JP2023126006A - 発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電 - Google Patents
発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電 Download PDFInfo
- Publication number
- JP2023126006A JP2023126006A JP2022030422A JP2022030422A JP2023126006A JP 2023126006 A JP2023126006 A JP 2023126006A JP 2022030422 A JP2022030422 A JP 2022030422A JP 2022030422 A JP2022030422 A JP 2022030422A JP 2023126006 A JP2023126006 A JP 2023126006A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- buoyancy
- tidal
- power
- polyurea resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 235
- 229920002396 Polyurea Polymers 0.000 title claims abstract description 66
- 229920005989 resin Polymers 0.000 title claims abstract description 66
- 239000011347 resin Substances 0.000 title claims abstract description 66
- 238000007667 floating Methods 0.000 title claims description 51
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 title abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 34
- 238000006243 chemical reaction Methods 0.000 title description 33
- 241000238586 Cirripedia Species 0.000 claims abstract description 46
- 230000005611 electricity Effects 0.000 claims abstract description 46
- 241001474374 Blennius Species 0.000 claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 229920006328 Styrofoam Polymers 0.000 claims description 32
- 239000008261 styrofoam Substances 0.000 claims description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 25
- 230000008901 benefit Effects 0.000 claims description 22
- 230000002265 prevention Effects 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 16
- 229920006327 polystyrene foam Polymers 0.000 claims description 16
- 238000004146 energy storage Methods 0.000 claims description 7
- 230000033001 locomotion Effects 0.000 claims description 6
- 239000004794 expanded polystyrene Substances 0.000 claims description 5
- 239000003653 coastal water Substances 0.000 claims description 4
- 230000000630 rising effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 31
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 23
- 238000009434 installation Methods 0.000 description 21
- 239000013535 sea water Substances 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 238000013461 design Methods 0.000 description 13
- 230000007613 environmental effect Effects 0.000 description 12
- 239000003949 liquefied natural gas Substances 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 12
- 239000002028 Biomass Substances 0.000 description 11
- 230000002354 daily effect Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 239000007921 spray Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000036541 health Effects 0.000 description 8
- 239000003973 paint Substances 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 239000003245 coal Substances 0.000 description 6
- 239000010779 crude oil Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 6
- 239000013505 freshwater Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000003203 everyday effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 208000031404 Chromosome Aberrations Diseases 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 230000005405 multipole Effects 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004155 Chlorine dioxide Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000000181 anti-adherent effect Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 235000019398 chlorine dioxide Nutrition 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229920006248 expandable polystyrene Polymers 0.000 description 3
- 238000010097 foam moulding Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- -1 nuclear power Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000005262 decarbonization Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000003958 fumigation Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 230000003137 locomotive effect Effects 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 230000007886 mutagenicity Effects 0.000 description 2
- 231100000299 mutagenicity Toxicity 0.000 description 2
- 231100000150 mutagenicity / genotoxicity testing Toxicity 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
