JP2023125464A - 飛行船 - Google Patents

飛行船 Download PDF

Info

Publication number
JP2023125464A
JP2023125464A JP2022029569A JP2022029569A JP2023125464A JP 2023125464 A JP2023125464 A JP 2023125464A JP 2022029569 A JP2022029569 A JP 2022029569A JP 2022029569 A JP2022029569 A JP 2022029569A JP 2023125464 A JP2023125464 A JP 2023125464A
Authority
JP
Japan
Prior art keywords
airship
main air
air bladder
air sac
bladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022029569A
Other languages
English (en)
Inventor
阿竹克人
Katsuhito Atake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atake Laboratory Inc
Original Assignee
Atake Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atake Laboratory Inc filed Critical Atake Laboratory Inc
Priority to JP2022029569A priority Critical patent/JP2023125464A/ja
Publication of JP2023125464A publication Critical patent/JP2023125464A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】水素の輸送手段に適した飛行船を開示する。【解決手段】飛行船は、浮揚ガスが充填される主気嚢と、前記主気嚢の外部に位置するとともに、前記浮揚ガスが充填されている少なくとも一つの副気嚢とを備える。前記副気嚢には、当該副気嚢と前記主気嚢との間を接続及び隔絶するための接続弁が設けられている。この飛行船では、前記主気嚢の内圧が、前記副気嚢の内圧よりも高く、前記副気嚢の前記内圧の変化に対する体積の変化量は、前記主気嚢の内圧の変化に対する体積の変化量よりも大きい。【選択図】図1

