JP2023122100A - Thermal management system - Google Patents

Thermal management system Download PDF

Info

Publication number
JP2023122100A
JP2023122100A JP2022025528A JP2022025528A JP2023122100A JP 2023122100 A JP2023122100 A JP 2023122100A JP 2022025528 A JP2022025528 A JP 2022025528A JP 2022025528 A JP2022025528 A JP 2022025528A JP 2023122100 A JP2023122100 A JP 2023122100A
Authority
JP
Japan
Prior art keywords
heat medium
temperature
circuit
heat
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022025528A
Other languages
Japanese (ja)
Inventor
巌 内門
Iwao Uchikado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2022025528A priority Critical patent/JP2023122100A/en
Priority to PCT/JP2023/002096 priority patent/WO2023162549A1/en
Publication of JP2023122100A publication Critical patent/JP2023122100A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine

Abstract

To provide a thermal management system that can efficiently and inexpensively regulate a temperature of an object whose temperature is regulated, in regulating the object whose temperature is regulated by circulating a hating medium in the object, and can eliminate a problem caused by bias of the heating medium.SOLUTION: A thermal management system comprises: a temperature regulation circuit 42 having a third pump 23 for circulating a heating medium in a battery 2; a high-temperature heating medium circuit 44 in which the heating medium heated by a heating part 14 for heating the heating medium is circulated; a low-temperature heating medium circuit 43A in which the heating medium cooled by a cooling part 13 for cooling the heating medium is circulated; thermo-valves 31 and 30 that selectively introduce a heating medium flowing through the high-temperature heating medium circuit 44 and a heating medium flowing through the low-temperature heating medium circuit 43A into the heat-regulation circuit 42; and a storage part 26 that is provided on a pathway through which the heating medium is returned from the temperature-regulation circuit 42 to the high-temperature heating medium circuit 44 or the low-temperature heating medium circuit 43A, and that stores the heating medium.SELECTED DRAWING: Figure 1

Description

本発明は、温調対象に熱媒体を循環させて温調する熱マネジメントシステムに関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat management system that regulates temperature by circulating a heat medium to an object to be temperature controlled.

従来より、例えば電動車両(電気自動車、ハイブリッド自動車等)に搭載されるバッテリ(電池)や走行用電動モータ、インバータ等(以下、温調対象と称する)は発熱を生じる。そのため、熱媒体を複数の温調対象に循環させて温調するものや、車室内を空調するためのヒートポンプ回路(冷媒回路)を用い、放熱器で放熱する冷媒(フロン冷媒)と吸熱器内で吸熱する冷媒で熱媒体(水等)を加熱、冷却し、この熱媒体を熱媒体回路で温調対象に循環させることで温調する熱マネジメントシステムが開発されている(例えば、特許文献1、2、3参照)。 2. Description of the Related Art Conventionally, a battery (battery), an electric motor for running, an inverter, and the like (hereinafter referred to as a temperature control target) mounted on, for example, an electric vehicle (electric vehicle, hybrid vehicle, etc.) generate heat. Therefore, a heat pump circuit (refrigerant circuit) is used to control the temperature by circulating the heat medium to multiple temperature control targets, or a heat pump circuit (refrigerant circuit) is used to air the vehicle interior. A heat management system has been developed that heats and cools a heat medium (such as water) with a refrigerant that absorbs heat in a heat medium circuit and circulates the heat medium through a temperature control target (for example, Patent Document 1 , 2, 3).

特開2014-80123号公報JP 2014-80123 A 特開2012-232730号公報JP 2012-232730 A 特開2021-138209号公報Japanese Patent Application Laid-Open No. 2021-138209

しかしながら、例えば特許文献2や特許文献3の構成では、空調用のヒータコアやクーラコア用の熱交換器に加えて、温調対象用の熱交換器をヒートポンプ回路に設ける必要がある。そこで、例えばクーラコアに循環される熱媒体と、ヒータコアに循環される熱媒体で、温調対象に流れる熱媒体を冷却、加熱して温調することが考えられるが、熱交換効率が悪く、費用対効果が小さい。 However, in the configurations of Patent Documents 2 and 3, for example, it is necessary to provide a heat exchanger for temperature control in the heat pump circuit in addition to the heat exchangers for the heater core and cooler core for air conditioning. Therefore, for example, it is conceivable to cool and heat the heat medium flowing to the temperature control target by using the heat medium circulated in the cooler core and the heat medium circulated in the heater core, but the heat exchange efficiency is poor and the cost is high. Small effect.

また、例えばヒータコアやクーラコアに流れる熱媒体を、温調対象にも流すことが考えられるが、温調対象側に流れた熱媒体が、導入された分だけクーラコア側やヒータコア側にそれぞれ戻るとは限らず、偏りが生じて何れかの熱媒体の量が過剰となり、リザーブタンクが満杯になってしまうと云う問題も生じる。 Also, for example, it is conceivable that the heat medium flowing through the heater core or cooler core is also made to flow to the temperature control target, but the heat medium that has flowed to the temperature control target side returns to the cooler core side or heater core side by the amount introduced. However, there is also a problem that the amount of one of the heat medium becomes excessive due to the unevenness, and the reserve tank becomes full.

本発明は、係る従来の技術的課題を解決するためになされたものであり、熱媒体を温調対象に循環させて温調する際に、安価で効率よく温調対象を温調可能となり、且つ、熱媒体の偏りに伴う問題も解消することができる熱マネジメントシステムを提供することを目的とする。 The present invention has been made to solve such conventional technical problems, and when circulating a heat medium to a temperature control target to control the temperature, it is possible to inexpensively and efficiently adjust the temperature of the temperature control target, Another object of the present invention is to provide a heat management system that can solve the problem associated with uneven heating medium.

上記課題を解決するために、本発明の熱マネジメントシステムは、温調対象に熱媒体を循環させて温調する熱媒体回路を備えたものであって、熱媒体を温調対象に循環させる循環部を有する温調回路と、この温調回路に接続されると共に、熱媒体を加熱する加熱部を有し、当該加熱部により加熱された熱媒体が循環される高温熱媒体回路と、温調回路に接続されると共に、熱媒体を冷却する冷却部を有し、当該冷却部により冷却された熱媒体が循環される低温熱媒体回路と、高温熱媒体回路を流れる熱媒体と低温熱媒体回路を流れる熱媒体を選択的に温調回路に導入する温度調整部と、温調回路から高温熱媒体回路又は低温熱媒体回路に熱媒体を戻す経路上に設けられ、熱媒体を貯留する貯留部を備えたことを特徴とする。 In order to solve the above problems, the heat management system of the present invention includes a heat medium circuit that circulates a heat medium to a temperature control target to control the temperature, and includes a heat medium circuit that circulates the heat medium to the temperature control target. a high-temperature heat medium circuit connected to the temperature control circuit and having a heating part for heating a heat medium, in which the heat medium heated by the heating part is circulated; and a temperature control A low-temperature heat medium circuit connected to a circuit and having a cooling part for cooling a heat medium, in which the heat medium cooled by the cooling part is circulated, and a heat medium flowing through the high-temperature heat medium circuit and the low-temperature heat medium circuit and a reservoir for storing the heat medium provided on the path for returning the heat medium from the temperature control circuit to the high-temperature heat-medium circuit or the low-temperature heat-medium circuit. characterized by comprising

請求項2の発明の熱マネジメントシステムは、上記発明において貯留部は、熱媒体を高温熱媒体回路に戻す高温側出口を有する高温側貯留室と、熱媒体を低温熱媒体回路に戻す低温側出口を有する低温側貯留室を有すると共に、温度調整部が高温熱媒体回路から温調回路に熱媒体を導入する際に、貯留部の高温側貯留室と温調回路とを接続する流路切替部を備えたことを特徴とする。 In the heat management system of the invention of claim 2, in the above-mentioned invention, the storage unit includes a high temperature side storage chamber having a high temperature side outlet for returning the heat medium to the high temperature heat medium circuit, and a low temperature side outlet for returning the heat medium to the low temperature heat medium circuit. and a flow path switching unit that connects the high temperature side storage chamber of the storage unit and the temperature control circuit when the temperature control unit introduces the heat medium from the high temperature heat medium circuit to the temperature control circuit characterized by comprising

請求項3の発明の熱マネジメントシステムは、上記各発明において貯留部の高温側貯留室と低温側貯留室は断熱壁により仕切られ、且つ、それらの上部は相互に連通されていることを特徴とする。 The heat management system of the invention of claim 3 is characterized in that in each of the inventions described above, the high-temperature side storage chamber and the low-temperature side storage chamber of the storage section are partitioned by a heat insulating wall, and the upper portions thereof are communicated with each other. do.

請求項4の発明の熱マネジメントシステムは、上記各発明において温度調整部は、高温熱媒体回路を流れる熱媒体の温度が所定値より低い場合に、当該熱媒体を温調回路に導入することを特徴とする。 In the heat management system of the invention of claim 4, in each of the above inventions, the temperature adjustment unit introduces the heat medium flowing through the high temperature heat medium circuit into the temperature control circuit when the temperature of the heat medium flowing through the high temperature heat medium circuit is lower than a predetermined value. Characterized by

請求項5の発明の熱マネジメントシステムは、上記各発明において温度調整部は、温調回路を流れる熱媒体の温度が、前記所定値より高いもう一つの所定値以上となった場合に、低温熱媒体回路から温調回路に熱媒体を導入することを特徴とする。 In the heat management system of the invention of claim 5, in each of the inventions described above, the temperature control unit controls the low-temperature heat when the temperature of the heat medium flowing through the temperature control circuit becomes equal to or higher than another predetermined value higher than the predetermined value. The heat medium is introduced from the medium circuit to the temperature control circuit.

請求項6の発明の熱マネジメントシステムは、上記各発明において温度調整部、又は、当該温度調整部及び流路切替部は、内部を流れる流体の温度を感知する感温部を有して当該流体の流路を切り替える流路切替弁であることを特徴とする。 In the heat management system of the invention of claim 6, in each of the above inventions, the temperature adjustment unit, or the temperature adjustment unit and the flow path switching unit, has a temperature sensing unit that senses the temperature of the fluid flowing inside, and the fluid characterized in that it is a channel switching valve for switching the channel.

請求項7の発明の熱マネジメントシステムは、上記各発明において温調対象は車両に搭載されたバッテリ、車両の走行用モータ、若しくは、当該モータを駆動するインバータであることを特徴とする。 A heat management system according to a seventh aspect of the present invention is characterized in that, in each of the above inventions, the object of temperature control is a battery mounted on a vehicle, a motor for running the vehicle, or an inverter that drives the motor.

請求項8の発明の熱マネジメントシステムは、上記各発明において高温熱媒体回路は、加熱部により加熱された熱媒体が循環されて車両の車室内を暖房するためのヒータコアを有し、低温熱媒体回路は、冷却部により冷却された熱媒体が循環されて車両の車室内を冷房するためのクーラコアを有することを特徴とする。 In the heat management system of the invention of claim 8, in each of the above inventions, the high-temperature heat medium circuit has a heater core for circulating the heat medium heated by the heating unit to heat the interior of the vehicle, and the low-temperature heat medium The circuit is characterized by having a cooler core for circulating the heat medium cooled by the cooling unit to cool the interior of the vehicle.

請求項9の発明の熱マネジメントシステムは、上記各発明において冷媒を圧縮する圧縮機と、この圧縮機から吐出された冷媒を放熱させる放熱器と、この放熱器で放熱した冷媒を減圧する減圧部と、この減圧部で減圧された冷媒を吸熱させる吸熱器を有するヒートポンプ回路を備え、放熱器と高温熱媒体回路の加熱部とが熱交換関係に設けられ、吸熱器と低温熱媒体回路の冷却部とが熱交換関係に設けられていることを特徴とする。 The heat management system of the invention of claim 9 comprises a compressor that compresses the refrigerant in each of the above inventions, a radiator that radiates heat from the refrigerant discharged from the compressor, and a decompression unit that decompresses the refrigerant radiated by the radiator. and a heat pump circuit having a heat absorber that absorbs heat from the refrigerant decompressed by the decompression unit, the radiator and the heating unit of the high-temperature heat medium circuit are provided in a heat exchange relationship, and the heat absorber and the low-temperature heat medium circuit are cooled. and are provided in a heat exchange relationship.