本発明は、月と太陽の引力がある限り繰り返される「潮の干満」(海面の昇降現象)を利用して特殊加工された発泡スチロールの浮力を油圧に伝えエネルギーを備蓄、弾性バネ等も利用し、発電機を回転させるという潮汐発電(月の引力発電/ムーンジェネレーション)である。動きは小さくともパワーは絶大という月と太陽の引力を今日の技術の組み合わせによって効率的なクリーン発電につなげたものである。
技術的には、空気と変わらない軽さ体積を持つ発泡スチロールに対し、コンクリート並みの強度、柔軟性、扱いやすさ、耐薬品、耐摩耗性、耐気候気温を持つポリウレア樹脂を加工し、ラッピングした上で、さらに金属への腐食性や環境を悪影響を与える毒素などの心配が全くない亜塩素酸ナトリウム(pH8.5)を徐々に溶解することで弱アルカリになり二酸化塩素を発生しやすい状態を作りフジツボや海藻が殆ど付着しないという塗料を塗布してフレーム全体を保護したもので引力を浮力に変換させる。
本発電は、他の発電に比べ圧倒的に初期投資安く、ランニングコストも殆どかからず、環境にも優しく、CO2ゼロ、そして最終的には発電コストの安さが一番であるという特徴をもつ。
以下に新規性、進歩性、産業化への具体策を示し、考えられるあるいは起こりうる疑問や問題とその解決策を発明の視点より考察する。
結論は、干潮時でも満潮時でも(上がる時も下がる時も)下記のような大きなパワーと電力が毎日、天候や昼夜に関係なく十分に得られる・・・である。たとえ干満の上下差が1メートルであっても本発明の油圧と弾性バネを用いれば発電は可能である。
以下はそのあらましである。
(1)浮力発電のパワー計算:100メートル(立方)浮体の場合
先ず1立方メートルは100x100x100センチメートル=百万立方センチメートルつまり百万グラム=1000キログラム=1トン
発泡スチロール1立方メートルはおおよそ1トンの浮力パワーがある。
100メートルx100メートルx100メートルの立方体であれば
100x100x100=1,000,000トン つまり・・・
「100万トンのエネルギー備蓄パワー」が得られる。
では百万トンの浮力パワーとはどれくらいの発電力かというと・・・
1. 中国で世界最大級の移動式クレーンが完成しました。 中国メディアによりますと、建設機械大手の「M重工」は1日までに、自走できるタイプとしては世界最大級のクレーンを完成させました。 アームの長さは216メートルで、乗用車3000台に相当する重さの荷物を一度につり上げることが可能。
2. クルマの重さは平均1トンとして世界最大のクレーンが持ち上げるエネルギーは3000トン。
3. 本発明の潮汐発電は1000000÷3000=333倍のエネルギーが一日2~数回発生し利用できる。
(2)上記の10分の1:100x100x10メートルの場合10万立方メートルは「10万トンの浮力パワー」である。
(3)上記の100分の1:100x100x1メートルの場合1万立方メートルは「1万トンの浮力パワー」である。これでも普通車1万台を吊り上げるエネルギーが得られる。
僅か1メートルの厚みがあれば普通車1万台を吊り上げられる。
海岸沿いに魚釣り場付きの海浜公園の下部に入れる50~1000畳敷きのタタミのものや、「円筒状」に形を変えて例えば洋上発電のハイブリッドスパー型の「上部浮体鋼(はがね)構造内部」に入れれば半永久的に使用できる。
その場合海水導入部分にドアーをつけておけば幾重にポリウレア樹脂とフジツボ付着防護剤のダブル塗布されたシールを剥がすだけで数十年の発電が見込める。これも本発明のポイントの一つである。
日本の場合を例にとると、日本で一番干満差(大潮の時の平均干満差)が大きい場所は、九州有明海の奥にある住ノ江付近で約5~6mもある。次に大きいところは瀬戸内海の笠岡・福山付近で約4.2mである。以下、北から日本周辺の干満差の状況を掲げる。
北海道南岸~北日本太平洋岸 約0.8~1.9m
東京湾 約2~2.4m
伊勢湾、三河湾 約2.4~2.7m
紀伊半島~九州太平洋岸 約1.8~2.7m
九州北岸 約1.1~2.8m
九州西岸(有明海を除く) 約1~3m
ちなみに、日本海側では干満差が小さく、大きいときでも30cm程度、これは、月や太陽の影響によって海水が盛り上がろうとしても、日本海の入り口が狭く浅いため、海水が集積しにくいことが理由である。
日本海側は干満差が小さいことから潮干狩りを行っている風景は見られないが、宮津湾付近の伊根地域では干満差が小さいことを利用し舟屋のような建築物が造られている。干満差が地域によって異なるのは、地形的な要素が大きく影響する。
萩 約 1.0 m
博多 約 2.2 m
伊万里 約 2.8 m
厳原 約 1.9 m
佐世保 約 3.3 m
三池 約 5.3 m
佐伯 約 2.1 m
例えば瀬戸内海は、豊後水道と紀伊水道、そして関門海峡の中央水道を介して外海とつながっている。 月と太陽の引力に影響されて海面が上下することが潮汐で、一番低い時(下がった時)を干潮、一番高い時(上がった時)を満潮と呼ぶ。
この干満差、牛窓では最大でおよそ1.8mほどであるが、瀬戸内海の一番激しいところでは4m近くにもなる。
一方、瀬戸内海は、本州と四国、九州によって囲まれた日本で一番大きな内海である。 浮かんでいる島の数は727。この内、有人島はおよそ150しかない。周囲100mに満たない岩場のようなものまで島とすると、2000近いといわれている。大小の島々を含めた海岸線の総延長は7,230kmで、東西がおよそ450km、南北は一番長いところで55km、面積22,203平方キロメートル、平均水深は38mで一番深いところでも450m程である。全体の約95%が水深70m以内という非常に浅い海である。
つまり「瀬戸内海は水たまり」と呼ばれるくらい浅い海域であり、平均水深38mというのは、地球上の海のレベルで見ると水たまりにも入れてもらえないほど浅い海なのである。地球上の海の平均水深は、富士山の標高と同じぐらいでおよそ3,800m。一番深いマリアナ海溝でおよそ10,000mの深さがあるので、いかに瀬戸内海が浅い海かが分かる。
瀬戸内海を筆頭に現状施設を生かせる洋上発電や、浅い海の人々の住む海岸沿い(湾)、入り江は、1.干満差、2.利用の多様さ(海浜公園/釣り場)、3.設置の容易さ、4.コストの安さ、5.浅さ、6.近さなどで、潮汐発電の好適地と言えるだろう。
一般的なアルキメデスの原理が役に立つ。アルキメデスの原理は、アルキメデスが発見した物理学の法則である。 「流体(液体や気体)中の物体は、その物体が押しのけている流体の質量が及ぼす重力と同じ大きさで上向きの浮力を受ける」というものである。なお海面が凍った場合は本発明の潮汐発電も影響を受ける。また、密度の高い塩水の場合には、真水の場合に比べ、体積あたりの浮力は大きくなる。
発電パワーエネルギーは工夫を凝らした発砲スチロールの浮力によって発生する。
1. 設置場所に合わせた「発泡スチロールの形状、サイズ」、「シール巻きの回数」、「ポリウレア樹脂」、「フジツボや海藻付着防止剤の種類の選定」を設計する。
2. 形状は四角形か円筒形が望ましい。理由は海で使用する場合はフラットなタタミ型か洋上発電設備の一部としてパイプ内部への設置をイメージしているからである。
3. 浮揚体の製造順序:1)形状の設計、2)設計図に応じて発泡スチロールにポリウレア樹脂を吹き付ける、3)その上にフジツボや海藻付着防止剤を吹き付ける、4)必要な耐用年数に合わせてさらにラッピングしてフジツボや海藻付着防止剤塗布の同じ作業工程を繰り返しメンテナンス作業の簡素化をはかる。
4. 新規設備の場合は、予め設備に装着する。海水部とは隔離された浮体上部には油圧タンク&ポンプ、動力伝達軸、動力伝達機、増速機、弾性バネ、発電機を設備する。
5. 潮位が下がる場合も下がる側に設置された油圧タンク&ポンプにエネルギーを備蓄する。
結論:潮汐発電は最安の発電コストを実現する。
その根拠として、1)設備製造コストが格安、2)設置場所が既存設備内であったり、近海出るため設置コストが格安、3)原料費が不要/月と太陽の引力、4)ランニングコストが格安、5)休むことなく発電するためトータル発電コストが格安。
以下引用:BNEF/ブルームバーグNEF (BNEF)は、世界6大陸の拠点に約250名の調査・分析スタッフを配置し、進化するエネルギー経済環境の上質な分析、データ、解説を提供、エネルギー関連をはじめとした各事業者、市場関係者、政策立案者を支援するブルームバーグのリサーチサービスであり、新エネルギー関連データセットおよび1日5000本におよぶニュース記事を通して、業界最先端の分析、予測、リスクマネジメントに関する情報をタイムリーに配信
・・・の分析によると、世界で再エネ発電コストは低下し続けており、世界の人口の3分の2にあたる国々で新規設備容量として最も安価な発電方法となっている。米国、英国などでは陸上風力はメガワット時あたりの発電コストは50ドルを下回り、ブラジルではメガワット時あたり30ドルとなっている。同様に太陽光も中国、インド、豪州ではメガワット時あたりの発電コストは40ドルを下回っている。
こうした発電コストの低下の理由として最初に挙げられるのは設備費の低下だ。太陽光発電に用いるモジュールと陸上風力でのタービンの価格は、それらの導入量と反比例する形で下落が続いている。
2010年からの今日までの経験曲線によると、太陽光発電の導入量が倍になることでモジュール価格は28%減少した。陸上風力も同様に導入量が倍になりタービンの価格は11%減少した。一方、モジュールの発電効率や風力発電の設備利用率の向上といった技術進歩もコスト削減を加速させている。
1.潮汐発電:10円以下、水力発電並みの再生エネルギーとなる。
2.石炭火力:国内では試算12.9円から13円台後半~22円台前半。