Description

本明細書は、飛行船に関し、特に、軟式飛行船に関する。
特許文献1に、飛行船が開示されている。この飛行船は、気嚢の内部に、浮揚ガスを収容するガス嚢と、空気を収容する複数の空気嚢とを備えている。このような構成によると、各空気嚢の内圧を調節することで、飛行船の姿勢を制御することができる。
特開2011-93422号公報
近年、持続可能なエネルギー媒体として、水素が注目されている。水素をエネルギー媒体として普及させるために、二酸化炭素を出さない安価な製造方法の開発とともに、安価な輸送の手段が必要とされている。水素の大規模な輸送方法としては、パイプラインによる輸送と並んで、天然ガスのように液化した上で、専用のタンカーによる海上輸送も実用化が進められている。
しかしながら、水素を液化するために、約-253℃まで冷却する必要があるとともに、事前にオルト水素を全てパラ水素に変換する必要もあることから、大きなエネルギーを必要とする。また、タンカーの主材料である鉄は、低温にすると脆化が進行し易いという特性を持ち、水素は、鉄のような金属に浸透して当該金属の脆化を招くという特性を有する。そのことから、液体水素用のタンカーの建造には、液化天然ガス用のタンカーの建造以上に、高い技術とコストが必要となる。
また、経済面においても、タンカーでは、せいぜい15ノット程度の輸送速度しか得ることができず、需要に迅速に対応することができない。水素社会を実現するためには、水素の価格を現在の半分以下にすることが求められており、タンカーのように高コストで低速な輸送手段では、この要請に応えることが難しい。
水素のための新規で有用な輸送手段として、飛行船の利用が考えられる。飛行船は、概して、軟式飛行船、半硬式飛行船、及び、硬式飛行船に大別される。軟式飛行船は、気嚢自体を船体としており、剛性を確保する骨組みを特に持たない。これに対して、半硬式飛行船は、一定の骨組みを有しており、硬式飛行船は、船体全体が剛体として構成され、その内部に浮上用の気嚢を格納している。
軟式飛行船は、構造が簡単なことから、今日実用化されている飛行船の大半を占めている。剛性を確保するために、船体はラグビーボール形であるとともに、浮揚ガスを加圧したり、浮力とピッチ角の調整を行うために、バロネット(空気嚢)を有している(特許文献1参照)。一般に、浮揚ガスは高価なヘリウムであることから、その損失を最小限にするために、バロネット内の空気を加圧することによって、全体を加圧し剛性を確保している。従って、バロネット内の空気と浮揚ガスのヘリウムとが等圧となるために、スロッシングなどの問題を生じやすい。また、こうして得られる剛性には限界があるため、船体の大きさや形状にも限界があり、大型化や高速化するには内部に骨組みを有する半硬式、または外殻を剛体とし、その内部に浮揚ガスの気嚢を有する硬式飛行船という形式が必要とされてきた。なお、史上最大の航空機であるヒンデンブルグ号は、硬式飛行船である。
また、水素は空気中に4パーセントの割合で混入しただけでも、爆発限界を越えてしまう。そのため、水素を浮揚ガスとしてバロネット方式の軟式飛行船を構成した場合、水素がバロネットの隔膜を通過してバロネット内へ漏洩すると、バロネット内の空気が爆発の危険にさらされる可能性がある。一方で、解放された外気に水素が漏洩した場合には、水素の拡散速度が速いために爆発限界に達することは想定されない。
以上を鑑み、本明細書は、新規で有用な飛行船を開示する。
本明細書が開示する飛行船は、浮揚ガスが充填される主気嚢と、前記主気嚢の外部に位置するとともに、前記浮揚ガスが充填されている少なくとも一つの副気嚢とを備える。前記副気嚢には、当該副気嚢と前記主気嚢との間を接続及び隔絶するための接続弁が設けられている。この飛行船では、前記主気嚢の内圧が、前記副気嚢の内圧よりも高く、前記副気嚢の前記内圧の変化に対する体積の変化量は、前記主気嚢の前記内圧の変化に対する体積の変化量よりも大きい。
上記した構成では、主気嚢の内圧が副気嚢の内圧よりも低いことから、主気嚢から副気嚢へ浮揚ガスを供給することによって、副気嚢の内圧を上昇させることができる。ここで、副気嚢の体積変化率(内圧の変化に対する体積の変化量)は、主気嚢の体積変化率よりも大きい。従って、主気嚢から副気嚢へ浮揚ガスを供給したときに、主気嚢に生じる体積の減少量よりも、副気嚢に生じる体積の増大量の方が大きくなる。これにより、飛行船も生じる浮力を容易に高めることができる。副気嚢は、主気嚢の外部に位置しているため、主気嚢の内圧にかかわらず、副気嚢の体積はその内圧に応じて自由に変化することができる。従って、主気嚢の内圧を比較的に高くすることができ、それによって、主気嚢の剛性を高めることができる。そして、主気嚢の剛性を高めることができると、主気嚢の大型化を図ることもできる。さらに、主気嚢と副気嚢との間で内圧が互いに異なることから、スロッシングといった問題の発生も抑制される。
以上のことから、本明細書が開示する飛行船は、水素をペイロードとして輸送する輸送手段として採用することができる。即ち、水素の供給元である国や地域では、水素ガスを主気嚢に高圧に充填することで、飛行船に大量の水素を積載することができる。一例として、水素ガスは、空気を基準とする比重が0.0695と非常に小さく、その質量は空気の14.4分の1に相当する。即ち、主気嚢に水素ガスを充填した場合、主気嚢の内圧が14.4気圧となることで、ようやく外部の空気と密度が釣り合う。従って、主気嚢の内圧が10気圧以上であっても、飛行船の自重が十分に軽量であれば浮力を発生させることができる。
水素の供給元で水素が積載された飛行船は、その水素を浮揚ガスとして利用することで、水素の需要先である国や地域まで飛行することができる。そして、水素の需要先では、浮揚ガスとして利用してきた水素ガスを、ペイロードとして荷下ろしすることができる。このとき、供給元又はその他を目的地とする次の飛行のために、浮揚ガスとして必要とされる量の水素ガスは、荷下ろしすることなく保持してもよい。