本発明によれば、温調対象に熱媒体を循環させて温調する熱媒体回路を備えた熱マネジメントシステムにおいて、熱媒体を温調対象に循環させる循環部を有する温調回路と、この温調回路に接続されると共に、熱媒体を加熱する加熱部を有し、当該加熱部により加熱された熱媒体が循環される高温熱媒体回路と、温調回路に接続されると共に、熱媒体を冷却する冷却部を有し、当該冷却部により冷却された熱媒体が循環される低温熱媒体回路と、高温熱媒体回路を流れる熱媒体と低温熱媒体回路を流れる熱媒体を選択的に温調回路に導入する温度調整部を備えているので、温調回路の温調対象に高温熱媒体回路の熱媒体を流して温調対象を暖機し、或いは、低温熱媒体回路の熱媒体を流して温調対象を冷却することで、熱交換ロスの少ない効率的な温調対象の温調を実現することができるようになる。 According to the present invention, in a heat management system including a heat medium circuit that regulates the temperature by circulating a heat medium to a temperature control target, the temperature control circuit has a circulation part that circulates the heat medium to the temperature control target; a high-temperature heat medium circuit connected to the temperature control circuit and having a heating unit that heats the heat medium and through which the heat medium heated by the heating unit is circulated; A low-temperature heat medium circuit in which a heat medium cooled by the cooling part is circulated, and a heat medium flowing through the high-temperature heat medium circuit and a heat medium flowing through the low-temperature heat medium circuit are selectively temperature-controlled. Since it has a temperature adjustment part introduced into the circuit, the heat medium of the high-temperature heat medium circuit is flowed to the temperature control target of the temperature control circuit to warm up the temperature control target, or the heat medium of the low-temperature heat medium circuit is flowed. By cooling the object to be temperature controlled by using the heat exchanger, it is possible to realize efficient temperature control of the object to be temperature controlled with little heat exchange loss.

この場合、本発明では温調回路から高温熱媒体回路又は低温熱媒体回路に熱媒体を戻す経路上に、熱媒体を貯留する貯留部を設けたので、高温熱媒体回路と低温熱媒体回路において熱媒体の偏りが生じることも解消することができる。また、貯留部を設ける構造であるので、コストの上昇も最小限に抑えることもできる。 In this case, in the present invention, since a reservoir for storing the heat medium is provided on the path for returning the heat medium from the temperature control circuit to the high temperature heat medium circuit or the low temperature heat medium circuit, the high temperature heat medium circuit and the low temperature heat medium circuit It is also possible to eliminate the unevenness of the heat medium. Moreover, since it is a structure in which a storage part is provided, an increase in cost can be minimized.

また、請求項2の発明によれば、上記に加えて貯留部に、熱媒体を高温熱媒体回路に戻す高温側出口を有する高温側貯留室と、熱媒体を低温熱媒体回路に戻す低温側出口を有する低温側貯留室を構成し、温度調整部が高温熱媒体回路から温調回路に熱媒体を導入する際に、貯留部の高温側貯留室と温調回路とを接続する流路切替部を設けたので、高温熱媒体回路から導入された熱媒体は貯留部の高温側貯留室から高温熱媒体回路に、低温熱媒体回路から導入された熱媒体は貯留部の低温側貯留室から低温熱媒体回路に、それぞれ戻すことができるようになる。 Further, according to the second aspect of the invention, in addition to the above, the high temperature side storage chamber having a high temperature side outlet for returning the heat medium to the high temperature heat medium circuit and the low temperature side for returning the heat medium to the low temperature heat medium circuit. A low-temperature side storage chamber having an outlet is configured, and a flow path switching that connects the high-temperature side storage chamber of the storage part and the temperature control circuit when the temperature control unit introduces the heat medium from the high-temperature heat medium circuit to the temperature control circuit. The heat medium introduced from the high-temperature heat medium circuit flows from the high-temperature side storage chamber of the storage section to the high-temperature heat-medium circuit, and the heat medium introduced from the low-temperature heat medium circuit flows from the low-temperature side storage chamber of the storage section. Each can be returned to the low-temperature heat transfer medium circuit.

この場合、請求項3の発明の如く貯留部の高温側貯留室と低温側貯留室を断熱壁により仕切ることにより、高温熱媒体回路に戻る熱媒体と低温熱媒体回路に戻る熱媒体との間の熱交換を抑制し、各回路における熱ロスも抑えることができるようになる。また、高温側貯留室と低温側貯留室の上部を相互に連通することにより、例えば、高温熱媒体回路から導入された熱媒体が温調回路を経て低温側貯留室に流入した場合でも、両室の間で熱媒体量の調整が行われ、低温側貯留室が満杯となってしまう不都合も防止することができるようになる。 In this case, by partitioning the high-temperature side storage chamber and the low-temperature side storage chamber of the storage section with a heat insulating wall as in the invention of claim 3, the heat medium returning to the high-temperature heat medium circuit and the heat medium returning to the low-temperature heat medium circuit are separated. It is possible to suppress the heat exchange of the circuit and suppress the heat loss in each circuit. Further, by connecting the upper parts of the high-temperature side storage chamber and the low-temperature side storage chamber to each other, for example, even when the heat medium introduced from the high-temperature side storage chamber flows through the temperature control circuit into the low-temperature side storage chamber, The amount of heat medium is adjusted between the chambers, and the problem of the low-temperature side storage chamber becoming full can be prevented.

また、請求項4の発明の如く温度調整部が、高温熱媒体回路を流れる熱媒体の温度が所定値より低い場合に、当該熱媒体を温調回路に導入するようにすれば、温調対象の過剰な加熱を防止することができるようになる。 Further, when the temperature of the heat medium flowing through the high-temperature heat medium circuit is lower than a predetermined value, the temperature control unit introduces the heat medium into the temperature control circuit as in the invention of claim 4. It becomes possible to prevent excessive heating of the

更に、請求項5の発明の如く温度調整部が、温調回路を流れる熱媒体の温度が、前記所定値より高いもう一つの所定値以上となった場合に、低温熱媒体回路から温調回路に熱媒体を導入することで、温調対象の過熱を確実に防止することができるようになる。 Further, as in the fifth aspect of the invention, the temperature control unit is configured to change the temperature of the heat medium flowing through the temperature control circuit from the low-temperature heat medium circuit to the temperature control circuit when the temperature of the heat medium flowing through the temperature control circuit becomes equal to or higher than another predetermined value higher than the predetermined value. By introducing the heat medium to the temperature control target, overheating can be reliably prevented.

この場合、温度調整部や流路切替部は、請求項6の発明の如く内部を流れる流体の温度を感知する感温部を有して当該流体の流路を切り替える流路切替弁で構成すれば、電子的な制御も不要となり、システムのコストを削減することが可能となる。 In this case, the temperature adjusting section and the flow path switching section may be constituted by a flow path switching valve that has a temperature sensing section that senses the temperature of the fluid flowing inside and switches the flow path of the fluid as in the sixth aspect of the invention. If so, electronic control becomes unnecessary, and the cost of the system can be reduced.

ここで、温調対象としては請求項7の発明の如く例えば電動車両に搭載されたバッテリや、電動車両の走行用電動モータ、当該走行用電動モータを駆動するインバータが考えられる。 Here, as a temperature control target, for example, a battery mounted on an electric vehicle, an electric motor for running the electric vehicle, and an inverter for driving the electric motor for running can be considered as the object of temperature control.

尚、高温熱媒体回路としては、請求項8の発明の如く加熱部により加熱された熱媒体が循環されて車両の車室内を暖房するためのヒータコアを有するもの、低温熱媒体回路としては、冷却部により冷却された熱媒体が循環されて車両の車室内を冷房するためのクーラコアを有するものが考えられるが、その場合には、請求項9の発明の如く冷媒を圧縮する圧縮機と、この圧縮機から吐出された冷媒を放熱させる放熱器と、この放熱器で放熱した冷媒を減圧する減圧部と、この減圧部で減圧された冷媒を吸熱させる吸熱器を有するヒートポンプ回路を設け、放熱器と高温熱媒体回路の加熱部とを熱交換関係に設けると共に、吸熱器と低温熱媒体回路の冷却部とを熱交換関係に設ける。 The high-temperature heat medium circuit includes a heater core for circulating the heat medium heated by the heating unit to heat the interior of the vehicle, and the low-temperature heat medium circuit includes a cooling It is conceivable to have a cooler core for cooling the interior of the vehicle by circulating the heat medium cooled by the section. a heat pump circuit having a radiator for dissipating heat from the refrigerant discharged from the compressor, a decompression section for decompressing the refrigerant radiated by the radiator, and a heat absorber for absorbing heat from the decompressed refrigerant by the decompression section, and the heating section of the high temperature heat medium circuit are provided in a heat exchange relationship, and the heat absorber and the cooling section of the low temperature heat medium circuit are provided in a heat exchange relationship.

これにより、電動車両の車室内を空調するためのヒートポンプ回路や高温熱媒体回路、低温熱媒体回路を利用して温調対象の温調を行うことができるようになる。また、温調対象を加熱する必要が無い場合には、前述したように高温熱媒体回路を流れる熱媒体は温調回路に流れなくなるので、ヒータコアにはより高温の熱媒体が循環されるようになり、車室内の暖房も支障無く行えるようになる。更に、温調対象を冷却する必要が無い場合には、前述したように低温熱媒体回路を流れる熱媒体は温調回路に流れなくなるので、クーラコアにはより低温の熱媒体が循環されるようになり、車室内の冷房も支障無く行えるようになる。 As a result, the heat pump circuit, the high-temperature heat medium circuit, and the low-temperature heat medium circuit for air-conditioning the interior of the electric vehicle can be used to control the temperature of the temperature control target. Further, when there is no need to heat the temperature control target, the heat medium flowing through the high-temperature heat medium circuit does not flow into the temperature control circuit as described above, so that the heat medium having a higher temperature is circulated through the heater core. As a result, the vehicle interior can be heated without problems. Furthermore, when there is no need to cool the temperature control target, the heat medium flowing through the low-temperature heat medium circuit does not flow into the temperature control circuit as described above, so that a heat medium with a lower temperature is circulated through the cooler core. As a result, air conditioning in the passenger compartment can be performed without any trouble.

本発明の熱マネジメントシステムの一実施例の構成図である(実施例1。暖房モードでの第1経路状態)。1 is a block diagram of one embodiment of a heat management system of the present invention (Embodiment 1; first path state in heating mode); FIG. 図1の熱マネジメントシステムの温度調整部、流路切替部の実施例としてのサーモバルブの断面図である。FIG. 2 is a cross-sectional view of a thermo valve as an example of the temperature adjustment unit and flow path switching unit of the heat management system of FIG. 1; 図1の熱マネジメントシステムの温調回路及び貯留部を抽出した構成図である。FIG. 2 is a configuration diagram extracting a temperature control circuit and a storage unit of the heat management system of FIG. 1; 図1の場合の温調回路及び貯留部を抽出した構成図である。FIG. 2 is a configuration diagram extracting a temperature control circuit and a reservoir in the case of FIG. 1; 図1の熱マネジメントシステムの暖房モードでの第2経路状態を説明する構成図である。2 is a configuration diagram illustrating a second path state in a heating mode of the heat management system of FIG. 1; FIG. 図5の場合の温調回路及び貯留部を抽出した構成図である。FIG. 6 is a diagram showing the configuration of the temperature control circuit and the reservoir extracted from the case of FIG. 5; 図1の熱マネジメントシステムの冷房モードでの構成図である。2 is a configuration diagram of the heat management system of FIG. 1 in a cooling mode; FIG.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。
(1)熱マネジメントシステム1の構成
図1は本発明の一実施例の熱マネジメントシステム1の構成を示している。実施例の熱マネジメントシステム1は、電気自動車やハイブリッド自動車等の電動車両の車室内を空調すると共に、実施例で採りあげるバッテリ2の他、走行用電動モータやインバータ等の温調対象を温調する車両用空気調和装置であり、ヒートポンプ回路3と、熱媒体回路4と、制御装置6を備えた構成とされている。尚、本出願において、バッテリは燃料電池も含む概念とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
(1) Configuration of Thermal Management System 1 FIG. 1 shows the configuration of a thermal management system 1 according to an embodiment of the present invention. The thermal management system 1 of the embodiment air-conditions the interior of an electric vehicle such as an electric vehicle or a hybrid vehicle, and also temperature-controls temperature control objects such as a battery 2, an electric motor for traveling, an inverter, etc., which are taken up in the embodiment. The air conditioner for a vehicle is configured to include a heat pump circuit 3 , a heat medium circuit 4 , and a control device 6 . In the present application, the concept of battery also includes a fuel cell.

実施例のヒートポンプ回路3は、冷媒(フロン冷媒)を圧縮する圧縮機7と、この圧縮機7から吐出された冷媒(高温冷媒)を放熱させる放熱器8と、放熱器8で放熱した冷媒を減圧する減圧部としての膨張弁9と、この膨張弁9で減圧された冷媒が蒸発して吸熱する吸熱器11と、アキュムレータ12が冷媒配管により順次環状に接続された冷媒回路を備えており、通常は電動車両のボンネット下の所謂エンジンルームに配設されている。 The heat pump circuit 3 of the embodiment includes a compressor 7 that compresses a refrigerant (freon refrigerant), a radiator 8 that dissipates heat from the refrigerant (high-temperature refrigerant) discharged from the compressor 7, and a refrigerant that has dissipated heat from the radiator 8. A refrigerant circuit in which an expansion valve 9 as a decompression unit that decompresses, a heat absorber 11 that absorbs heat by evaporating the refrigerant decompressed by the expansion valve 9, and an accumulator 12 are sequentially connected in a ring by refrigerant pipes. It is usually installed in a so-called engine room under the hood of an electric vehicle.