ガス・石油:LNGガスは試算の13.4円から10円台後半~14円台前半。石油は試算の28.9円~41.7円から24円台後半~27円台後半へ。大幅に低下する見込みであるが原油価格の高騰でコストは倍増する可能性がある。
3.自然エネルギー
自然エネルギーでは、陸上風力が試算の13.6円~21.5円から9円台後半~17円台前半へ。洋上風力が試算の30.3円~34.7円から26円台前半にそれぞれ大幅に低下する見込み。
4.地熱が16.8円→16円台後半、
5.一般水力が11.0円→10円台後半、
6.小水力が23.3円~27.1円→25円台前半、
7.バイオマス(専焼)が29.7円→29円台後半、
8.バイオマス(混焼)が13.2円→14円台前半~22円台後半。
9.産業用太陽光は、試算Aの12.7円~15.6円から試算Bでは8円台前半~11円台後半へ。
フジツボや海藻付着は設置場所、設備そのものに悪影響を与える可能性がありできるだけ付着を避けなければならない。そのために環境にも優しいフジツボや海藻付着防止剤を塗布する。
フジツボガードの成分は、海のミネラル成分等を凝縮しセラミック化した水溶性パウダーなので、海環境には全く無害で、塗料の溶解と共に特殊表面処理を施した成分が塗膜表面に露出し、フジツボ付着防止効果を発揮した後、海水中に溶けてしまうので、環境に全く負荷を与えない。
1. 巨大でコンクリート並みに堅牢な発泡スチロールを海中に設置。
2. 潮汐(日々の潮位の差)の上下運動を浮圧力と、逆に掛かる力が抜ける空圧力を油圧タンクと弾性バネに備蓄。
3. 油圧は発電モーターの回転力に変換させる。
4. 気圧の変動による潮位の変化の際も発電する。
5. 頑丈なポリウレア樹脂発泡スチロールの天板は、油圧ポンプと直結。
6. 油圧のタンクは大小あり、発電機にマッチさせるようAIがコントロール。
7. 潮位変動がない時間にも備蓄したエネルギーで発電を続ける。
出願 2015-056889 (2015/03/04) 公開 2016-160928 (2016/09/05)
国際特許分類(IPC): F03B13/26
1. 洋上風力発電の効率アップ
2. CO2ゼロ、原料費ゼロ、全設備の製造機能最低
3. 最も安い発電コスト(LNG、石炭、石油、原子力、太陽光、風力)
4. 多目的施設との共有(海浜公園、親子釣り場)
5. 従来の潮汐発電の常識を打ち破る設備費用ローコスト
6. 資源不使用
7. SDG‘sにも貢献
8. ヒトの居住地に近い場所に立地可能
9. サイズも自由自在
(1)浮力/油圧に掛かるパワー
100メートルx100メートル=1万平方メートルを1メートル持ち上げる浮力は、油圧の利用により1平方メートルの面積のものを1万メートルもちあげるパワーと同じである。(油圧→パスカルの原理)一方、発電に必要なエネルギーは現在の風力発電を参考にした。大型客船(クルーズ船)なら100メートルx500メートル=5万平方メートル程度となる。
重力であれは1立方メートルは1トンの水に等しいので大型客船サイズの2.5m浮力パワーは500x2.5=1250トン(普通車1250台分)トンとなる。これを油圧によって大きな距離エネルギーに変換させるのである。
(2)発電に必要なパワー
発電機ロータを回転させるためには最低毎秒2.5回転が必要である。このロータの回転主軸の円周を40Cmとすると(0.4x2.5=1)毎秒1メートルの作動距離が必要となる。(参考写真1)
(3)24時間発電するためには
1日は60x60x24=86,400(秒)である。上記の発電モーターの主軸を回さねばならない距離は86,400メートルである。
(4)この距離を大型客船の面積の浮力(潮位差2.5m)で得るためには面積1平方メートルのシリンダーを86、400m移動させるためには、潮位差2.5メートルなら86,400÷2.5=34,560平方メートルの面積が必要となる。
結論1:理論上は大型客船の広さ(施設)があれば、写真の発電機を24時間回し発電することが可能である。
結論2:1基が発電できる発電容量は定格出力で1.67MW。 この発電機1基が1年間フル稼働ができれば、年間約1,463万kWhの電力を生み出すことができる。1家庭当たりの消費電力量は3,600KWなので4,063世帯分の年間電力を供給可能である。
(風力発電の参考データ/引用)
1.高品質の電力を得るために、近年、注目されているのは「永久磁石を組み込んだ多極同期発電機」の利用である。水力発電や火力発電、また風力発電に使われる交流発電機は、「誘導発電機もしくは同期発電機」である。誘導発電機は誘導モータ(誘導電動機)を逆利用したもので、交流電力から回転エネルギーを得るモータとは逆に、ロータを「何らかの力で回転させる」・・・ことで電力を得る。
2.ロータとしては籠(かご)型ロータあるいは巻線型ロータが使われ、籠型ロータの誘導発電機は構造が簡単で丈夫という利点があるが、発電周波数は交流電源の周波数に規定され、任意に調節できないのが短所である。また、出力変動よって電圧変動が起きるという欠点もある。
3.永久磁石の多極ロータでギアレス風車も実現:一方、「回転界磁型の同期発電機」は、ロータの磁極を回転させることにより、「周囲のコイル(電機子コイル)に起電力を誘導させる方式」で、発電周波数や電圧を任意に調整できるのが利点。50Hzまたは60Hzの交流に変換するインバータや、交流を直流に変換するコンバータなどが必要になりますが、誘導発電機とちがって風車の回転数が変動しても、安定した高品質の電力が得られるのが特長である。
4.「水力発電や火力発電にも利用されている一般的な同期発電機のロータ」は、「鉄心に導線が巻かれた一種の電磁石」で、「回転軸に取り付けられたスリップリングとブラシから励磁用の直流電流」が供給される。
5.この回転界磁型の同期発電機において、電磁石のかわりに「永久磁石を採用」すれば、ロータの鉄心やコイル、励磁電流を送るスプリップリングやブラシも必要なくなり、いわゆる「ブラシレスの発電機」が可能となる。また、永久磁石を利用すれば多極化も容易で、騒音の原因となる増速機をなくすこともできる。
6.同期発電機において、1分間あたりの回転数N(rpm)、極数、周波数f(Hz)の間には、N=120f/pという関係が成り立つ。商用電力の周波数は「50Hzまたは60Hz」と決まっているので、回転数と極数は反比例することがわかる。(この回転数=同期速度)。たとえば、火力発電所の50Hz、2極ロータによるタービン発電では、「毎分3000回転(秒速50回転)もの高速回転」が必要になります。もちろん風車にこのような高速回転は望めない。といってギアで増速すると騒音の発生は避けられない。
7.この問題は解決が可能であり、たとえば20極のロータならば300rpm(毎秒5回転)、40極のロータなら150rpm(毎秒2.5回転)ですむことになる。
8.多極ロータが増速機のかわりになるため、比較的ゆっくりとした回転でもギアレスの発電が可能になる。また、巻線型とちがって電流を送って励磁する必要もないので保守・点検も容易になる。
また潮位差はそれを増幅させる。本発明の浮体構造物とは、発泡スチロールにポリウレア樹脂をコーティングしたもので、日本国厚生労働省による環境基準(省令15)に合格し、漁業、農業、水質に安全で、しかも100年間品質を保持可能なデ-タもある。
本発明の利点は、錆はもちろんフジツボや海藻がつかないコーティング技術、さらにくっつかないラッピングを中間に施してその上にコーティングを繰り返し、剥がすだけでメンテナンスが完了すると同時に、素材の再利用が可能で、海や川の環境保護、漁業、飲料水、農業用水など水質にも配慮した、新しい発電の方法である。
以下は、ポリウレア樹脂に関する安全性と環境適合のデ-タである。
1.厚生省令15号に適合
2.JWWA K 143 に適合
3.変異原性試験の結果、「遺伝子突然変異誘発性を示さない」と結論
4.染色体異常試験の結果、「染色体異常性を示さない」と結論
5.粗度係数 0.0108
6.掃流摩耗試験の結果 スワエールの「平均摩耗深さ」は鉄 (SS-400) と同等以上
ポリウレア樹脂を吹き付け(スワエール上水用システム)によるポリウレア樹脂の安全性について。
厚生労働省令15号とは、水道水に関しては法律で様々な規制が設けられており、水質には厳しい基準が設けられている。また、浄水施設に使用される資材に関しても同様に基準があり、資材を浸出テストして浸出液の水質が基準値以下でなくてはならない。ポリウレア樹脂の塗膜はこのテストに適合している。(引用:三井化学)
本発明の要点は、1)今ある技術で解決可能、つまり設備、道具、器具の新規性、簡便性、ローコスト、油圧、弾性バネなどを利用し、2)大きな資金投資を必要とせずしかもロスの少ない身近な場所で発電できる点にある。
特殊加工された発泡スチロールの浮力を油圧に伝えエネルギーを備蓄、弾性バネ等も利用し、発電機を回転させるという浮力反力潮汐発電(月の引力発電/ムーンジェネレーション)である。
本発明は、動きは小さく見えてもパワーは偉大という月と太陽の引力を、今日すでに開発済みの技術の組み合わせによって、大きく、効率的なクリーン発電につなげたものである。
1)再生可能エネルギーと言えば、「太陽光発電」、「風力発電」、「水力発電」、「バイオマス発電」、「地熱発電」、「水素発電」、「アンモニア発電」と20年以上顔ぶれは変わらない。2)同時に求められるのがカーボンニュートラル脱二酸化炭素である。これには原子力発電がある。
いずれにしても、「新顔や革命児」は出ていない。100年前に発明された「ワットの蒸気機関車」、「化石燃料を燃やして水蒸気で発電タービンを回して発電する」が今なお電力の主流である。これでは地球温暖化は避けられない。発電革命が必要である。
本発明の根幹その1:発電のあらましと発電量/潮位の差で発電できるほどのエネルギーが得られるのか?