実施例1の飛行船10を模式的に示す側面図。図中の方向UPは上下方向における上方を示し、図中の方向DNは上下方向における下方を示す。図中の方向FRは前後方向における前方を示し、図中の方向RRは前後方向における後方を示す。上下方向は、前後方向に対して垂直である。 実施例1における副気嚢14の断面を模式的に示す図であって、特に、接続弁26が作動している様子を示す。同様の構成は、実施例2における副気嚢114にも採用されている。 実施例1の飛行船10における副気嚢14の断面を模式的に示す図であって、特に、ポンプ28が作動している様子を示す。 実施例1における副気嚢14の断面を模式的に示す図であって、特に、排気弁30が作動している様子を示す。 実施例1の飛行船10における副気嚢14の断面を模式的に示す図であって、特に、ポンプ28と排気弁30の両者が作動している様子を示す。 実施例1の飛行船10において、飛行中の飛行船10からドローン22が離脱した様子を示す。 実施例2の飛行船100を模式的に示す平面図。図中の方向LHは左右方向における左方を示し、図中の方向RHは左右方向における右方を示す。左右方向は、上下方向及び前後方向に対して垂直である。
本技術の一実施形態において、副気嚢には、当該副気嚢内の浮揚ガスを主気嚢へ圧送するポンプが設けられていてもよい。このような構成によると、副気嚢内の浮揚ガスを外部へ排出することなく、副気嚢の内圧を低下させることができる。
上記に加え、又は代えて、副気嚢には、当該副気嚢内の浮揚ガスを外部へ排出するための排出弁が設けられている。このような構成によると、簡便な構成で、副気嚢の内圧を低下させることができる。特に限定されないが、排気弁は、浮揚ガスの排出流量を調整可能な流量調整弁や、副気嚢の内圧が設定圧力を上回るときに浮揚ガスを排出する圧力調整弁であって、その設定圧力が調整可能なものであってもよい。
本技術の一実施形態において、少なくとも一つの副気嚢は、複数の副気嚢を有してもよい。この場合、複数の副気嚢は、主気嚢の長手方向に沿って配置されていてもよい。このような構成によると、複数の副気嚢の内圧をそれぞれ調整することによって、主気嚢(即ち、飛行船)のピッチ角を制御することができる。なお、ここでいうピッチ角とは、主気嚢の長手方向が水平面と成す角を意味する。
本技術の一実施形態において、主気嚢の体積は、副気嚢の体積よりも大きくてもよい。このような構成によると、主気嚢から副気嚢へ十分な量の浮揚ガスを供給することができる。また、主気嚢の体積が大きいほど、飛行船を水素の輸送手段として利用する場合に、より多くの水素を輸送することができる。
本技術の一実施形態において、主気嚢の内圧は1.2気圧以上であってもよい。特に、浮揚ガスが水素ガスである場合、主気嚢の内圧は10気圧以上であってもよい。主気嚢の内圧を高圧にするほど、主気嚢の剛性(即ち、飛行船の剛性)を高めることができる。また、飛行船を水素の輸送手段として利用する場合に、より多くの水素を輸送することができる。
本技術の一実施形態において、飛行船は、主気嚢に対して接続されており、飛行船の進行方向を変更するためのドローンをさらに備えてもよい。このような構成によると、主気嚢を大型化した場合でも、飛行船の進行方向を容易に変更することができる。
上記した実施形態において、ドローンは、人が搭乗可能であってもよい。この場合、ドローンは、飛行船の飛行中に、主気嚢から離脱可能に構成されていてもよい。このような構成によると、飛行船の搭乗者は、必要に応じて、ドローンを利用することにより、飛行中の飛行船から離脱することができる。
(実施例1)図面を参照して、実施例1の飛行船10について説明する。本実施例の飛行船10は、いわゆる軟式飛行船であり、比較的に簡素な構成を有する。図1に示すように、飛行船10は、浮揚ガスが充填される主気嚢12と、主気嚢12の外部に位置するとともに、浮揚ガスが充填されている複数の副気嚢14とを備える。特に限定されないが、浮揚ガスは、例えば水素ガス又はヘリウムガスであってよい。
主気嚢12は、概して円筒形状を有しており、前後方向FR、RRに沿って延びている。即ち、主気嚢12の長手方向は、前後方向FR、RRに平行である。複数の副気嚢14は、主気嚢12の長手方向に沿って配列されている。複数の副気嚢14の数については特に限定されない。一例ではあるが、本実施例の飛行船10は、三つの副気嚢14a、14b、14cを有する。三つの副気嚢14a、14b、14cには、主気嚢12の前部に位置する第1副気嚢14aと、主気嚢12の中間部に位置する第2副気嚢14bと、主気嚢12の後部に位置する第3副気嚢14cとが含まれる。他の実施形態として、飛行船10は、少なくとも一つの副気嚢14を備えればよい。
主気嚢12には、浮揚ガスが比較的に高圧で充填されており、主気嚢12の内圧は、各副気嚢14の内圧よりも高くなっている。水素ガスの比重は0.0695と非常に小さく、その質量は空気の14.4分の1に相当する。従って、主気嚢12の内圧が10気圧以上であるとしても、十分に軽量であってガスバリア性を有し、かつ、高い圧力に耐え得る構造強度を有する素材を採用することで、飛行船10自体の重量に対して、主気嚢12は十分な浮力を発生させることができる。
主気嚢12を構成するシート材は、引っ張り力に対して高い剛性(即ち、高いヤング率)を有する。従って、主気嚢12に浮揚ガスが高圧で充填された場合でも、主気嚢12の体積に生じる変化は比較的に小さい。これに対して、各副気嚢14を構成するシート材は、主気嚢12を構成するシート材よりも、引っ張り力に対して低い剛性(即ち、低いヤング率)を有する。従って、各副気嚢14の内圧の変化に対する体積の変化量は、主気嚢12の内圧の変化に対する体積の変化量よりも大きくなる。主気嚢12を構成するシート材は、ガスバリア性も求められることから、構造強度を満たす部材との複合素材あるいは多重膜とすることが考えられる。
主気嚢12には、飛行船10の推進力を発生させる推進機16と、飛行船10の姿勢を安定させる複数の尾翼18が設けられている。推進機16は、主気嚢12の細長い形状の貢献もあって、飛行船10を比較的に高速で飛行させることができる。特に限定されないが、本実施例における推進機16は、75ノット以上の速度を達成し得るように設計されている。そのことから、主気嚢12の形状は、動的揚力が得られるように設計されてもよい。
飛行船10はさらに、コンテナポッド20と、ドローン22とを備える。コンテナポッド20は、各種のペイロードを積載することができる。特に限定されないが、コンテナポッド20は、主気嚢12に対して着脱可能に接続されている。ドローン22は、いわゆるマルチコプターであり、単独で飛行することもできる。ドローン22は、主気嚢12に接続されており、例えば船舶におけるタグボードのように、飛行船10の進行方向を変更することができる。