熱媒体回路4は水等の熱媒体が流通する回路であり、この実施例では冷却部13(熱交換器)と、加熱部14(熱交換器)と、クーラコア16と、ヒータコア17と、循環部としての第1~第3ポンプ21~23と、ラジエータ29と、本発明の温度調整部を構成するサーモバルブ30及びサーモバルブ31と、本発明の流路切替部を構成するサーモバルブ45と、8つの三方弁32~39と、逆止弁41と、所定容量のリザーブタンクから構成される本発明の貯留部26を備え、それらが後述する如く熱媒体配管で接続されている。 The heat medium circuit 4 is a circuit through which a heat medium such as water flows. First to third pumps 21 to 23 as units, a radiator 29, a thermo valve 30 and a thermo valve 31 that constitute the temperature adjustment unit of the present invention, and a thermo valve 45 that constitutes the flow path switching unit of the present invention. , eight three-way valves 32 to 39, a check valve 41, and a reservoir 26 of the present invention composed of a reserve tank of a predetermined capacity, which are connected by heat medium pipes as will be described later.

尚、実施例の三方弁32~39は三つの接続口を備え、全ての接続口を連通する状態と、それらのうちの二つの接続口のみを連通する状態(合わせて四つの状態)に切り替えることが可能とされた弁装置である。 The three-way valves 32 to 39 of the embodiment have three connection ports, and can be switched between a state in which all connection ports are communicated and a state in which only two of them are communicated (four states in total). It is a valve device that makes it possible.

この場合、冷却部13の出口は熱媒体配管C1により三方弁32の第1接続口に接続され、三方弁32の第2接続口は熱媒体配管C2により三方弁33の第3接続口に接続されている。三方弁33の第1接続口は熱媒体配管C4によりクーラコア16の入口に接続され、クーラコア16の出口は熱媒体配管C5により三方弁34の第1接続口に接続されている。三方弁34の第2接続口は熱媒体配管C6により三方弁35の第1接続口に接続され、三方弁35の第2接続口は熱媒体配管C7により第1ポンプ21の入口に接続されている。第1ポンプ21の出口は熱媒体配管C8により冷却部13の入口に接続されている。 In this case, the outlet of the cooling unit 13 is connected to the first connection port of the three-way valve 32 by the heat medium pipe C1, and the second connection port of the three-way valve 32 is connected to the third connection port of the three-way valve 33 by the heat medium pipe C2. It is A first connection port of the three-way valve 33 is connected to an inlet of the cooler core 16 by a heat medium pipe C4, and an outlet of the cooler core 16 is connected to a first connection port of the three-way valve 34 by a heat medium pipe C5. The second connection port of the three-way valve 34 is connected to the first connection port of the three-way valve 35 by the heat medium pipe C6, and the second connection port of the three-way valve 35 is connected to the inlet of the first pump 21 by the heat medium pipe C7. there is The outlet of the first pump 21 is connected to the inlet of the cooling section 13 by a heat medium pipe C8.

三方弁33の第2接続口は熱媒体配管C10によりサーモバルブ30(温度調整部を構成する)の後述するメインバルブポートMVに接続されており、サーモバルブ30の後述するバイパスバルブポートBVは熱媒体配管C11により熱媒体配管C42と熱媒体配管C43の接続点に接続されている。 A second connection port of the three-way valve 33 is connected to a main valve port MV, which will be described later, of the thermovalve 30 (constituting a temperature control unit) through a heat medium pipe C10. It is connected to the connection point of the heat medium pipe C42 and the heat medium pipe C43 by the medium pipe C11.

サーモバルブ30の後述する混合水ポートXVは熱媒体配管C14と熱媒体配管C41により第3ポンプ23の入口に接続されており、第3ポンプ23の出口は熱媒体配管C15によりバッテリ2(温調対象)の入口に接続されている。尚、バッテリ2の周囲には入口と出口を有して熱媒体が流れるジャケット構造が構成され、このジャケット構造を介してバッテリ2は熱媒体と熱交換する構成とされている。そして、バッテリ2の入口とはこのジャケット構造の入口であり、バッテリ2の出口、即ち、ジャケット構造の出口は熱媒体配管C16と熱媒体配管C12により逆止弁41の入口に接続されている。逆止弁41の出口は熱媒体配管C13により貯留部26の後述する低温側貯留室61の上部に連通して接続されている。この逆止弁41は貯留部26の方向が順方向とされている。 A mixed water port XV of the thermo valve 30, which will be described later, is connected to the inlet of the third pump 23 by a heat medium pipe C14 and a heat medium pipe C41, and the outlet of the third pump 23 is connected to the battery 2 (temperature control target). A jacket structure having an inlet and an outlet through which a heat medium flows is formed around the battery 2, and the battery 2 is configured to exchange heat with the heat medium through this jacket structure. The inlet of the battery 2 is the inlet of this jacket structure, and the outlet of the battery 2, ie, the outlet of the jacket structure, is connected to the inlet of the check valve 41 by the heat medium pipe C16 and the heat medium pipe C12. An outlet of the check valve 41 is connected through a heat medium pipe C13 to an upper portion of a low-temperature side storage chamber 61 of the storage section 26, which will be described later. The check valve 41 has a forward direction toward the reservoir 26 .

ここで、貯留部26の内部は、図3に拡大して示すように断熱壁62により前述した低温側貯留室61と高温側貯留室63とに仕切られている。断熱壁62は貯留部26の底壁から起立しているが、天壁までは到達しておらず、それにより低温側貯留室61と高温側貯留室63は、それらの上部において相互に連通している(図3)。 Here, the inside of the storage section 26 is partitioned into the above-described low temperature side storage chamber 61 and high temperature side storage chamber 63 by a heat insulating wall 62 as shown in an enlarged view in FIG. The heat insulating wall 62 rises from the bottom wall of the reservoir 26, but does not reach the top wall, so that the low temperature side reservoir chamber 61 and the high temperature side reservoir chamber 63 communicate with each other at their upper portions. (Fig. 3).

熱媒体配管C42は熱媒体配管C16と熱媒体配管C12の接続点に接続されており、熱媒体配管C43はサーモバルブ45(流路切替部)の後述するバイパスバルブポートBVに接続されている。サーモバルブ45の後述する混合水ポートXVは熱媒体配管C44により貯留部26の高温側貯留室63の上部に連通して接続されている。 The heat medium pipe C42 is connected to a connection point between the heat medium pipe C16 and the heat medium pipe C12, and the heat medium pipe C43 is connected to a bypass valve port BV of the thermo valve 45 (flow path switching portion), which will be described later. A later-described mixed water port XV of the thermo valve 45 is communicated and connected to the upper portion of the high temperature side storage chamber 63 of the storage section 26 by a heat medium pipe C44.

貯留部26の低温側貯留室61の底部に形成された低温側出口61Aには、熱媒体配管C46の一端が接続されており、この熱媒体配管C46の他端は、三方弁34の第3接続口に接続されている。また、貯留部26の高温側貯留室63の底部に形成された高温側出口63Aには、熱媒体配管C45の一端が接続されており、この熱媒体配管C45の他端はヒータコア17の入口に接続されている。 One end of a heat medium pipe C46 is connected to the low temperature side outlet 61A formed at the bottom of the low temperature side reservoir 61 of the reservoir 26, and the other end of the heat medium pipe C46 is connected to the third connected to the connection port. One end of the heat medium pipe C45 is connected to the high temperature side outlet 63A formed at the bottom of the high temperature side reservoir 63 of the reservoir 26, and the other end of the heat medium pipe C45 is connected to the inlet of the heater core 17. It is connected.

サーモバルブ45の後述するメインバルブポートMVは熱媒体配管C47によりサーモバルブ31(温度調整部)の後述するメインバルブポートMVに接続されている。このサーモバルブ31の後述するバイパスバルブポートBVは熱媒体配管C40により熱媒体配管C14と熱媒体配管C41の接続点に接続されており、サーモバルブ31の後述する混合水ポートXVには熱媒体配管C19が接続されている。 A main valve port MV of the thermo valve 45, which will be described later, is connected to a main valve port MV, which will be described later, of the thermo valve 31 (temperature adjustment unit) through a heat medium pipe C47. A bypass valve port BV of the thermo valve 31, which will be described later, is connected to a connection point between the heat medium pipe C14 and the heat medium pipe C41 through a heat medium pipe C40. C19 is connected.

上記第3ポンプ23、熱媒体配管C15、バッテリ2のジャケット構造、熱媒体配管C16、熱媒体配管C42、熱媒体配管C11、サーモバルブ30、熱媒体配管C14、熱媒体配管C41で構成される閉ループと、熱媒体配管C10、熱媒体配管C12、逆止弁41、熱媒体配管C13が本発明における温調回路42を構成している。 A closed loop composed of the third pump 23, the heat medium pipe C15, the jacket structure of the battery 2, the heat medium pipe C16, the heat medium pipe C42, the heat medium pipe C11, the thermo valve 30, the heat medium pipe C14, and the heat medium pipe C41. , the heat medium pipe C10, the heat medium pipe C12, the check valve 41, and the heat medium pipe C13 constitute the temperature control circuit 42 of the present invention.

また、冷却部13、熱媒体配管C1、三方弁32、熱媒体配管C2、三方弁33、熱媒体配管C4、クーラコア16、熱媒体配管C5、三方弁34、熱媒体配管C6、三方弁35、熱媒体配管C7、第1ポンプ21、熱媒体配管C8が、後述する冷房モードでの本発明における低温熱媒体回路43を構成する。熱媒体配管C10はこの場合の低温熱媒体回路43と温調回路42との接続部を構成する。サーモバルブ30はこの熱媒体配管C10(接続部)に接続され、低温熱媒体回路43から温調回路42への熱媒体の流入を制御する。 Also, the cooling unit 13, the heat medium pipe C1, the three-way valve 32, the heat medium pipe C2, the three-way valve 33, the heat medium pipe C4, the cooler core 16, the heat medium pipe C5, the three-way valve 34, the heat medium pipe C6, the three-way valve 35, The heat medium pipe C7, the first pump 21, and the heat medium pipe C8 constitute a low-temperature heat medium circuit 43 in the present invention in the cooling mode, which will be described later. The heat medium pipe C10 forms a connecting portion between the low-temperature heat medium circuit 43 and the temperature control circuit 42 in this case. The thermo valve 30 is connected to the heat medium pipe C10 (connection portion) and controls the inflow of the heat medium from the low-temperature heat medium circuit 43 to the temperature control circuit 42 .

また、加熱部14の出口は熱媒体配管C17により三方弁36の第3接続口に接続されている。三方弁36の第1接続口は熱媒体配管C19により前述した如くサーモバルブ31の混合水ポートXVに接続され、サーモバルブ31の後述するメインバルブポートMVは前述した如く熱媒体配管C47によりサーモバルブ45のメインバルブポートMVに接続されている。 Also, the outlet of the heating unit 14 is connected to the third connection port of the three-way valve 36 through the heat medium pipe C17. The first connection port of the three-way valve 36 is connected to the mixed water port XV of the thermo valve 31 through the heat medium pipe C19 as described above. 45 main valve port MV.

また、前述した如く熱媒体配管C45はヒータコア17の入口に接続されており、ヒータコア17の出口は熱媒体配管C20により三方弁38の第1接続口に接続されている。三方弁38の第2接続口は熱媒体配管C21により第2ポンプ22の入口に接続され、第2ポンプ22の出口は熱媒体配管C22により加熱部14の入口に接続されている。 As described above, the heat medium pipe C45 is connected to the inlet of the heater core 17, and the outlet of the heater core 17 is connected to the first connection port of the three-way valve 38 by the heat medium pipe C20. The second connection port of the three-way valve 38 is connected to the inlet of the second pump 22 through the heat medium pipe C21, and the outlet of the second pump 22 is connected to the inlet of the heating unit 14 through the heat medium pipe C22.

この加熱部14、熱媒体配管C17、三方弁36、熱媒体配管C19、サーモバルブ31、熱媒体配管C47、サーモバルブ45、熱媒体配管C44、貯留部26の高温側貯留室63、熱媒体配管C45、ヒータコア17、熱媒体配管C20、三方弁38、熱媒体配管C21、第2ポンプ22、熱媒体配管C22が本発明における高温熱媒体回路44を構成する。 The heating unit 14, the heat medium pipe C17, the three-way valve 36, the heat medium pipe C19, the thermo valve 31, the heat medium pipe C47, the thermo valve 45, the heat medium pipe C44, the high temperature side reservoir 63 of the reservoir 26, the heat medium pipe. C45, the heater core 17, the heat medium pipe C20, the three-way valve 38, the heat medium pipe C21, the second pump 22, and the heat medium pipe C22 constitute the high temperature heat medium circuit 44 of the present invention.