結論は、干潮時でも満潮時でも(上がる時も下がる時も)下記のような大きなパワーと電力が毎日、天候や昼夜に関係なく十分に得られる・・・である。たとえ干満の上下差が日本で最低レベルの1メートルであっても本発明の浮力と油圧と弾性バネを用いれば発電は可能である。
以下はそのあらましである。
(1)浮力発電のパワー計算:100メートル(立方)浮体の場合
先ず1立方メートルは100x100x100センチメートル=百万立方センチメートルつまり百万グラム=1000キログラム=1トンの水量である。
つまり水1立方メートル(1メートルx1メートルx1メートル)には1トンの重さがある。ということは本発明の浮体構造物1立方メートルにはおおよそ1トンの浮力パワーがある。1トンとはほぼトヨタのハイブリッド車の重量と同じである。
(2)さらに100メートルx100メートルx100メートルの立方体であれば、上記の百万倍である。トヨタのハイブリッド車を百万台持ち上げるパワーがある。恐るべし「月の引力」と言うことだ。これを利用しない手はないであろう。
100x100x100=1,000,000トン つまり・・・
「100万トンのエネルギー備蓄パワー」が得られる。
(3)では、百万トンの浮力パワーとはどれくらいの発電力かというと・・・
以下はイメージするための1例である。
1. 中国で世界最大級の移動式クレーンが完成しました。 中国メディアによりますと、建設機械大手の「M重工」は1日までに、自走できるタイプとしては世界最大級のクレーンを完成させました。 アームの長さは216メートルで、乗用車3000台に相当する重さの荷物を一度につり上げることが可能。
2. クルマの重さは平均1トンとして世界最大のクレーンが持ち上げるエネルギーは3000トン。
3. 本発明の潮汐発電は1000000÷3000=333倍のエネルギーが一日2~数回発生し利用できる。
(2)上記の10分の1:100x100x10メートルの場合10万立方メートルは「10万トンの浮力パワー」である。
(3)上記の100分の1:100x100x1メートルの場合1万立方メートルは「1万トンの浮力パワー」である。これでも普通車1万台を吊り上げるエネルギーが得られる。僅か1メートルの厚みがあれば普通車1万台を吊り上げられる。
海岸沿いに魚釣り場付きの海浜公園の下部に入れる50~1000畳敷きのタタミのものや、「円筒状」に形を変えて例えば洋上発電のハイブリッドスパー型の「上部浮体鋼(はがね)構造内部」に入れれば半永久的に使用できる。
その場合海水導入部分にドアーをつけておけば幾重にポリウレア樹脂とフジツボ付着防護剤のダブル塗布されたシールを剥がすだけで数十年の発電が見込める。これも本発明のポイントの一つである。
日本の場合を例にとると、日本で一番干満差(大潮の時の平均干満差)が大きい場所は、九州有明海の奥にある住ノ江付近で約5~6mもある。次に大きいところは瀬戸内海の笠岡・福山付近で約4.2mである。以下、北から日本周辺の干満差の状況を掲げる。
北海道南岸~北日本太平洋岸 約0.8~1.9m
東京湾 約2~2.4m
伊勢湾、三河湾 約2.4~2.7m
紀伊半島~九州太平洋岸 約1.8~2.7m
九州北岸 約1.1~2.8m
九州西岸(有明海を除く) 約1~3m
ちなみに、日本海側では干満差が小さく、大きいときでも30cm程度、これは、月や太陽の影響によって海水が盛り上がろうとしても、日本海の入り口が狭く浅いため、海水が集積しにくいことが理由である。
日本海側は干満差が小さいことから潮干狩りを行っている風景は見られないが、宮津湾付近の伊根地域では干満差が小さいことを利用し舟屋のような建築物が造られている。干満差が地域によって異なるのは、地形的な要素が大きく影響する。
萩 約 1.0 m
博多 約 2.2 m
伊万里 約 2.8 m
厳原 約 1.9 m
佐世保 約 3.3 m
三池 約 5.3 m
佐伯 約 2.1 m
例えば瀬戸内海は、豊後水道と紀伊水道、そして関門海峡の中央水道を介して外海とつながっている。 月と太陽の引力に影響されて海面が上下することが潮汐で、一番低い時(下がった時)を干潮、一番高い時(上がった時)を満潮と呼ぶ。
この干満差、牛窓では最大でおよそ1.8mほどであるが、瀬戸内海の一番激しいところでは4m近くにもなる。
一方、瀬戸内海は、本州と四国、九州によって囲まれた日本で一番大きな内海である。 浮かんでいる島の数は727。この内、有人島はおよそ150しかない。周囲100mに満たない岩場のようなものまで島とすると、2000近いといわれている。大小の島々を含めた海岸線の総延長は7,230kmで、東西がおよそ450km、南北は一番長いところで55km、面積22,203平方キロメートル、平均水深は38mで一番深いところでも450m程である。全体の約95%が水深70m以内という非常に浅い海である。
つまり「瀬戸内海は水たまり」と呼ばれるくらい浅い海域であり、平均水深38mというのは、地球上の海のレベルで見ると水たまりにも入れてもらえないほど浅い海なのである。地球上の海の平均水深は、富士山の標高と同じぐらいでおよそ3,800m。一番深いマリアナ海溝でおよそ10,000mの深さがあるので、いかに瀬戸内海が浅い海かが分かる。
瀬戸内海を筆頭に現状施設を生かせる洋上発電や、浅い海の人々の住む海岸沿い(湾)、入り江は、1.干満差、2.利用の多様さ(海浜公園/釣り場)、3.設置の容易さ、4.コストの安さ、5.浅さ、6.近さなどで、潮汐発電の好適地と言えるだろう。
一般的なアルキメデスの原理が役に立つ。アルキメデスの原理は、アルキメデスが発見した物理学の法則である。 「流体(液体や気体)中の物体は、その物体が押しのけている流体の質量が及ぼす重力と同じ大きさで上向きの浮力を受ける」というものである。なお海面が凍った場合は本発明の潮汐発電も影響を受ける。また、密度の高い塩水の場合には、真水の場合に比べ、体積あたりの浮力は大きくなる。
発電パワーエネルギーは工夫を凝らした発砲スチロールの浮力によって発生する。
1. 設置場所に合わせた「発泡スチロールの形状、サイズ」、「シール巻きの回数」、「ポリウレア樹脂」、「フジツボや海藻付着防止剤の種類の選定」を設計する。
2. 形状は四角形か円筒形が望ましい。理由は海で使用する場合はフラットなタタミ型か洋上発電設備の一部としてパイプ内部への設置をイメージしているからである。
3. 浮揚体の製造順序:1)形状の設計、2)設計図に応じて発泡スチロールにポリウレア樹脂を吹き付ける、3)その上にフジツボや海藻付着防止剤を吹き付ける、4)必要な耐用年数に合わせてさらにラッピングしてフジツボや海藻付着防止剤塗布の同じ作業工程を繰り返しメンテナンス作業の簡素化をはかる。
4. 新規設備の場合は、予め設備に装着する。海水部とは隔離された浮体上部には油圧タンク&ポンプ、動力伝達軸、動力伝達機、増速機、弾性バネ、発電機を設備する。
5. 潮位が下がる場合も下がる側に設置された油圧タンク&ポンプにエネルギーを備蓄する。
結論:潮汐発電は最安の発電コストを実現する。
その根拠として、1)設備製造コストが格安、2)設置場所が既存設備内であったり、近海出るため設置コストが格安、3)原料費が不要/月と太陽の引力、4)ランニングコストが格安、5)休むことなく発電するためトータル発電コストが格安。