飛行船10はさらに、制御装置24を備える。制御装置24は、メモリやプロセッサを有しており、飛行船10の飛行動作を制御するようにプログラムされている。特に限定されないが、制御装置24は、ドローン22に配置されてもよい。制御装置24は、無線又は有線により、推進機16や尾翼18と通信可能に接続されており、推進機16や尾翼18の動作を制御することができる。なお、制御装置24は、人の操作に応じて、推進機16や尾翼18の動作を制御してもよい。あるいは、制御装置24は、地上等に配置された外部装置と無線で通信しながら、外部装置による指令に応じて推進機16や尾翼18の動作を制御してもよい。あるいは、制御装置24は、自らの判断に基づいて、推進機16や尾翼18の動作を自律制御してもよい。
図2に示すように、第1副気嚢14aには、接続弁26とポンプ28と排気弁30とが設けられている。接続弁26は、主気嚢12と第1副気嚢14aとの間の隔壁に位置しており、第1副気嚢14aと主気嚢12との間を接続及び隔絶することができる。即ち、接続弁26が開弁されると、第1副気嚢14aと主気嚢12との間が接続され、主気嚢12から第1副気嚢14aへ浮揚ガスが供給される。その結果、第1副気嚢14aの体積は増大し、第1副気嚢14aによる浮力が上昇する。接続弁26は、制御装置24と無線又は有線によって接続されており、接続弁26の動作は制御装置24によって制御される。同様の接続弁26は、第1副気嚢14aだけでなく、第2副気嚢14b及び第3副気嚢14cにも設けられている。なお、図2から図5では、便宜上、主気嚢12及び副気嚢14がある程度の厚みで図示されているが、それらを構成するシート材には構造的に可能な限り軽く薄い膜材が使用される。
ポンプ28は、主気嚢12と第1副気嚢14aとの間の隔壁に位置しており、第1副気嚢14a内の浮揚ガスを主気嚢12へ圧送することができる。これにより、第1副気嚢14a内の浮揚ガスを外部へ排出することなく、第1副気嚢14aの内圧を低下させることができる。図3に示すように、ポンプ28が動作すると、第1副気嚢14aの内圧は低下する。その結果、第1副気嚢14aの体積は減少し、第1副気嚢14aによる浮力が低下する。ポンプ28は、制御装置24と無線又は有線によって接続されており、ポンプ28の動作は制御装置24によって制御される。同様のポンプ28は、第1副気嚢14aだけでなく、第2副気嚢14b及び第3副気嚢14cにも設けられている。
排気弁30は、第1副気嚢14aの外壁に位置しており、第1副気嚢14a内の浮揚ガスを外部へ排出することができる。即ち、図4に示すように、排気弁30が開弁されると、第1副気嚢14a内の浮揚ガスが外部へ排出される。その結果、第1副気嚢14aの体積は減少し、第1副気嚢14aによる浮力が低下する。排気弁30は、制御装置24と無線又は有線によって接続されており、排気弁30の動作は制御装置24によって制御される。同様の排気弁30は、第1副気嚢14aだけでなく、第2副気嚢14b及び第3副気嚢14cにも設けられている。
図5に示すように、制御装置24は、ポンプ28と排気弁30との両者を同時に動作させることもできる。制御装置24は、ポンプ28と排気弁30との両者を同時に動作させ、第1副気嚢14aの体積を急速に減少させることで、第1副気嚢14aによる浮力を速やかに低下させることができる。なお、各副気嚢14には、ポンプ28と排気弁30の一方のみが設けられていてもよい。
以上の構成により、制御装置24は、各副気嚢14の接続弁26とポンプ28(及び/又は排気弁30)との動作を制御することで、各副気嚢14による浮力をそれぞれ調整することができる。これにより、飛行船10を上下方向へ移動させたり、飛行船10のピッチ角を調整することができる。
図7に示すように、ドローン22は、飛行船10の飛行中に主気嚢12から離脱可能に構成されている。特に、本実施例におけるドローン22は、人が搭乗可能に構成されている。そのことから、飛行船10の搭乗者は、必要に応じて、ドローン22を利用することにより、飛行中の飛行船10から離脱することができる。この場合でも、ドローン22に搭載された制御装置24は、飛行船10の無線で通信することにより、飛行船10の飛行を制御し続けることができる。
本実施例の飛行船10では、主気嚢12の内圧が各副気嚢14の内圧よりも低いことから、主気嚢12から各副気嚢14へ浮揚ガスを供給することによって、各副気嚢14の内圧を上昇させることができる。ここで、各副気嚢14の体積変化率(内圧の変化に対する体積の変化量)は、主気嚢12の体積変化率よりも大きい。従って、主気嚢12から各副気嚢14へ浮揚ガスを供給したときに、主気嚢12に生じる体積の減少量よりも、各副気嚢14に生じる体積の増大量の方が大きくなる。これにより、飛行船10も生じる浮力を容易に高めることができる。
各副気嚢14は、主気嚢12の外部に位置しているため、主気嚢12の内圧にかかわらず、各副気嚢14の体積はその内圧に応じて自由に変化することができる。従って、主気嚢12の内圧を比較的に高くすることができ、それによって、主気嚢12の剛性を高めることができる。そして、主気嚢12の剛性を高めることができると、主気嚢12の大型化を図ることもできる。さらに、主気嚢12と各副気嚢14との間で内圧が互いに異なることから、スロッシングといった問題の発生も抑制することができる。これらの新規で有用な特徴により、本実施例の飛行船10は、水素をペイロードとして輸送する輸送手段として採用することができる。
(実施例2)図面を参照して、実施例2の飛行船100について説明する。実施例2の飛行船100は、二つの主気嚢112を備えており、この点において実施例1の飛行船10と相違する。二つの主気嚢112は、それぞれ前後方向に延びているとともに、左右方向において互いに隣接している。各主気嚢112には、推進機16及び複数の尾翼18が設けられている。複数の副気嚢114は、二つの主気嚢112の間に配置されており、二つの主気嚢112の長手方向に沿って配列されている。複数の主気嚢112が水平に配列されていることで、より動的な揚力が得やすい形状となり、飛行高度を低高度に限定することによる地面効果を利用することで、より高圧で大容量の水素を運ぶことができる。
実施例2における各主気嚢112の構成や機能は、実施例1における主気嚢12の構成や機能と一致している。実施例2における各副気嚢114の構成や機能についても、実施例1における各副気嚢14の構成や機能と一致している。また、実施例2の飛行船100にも、実施例1と同様に、接続弁26、ポンプ28、排気弁30が設けられてもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10、100:飛行船
12、112:主気嚢
14、114:副気嚢
16:推進機
18:尾翼
20:コンテナポッド
22:ドローン
24:制御装置
26:接続弁
28:ポンプ
30:排気弁