貯留部26は、温調回路42から高温熱媒体回路44又は低温熱媒体回路43に熱媒体を戻す経路に位置する。即ち、この戻す経路とは、高温熱媒体回路44については、サーモバルブ31、熱媒体配管C47、サーモバルブ45、熱媒体配管C43、熱媒体配管C44、熱媒体配管C45であり、低温熱媒体回路43については、熱媒体配管C12、逆止弁41、熱媒体配管C13、熱媒体配管C46となる。また、サーモバルブ31は、高温熱媒体回路44から温調回路42への熱媒体の流入を制御する。更に、サーモバルブ45は、熱媒体配管C42からの熱媒体を熱媒体配管C44に流すか、熱媒体配管C47からの熱媒体を熱媒体配管C44に流すかを切り替える制御を行う。 The reservoir 26 is located on a path for returning the heat medium from the temperature control circuit 42 to the high-temperature heat-medium circuit 44 or the low-temperature heat-medium circuit 43 . That is, the return path for the high temperature heat medium circuit 44 is the thermo valve 31, the heat medium pipe C47, the thermo valve 45, the heat medium pipe C43, the heat medium pipe C44, the heat medium pipe C45, and the low temperature heat medium circuit. 43 is a heat medium pipe C12, a check valve 41, a heat medium pipe C13, and a heat medium pipe C46. Also, the thermo valve 31 controls the inflow of the heat medium from the high-temperature heat medium circuit 44 to the temperature control circuit 42 . Further, the thermo valve 45 performs control to switch between flowing the heat medium from the heat medium pipe C42 to the heat medium pipe C44 and flowing the heat medium from the heat medium pipe C47 to the heat medium pipe C44.

また、三方弁36の第2接続口は熱媒体配管C24により三方弁37の第1接続口に接続されており、三方弁37の第3接続口は熱媒体配管C25によりラジエータ29の入口に接続されている。ラジエータ29の出口は熱媒体配管C26により三方弁39の第2接続口に接続されており、三方弁39の第1接続口は熱媒体配管C27により三方弁38の第3接続口に接続されている。 The second connection port of the three-way valve 36 is connected to the first connection port of the three-way valve 37 through a heat medium pipe C24, and the third connection port of the three-way valve 37 is connected to the inlet of the radiator 29 through a heat medium pipe C25. It is The outlet of the radiator 29 is connected to the second connection port of the three-way valve 39 through the heat medium pipe C26, and the first connection port of the three-way valve 39 is connected to the third connection port of the three-way valve 38 through the heat medium pipe C27. there is

更に、三方弁37の第2接続口は熱媒体配管C28により三方弁32の第3接続口に接続されており、三方弁35の第3接続口は熱媒体配管C29により三方弁39の第3接続口に接続されている。冷却部13、熱媒体配管C1、三方弁32、熱媒体配管C28、三方弁37、熱媒体配管C25、ラジエータ29、熱媒体配管C26、三方弁39、熱媒体配管C29、三方弁35、熱媒体配管C7、第1ポンプ21、熱媒体配管C8が、後述する暖房モードでの本発明における低温熱媒体回路43Aを構成することになる。この場合、熱媒体配管C2と熱媒体配管C10が、低温熱媒体回路43Aと温調回路42との接続部を構成する。 Furthermore, the second connection port of the three-way valve 37 is connected to the third connection port of the three-way valve 32 through a heat medium pipe C28, and the third connection port of the three-way valve 35 is connected to the third connection port of the three-way valve 39 through a heat medium pipe C29. connected to the connection port. Cooling unit 13, heat medium pipe C1, three-way valve 32, heat medium pipe C28, three-way valve 37, heat medium pipe C25, radiator 29, heat medium pipe C26, three-way valve 39, heat medium pipe C29, three-way valve 35, heat medium The pipe C7, the first pump 21, and the heat medium pipe C8 constitute a low-temperature heat medium circuit 43A in the present invention in the heating mode, which will be described later. In this case, the heat medium pipe C2 and the heat medium pipe C10 form a connecting portion between the low-temperature heat medium circuit 43A and the temperature control circuit 42. As shown in FIG.

図1において46は、電動車両の車室内に空調用の空気を供給するHVACユニットであり、内部の空気流通路47に送給する空気を内気と外気で切り替える吸込切替ダンパ48と、室内ファン49が設けられている。そして、前述したクーラコア16とヒータコア17は、この室内ファン49の下流側の空気流通路47内に順次配設されている。 In FIG. 1, reference numeral 46 denotes an HVAC unit that supplies air for air conditioning to the interior of the electric vehicle. is provided. The cooler core 16 and the heater core 17 described above are sequentially arranged in the air flow passage 47 on the downstream side of the indoor fan 49 .

(2)サーモバルブ(温度調整部)30、31、サーモバルブ45(流路切替部)の構成
図2は前述したサーモバルブ(温度調整部)30、31、及び、サーモバルブ45(流路切替部)の断面図である。サーモバルブ30、サーモバルブ31及びサーモバルブ45は基本的には同一の構造であるが、使い方が異なっている。即ち、サーモバルブ30は熱媒体配管C10(温調回路42と低温熱媒体回路43、43Aの接続部分)に接続され、サーモバルブ31は熱媒体配管C19(温調回路42と高温熱媒体回路44の接続部分)に接続されている。また、サーモバルブ45は熱媒体配管C43(温調回路42と貯留部26の接続部分)に接続されている。
(2) Configurations of thermo valves (temperature adjustment units) 30 and 31 and thermo valve 45 (flow path switching unit) FIG. part). The thermo valve 30, the thermo valve 31 and the thermo valve 45 basically have the same structure, but are used differently. That is, the thermo valve 30 is connected to the heat medium pipe C10 (the connection portion between the temperature control circuit 42 and the low temperature heat medium circuits 43 and 43A), and the thermo valve 31 is connected to the heat medium pipe C19 (the temperature control circuit 42 and the high temperature heat medium circuit 44). connection part). Also, the thermo valve 45 is connected to the heat medium pipe C43 (the connection portion between the temperature control circuit 42 and the reservoir 26).

そして、何れもハウジング51と、メインバルブ52と、バイパスバルブ53と、感温部54と、スプリング56、57を備えている。ハウジング51には、前述したメインバルブポートMV、バイパスバルブポートBV、及び、混合水ポートXVが形成され、更にハウジング51内は混合室58とされている。 Each of them includes a housing 51 , a main valve 52 , a bypass valve 53 , a temperature sensing portion 54 and springs 56 and 57 . The housing 51 is formed with the aforementioned main valve port MV, bypass valve port BV, and mixed water port XV, and a mixing chamber 58 is provided inside the housing 51 .

メインバルブポートMVは開口59を介して混合室58と連通しており、バイパスバルブポートBVは混合室58に連通している。そして、メインバルブ52は感温部54とスプリング56、57の作用により、開口59を開閉すると共に、バイパスバルブ53はバイパスバルブポートBVを開閉する。尚、混合水ポートXVは混合室58と連通している。 Main valve port MV communicates with mixing chamber 58 through opening 59 and bypass valve port BV communicates with mixing chamber 58 . The main valve 52 opens and closes the opening 59 by the action of the temperature sensing portion 54 and the springs 56 and 57, and the bypass valve 53 opens and closes the bypass valve port BV. Incidentally, the mixed water port XV communicates with the mixing chamber 58 .

感温部54は、メインバルブ52とバイパスバルブ53に接続されており、内部にはワックス(例えば、パラフィンワックス)が内蔵されて伸縮する構造とされている。感温部54は混合室58内の熱媒体の温度により伸縮し、メインバルブ52とバイパスバルブ53を移動させ、開口59とバイパスバルブポートBVの開度を調節する。 The temperature sensing part 54 is connected to the main valve 52 and the bypass valve 53, and has a structure in which wax (for example, paraffin wax) is incorporated and expands and contracts. The temperature sensing part 54 expands and contracts according to the temperature of the heat medium in the mixing chamber 58, moves the main valve 52 and the bypass valve 53, and adjusts the opening degrees of the opening 59 and the bypass valve port BV.

尚、サーモバルブ31の混合室58内の熱媒体の温度とは、後述する如く混合水ポートXVから流入した熱媒体の温度(高温熱媒体回路44を流れる熱媒体の温度)である。また、サーモバルブ30の混合室58内の熱媒体の温度とは、後述する如くバイパスバルブポートBVから流入した熱媒体の温度、又は、当該熱媒体とメインバルブポートMVから開口59を介して流入した熱媒体が混合された熱媒体の温度であり、何れの混合室58内の熱媒体の温度も温調回路42を流れる熱媒体の温度である。また、サーモバルブ45の混合室58内の熱媒体の温度とは、後述する如くバイパスバルブポートBVから流入した熱媒体の温度、又は、メインバルブポートMVから流入した熱媒体の温度である。 The temperature of the heat medium in the mixing chamber 58 of the thermo valve 31 is the temperature of the heat medium flowing from the mixed water port XV (the temperature of the heat medium flowing through the high-temperature heat medium circuit 44) as described later. Further, the temperature of the heat medium in the mixing chamber 58 of the thermo valve 30 is the temperature of the heat medium flowing from the bypass valve port BV as described later, or the temperature of the heat medium and the heat medium flowing from the main valve port MV through the opening 59. It is the temperature of the heat medium mixed with the mixed heat medium, and the temperature of the heat medium in any mixing chamber 58 is also the temperature of the heat medium flowing through the temperature control circuit 42 . Further, the temperature of the heat medium in the mixing chamber 58 of the thermo valve 45 is the temperature of the heat medium flowing in from the bypass valve port BV or the temperature of the heat medium flowing in from the main valve port MV, as will be described later.

サーモバルブ31のメインバルブポートMVには前述した如く熱媒体配管C40が接続されており、バイパスバルブポートBVには熱媒体配管C47が接続され、混合水ポートXVは熱媒体配管C19に接続されている。また、サーモバルブ45のメインバルブポートMVには前述した如く熱媒体配管C47が接続されており、バイパスバルブポートBVには熱媒体配管C43が接続され、混合水ポートXVは熱媒体配管C44に接続されている。 As described above, the heat medium pipe C40 is connected to the main valve port MV of the thermo valve 31, the heat medium pipe C47 is connected to the bypass valve port BV, and the mixed water port XV is connected to the heat medium pipe C19. there is Further, the heat medium pipe C47 is connected to the main valve port MV of the thermo valve 45 as described above, the heat medium pipe C43 is connected to the bypass valve port BV, and the mixed water port XV is connected to the heat medium pipe C44. It is

そして、サーモバルブ31及びサーモバルブ45は、混合室58内の熱媒体の温度が所定値T1(例えば、+30℃)より低い場合、メインバルブ52が開口59を閉じ、バイパスバルブ53がバイパスバルブポートBVを開く。これにより、サーモバルブ31は高温熱媒体回路44の熱媒体を混合水ポートXVから混合室58内に導入し、バイパスバルブポートBVから熱媒体配管C40に流すことで、温調回路42に高温熱媒体回路44の高温熱媒体を導入する。また、サーモバルブ45は温調回路42から熱媒体配管C43に流れた熱媒体をバイパスバルブポートBVから混合室58内に導入し、混合水ポートXVから熱媒体配管C44を経て貯留部26の高温側貯留室63に流す。 When the temperature of the heat medium in the mixing chamber 58 is lower than a predetermined value T1 (for example, +30° C.), the thermo valve 31 and the thermo valve 45 close the opening 59 and the bypass valve 53 opens the bypass valve port. Open BV. As a result, the thermo valve 31 introduces the heat medium of the high-temperature heat medium circuit 44 into the mixing chamber 58 from the mixed water port XV, and flows it through the heat medium pipe C40 from the bypass valve port BV, thereby supplying the temperature control circuit 42 with high-temperature heat. A high temperature heat medium in the medium circuit 44 is introduced. In addition, the thermo valve 45 introduces the heat medium that has flowed from the temperature control circuit 42 to the heat medium pipe C43 into the mixing chamber 58 from the bypass valve port BV, and the high temperature of the storage part 26 from the mixed water port XV through the heat medium pipe C44. It flows into the side storage chamber 63 .

一方、サーモバルブ31及びサーモバルブ45は、混合室58内の熱媒体の温度が所定値T1以上になると、メインバルブ52が開口59を開き、バイパスバルブ53がバイパスバルブポートBVを閉じる。これにより、サーモバルブ31は混合水ポートXVから流入した熱媒体を開口59からメインバルブポートMVに流し、熱媒体配管C47に流出させ、サーモバルブ45はメインバルブポートMVから開口59を経て混合室58内に流入した熱媒体を、混合水ポートXVから熱媒体配管C44を経て貯留部26の高温側貯留室63に流すように設定されている。即ち、この状態では高温熱媒体回路44の熱媒体は温調回路42には導入されない。 On the other hand, the thermo valve 31 and the thermo valve 45 open the opening 59 of the main valve 52 and close the bypass valve port BV of the bypass valve 53 when the temperature of the heat medium in the mixing chamber 58 reaches or exceeds the predetermined value T1. As a result, the thermo valve 31 causes the heat medium that has flowed in from the mixed water port XV to flow from the opening 59 to the main valve port MV and flow out to the heat medium pipe C47. 58 is set to flow from the mixed water port XV to the high temperature side reservoir 63 of the reservoir 26 through the heat medium pipe C44. That is, in this state, the heat medium in the high temperature heat medium circuit 44 is not introduced into the temperature control circuit 42 .