以下引用:BNEF/ブルームバーグNEF (BNEF)は、世界6大陸の拠点に約250名の調査・分析スタッフを配置し、進化するエネルギー経済環境の上質な分析、データ、解説を提供、エネルギー関連をはじめとした各事業者、市場関係者、政策立案者を支援するブルームバーグのリサーチサービスであり、新エネルギー関連データセットおよび1日5000本におよぶニュース記事を通して、業界最先端の分析、予測、リスクマネジメントに関する情報をタイムリーに配信
・・・の分析によると、世界で再エネ発電コストは低下し続けており、世界の人口の3分の2にあたる国々で新規設備容量として最も安価な発電方法となっている。米国、英国などでは陸上風力はメガワット時あたりの発電コストは50ドルを下回り、ブラジルではメガワット時あたり30ドルとなっている。同様に太陽光も中国、インド、豪州ではメガワット時あたりの発電コストは40ドルを下回っている。
こうした発電コストの低下の理由として最初に挙げられるのは設備費の低下だ。太陽光発電に用いるモジュールと陸上風力でのタービンの価格は、それらの導入量と反比例する形で下落が続いている。
2010年からの今日までの経験曲線によると、太陽光発電の導入量が倍になることでモジュール価格は28%減少した。陸上風力も同様に導入量が倍になりタービンの価格は11%減少した。一方、モジュールの発電効率や風力発電の設備利用率の向上といった技術進歩もコスト削減を加速させている。
1.潮汐発電:10円以下、水力発電並みの再生エネルギーとなる。
2.石炭火力:国内では試算12.9円から13円台後半~22円台前半。
ガス・石油:LNGガスは試算の13.4円から10円台後半~14円台前半。石油は試算の28.9円~41.7円から24円台後半~27円台後半へ。大幅に低下する見込みであるが原油価格の高騰でコストは倍増する可能性がある。
3.自然エネルギー
自然エネルギーでは、陸上風力が試算の13.6円~21.5円から9円台後半~17円台前半へ。洋上風力が試算の30.3円~34.7円から26円台前半にそれぞれ大幅に低下する見込み。
4.地熱が16.8円→16円台後半、
5.一般水力が11.0円→10円台後半、
6.小水力が23.3円~27.1円→25円台前半、
7.バイオマス(専焼)が29.7円→29円台後半、
8.バイオマス(混焼)が13.2円→14円台前半~22円台後半。
9.産業用太陽光は、試算Aの12.7円~15.6円から試算Bでは8円台前半~11円台後半へ。
フジツボや海藻付着は設置場所、設備そのものに悪影響を与える可能性がありできるだけ付着を避けなければならない。そのために環境にも優しいフジツボや海藻付着防止剤を塗布する。
フジツボガードの成分は、海のミネラル成分等を凝縮しセラミック化した水溶性パウダーなので、海環境には全く無害で、塗料の溶解と共に特殊表面処理を施した成分が塗膜表面に露出し、フジツボ付着防止効果を発揮した後、海水中に溶けてしまうので、環境に全く負荷を与えない。
1. 巨大でコンクリート並みに堅牢な発泡スチロールを海中に設置。
2. 潮汐(日々の潮位の差)の上下運動を浮圧力と、逆に掛かる力が抜ける空圧力を油圧タンクと弾性バネに備蓄。
3. 油圧は発電モーターの回転力に変換させる。
4. 気圧の変動による潮位の変化の際も発電する。
5. 頑丈なポリウレア樹脂発泡スチロールの天板は、油圧ポンプと直結。
6. 油圧のタンクは大小あり、発電機にマッチさせるようAIがコントロール。
7. 潮位変動がない時間にも備蓄したエネルギーで発電を続ける。
8. 大型船舶を利用する場合は、船底に浮体構造物をコントロールする枠を取り付ける。浮体構造物の浮力を受け止める天板(パイプの枠)と油圧シリンダーを結ぶパイプや芯棒を設置する。
9. 船上には油圧パイプ、油圧ポンプ、油圧シリンダー、発電モーターをセットする。また干潮時には反力を利用するためにゼンマイバネ、弾性バネ、油圧を利用する。また潮位差を利用しない大型船舶の場合は浮体構造物と上部パイプ類とのコネクトを外せるようにしておけば反力による発電は可能である。
10. 大型船舶の浮力と反力の切り替えは自動車の前進、後進のギアチェンジを参考にすればよい。
出願 2015-056889 (2015/03/04) 公開 2016-160928 (2016/09/05)
国際特許分類(IPC): F03B13/26
1. 洋上風力発電の効率アップ
2. CO2ゼロ、原料費ゼロ、全設備の製造機能最低
3. 最も安い発電コスト(LNG、石炭、石油、原子力、太陽光、風力)
4. 多目的施設との共有(海浜公園、親子釣り場)
5. 従来の潮汐発電の常識を打ち破る設備費用ローコスト
6. 資源不使用
7. SDG‘sにも貢献
8. ヒトの居住地に近い場所に立地可能
9. サイズも自由自在
また潮位差はそれを増幅させる。本発明の浮体構造物とは、発泡スチロールにポリウレア樹脂をコーティングしたもので、日本国厚生労働省による環境基準(省令15)に合格し、漁業、農業、水質に安全で、しかも100年間品質を保持可能なデ-タもある。
本発明の利点は、錆はもちろんフジツボや海藻がつかないコーティング技術、さらにくっつかないラッピングを中間に施してその上にコーティングを繰り返し、剥がすだけでメンテナンスが完了すると同時に、素材の再利用が可能で、海や川の環境保護、漁業、飲料水、農業用水など水質にも配慮した、新しい発電の方法である。
以下は、ポリウレア樹脂に関する安全性と環境適合のデ-タである。
1.厚生省令15号に適合
2.JWWA K 143 に適合
3.変異原性試験の結果、「遺伝子突然変異誘発性を示さない」と結論
4.染色体異常試験の結果、「染色体異常性を示さない」と結論
5.粗度係数 0.0108
6.掃流摩耗試験の結果 スワエールの「平均摩耗深さ」は鉄 (SS-400) と同等以上
ポリウレア樹脂を吹き付け(スワエール上水用システム)によるポリウレア樹脂の安全性について。
厚生労働省令15号とは、水道水に関しては法律で様々な規制が設けられており、水質には厳しい基準が設けられている。また、浄水施設に使用される資材に関しても同様に基準があり、資材を浸出テストして浸出液の水質が基準値以下でなくてはならない。ポリウレア樹脂の塗膜はこのテストに適合している。(引用:三井化学)
本発明の要点は、1)今ある技術で解決可能、つまり設備、道具、器具の新規性、簡便性、ローコスト、油圧、弾性バネなどを利用し、2)大きな資金投資を必要とせずしかもロスの少ない身近な場所で発電できる点にある。
特殊加工された発泡スチロールの浮力を油圧に伝えエネルギーを備蓄、弾性バネ等も利用し、発電機を回転させるという浮力反力潮汐発電(月の引力発電/ムーンジェネレーション)である。
本発明は、動きは小さく見えてもパワーは偉大という月と太陽の引力を、今日すでに開発済みの技術の組み合わせによって、大きく、効率的なクリーン発電につなげたものである。
1)再生可能エネルギーと言えば、「太陽光発電」、「風力発電」、「水力発電」、「バイオマス発電」、「地熱発電」、「水素発電」、「アンモニア発電」と20年以上顔ぶれは変わらない。2)同時に求められるのがカーボンニュートラル脱二酸化炭素である。これには原子力発電がある。