Claims (9)

  1. 浮揚ガスが充填される主気嚢と、
    前記主気嚢の外部に位置するとともに、前記浮揚ガスが充填されている少なくとも一つの副気嚢と、
    を備え、
    前記副気嚢には、当該副気嚢と前記主気嚢との間を接続及び隔絶するための接続弁が設けられており、
    前記主気嚢の内圧は、前記副気嚢の内圧よりも高く、
    前記副気嚢の前記内圧の変化に対する体積の変化量は、前記主気嚢の前記内圧の変化に対する体積の変化量よりも大きい、
    飛行船。
  2. 前記副気嚢には、当該副気嚢内の前記浮揚ガスを前記主気嚢へ圧送するポンプが設けられている、請求項1に記載の飛行船。
  3. 前記副気嚢には、当該副気嚢内の前記浮揚ガスを外部へ排出するための排出弁が設けられている、請求項1又は2に記載の飛行船。
  4. 前記少なくとも一つの副気嚢は、複数の副気嚢を有し、
    前記複数の副気嚢は、前記主気嚢の長手方向に沿って配置されている、請求項1から3のいずれか一項に記載の飛行船。
  5. 前記主気嚢の体積は、前記副気嚢の体積よりも大きい、請求項1から3のいずれか一項に記載の飛行船。
  6. 前記主気嚢の前記内圧は、1.2気圧以上である、請求項1から4のいずれか一項に記載の飛行船。
  7. 前記主気嚢を複数有する、請求項1から6のいずれか一項に記載の飛行船。
  8. 前記主気嚢に対して接続されており、前記飛行船の進行方向を変更するためのドローンをさらに備える、請求項1から7のいずれか一項に記載の飛行船。
  9. 前記ドローンは、人が搭乗可能であり、前記飛行船の飛行中に前記主気嚢から離脱可能に構成されている、請求項8に記載の飛行船。
JP2022029569A 2022-02-28 2022-02-28 飛行船 Pending JP2023125464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022029569A JP2023125464A (ja) 2022-02-28 2022-02-28 飛行船

