていた。結果を表2に示す。
(Comparative example 7)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that the number average molecular weight of PEG to be charged was 300 and the melt viscosity was changed as the formulation shown in Table 2 for the amount of each component to be charged. Ta. As a result of the same evaluation as in Example 1, the dyeing fastness was shown, but the moisture absorption and desorption properties and antistatic properties were poor. The results are shown in Table 2.

(比較例8)
仕込むPEGの数平均分子量を8600とし、各成分の仕込み量を表2に示す処方としてWSCを変更した以外は、実施例1と同様の方法にてポリエーテルエステルアミド組成物、及び織物を得た。実施例1と同様の評価を行った結果、吸放湿性・制電性は示したが、染色堅牢度が劣っていた。結果を表2に示す。
(Comparative example 8)
A polyether ester amide composition and a fabric were obtained in the same manner as in Example 1, except that the number average molecular weight of PEG to be charged was 8600, and the WSC was changed to the formulation shown in Table 2 with the amount of each component charged. . As a result of performing the same evaluation as in Example 1, it showed moisture absorption and desorption properties and antistatic properties, but the color fastness was poor. The results are shown in Table 2.

Figure 2023127645000001
Figure 2023127645000001

Figure 2023127645000002
Figure 2023127645000002

Claims (4)

ジカルボン酸成分(a)、ラクタムまたはアミノカルボン酸を原料とするポリアミド成分(b)、およびポリエチレングリコール成分(c)からなり、その溶融粘度が測定温度265℃において、100Pa・s以上、200Pa・s以下であり、かつ水溶性溶出成分(WSC)が10重量%以下であるポリエーテルエステルアミド組成物。 Consisting of a dicarboxylic acid component (a), a polyamide component (b) made from lactam or aminocarboxylic acid, and a polyethylene glycol component (c), the melt viscosity of which is 100 Pa·s or more and 200 Pa·s at a measurement temperature of 265°C. A polyether ester amide composition having a water-soluble eluting component (WSC) of 10% by weight or less. ジカルボン酸成分(a)が芳香族ジカルボン酸である請求項1記載のポリエーテルエステルアミド組成物。 The polyetheresteramide composition according to claim 1, wherein the dicarboxylic acid component (a) is an aromatic dicarboxylic acid. 組成物中のポリエチレングリコールの数平均分子量が1000~5000である請求項1または請求項2に記載のポリエーテルエスエルアミド組成物。 The polyether esteramide composition according to claim 1 or 2, wherein the polyethylene glycol in the composition has a number average molecular weight of 1,000 to 5,000. 請求項1~3のいずれか1項に記載のポリエーテルエステルアミド組成物を構成成分として含む繊維。 A fiber comprising the polyetheresteramide composition according to any one of claims 1 to 3 as a constituent component.
JP2022031453A 2022-03-02 2022-03-02 Polyether ester amide composition and fiber Pending JP2023127645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022031453A JP2023127645A (en) 2022-03-02 2022-03-02 Polyether ester amide composition and fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022031453A JP2023127645A (en) 2022-03-02 2022-03-02 Polyether ester amide composition and fiber

Publications (1)

Publication Number Publication Date
JP2023127645A true JP2023127645A (en) 2023-09-14

Family

ID=87972810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022031453A Pending JP2023127645A (en) 2022-03-02 2022-03-02 Polyether ester amide composition and fiber

Country Status (1)

Country Link
JP (1) JP2023127645A (en)

Similar Documents

Publication Publication Date Title
EP2831145B1 (en) Furan based polyamides
CN107735514B (en) Polyamide resin fiber, method for producing polyamide resin fiber, polyamide resin composition, woven fabric, and woven/knitted fabric
JP5807456B2 (en) Polyamide 410 fiber and fiber structure comprising the same
JP3481729B2 (en) Polyamide fiber
TWI693311B (en) Hygroscopic core-sheath composite yarn and manufacturing method thereof
CN113260655A (en) Stain resistant polyamide polymers obtained by high end-capping
JP2712512B2 (en) Polyamide filament
CN108350608B (en) Moisture-absorbing core-sheath composite yarn and fabric
WO2017120112A1 (en) Process for suppressing foam formation in the manufacture of hydrophilic polyamides
JP2023127645A (en) Polyether ester amide composition and fiber
AU2016351997B2 (en) Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
US4168602A (en) Block copolymer of poly (dioxaarylamide) and polyamide and fibers and fibrous material produced therefrom
WO2019167541A1 (en) Polyetheresteramide composition
AU2004266274B2 (en) Abrasion-resistant wires, fibres and filaments
JPH10280230A (en) Polyamide fiber
JP2018076613A (en) Hygroscopic sheath-core conjugated yarn
WO2020262511A1 (en) Sheath-core composite yarn and fabric
JPS61289119A (en) Elastic fiber and production thereof
JPS61289118A (en) Elastic fiber and production thereof
JP2024044447A (en) polyamide resin composition
JP2009019286A (en) Moisture-sensitive conjugated fiber
JPS61289120A (en) Elastic fiber and production thereof
JPS61289121A (en) Fiber having elasticity and production thereof
JPH07278964A (en) Triple-layered sheath-core conjugate fiber having excellent hygroscopicity
JPS61289122A (en) Fiber having elasticity and production thereof