いずれにしても、「新顔や革命児」は出ていない。100年前に発明された「ワットの蒸気機関車」、「化石燃料を燃やして水蒸気で発電タービンを回して発電する」が今なお電力の主流である。これでは地球温暖化は避けられない。発電革命が必要である。
本発明の根幹その1:発電のあらましと発電量/潮位の差で発電できるほどのエネルギーが得られるのか?
結論は、干潮時でも満潮時でも(上がる時も下がる時も)下記のような大きなパワーと電力が毎日、天候や昼夜に関係なく十分に得られる・・・である。たとえ干満の上下差が日本で最低レベルの1メートルであっても本発明の浮力と油圧と弾性バネを用いれば発電は可能である。
以下はそのあらましである。
(1)浮力発電のパワー計算:100メートル(立方)浮体の場合
先ず1立方メートルは100x100x100センチメートル=百万立方センチメートルつまり百万グラム=1000キログラム=1トンの水量である。
つまり水1立方メートル(1メートルx1メートルx1メートル)には1トンの重さがある。ということは本発明の浮体構造物1立方メートルにはおおよそ1トンの浮力パワーがある。1トンとはほぼトヨタのハイブリッド車の重量と同じである。
(2)さらに100メートルx100メートルx100メートルの立方体であれば、上記の百万倍である。トヨタのハイブリッド車を百万台持ち上げるパワーがある。恐るべし「月の引力」と言うことだ。これを利用しない手はないであろう。
100x100x100=1,000,000トン つまり・・・
「100万トンのエネルギー備蓄パワー」が得られる。
(3)では、百万トンの浮力パワーとはどれくらいの発電力かというと・・・
以下はイメージするための1例である。
1. 中国で世界最大級の移動式クレーンが完成しました。 中国メディアによりますと、建設機械大手の「M重工」は1日までに、自走できるタイプとしては世界最大級のクレーンを完成させました。 アームの長さは216メートルで、乗用車3000台に相当する重さの荷物を一度につり上げることが可能。
2. クルマの重さは平均1トンとして世界最大のクレーンが持ち上げるエネルギーは3000トン。
3. 本発明の潮汐発電は1000000÷3000=333倍のエネルギーが一日2~数回発生し利用できる。
(2)上記の10分の1:100x100x10メートルの場合10万立方メートルは「10万トンの浮力パワー」である。
(3)上記の100分の1:100x100x1メートルの場合1万立方メートルは「1万トンの浮力パワー」である。これでも普通車1万台を吊り上げるエネルギーが得られる。僅か1メートルの厚みがあれば普通車1万台を吊り上げられる。
海岸沿いに魚釣り場付きの海浜公園の下部に入れる50~1000畳敷きのタタミのものや、「円筒状」に形を変えて例えば洋上発電のハイブリッドスパー型の「上部浮体鋼(はがね)構造内部」に入れれば半永久的に使用できる。
その場合海水導入部分にドアーをつけておけば幾重にポリウレア樹脂とフジツボ付着防護剤のダブル塗布されたシールを剥がすだけで数十年の発電が見込める。これも本発明のポイントの一つである。
日本の場合を例にとると、日本で一番干満差(大潮の時の平均干満差)が大きい場所は、九州有明海の奥にある住ノ江付近で約5~6mもある。次に大きいところは瀬戸内海の笠岡・福山付近で約4.2mである。以下、北から日本周辺の干満差の状況を掲げる。
北海道南岸~北日本太平洋岸 約0.8~1.9m
東京湾 約2~2.4m
伊勢湾、三河湾 約2.4~2.7m
紀伊半島~九州太平洋岸 約1.8~2.7m
九州北岸 約1.1~2.8m
九州西岸(有明海を除く) 約1~3m
ちなみに、日本海側では干満差が小さく、大きいときでも30cm程度、これは、月や太陽の影響によって海水が盛り上がろうとしても、日本海の入り口が狭く浅いため、海水が集積しにくいことが理由である。
日本海側は干満差が小さいことから潮干狩りを行っている風景は見られないが、宮津湾付近の伊根地域では干満差が小さいことを利用し舟屋のような建築物が造られている。干満差が地域によって異なるのは、地形的な要素が大きく影響する。
萩 約 1.0 m
博多 約 2.2 m
伊万里 約 2.8 m
厳原 約 1.9 m
佐世保 約 3.3 m
三池 約 5.3 m
佐伯 約 2.1 m
例えば瀬戸内海は、豊後水道と紀伊水道、そして関門海峡の中央水道を介して外海とつながっている。 月と太陽の引力に影響されて海面が上下することが潮汐で、一番低い時(下がった時)を干潮、一番高い時(上がった時)を満潮と呼ぶ。
この干満差、牛窓では最大でおよそ1.8mほどであるが、瀬戸内海の一番激しいところでは4m近くにもなる。
一方、瀬戸内海は、本州と四国、九州によって囲まれた日本で一番大きな内海である。 浮かんでいる島の数は727。この内、有人島はおよそ150しかない。周囲100mに満たない岩場のようなものまで島とすると、2000近いといわれている。大小の島々を含めた海岸線の総延長は7,230kmで、東西がおよそ450km、南北は一番長いところで55km、面積22,203平方キロメートル、平均水深は38mで一番深いところでも450m程である。全体の約95%が水深70m以内という非常に浅い海である。
つまり「瀬戸内海は水たまり」と呼ばれるくらい浅い海域であり、平均水深38mというのは、地球上の海のレベルで見ると水たまりにも入れてもらえないほど浅い海なのである。地球上の海の平均水深は、富士山の標高と同じぐらいでおよそ3,800m。一番深いマリアナ海溝でおよそ10,000mの深さがあるので、いかに瀬戸内海が浅い海かが分かる。
瀬戸内海を筆頭に現状施設を生かせる洋上発電や、浅い海の人々の住む海岸沿い(湾)、入り江は、1.干満差、2.利用の多様さ(海浜公園/釣り場)、3.設置の容易さ、4.コストの安さ、5.浅さ、6.近さなどで、潮汐発電の好適地と言えるだろう。
一般的なアルキメデスの原理が役に立つ。アルキメデスの原理は、アルキメデスが発見した物理学の法則である。 「流体(液体や気体)中の物体は、その物体が押しのけている流体の質量が及ぼす重力と同じ大きさで上向きの浮力を受ける」というものである。なお海面が凍った場合は本発明の潮汐発電も影響を受ける。また、密度の高い塩水の場合には、真水の場合に比べ、体積あたりの浮力は大きくなる。
発電パワーエネルギーは工夫を凝らした発砲スチロールの浮力によって発生する。
1. 設置場所に合わせた「発泡スチロールの形状、サイズ」、「シール巻きの回数」、「ポリウレア樹脂」、「フジツボや海藻付着防止剤の種類の選定」を設計する。
2. 形状は四角形か円筒形が望ましい。理由は海で使用する場合はフラットなタタミ型か洋上発電設備の一部としてパイプ内部への設置をイメージしているからである。
3. 浮揚体の製造順序:1)形状の設計、2)設計図に応じて発泡スチロールにポリウレア樹脂を吹き付ける、3)その上にフジツボや海藻付着防止剤を吹き付ける、4)必要な耐用年数に合わせてさらにラッピングしてフジツボや海藻付着防止剤塗布の同じ作業工程を繰り返しメンテナンス作業の簡素化をはかる。