他方、サーモバルブ30のメインバルブポートMVには前述した如く低温熱媒体回路43に接続された熱媒体配管C10が接続されており、バイパスバルブポートBVには熱媒体配管C11が接続され、混合水ポートXVには熱媒体配管C14が接続される。そして、混合室58内の熱媒体の温度が前述した所定値T1より高いもう一つの所定値T2(例えば、+40℃)より低い場合、メインバルブ52が開口59を閉じ、バイパスバルブ53がバイパスバルブポートBVを開き、混合室58内の熱媒体の温度が所定値T2以上となると、メインバルブ52が開口59を開き始め、低温熱媒体回路43から熱媒体(後述する低温熱媒体)が混合室58内に導入される設定とされている。尚、サーモバルブ30、31、45のメインバルブ52については、開口59を閉じている状態でメインバルブポートMVからは僅かながら熱媒体が混合室58に流れる構造とされている。 On the other hand, the heat medium pipe C10 connected to the low-temperature heat medium circuit 43 as described above is connected to the main valve port MV of the thermo valve 30, and the heat medium pipe C11 is connected to the bypass valve port BV. A heat medium pipe C14 is connected to the port XV. When the temperature of the heat medium in the mixing chamber 58 is lower than another predetermined value T2 (for example, +40° C.) higher than the predetermined value T1, the main valve 52 closes the opening 59 and the bypass valve 53 closes the bypass valve. When the port BV is opened and the temperature of the heat medium in the mixing chamber 58 reaches a predetermined value T2 or higher, the main valve 52 begins to open the opening 59, and the heat medium (low temperature heat medium described later) flows from the low temperature heat medium circuit 43 into the mixing chamber. It is set to be introduced in 58. The main valve 52 of the thermovalves 30, 31, 45 is structured such that a slight amount of heat medium flows into the mixing chamber 58 from the main valve port MV when the opening 59 is closed.

以上の構成で、実施例の熱マネジメントシステム1の動作を説明する。
(3)暖房モードとバッテリ2(温調対象)の温調
先ず、制御装置6による暖房モードについて説明する。図1中の各矢印は暖房モードにおける熱媒体の流れ方を示している。暖房モードでは制御装置6は、三方弁32が熱媒体配管C1、C28、C2を連通する状態とし、三方弁33は熱媒体配管C2と熱媒体配管C10のみを連通する状態とする。また、三方弁34は熱媒体配管C6と熱媒体配管C46のみを連通する状態とし、三方弁35は熱媒体配管C6、C7、C29を連通する状態とする。また、三方弁36は熱媒体配管C17と熱媒体配管C19のみを連通する状態とし、三方弁37は熱媒体配管C25と熱媒体配管C28のみを連通する状態とする。また、三方弁39は熱媒体配管C26と熱媒体配管C29のみを連通する状態とし、三方弁38は熱媒体配管C20と熱媒体配管C21のみを連通する状態に切り替える。
The operation of the heat management system 1 of the embodiment with the above configuration will be described.
(3) Heating Mode and Temperature Control of Battery 2 (Temperature Control Target) First, the heating mode by the controller 6 will be described. Each arrow in FIG. 1 indicates how the heat medium flows in the heating mode. In the heating mode, the control device 6 sets the three-way valve 32 to communicate the heat medium pipes C1, C28, and C2, and sets the three-way valve 33 to communicate only the heat medium pipes C2 and C10. Also, the three-way valve 34 is set to a state in which only the heat medium pipe C6 and the heat medium pipe C46 are communicated, and the three-way valve 35 is set to a state in which the heat medium pipes C6, C7, and C29 are communicated. In addition, the three-way valve 36 is put in a state in which only the heat medium pipe C17 and the heat medium pipe C19 are communicated, and the three-way valve 37 is put in a state in which only the heat medium pipe C25 and the heat medium pipe C28 are communicated. Further, the three-way valve 39 is switched to a state in which only the heat medium pipe C26 and the heat medium pipe C29 are communicated, and the three-way valve 38 is switched to a state in which only the heat medium pipe C20 and the heat medium pipe C21 are communicated.

そして、圧縮機7、各ポンプ21、22、23、室内ファン49を運転する。これにより、第1ポンプ21から吐出された熱媒体は冷却部13、ラジエータ29を順次経て第1ポンプ21に吸い込まれるかたちで低温熱媒体回路43A内を循環される。また、氷点下の低外気温条件では、サーモバルブ30のバイパスバルブポートBVから混合室58に流入する熱媒体の温度は低いので(所定値T2より低い)、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じ、バイパスバルブ53によりバイパスバルブポートBVを開いている。これにより、温調回路42の閉ループ内を熱媒体が循環される(図1に矢印で示す)。 Then, the compressor 7, the pumps 21, 22, 23 and the indoor fan 49 are operated. As a result, the heat medium discharged from the first pump 21 is sucked into the first pump 21 through the cooling unit 13 and the radiator 29 in order, and is circulated in the low-temperature heat medium circuit 43A. In addition, under low outside air temperature conditions below the freezing point, the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 30 is low (lower than the predetermined value T2), so the temperature sensing part 54 is located inside the mixing chamber 58. The opening 59 is closed by the main valve 52 and the bypass valve port BV is opened by the bypass valve 53 based on the temperature of the heat medium. As a result, the heat medium is circulated in the closed loop of the temperature control circuit 42 (indicated by arrows in FIG. 1).

また、第2ポンプ22から吐出された熱媒体は加熱部14を経てサーモバルブ31に至る。ここで、氷点下の低外気温条件では、サーモバルブ31の混合水ポートXVから混合室58に流入する熱媒体の温度も低いので(所定値T1より低い)、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じ、バイパスバルブ53によりバイパスバルブポートBVを開く。また、サーモバルブ45もメインバルブ52により開口59を閉じ、バイパスバルブ53によりバイパスバルブポートBVを開くので、サーモバルブ31に至った熱媒体は熱媒体配管C40を経て温調回路42に導入される。即ち、サーモバルブ45はサーモバルブ31が高温熱媒体回路44から温調回路42に熱媒体を導入する際、貯留部26の高温側貯留室63と温調回路42を連通するかたちとなる。 Also, the heat medium discharged from the second pump 22 reaches the thermo valve 31 through the heating section 14 . Here, under low outside air temperature conditions below freezing, the temperature of the heat medium flowing into the mixing chamber 58 from the mixed water port XV of the thermo valve 31 is also low (lower than the predetermined value T1). The opening 59 is closed by the main valve 52 and the bypass valve port BV is opened by the bypass valve 53 based on the temperature of the heat medium inside. The thermo valve 45 also closes the opening 59 by the main valve 52 and opens the bypass valve port BV by the bypass valve 53, so that the heat medium reaching the thermo valve 31 is introduced into the temperature control circuit 42 through the heat medium pipe C40. . That is, when the thermo valve 31 introduces the heat medium from the high temperature heat medium circuit 44 to the temperature control circuit 42 , the thermo valve 45 communicates the high temperature side reservoir 63 of the reservoir 26 with the temperature control circuit 42 .

熱媒体配管C40を経た熱媒体は、熱媒体配管C41にて温調回路42の閉ループ内を循環する熱媒体と共に第3ポンプ23に吸い込まれる。そして、熱媒体配管C15からバッテリ2に循環されて当該バッテリ2を加熱する。これにより、バッテリ2の暖機が行われることになる。温調回路42内に導入された分の熱媒体は、熱媒体配管C42から熱媒体配管C43に流れ、サーモバルブ45のバイパスバルブポートBVから混合室58を経て混合水ポートXVから熱媒体配管C44に流出し、貯留部26の高温側貯留室63に流入する。 The heat medium passing through the heat medium pipe C40 is sucked into the third pump 23 together with the heat medium circulating in the closed loop of the temperature control circuit 42 through the heat medium pipe C41. Then, the heat is circulated from the heat medium pipe C15 to the battery 2 to heat the battery 2 . Thereby, the warm-up of the battery 2 is performed. The heat medium introduced into the temperature control circuit 42 flows from the heat medium pipe C42 to the heat medium pipe C43, passes through the bypass valve port BV of the thermo valve 45, passes through the mixing chamber 58, and flows from the mixed water port XV to the heat medium pipe C44. , and flows into the high-temperature side storage chamber 63 of the storage section 26 .

この高温側貯留室63に流入した熱媒体は一旦貯留され、熱媒体配管C45から流出してヒータコア17に流入する。そして、ヒータコア17から流出した熱媒体は、第2ポンプ22に吸い込まれるかたちで高温熱媒体回路44内を循環される。図4の実線矢印はこの状態を示しており、これを熱媒体回路4の第1経路状態とする。 The heat medium flowing into the high-temperature side storage chamber 63 is temporarily stored, flows out from the heat medium pipe C45, and flows into the heater core 17. As shown in FIG. The heat medium flowing out of the heater core 17 is sucked into the second pump 22 and circulated in the high-temperature heat medium circuit 44 . Solid arrows in FIG. 4 indicate this state, which is defined as the first path state of the heat medium circuit 4 .

圧縮機7が運転されることで放熱器8では冷媒が放熱し、吸熱器11では冷媒が吸熱するので、放熱器8では加熱部14を流れる熱媒体が高温の冷媒により加熱される。この加熱された熱媒体は、前述した如く温調回路42に導入されるので、バッテリ2は加熱される。また、貯留部26を経た熱媒体は次にヒータコア17に循環されるので、室内ファン49から車室内に送給される空気はヒータコア17により加熱され、これにより車室内の暖房が行われる。 When the compressor 7 is operated, the refrigerant releases heat in the radiator 8 and absorbs heat in the heat absorber 11 . Since this heated heat medium is introduced into the temperature control circuit 42 as described above, the battery 2 is heated. Further, since the heat medium that has passed through the reservoir 26 is then circulated to the heater core 17, the air supplied from the indoor fan 49 into the passenger compartment is heated by the heater core 17, thereby heating the passenger compartment.

他方、吸熱器11では冷却部13を流れる熱媒体が冷媒により吸熱されて冷却される。この冷却された低温熱媒体はラジエータ29に循環され、外気により暖められる。即ち、外気中の熱を汲み上げる。この汲み上げられた熱はヒートポンプ回路3により放熱器8に搬送され、バッテリ2の加熱や、車室内の暖房に利用されることになる。 On the other hand, in the heat absorber 11, the heat medium flowing through the cooling section 13 is cooled by the refrigerant. This cooled low-temperature heat medium is circulated to the radiator 29 and warmed by the outside air. That is, it draws up heat in the outside air. The heat thus pumped up is conveyed to the radiator 8 by the heat pump circuit 3, and is used for heating the battery 2 and heating the interior of the vehicle.

運転開始後、高温熱媒体回路44を循環する熱媒体の温度は上昇していく。そして、サーモバルブ31の混合水ポートXVから混合室58内に流入する熱媒体の温度が前述した所定値T1(+30℃)以上まで上昇すると、感温部54は係る混合室58内の熱媒体の温度に基づいてバイパスバルブ53とメインバルブ52を移動させ、バイパスバルブポートBVを閉じ、開口59を開く。また、そのような状態ではサーモバルブ45のバイパスバルブポートBVから混合室58に流入する熱媒体の温度も所定値T1以上に上昇するので、サーモバルブ45の感温部54も係る混合室58内の熱媒体の温度に基づいてバイパスバルブ53とメインバルブ52を移動させ、バイパスバルブポートBVを閉じ、開口59を開く。 After the start of operation, the temperature of the heat medium circulating in the high-temperature heat medium circuit 44 rises. Then, when the temperature of the heat medium flowing into the mixing chamber 58 from the mixed water port XV of the thermo valve 31 rises above the predetermined value T1 (+30° C.), the temperature sensing part 54 detects the temperature of the heat medium in the mixing chamber 58. By moving the bypass valve 53 and the main valve 52 based on the temperature of , the bypass valve port BV is closed and the opening 59 is opened. In such a state, the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 45 also rises above the predetermined value T1. By moving the bypass valve 53 and the main valve 52 based on the temperature of the heat medium, the bypass valve port BV is closed and the opening 59 is opened.

これにより、サーモバルブ31の混合水ポートXVから流入した熱媒体は混合室58内を経て開口59を通過し、メインバルブポートMVから熱媒体配管C47に流出し、サーモバルブ45、熱媒体配管C44を経て貯留部26の高温側貯留室63に流入するようになる。そして、熱媒体配管C45を経てヒータコア17に流れるようになる。図5、図6中の実線矢印はこの状態を示しており、これを熱媒体回路4の第2経路状態とする。即ち、高温熱媒体回路44から温調回路42には熱媒体が導入されなくなるので、バッテリ2の過剰な加熱は防止される。 As a result, the heat medium flowing in from the mixed water port XV of the thermo valve 31 passes through the mixing chamber 58, through the opening 59, and flows out from the main valve port MV to the heat medium pipe C47. , and flows into the high-temperature side storage chamber 63 of the storage section 26 . Then, it comes to flow to the heater core 17 through the heat medium pipe C45. Solid line arrows in FIGS. 5 and 6 indicate this state, which is referred to as the second path state of the heat medium circuit 4 . That is, since no heat medium is introduced from the high-temperature heat medium circuit 44 to the temperature control circuit 42, excessive heating of the battery 2 is prevented.