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022029569A JP2023125464A (ja) 2022-02-28 2022-02-28 飛行船

Publications (1)

Publication Number Publication Date
JP2023125464A true JP2023125464A (ja) 2023-09-07

Family

ID=87887122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022029569A Pending JP2023125464A (ja) 2022-02-28 2022-02-28 飛行船

Country Status (1)

Country Link
JP (1) JP2023125464A (ja)

Similar Documents

Publication Publication Date Title
US9745042B2 (en) Airship including aerodynamic, floatation, and deployable structures
US8091826B2 (en) Aerostatic buoyancy control system
US9493223B2 (en) System, method and apparatus for widespread commercialization of hydrogen as a carbon-free alternative fuel source
US9828082B2 (en) Airship having a cargo compartment
US4366936A (en) Aircraft having buoyant gas balloon
AU2007347827B2 (en) Lenticular airship
US20070295859A1 (en) Heavy lift airship
WO2006024842A2 (en) Improvements in or relating to airships
JP3903202B2 (ja) 成層圏用飛行船
WO2011042316A1 (en) "momoheli ii" lifting module and vehicles
US4365772A (en) Aircraft having buoyant gas balloon
CN204726636U (zh) 一种带有平衡装置的船舶
US6793180B2 (en) Lighter than air foldable airship
US3338203A (en) Skiboat
JP2023125464A (ja) 飛行船
US20200385098A1 (en) System, method and apparatus for widespread commercialization of hydrogen as a carbon-free alternative fuel source
EP0023843B1 (en) Aircraft having buoyant gas balloon
Bock et al. Lenticular cargo airships: the case for carbon-free fuel operation
CN117682040A (zh) 艇身结构及系留艇
US1259804A (en) Aerial machine.
AU2012200617B2 (en) Lenticular airship
TWM463710U (zh) 運輸裝置