4. 新規設備の場合は、予め設備に装着する。海水部とは隔離された浮体上部には油圧タンク&ポンプ、動力伝達軸、動力伝達機、増速機、弾性バネ、発電機を設備する。
5. 潮位が下がる場合も下がる側に設置された油圧タンク&ポンプにエネルギーを備蓄する。
結論:潮汐発電は最安の発電コストを実現する。
その根拠として、1)設備製造コストが格安、2)設置場所が既存設備内であったり、近海出るため設置コストが格安、3)原料費が不要/月と太陽の引力、4)ランニングコストが格安、5)休むことなく発電するためトータル発電コストが格安。
以下引用:BNEF/ブルームバーグNEF (BNEF)は、世界6大陸の拠点に約250名の調査・分析スタッフを配置し、進化するエネルギー経済環境の上質な分析、データ、解説を提供、エネルギー関連をはじめとした各事業者、市場関係者、政策立案者を支援するブルームバーグのリサーチサービスであり、新エネルギー関連データセットおよび1日5000本におよぶニュース記事を通して、業界最先端の分析、予測、リスクマネジメントに関する情報をタイムリーに配信
・・・の分析によると、世界で再エネ発電コストは低下し続けており、世界の人口の3分の2にあたる国々で新規設備容量として最も安価な発電方法となっている。米国、英国などでは陸上風力はメガワット時あたりの発電コストは50ドルを下回り、ブラジルではメガワット時あたり30ドルとなっている。同様に太陽光も中国、インド、豪州ではメガワット時あたりの発電コストは40ドルを下回っている。
こうした発電コストの低下の理由として最初に挙げられるのは設備費の低下だ。太陽光発電に用いるモジュールと陸上風力でのタービンの価格は、それらの導入量と反比例する形で下落が続いている。
2010年からの今日までの経験曲線によると、太陽光発電の導入量が倍になることでモジュール価格は28%減少した。陸上風力も同様に導入量が倍になりタービンの価格は11%減少した。一方、モジュールの発電効率や風力発電の設備利用率の向上といった技術進歩もコスト削減を加速させている。
1.潮汐発電:10円以下、水力発電並みの再生エネルギーとなる。
2.石炭火力:国内では試算12.9円から13円台後半~22円台前半。
ガス・石油:LNGガスは試算の13.4円から10円台後半~14円台前半。石油は試算の28.9円~41.7円から24円台後半~27円台後半へ。大幅に低下する見込みであるが原油価格の高騰でコストは倍増する可能性がある。
3.自然エネルギー
自然エネルギーでは、陸上風力が試算の13.6円~21.5円から9円台後半~17円台前半へ。洋上風力が試算の30.3円~34.7円から26円台前半にそれぞれ大幅に低下する見込み。
4.地熱が16.8円→16円台後半、
5.一般水力が11.0円→10円台後半、
6.小水力が23.3円~27.1円→25円台前半、
7.バイオマス(専焼)が29.7円→29円台後半、
8.バイオマス(混焼)が13.2円→14円台前半~22円台後半。
9.産業用太陽光は、試算Aの12.7円~15.6円から試算Bでは8円台前半~11円台後半へ。
フジツボや海藻付着は設置場所、設備そのものに悪影響を与える可能性がありできるだけ付着を避けなければならない。そのために環境にも優しいフジツボや海藻付着防止剤を塗布する。
フジツボガードの成分は、海のミネラル成分等を凝縮しセラミック化した水溶性パウダーなので、海環境には全く無害で、塗料の溶解と共に特殊表面処理を施した成分が塗膜表面に露出し、フジツボ付着防止効果を発揮した後、海水中に溶けてしまうので、環境に全く負荷を与えない。
1. 巨大でコンクリート並みに堅牢な発泡スチロールを海中に設置。
2. 潮汐(日々の潮位の差)の上下運動を浮圧力と、逆に掛かる力が抜ける空圧力を油圧タンクと弾性バネに備蓄。
3. 油圧は発電モーターの回転力に変換させる。
4. 気圧の変動による潮位の変化の際も発電する。
5. 頑丈なポリウレア樹脂発泡スチロールの天板は、油圧ポンプと直結。
6. 油圧のタンクは大小あり、発電機にマッチさせるようAIがコントロール。
7. 潮位変動がない時間にも備蓄したエネルギーで発電を続ける。
8. 大型船舶を利用する場合は、船底に浮体構造物をコントロールする枠を取り付ける。浮体構造物の浮力を受け止める天板(パイプの枠)と油圧シリンダーを結ぶパイプや芯棒を設置する。
9. 船上には油圧パイプ、油圧ポンプ、油圧シリンダー、発電モーターをセットする。また干潮時には反力を利用するためにゼンマイバネ、弾性バネ、油圧を利用する。また潮位差を利用しない大型船舶の場合は浮体構造物と上部パイプ類とのコネクトを外せるようにしておけば反力による発電は可能である。
10. 大型船舶の浮力と反力の切り替えは自動車の前進、後進のギアチェンジを参考にすればよい。
出願 2015-056889 (2015/03/04) 公開 2016-160928 (2016/09/05)
国際特許分類(IPC): F03B13/26
1. 洋上風力発電の効率アップ
2. CO2ゼロ、原料費ゼロ、全設備の製造機能最低
3. 最も安い発電コスト(LNG、石炭、石油、原子力、太陽光、風力)
4. 多目的施設との共有(海浜公園、親子釣り場)
5. 従来の潮汐発電の常識を打ち破る設備費用ローコスト
6. 資源不使用
7. SDG‘sにも貢献
8. ヒトの居住地に近い場所に立地可能
9. サイズも自由自在
(要約)
脱二酸化炭素とエネルギー問題を同時解決する新しいローコスト発電で、しかも安全、また発電までの工期も短期間、かつ既存の海上風力発電設備や中古の大型船舶も利用可能な、発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電である。
(課題)
港湾会社、浚渫の土木会社、造船会社、重電会社、建設会社、電力会社、発動機の会社、商社、ドイツ、フランス、デンマーク、オラランダ、バルト三国、イギリス、カナダ、アメリカ、中東の産油国、中国、インドなどの理解が得られるかが課題である。
(解決手段)
特許制度の目的は、新たな産業の隆興と新技術の広汎による後発者の啓発、人々のより豊かで安心な暮らしのためである。解決方法は、本出願が一刻も早く特許として認められ、いろいろな国々に出願され特許になれば排他的権利の保証により上記等の多くの参入者が期待でき脱二酸化炭素社会とエネルギー問題解決に寄与することである。
(選択図)図46
Claims (8)
- 潮汐を利用した上昇時でも下降時でも発電できる発泡スチロールを使用した浮体構造による潮汐発電と設備並びに部品類と設備の類
- 発電に用いる浮体・浮力構造物の製造のために使用されるポリウレア樹脂をコーティングした発泡スチロールをベースにした製造物
- 発電に用いる浮体・浮力構造物のために製造、使用されるポリウレア樹脂をコーティングした発泡スチロールに対して周りに付着するフジツボや海藻付着防止剤を塗布した浮力獲得素材並びに発電材料
- 発電に用いる発泡スチロールの浮体・浮力構造物を納める甲板状の魚釣り海上公園並びに発電兼用展望台などの沿岸浮体建造物
- 発泡スチロールで成型されたタタミ形状、円筒形状、立方体、楕円形、球形など発電のための成型されたポリウレア樹脂を吹き付けた発泡スチロールを核にした発電用の浮体・浮力構造物