その後、バッテリ2の自己発熱により温調回路42の閉ループ内を循環される熱媒体の温度は上昇していく。そして、サーモバルブ30のバイパスバルブポートBVから混合室58内に流入する熱媒体の温度が前述した所定値T2(+40℃)以上になると、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52を移動させ、開口59を開き始める。これにより、低温熱媒体回路43を流れる低温熱媒体の一部が、三方弁32で分流され、熱媒体配管C2、三方弁33、熱媒体配管C10を経てメインバルブポートMVからサーモバルブ30内に入り、開口59から混合室58内に流入し始める(図6中に破線矢印で示す)。 Thereafter, the self-heating of the battery 2 increases the temperature of the heat medium circulating in the closed loop of the temperature control circuit 42 . When the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 30 reaches or exceeds the predetermined value T2 (+40° C.), the temperature sensing part 54 detects that the heat medium in the mixing chamber 58 is Based on the temperature, the main valve 52 is moved to start opening the opening 59 . As a result, part of the low-temperature heat medium flowing through the low-temperature heat medium circuit 43 is diverted by the three-way valve 32, passes through the heat medium pipe C2, the three-way valve 33, the heat medium pipe C10, and enters the thermo valve 30 from the main valve port MV. 6 and begins to flow into the mixing chamber 58 through the opening 59 (indicated by the dashed arrow in FIG. 6).

開口59から流入した熱媒体は、バイパスバルブポートBVから流入した熱媒体と混合室58内で混合され、混合水ポートXVから熱媒体配管C14に流出する。そして、第3ポンプ23に吸い込まれ、バッテリ2に向けて吐出されるようになる。これにより、バッテリ2には温度が下がった熱媒体が循環されるので、バッテリ2は冷却されるようになる。 The heat medium that has flowed in from the opening 59 is mixed with the heat medium that has flowed in from the bypass valve port BV in the mixing chamber 58, and flows out from the mixed water port XV to the heat medium pipe C14. Then, it is sucked into the third pump 23 and discharged toward the battery 2 . As a result, the battery 2 is cooled because the heat medium whose temperature is lowered is circulated in the battery 2 .

バッテリ2を経て熱媒体配管C16に流出した熱媒体からは、もともと温調回路42の閉ループ内を循環していた分の熱媒体が熱媒体配管C42に流れ、熱媒体配管C10を経て低温熱媒体回路43から導入された分の熱媒体は、熱媒体配管C12に分流され、逆止弁41、熱媒体配管C13を経て貯留部26の低温側貯留室61に流入する。 From the heat medium flowing out to the heat medium pipe C16 through the battery 2, the heat medium originally circulating in the closed loop of the temperature control circuit 42 flows to the heat medium pipe C42, and passes through the heat medium pipe C10 to the low-temperature heat medium. The amount of the heat medium introduced from the circuit 43 is diverted to the heat medium pipe C12 and flows into the low temperature side reservoir 61 of the reservoir 26 via the check valve 41 and the heat medium pipe C13.

この低温側貯留室61に流入した熱媒体は一旦貯留され、熱媒体配管C46から流出して三方弁34に至り、低温熱媒体回路43に戻される(図6中破線矢印で示す)。これを熱媒体回路4の第3経路状態とする。このとき、貯留部26の高温側貯留室63には高温熱媒体回路44を流れる熱媒体が貯留されているが、断熱壁62により両室61、63は仕切られているので、高温熱媒体回路44の熱媒体と低温熱媒体回路43の熱媒体が熱交換することは防止、若しくは、最低限に抑えられる。 The heat medium flowing into the low temperature side storage chamber 61 is temporarily stored, flows out from the heat medium pipe C46, reaches the three-way valve 34, and is returned to the low temperature heat medium circuit 43 (indicated by the dashed arrow in FIG. 6). This is the third path state of the heat medium circuit 4 . At this time, the heat medium flowing through the high temperature heat medium circuit 44 is stored in the high temperature side storage chamber 63 of the storage unit 26, but the heat insulating wall 62 separates the two chambers 61 and 63, so that the high temperature heat medium circuit Heat exchange between the heat medium in 44 and the heat medium in the low temperature heat medium circuit 43 is prevented or minimized.

尚、上述の如く低温熱媒体回路43から導入された低温熱媒体によりバッテリ2が冷却され、サーモバルブ30の混合室58内の熱媒体(混合された熱媒体)の温度が前述した所定値T2より低くなると、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じる。これにより、再び第2経路状態に戻され、熱媒体は温調回路42の閉ループ内を循環するかたちに復帰する。以上のように、サーモバルブ31やサーモバルブ30により、温調回路42には高温熱媒体回路44を流れる熱媒体と低温熱媒体回路43Aを流れる熱媒体が選択的に導入され、バッテリ2は最適温度範囲(例えば、+10℃以上、+40℃以下の目標温度)に維持されるようになる。 The battery 2 is cooled by the low temperature heat medium introduced from the low temperature heat medium circuit 43 as described above, and the temperature of the heat medium (mixed heat medium) in the mixing chamber 58 of the thermo valve 30 rises to the predetermined value T2. When the temperature becomes lower, the temperature sensing part 54 closes the opening 59 by the main valve 52 based on the temperature of the heat medium in the mixing chamber 58 . As a result, the state is returned to the second path state, and the heat medium returns to the form of circulating in the closed loop of the temperature control circuit 42 . As described above, the heat medium flowing through the high-temperature heat medium circuit 44 and the heat medium flowing through the low-temperature heat medium circuit 43A are selectively introduced into the temperature control circuit 42 by the thermo valve 31 and the thermo valve 30, and the battery 2 is optimally maintained. A temperature range (eg, a target temperature of +10° C. or higher and +40° C. or lower) is maintained.

また、前述した如く高温熱媒体回路44から温調回路42に熱媒体を導入している状態(第1経路状態)において、バッテリ2を経た熱媒体の一部が図4中破線矢印で示すように熱媒体配管C12に流入した場合、当該熱媒体は貯留部26の低温側貯留室61に流入することになるが、貯留部26内の低温側貯留室61と高温側貯留室63の上部は、前述した如く連通されているので、断熱壁62を超えた分の熱媒体は高温側貯留室63側に流入する。これにより、両室61、63の熱媒体の量は調整されることになる。 In the state (first path state) in which the heat medium is introduced from the high-temperature heat medium circuit 44 to the temperature control circuit 42 as described above, part of the heat medium that has passed through the battery 2 is shown by the dashed arrow in FIG. , the heat medium flows into the low temperature side storage chamber 61 of the storage portion 26, but the upper portions of the low temperature side storage chamber 61 and the high temperature side storage chamber 63 in the storage portion 26 are , are communicated as described above, the heat medium flowing over the heat insulating wall 62 flows into the high temperature side storage chamber 63 side. As a result, the amount of heat medium in both chambers 61 and 63 is adjusted.

(4)冷房モードとバッテリ(温調対象)2の温調
次に、制御装置6による冷房モードについて説明する。図7中の各矢印は冷房モードにおける熱媒体の流れ方を示している。冷房モードでは制御装置6は、三方弁32が熱媒体配管C1と熱媒体配管C2のみを連通する状態とし、三方弁33は熱媒体配管C2、C4、C10を連通する状態とする。また、三方弁34は熱媒体配管C5、C6、C46を連通する状態とし、三方弁35は熱媒体配管C6と熱媒体配管C7のみを連通する状態とする。また、三方弁36は熱媒体配管C17と熱媒体配管C24のみを連通する状態とし、三方弁37は熱媒体配管C24と熱媒体配管C25のみを連通する状態とする。また、三方弁39は熱媒体配管C26と熱媒体配管C27のみを連通する状態とし、三方弁38は熱媒体配管C27と熱媒体配管C21のみを連通する状態に切り替える。
(4) Cooling Mode and Temperature Control of Battery (Temperature Control Target) 2 Next, the cooling mode by the control device 6 will be described. Each arrow in FIG. 7 indicates how the heat medium flows in the cooling mode. In the cooling mode, the control device 6 sets the three-way valve 32 in a state in which only the heat medium pipes C1 and C2 are communicated, and the three-way valve 33 in a state in which the heat medium pipes C2, C4, and C10 are communicated. In addition, the three-way valve 34 is put in a state in which the heat medium pipes C5, C6, and C46 are communicated, and the three-way valve 35 is put in a state in which only the heat medium pipes C6 and C7 are communicated. In addition, the three-way valve 36 is put in a state in which only the heat medium pipe C17 and the heat medium pipe C24 are communicated, and the three-way valve 37 is put in a state in which only the heat medium pipe C24 and the heat medium pipe C25 are communicated. Also, the three-way valve 39 is switched to a state in which only the heat medium pipe C26 and the heat medium pipe C27 are communicated, and the three-way valve 38 is switched to a state in which only the heat medium pipe C27 and the heat medium pipe C21 are communicated.

そして、圧縮機7、各ポンプ21、22、23、室内ファン49を運転する。これにより、第1ポンプ21から吐出された熱媒体は、冷却部13、クーラコア47を順次経て第1ポンプ21に吸い込まれるかたちで低温熱媒体回路43内を循環される。また、第2ポンプ22から吐出された熱媒体は、加熱部14、ラジエータ29を順次経て第2ポンプ22に吸い込まれるかたちで循環される。 Then, the compressor 7, the pumps 21, 22, 23 and the indoor fan 49 are operated. As a result, the heat medium discharged from the first pump 21 is circulated in the low-temperature heat medium circuit 43 while being sucked into the first pump 21 through the cooling unit 13 and the cooler core 47 in sequence. Also, the heat medium discharged from the second pump 22 is circulated by being sucked into the second pump 22 through the heating unit 14 and the radiator 29 in sequence.

一方、圧縮機7が運転されることで前述同様に放熱器8では冷媒が放熱し、吸熱器11では冷媒が吸熱するので、吸熱器11では冷却部13を流れる熱媒体が冷媒により吸熱されて冷却される。この冷却された低温熱媒体はクーラコア16に循環されるので、室内ファン49から車室内に送給される空気はクーラコア16により冷却され、これにより車室内の冷房が行われる。他方、放熱器8では加熱部14を流れる熱媒体が高温の冷媒により加熱される。この加熱された高温熱媒体はラジエータ29に循環され、外気中に放熱する。 On the other hand, when the compressor 7 is operated, the refrigerant releases heat in the radiator 8 and absorbs heat in the heat absorber 11 in the same manner as described above. Cooled. Since the cooled low-temperature heat medium is circulated to the cooler core 16, the air supplied from the indoor fan 49 into the vehicle interior is cooled by the cooler core 16, thereby cooling the vehicle interior. On the other hand, in the radiator 8, the heat medium flowing through the heating portion 14 is heated by the high-temperature refrigerant. This heated high-temperature heat medium is circulated to the radiator 29 and radiates heat to the outside air.

運転開始当初は温調回路42内を循環する熱媒体の温度も前述した所定値T2より低いので、第3ポンプ23から吐出された熱媒体はバッテリ(温調対象)2を経てサーモバルブ30に至り、再び第3ポンプ23に吸い込まれるかたちで温調回路42の閉ループ内を循環されることになる。即ち、サーモバルブ30は混合水ポートXVから混合室58内に流入する熱媒体の温度に基づき、バイパスバルブ53によりバイパスバルブポートBVを開き、メインバルブ52により開口59を閉じるので、第3ポンプ23により温調回路42の閉ループ内を熱媒体が循環されることになる。図7中の実線矢印はこの状態を示しており、これを熱媒体回路4の第4経路状態とする。 At the beginning of the operation, the temperature of the heat medium circulating in the temperature control circuit 42 is also lower than the above-mentioned predetermined value T2, so the heat medium discharged from the third pump 23 is supplied to the thermo valve 30 via the battery (temperature control target) 2. As a result, the water is sucked into the third pump 23 again and circulated in the closed loop of the temperature control circuit 42 . That is, the thermo valve 30 opens the bypass valve port BV with the bypass valve 53 and closes the opening 59 with the main valve 52 based on the temperature of the heat medium flowing into the mixing chamber 58 from the mixed water port XV. Thus, the heat medium is circulated in the closed loop of the temperature control circuit 42 . A solid arrow in FIG. 7 indicates this state, which is referred to as a fourth path state of the heat medium circuit 4.