- 上記のポリウレア樹脂で固められた発電用浮体浮力構造物を用いて油圧と弾性バネを用いて補助的電力発電を行う洋上風力設備ならびに形状を洋上風力設備に合わせたポリウレア樹脂発泡スチロール浮力構造物
- ポリウレア樹脂を塗布した発泡スチロール、並びにフジツボや海藻付着防止剤を塗布し、エネルギーの備蓄機器として油圧と弾性バネを用い、沿岸あるいは水深5~90メートルの海岸浅瀬に設置する潮の満ち干を利用した潮汐発電機器と器具類
- 潮汐をポリウレア樹脂で固められた発泡スチロールの浮力パワーを備蓄する油圧装置と弾性バネ並びにそれを円運動に変換し発電機を回すシステムと一連の発電機器類並びに部品類
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022030422A JP2023126006A (ja) | 2022-02-28 | 2022-02-28 | 発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022030422A JP2023126006A (ja) | 2022-02-28 | 2022-02-28 | 発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023126006A true JP2023126006A (ja) | 2023-09-07 |
Family
ID=87887758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022030422A Pending JP2023126006A (ja) | 2022-02-28 | 2022-02-28 | 発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023126006A (ja) |
-
2022
- 2022-02-28 JP JP2022030422A patent/JP2023126006A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wilberforce et al. | Overview of ocean power technology | |
Chen et al. | Attraction, challenge and current status of marine current energy | |
Charlier et al. | Ocean energy: tide and tidal power | |
Wagner et al. | Introduction to hydro energy systems: basics, technology and operation | |
Gorlov | Helical turbines for the gulf stream: conceptual approach to design of a large-scale floating power farm | |
US10422311B2 (en) | Hydroelectricity generating unit capturing marine current energy | |
Meisen et al. | Ocean energy technologies for renewable energy generation | |
JP2019513605A (ja) | 再生可能なエネルギバージ船 | |
Kai et al. | Current status and possible future applications of marine current energy devices in Malaysia: A review | |
CN105501404A (zh) | 多边形结构的海上浮式核发电装备 | |
JP2004068638A (ja) | 海流発電装置 | |
Simeons | Hydro-power: the use of water as an alternative source of energy | |
Lemonis et al. | Wave and tidal energy conversion | |
Christensen et al. | The wave energy challenge: the wave dragon case | |
TWI334004B (ja) | ||
JP2023126006A (ja) | 発泡スチロールにポリウレア樹脂をランピングし、強固な浮体構造物とし、水中に沈めて、浮力と油圧とバネの反力を生かした浮力と潮位差による発電 | |
Previsic et al. | System level design, performance, cost and economic assessment–Alaska river in-stream power plants | |
Buigues et al. | Sea energy conversion: problems and possibilities | |
Agbakwuru et al. | Hybridized Vertical-Axis Underwater Current Power Turbine System Suitable for Low Underwater Current Velocities: A Report of Its Application and Potential in Imo River, Nigeria | |
Becker et al. | The energy river: realising energy potential from the river Mersey | |
US20240125305A1 (en) | Energy production from deep ocean pressure | |
Peppas | Ocean, Tidal and Wave Energy: Power from the Sea | |
Herrera | Identification of electric power generation techniques taking advantage of sea energy for its integration in the energy matrix of Ecuador | |
Mukherjee et al. | Energy From the Ocean | |
Siddiqui et al. | Ocean Energy: The Future of Renewable Energy Generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221003 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221024 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230311 |