その後、バッテリ2の自己発熱により温調回路42の閉ループ内を循環される熱媒体の温度は上昇していく。そして、サーモバルブ30のバイパスバルブポートBVから混合室58内に流入する熱媒体の温度が前述した所定値T2(+40℃)以上になると、感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52を移動させ、開口59を開き始める。これにより、低温熱媒体回路43を流れる低温熱媒体の一部が、三方弁33で分流され、熱媒体配管C10を経てメインバルブポートMVからサーモバルブ31内に入り、開口59から混合室58内に流入し始める(図7中に破線矢印で示す)。 Thereafter, the self-heating of the battery 2 increases the temperature of the heat medium circulating in the closed loop of the temperature control circuit 42 . When the temperature of the heat medium flowing into the mixing chamber 58 from the bypass valve port BV of the thermo valve 30 reaches or exceeds the predetermined value T2 (+40° C.), the temperature sensing part 54 detects that the heat medium in the mixing chamber 58 is Based on the temperature, the main valve 52 is moved to start opening the opening 59 . As a result, part of the low-temperature heat medium flowing through the low-temperature heat medium circuit 43 is diverted by the three-way valve 33, passes through the heat medium pipe C10, enters the thermo valve 31 from the main valve port MV, and enters the mixing chamber 58 from the opening 59. (indicated by the dashed arrow in FIG. 7).

開口59から流入した熱媒体は、サーモバルブ30のバイパスバルブポートBVから流入した熱媒体と混合室58内で混合され、混合水ポートXVから熱媒体配管C14に流出する。そして、第3ポンプ23に吸い込まれ、バッテリ2に向けて吐出されるようになる。これにより、バッテリ2には温度が下がった熱媒体が循環されるので、バッテリ2は冷却されるようになる。 The heat medium flowing from the opening 59 is mixed with the heat medium flowing from the bypass valve port BV of the thermo valve 30 in the mixing chamber 58, and flows out from the mixed water port XV to the heat medium pipe C14. Then, it is sucked into the third pump 23 and discharged toward the battery 2 . As a result, the battery 2 is cooled because the heat medium whose temperature is lowered is circulated in the battery 2 .

バッテリ2を経て熱媒体配管C16に流出した熱媒体からは、もともと温調回路42の閉ループ内を循環していた分の熱媒体が熱媒体配管C42に流れ、熱媒体配管C10を経て低温熱媒体回路43から導入された分の熱媒体は、熱媒体配管C12に分流され、逆止弁41、熱媒体配管C13を経て貯留部26の低温側貯留室61に流入する。この低温側貯留室61に流入した熱媒体は一旦貯留され、熱媒体配管C46から流出して三方弁34に至り、低温熱媒体回路43に戻される(図7中破線矢印で示す)。これを熱媒体回路4の第5経路状態とする。 From the heat medium flowing out to the heat medium pipe C16 through the battery 2, the heat medium originally circulating in the closed loop of the temperature control circuit 42 flows to the heat medium pipe C42, and passes through the heat medium pipe C10 to the low-temperature heat medium. The amount of the heat medium introduced from the circuit 43 is diverted to the heat medium pipe C12 and flows into the low temperature side reservoir 61 of the reservoir 26 via the check valve 41 and the heat medium pipe C13. The heat medium flowing into the low temperature side storage chamber 61 is temporarily stored, flows out from the heat medium pipe C46, reaches the three-way valve 34, and is returned to the low temperature heat medium circuit 43 (indicated by the dashed arrow in FIG. 7). This state is referred to as the fifth path state of the heat medium circuit 4 .

尚、上述の如く低温熱媒体回路43から導入された低温熱媒体によりバッテリ2が冷却され、サーモバルブ30の混合室58内の熱媒体(混合された熱媒体)の温度が前述した所定値T2より低くなると、サーモバルブ30の感温部54は係る混合室58内の熱媒体の温度に基づいてメインバルブ52により開口59を閉じる。これにより、再び第4経路状態に戻され、熱媒体は温調回路42の閉ループ内を循環するかたちに復帰する。以上により、冷房モードにおいても、バッテリ2は最適温度範囲(例えば、+10℃以上、+40℃以下の目標温度)に維持されるようになる。 The battery 2 is cooled by the low temperature heat medium introduced from the low temperature heat medium circuit 43 as described above, and the temperature of the heat medium (mixed heat medium) in the mixing chamber 58 of the thermo valve 30 rises to the predetermined value T2. When the temperature becomes lower, the temperature sensing part 54 of the thermo valve 30 closes the opening 59 by the main valve 52 based on the temperature of the heat medium in the mixing chamber 58 . As a result, the state is returned to the fourth path state, and the heat medium returns to the form of circulating in the closed loop of the temperature control circuit 42 . As described above, even in the cooling mode, the battery 2 is maintained within the optimum temperature range (for example, a target temperature of +10° C. or higher and +40° C. or lower).

以上のように本発明によれば、高温熱媒体回路44を流れる熱媒体と低温熱媒体回路43、43Aを流れる熱媒体を選択的に温調回路42に導入するサーモバルブ31、30(温度調整部)を備えているので、温調回路42のバッテリ2に高温熱媒体回路44や低温熱媒体回路43、43Aの熱媒体を流して、熱交換ロスの少ない効率的なバッテリ2の温調を実現することができるようになる。 As described above, according to the present invention, the thermo valves 31 and 30 (temperature adjustment valves) selectively introduce the heat medium flowing through the high-temperature heat medium circuit 44 and the heat medium flowing through the low-temperature heat medium circuits 43 and 43A into the temperature control circuit 42. part), the heat medium of the high-temperature heat medium circuit 44 and the low-temperature heat medium circuits 43, 43A is passed through the battery 2 of the temperature control circuit 42 to efficiently control the temperature of the battery 2 with little heat exchange loss. can be realized.

この場合、温調回路42から高温熱媒体回路44又は低温熱媒体回路43、43Aに熱媒体を戻す経路上に、熱媒体を貯留する貯留部26を設けたので、高温熱媒体回路44と低温熱媒体回路43において熱媒体の偏りが生じることも解消することができる。また、貯留部26(リザーブタンク)を設ける構造であるので、コストの上昇も最小限に抑えることもできる。 In this case, since the storage part 26 for storing the heat medium is provided on the path for returning the heat medium from the temperature control circuit 42 to the high temperature heat medium circuit 44 or the low temperature heat medium circuits 43, 43A, the high temperature heat medium circuit 44 and the low temperature heat medium circuit It is also possible to eliminate uneven distribution of the heat medium in the heat medium circuit 43 . In addition, since the structure is such that the reservoir 26 (reserve tank) is provided, an increase in cost can be minimized.

また、実施例では貯留部26に、熱媒体を高温熱媒体回路44に戻す高温側出口63Aを有する高温側貯留室63と、熱媒体を低温熱媒体回路43、43Aに戻す低温側出口61Aを有する低温側貯留室61を構成し、サーモバルブ31が高温熱媒体回路44から温調回路42に熱媒体を導入する際に、貯留部26の高温側貯留室63と温調回路42とを接続するサーモバルブ45(流路切替部)を設けたので、高温熱媒体回路44から導入された熱媒体は貯留部26の高温側貯留室63から高温熱媒体回路44に、低温熱媒体回路43から導入された熱媒体は貯留部26の低温側貯留室61から低温熱媒体回路43、43Aに、それぞれ戻すことができるようになる。 In the embodiment, the storage section 26 includes a high temperature side storage chamber 63 having a high temperature side outlet 63A that returns the heat medium to the high temperature heat medium circuit 44, and a low temperature side outlet 61A that returns the heat medium to the low temperature heat medium circuits 43 and 43A. When the thermo valve 31 introduces the heat medium from the high temperature heat medium circuit 44 to the temperature control circuit 42, the high temperature side storage room 63 of the storage unit 26 and the temperature control circuit 42 are connected. Since the thermo valve 45 (flow path switching unit) is provided, the heat medium introduced from the high temperature heat medium circuit 44 is transferred from the high temperature side storage chamber 63 of the storage unit 26 to the high temperature heat medium circuit 44 and from the low temperature heat medium circuit 43. The introduced heat medium can be returned from the low-temperature side reservoir 61 of the reservoir 26 to the low-temperature heat medium circuits 43 and 43A.

この場合、実施例では貯留部26の高温側貯留室63と低温側貯留室61を断熱壁62により仕切るようにしたので、高温熱媒体回路44に戻る熱媒体と低温熱媒体回路43、43Aに戻る熱媒体との間の熱交換を抑制し、各回路44、43(43A)における熱ロスも抑えることができるようになる。また、高温側貯留室63と低温側貯留室61の上部を相互に連通させているので、高温熱媒体回路44から導入された熱媒体が温調回路42を経て低温側貯留室61に流入した場合でも、両室61、63の間で熱媒体量の調整が行われ、低温側貯留室61が満杯となって熱媒体が温調回路42側に逆流する等の不都合も防止することができるようになる。 In this case, in the embodiment, the high temperature side storage chamber 63 and the low temperature side storage chamber 61 of the storage section 26 are separated by the heat insulating wall 62, so that the heat medium returning to the high temperature heat medium circuit 44 and the low temperature heat medium circuits 43 and 43A Heat exchange with the returning heat medium is suppressed, and heat loss in each circuit 44, 43 (43A) can also be suppressed. Further, since the upper portions of the high temperature side storage chamber 63 and the low temperature side storage chamber 61 are communicated with each other, the heat medium introduced from the high temperature heat medium circuit 44 flows into the low temperature side storage chamber 61 through the temperature control circuit 42. Even in this case, the amount of heat medium is adjusted between the two chambers 61 and 63, so that the low temperature storage chamber 61 becomes full and the heat medium flows backward to the temperature control circuit 42 side. become.

また、実施例ではサーモバルブ31(温度調整部)が、高温熱媒体回路44を流れる熱媒体の温度が所定値T1より低い場合に、当該熱媒体を温調回路42に導入するようにしたので、バッテリ2の過剰な加熱を防止することができるようになる。 Further, in the embodiment, the thermo valve 31 (temperature control unit) introduces the heat medium into the temperature control circuit 42 when the temperature of the heat medium flowing through the high-temperature heat medium circuit 44 is lower than the predetermined value T1. , excessive heating of the battery 2 can be prevented.

更に、サーモバルブ30(温度調整部)が、温調回路42を流れる熱媒体の温度が、所定値T1より高いもう一つの所定値T2以上となった場合に、低温熱媒体回路43、43Aから温調回路42に熱媒体を導入するようにしたので、バッテリ2の過熱を確実に防止することができるようになる。 Further, when the temperature of the heat medium flowing through the temperature control circuit 42 becomes equal to or higher than another predetermined value T2 higher than the predetermined value T1, the thermo valve 30 (temperature adjustment unit) causes the low-temperature heat medium circuits 43 and 43A to Since the heat medium is introduced into the temperature control circuit 42, overheating of the battery 2 can be reliably prevented.

この場合、実施例では温度調整部や流路切替部を、内部を流れる流体の温度を感知する感温部54を有して当該流体の流路を切り替える流路切替弁であるサーモバルブにて構成しているので、電子的な制御も不要となり、システムのコストを削減することが可能となる。 In this case, in the embodiment, the temperature adjustment part and the flow path switching part are replaced by a thermo valve, which is a flow path switching valve that has a temperature sensing part 54 that senses the temperature of the fluid flowing inside and switches the flow path of the fluid. Since it is configured, electronic control becomes unnecessary, and the cost of the system can be reduced.

尚、温調対象としては前述した電動車両に搭載されたバッテリ2や、電動車両の走行用電動モータ、当該走行用電動モータを駆動するインバータが考えられる。 It should be noted that the object of temperature control can be the battery 2 mounted on the electric vehicle, the electric motor for running the electric vehicle, and the inverter for driving the electric motor for running.

また、実施例では高温熱媒体回路44を、加熱部14により加熱された熱媒体が循環されて車両の車室内を暖房するためのヒータコア17を有するものとした。また、低温熱媒体回路43を、冷却部13により冷却された熱媒体が循環されて車両の車室内を冷房するためのクーラコア16を有するものとした。そして、圧縮機7と、放熱器8と、膨張弁9と、吸熱器11を有するヒートポンプ回路3を設け、放熱器8と高温熱媒体回路44の加熱部14とを熱交換関係に設けると共に、吸熱器11と低温熱媒体回路43、43Aの冷却部13とを熱交換関係に設けた。 In the embodiment, the high-temperature heat medium circuit 44 has a heater core 17 for circulating the heat medium heated by the heating unit 14 to heat the interior of the vehicle. Further, the low-temperature heat medium circuit 43 has a cooler core 16 for circulating the heat medium cooled by the cooling unit 13 to cool the interior of the vehicle. A heat pump circuit 3 having a compressor 7, a radiator 8, an expansion valve 9, and a heat absorber 11 is provided, and the radiator 8 and the heating section 14 of the high-temperature heat medium circuit 44 are provided in a heat exchange relationship, The heat absorber 11 and the cooling part 13 of the low-temperature heat medium circuit 43, 43A are provided in a heat exchange relationship.

これにより、電動車両の車室内を空調するためのヒートポンプ回路3や高温熱媒体回路44、低温熱媒体回路43、43Aを利用してバッテリ2の温調を行うことができるようになる。また、バッテリ2を加熱する必要が無い場合には、高温熱媒体回路44を流れる熱媒体は温調回路42に流れなくなるので、ヒータコア17にはより高温の熱媒体が循環されるようになり、車室内の暖房も支障無く行えるようになる。更に、バッテリ2を冷却する必要が無い場合には、低温熱媒体回路43を流れる熱媒体はバッテリ42に流れなくなるので、クーラコア16にはより低温の熱媒体が循環されるようになり、車室内の冷房も支障無く行えるようになる。 As a result, the temperature of the battery 2 can be controlled using the heat pump circuit 3, the high-temperature heat medium circuit 44, and the low-temperature heat medium circuits 43 and 43A for air-conditioning the interior of the electric vehicle. Further, when the battery 2 does not need to be heated, the heat medium flowing through the high-temperature heat medium circuit 44 does not flow into the temperature control circuit 42, so that the heat medium with a higher temperature is circulated through the heater core 17. Heating of the passenger compartment can also be performed without any trouble. Furthermore, when the battery 2 does not need to be cooled, the heat medium flowing through the low-temperature heat medium circuit 43 does not flow to the battery 42, so that a heat medium with a lower temperature is circulated through the cooler core 16. cooling can be performed without any trouble.

尚、実施例で示した数値や構成は、それらに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。特に、実施例ではサーモバルブが熱媒体の流路を切り替えるようにしているが、本出願においては完全に切り替えずに、少量は双方に流れる場合も含む概念とする。また、実施例では電動車両の車両用空気調和装置を例に取り上げて説明したが、請求項7~請求項9以外の発明ではそれに限らず、熱媒体を循環させて温調対象を温調する各種熱マネジメントシステムに本発明は適用可能である。 It goes without saying that the numerical values and configurations shown in the examples are not limited to them, and can be changed without departing from the scope of the present invention. In particular, in the embodiments, the thermo valve switches the flow path of the heat medium, but in the present application, the concept includes the case where a small amount flows in both directions without completely switching. Further, in the embodiments, the vehicle air conditioner for an electric vehicle was taken up as an example, but the inventions other than claims 7 to 9 are not limited to this, and the heat medium is circulated to adjust the temperature of the object to be temperature controlled. The present invention can be applied to various heat management systems.

1 熱マネジメントシステム
2 バッテリ(温調対象)
3 ヒートポンプ回路
4 熱媒体回路
7 圧縮機
8 放熱器
9 膨張弁(減圧部)
11 吸熱器
13 冷却部
14 加熱部
16 クーラコア
17 ヒータコア
21 第1ポンプ
22 第2ポンプ
23 第3ポンプ(循環部)
26 貯留部
30、31 サーモバルブ(温度調整部)
32~39 三方弁
42 温調回路
43、43A 低温熱媒体回路
44 高温熱媒体回路
45 サーモバルブ(流路切替部)
61 低温側貯留室
61A 低温側出口
62 断熱壁
63 高温側貯留室
63A 高温側出口
1 Thermal management system 2 Battery (temperature control target)
3 heat pump circuit 4 heat medium circuit 7 compressor 8 radiator 9 expansion valve (decompression part)
11 heat absorber 13 cooling unit 14 heating unit 16 cooler core 17 heater core 21 first pump 22 second pump 23 third pump (circulation unit)
26 storage part 30, 31 thermo valve (temperature control part)
32 to 39 three-way valve 42 temperature control circuit 43, 43A low-temperature heat medium circuit 44 high-temperature heat medium circuit 45 thermo valve (flow path switching unit)
61 low temperature side storage chamber 61A low temperature side outlet 62 heat insulating wall 63 high temperature side storage chamber 63A high temperature side outlet

Claims (9)

温調対象に熱媒体を循環させて温調する熱媒体回路を備えた熱マネジメントシステムであって、
前記熱媒体を前記温調対象に循環させる循環部を有する温調回路と、
該温調回路に接続されると共に、前記熱媒体を加熱する加熱部を有し、当該加熱部により加熱された前記熱媒体が循環される高温熱媒体回路と、
前記温調回路に接続されると共に、前記熱媒体を冷却する冷却部を有し、当該冷却部により冷却された前記熱媒体が循環される低温熱媒体回路と、
前記高温熱媒体回路を流れる前記熱媒体と前記低温熱媒体回路を流れる前記熱媒体を選択的に前記温調回路に導入する温度調整部と、
前記温調回路から前記高温熱媒体回路又は前記低温熱媒体回路に前記熱媒体を戻す経路上に設けられ、前記熱媒体を貯留する貯留部を備えたことを特徴とする熱マネジメントシステム。
A heat management system comprising a heat medium circuit that regulates temperature by circulating a heat medium to a temperature control target,
a temperature control circuit having a circulation unit that circulates the heat medium to the temperature control target;
a high-temperature heat medium circuit connected to the temperature control circuit and having a heating unit for heating the heat medium, in which the heat medium heated by the heating unit is circulated;
a low-temperature heat medium circuit connected to the temperature control circuit and having a cooling unit for cooling the heat medium, through which the heat medium cooled by the cooling unit is circulated;
a temperature control unit that selectively introduces the heat medium flowing through the high-temperature heat medium circuit and the heat medium flowing through the low-temperature heat medium circuit into the temperature control circuit;
A heat management system comprising a reservoir for storing the heat medium, provided on a path for returning the heat medium from the temperature control circuit to the high-temperature heat medium circuit or the low-temperature heat medium circuit.
前記貯留部は、前記熱媒体を前記高温熱媒体回路に戻す高温側出口を有する高温側貯留室と、前記熱媒体を前記低温熱媒体回路に戻す低温側出口を有する低温側貯留室を有すると共に、
前記温度調整部が前記高温熱媒体回路から前記温調回路に前記熱媒体を導入する際に、前記貯留部の前記高温側貯留室と前記温調回路とを接続する流路切替部を備えたことを特徴とする請求項1に記載の熱マネジメントシステム。
The storage section has a high temperature side storage chamber having a high temperature side outlet for returning the heat medium to the high temperature heat medium circuit, and a low temperature side storage chamber having a low temperature side outlet for returning the heat medium to the low temperature heat medium circuit. ,
a flow path switching unit that connects the high temperature side storage chamber of the storage unit and the temperature control circuit when the temperature control unit introduces the heat medium from the high temperature heat medium circuit to the temperature control circuit The thermal management system of claim 1, characterized by:
前記貯留部の前記高温側貯留室と前記低温側貯留室は断熱壁により仕切られ、且つ、それらの上部は相互に連通されていることを特徴とする請求項1又は請求項2に記載の熱マネジメントシステム。 3. The heat according to claim 1, wherein the high-temperature side storage chamber and the low-temperature side storage chamber of the storage part are partitioned by a heat insulating wall, and upper portions thereof are communicated with each other. management system. 前記温度調整部は、前記高温熱媒体回路を流れる前記熱媒体の温度が所定値より低い場合に、当該熱媒体を前記温調回路に導入することを特徴とする請求項1乃至請求項3のうちの何れかに記載の熱マネジメントシステム。 4. The temperature control unit introduces the heat medium into the temperature control circuit when the temperature of the heat medium flowing through the high-temperature heat medium circuit is lower than a predetermined value. A thermal management system according to any of the preceding. 前記温度調整部は、前記温調回路を流れる前記熱媒体の温度が、前記所定値より高いもう一つの所定値以上となった場合に、前記低温熱媒体回路から前記温調回路に前記熱媒体を導入することを特徴とする請求項1乃至請求項4のうちの何れかに記載の熱マネジメントシステム。 The temperature control unit transfers the heat medium from the low-temperature heat medium circuit to the temperature control circuit when the temperature of the heat medium flowing through the temperature control circuit becomes equal to or higher than another predetermined value higher than the predetermined value. 5. The heat management system according to any one of claims 1 to 4, characterized by introducing a. 前記温度調整部、又は、当該温度調整部及び前記流路切替部は、内部を流れる流体の温度を感知する感温部を有して当該流体の流路を切り替える流路切替弁であることを特徴とする請求項1乃至請求項5のうちの何れかに記載の熱マネジメントシステム。 The temperature adjustment unit, or the temperature adjustment unit and the flow path switching unit, is a flow path switching valve that has a temperature sensing part that senses the temperature of the fluid flowing therein and switches the flow path of the fluid. A thermal management system according to any one of claims 1 to 5. 前記温調対象は車両に搭載されたバッテリ、前記車両の走行用モータ、若しくは、当該モータを駆動するインバータであることを特徴とする請求項1乃至請求項6のうちの何れかに記載の熱マネジメントシステム。 7. The heat according to any one of claims 1 to 6, wherein the temperature control object is a battery mounted on a vehicle, a motor for driving the vehicle, or an inverter for driving the motor. management system. 前記高温熱媒体回路は、前記加熱部により加熱された前記熱媒体が循環されて車両の車室内を暖房するためのヒータコアを有し、
前記低温熱媒体回路は、前記冷却部により冷却された前記熱媒体が循環されて車両の車室内を冷房するためのクーラコアを有することを特徴とする請求項1乃至請求項7のうちの何れかに記載の熱マネジメントシステム。
The high-temperature heat medium circuit has a heater core for circulating the heat medium heated by the heating unit to heat the interior of the vehicle,
8. The low-temperature heat medium circuit has a cooler core for circulating the heat medium cooled by the cooling unit to cool the interior of the vehicle. The thermal management system described in .
冷媒を圧縮する圧縮機と、該圧縮機から吐出された前記冷媒を放熱させる放熱器と、該放熱器で放熱した前記冷媒を減圧する減圧部と、該減圧部で減圧された前記冷媒を吸熱させる吸熱器を有するヒートポンプ回路を備え、
前記放熱器と前記高温熱媒体回路の前記加熱部とが熱交換関係に設けられ、
前記吸熱器と前記低温熱媒体回路の前記冷却部とが熱交換関係に設けられていることを特徴とする請求項1乃至請求項8のうちの何れかに記載の熱マネジメントシステム。
A compressor that compresses a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, a decompression section that decompresses the refrigerant that has dissipated heat from the radiator, and a heat absorption of the refrigerant decompressed by the decompression section. a heat pump circuit having a heat absorber that causes
the radiator and the heating portion of the high-temperature heat medium circuit are provided in a heat exchange relationship,
9. A heat management system according to claim 1, wherein said heat absorber and said cooling portion of said low-temperature heat medium circuit are provided in a heat exchange relationship.
JP2022025528A 2022-02-22 2022-02-22 Thermal management system Pending JP2023122100A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022025528A JP2023122100A (en) 2022-02-22 2022-02-22 Thermal management system
PCT/JP2023/002096 WO2023162549A1 (en) 2022-02-22 2023-01-24 Heat management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025528A JP2023122100A (en) 2022-02-22 2022-02-22 Thermal management system

Publications (1)

Publication Number Publication Date
JP2023122100A true JP2023122100A (en) 2023-09-01

Family

ID=87765530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025528A Pending JP2023122100A (en) 2022-02-22 2022-02-22 Thermal management system

Country Status (2)

Country Link
JP (1) JP2023122100A (en)
WO (1) WO2023162549A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003828A (en) * 2014-06-18 2016-01-12 株式会社デンソー Refrigeration cycle device
WO2017038593A1 (en) * 2015-09-03 2017-03-09 株式会社デンソー Heat management device for vehicle
JP7243410B2 (en) * 2019-04-19 2023-03-22 株式会社デンソー Vehicle battery heating device

Also Published As

Publication number Publication date
WO2023162549A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US20180195777A1 (en) Thermoelectric-based air conditioning system
US7841431B2 (en) Electric vehicle thermal management system
US7048044B2 (en) Heat control system
CN111231773B (en) Vehicle thermal management system, control method thereof and vehicle
CN110588278B (en) Distributed driving electric automobile heat management system for optimizing heat energy distribution
US20090205353A1 (en) Air conditioning system for vehicle
KR102573227B1 (en) Heat management system of vehicle
US20130145790A1 (en) Heating and cooling device and heating and cooling module for a heating and cooling device
JP2002352867A (en) Battery temperature controller for electric vehicle
CN111231770A (en) Vehicle thermal management system and vehicle
JP6387532B2 (en) Air conditioner for vehicle and component unit thereof
US20220258558A1 (en) Heat management device for vehicle, and heat management method for vehicle
US10611212B2 (en) Air conditioner for vehicle
JP2009190579A (en) Air conditioning system
CN111129663A (en) Vehicle-mounted thermal management system and vehicle
KR102657255B1 (en) Heat pump system for vehicle
WO2023162549A1 (en) Heat management system
WO2023162550A1 (en) Heat management system
WO2023162548A1 (en) Heat management system
WO2023161985A1 (en) Heat management system
CN115465039A (en) Cooling system for vehicle
JP2002225545A (en) Air conditioner for vehicle
CN111845244B (en) Heat integrated management system
JP7476083B2 (en) Control method using a thermal management device for a vehicle
WO2023203942A1 (en) Heat medium circuit