JP2023121722A - コードを付した物体の画像内のコード画像領域の発見 - Google Patents
コードを付した物体の画像内のコード画像領域の発見 Download PDFInfo
- Publication number
- JP2023121722A JP2023121722A JP2022201590A JP2022201590A JP2023121722A JP 2023121722 A JP2023121722 A JP 2023121722A JP 2022201590 A JP2022201590 A JP 2022201590A JP 2022201590 A JP2022201590 A JP 2022201590A JP 2023121722 A JP2023121722 A JP 2023121722A
- Authority
- JP
- Japan
- Prior art keywords
- code
- candidate
- segmentation
- image
- candidates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000011218 segmentation Effects 0.000 claims abstract description 155
- 238000000034 method Methods 0.000 claims abstract description 95
- 238000010801 machine learning Methods 0.000 claims abstract description 30
- 230000005693 optoelectronics Effects 0.000 claims abstract 2
- 238000013528 artificial neural network Methods 0.000 claims description 42
- 238000011156 evaluation Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 19
- 230000008569 process Effects 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 description 9
- 238000012549 training Methods 0.000 description 9
- 230000004927 fusion Effects 0.000 description 8
- 238000013527 convolutional neural network Methods 0.000 description 7
- 238000012015 optical character recognition Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1439—Methods for optical code recognition including a method step for retrieval of the optical code
- G06K7/1443—Methods for optical code recognition including a method step for retrieval of the optical code locating of the code in an image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/146—Aligning or centring of the image pick-up or image-field
- G06V30/147—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/146—Methods for optical code recognition the method including quality enhancement steps
- G06K7/1482—Methods for optical code recognition the method including quality enhancement steps using fuzzy logic or natural solvers, such as neural networks, genetic algorithms and simulated annealing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1408—Methods for optical code recognition the method being specifically adapted for the type of code
- G06K7/1413—1D bar codes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1408—Methods for optical code recognition the method being specifically adapted for the type of code
- G06K7/1417—2D bar codes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/146—Methods for optical code recognition the method including quality enhancement steps
- G06K7/1491—Methods for optical code recognition the method including quality enhancement steps the method including a reconstruction step, e.g. stitching two pieces of bar code together to derive the full bar code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/148—Segmentation of character regions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Fuzzy Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (15)
- コードを付した物体(14)の原画像内でコード画像領域を見つけ出すためのコンピュータ実行型の方法であって、機械学習を含まない古典的な画像処理の方法を用いる第1のセグメント化法においてコード画像領域の第1候補が決定される方法において、
機械学習を用いる第2のセグメント化法において第2候補を決定すること、及び、コード画像領域を見つけ出すために前記第1候補と前記第2候補をマージすること、を特徴とする方法。 - 前記第1のセグメント化法が第1の結果マップを生成し、及び/又は、前記第2のセグメント化法が第2の結果マップを生成し、結果マップは前記原画像よりも低解像度の画像であり、その画素が、該画素の位置においてコード画像領域が認識されているかという情報を示している、請求項1に記載の方法。
- 前記候補の発見に続いて、前記コード画像領域をより細かく区切る微細セグメント化を、特に前記原画像の解像度で行う、請求項1又は2に記載の方法。
- 前記原画像内に、第1候補及び第2候補が決定された場所、又はその代わりに第1候補若しくは第2候補が決定された場所がある場合に、その場所においてコード画像領域が発見されたとみなす、請求項1又は2に記載の方法。
- 前記第1候補を、特に連結成分法により、繋がった画像領域に拡張し、閾値サイズを下回る小さい第1候補だけを維持し、特に該小さい第1候補を追加的にコード画像領域とみなす、請求項1又は2に記載の方法。
- 前記第2候補を、特に連結成分法により、繋がった画像領域に拡張し、既に見つかっているコード画像領域の位置と一致しない位置にある排他的な第2候補だけを維持し、特に該排他的な第2候補を追加的にコード画像領域とみなす、請求項1又は2に記載の方法。
- 前記第1候補、第2候補及び/又はコード画像領域に対し、代表の位置において前記原画像内に光学コード(20、22)がどの程度の確からしさで認識されているかを示す値数を決定する、請求項1又は2に記載の方法。
- 1次元コードの第1候補、2次元コードの第1候補、1次元コードの第2候補、及び/又は、2次元コードの第2候補を決定する、請求項1又は2に記載の方法。
- 第1候補のうち同時に第2候補ではないものを、前記原画像内のテキスト画像領域とみなす、請求項1又は2に記載の方法。
- 前記第1のセグメント化法がタイルに分割された原画像内で第1候補を決定する、請求項1又は2に記載の方法。
- 前記第1のセグメント化法がコントラストの特定を含み、その際に第1候補が最低コントラストを持たなければならない、請求項1又は2に記載の方法。
- 前記第1のセグメント化法において、互いに交差する2本の線に沿って明度エッジを数えることで、該明度エッジのそれぞれの数に基づいて優先方向を決定し、優先方向がある場合にのみ1次元コードの第1候補を認識し、特に、それ以外では2次元コードの第1候補を認識する、請求項1又は2に記載の方法。
- 前記第2のセグメント化法がニューラルネットワーク、特に深層畳み込みネットワークを備えている、請求項1に記載の方法。
- 前記ニューラルネットワークが、サンプル画像、特に機械学習の方法を用いないセグメント化法及び/又はデコード法の結果に基づいて評価されたサンプル画像に基づく教師あり学習で訓練される、請求項13に記載の方法。
- 受信光から画像データを生成するための少なくとも1つの受光素子(24)と、コードを付した物体(14)の原画像内でコード画像領域を見つけ出すための方法、特に請求項1~14のいずれかに記載の方法が実行される制御及び評価ユニット(26)とを有する光電式コードリーダ(10)であって、コード画像領域の第1候補が機械学習を行わない古典的な画像処理の方法を用いる第1のセグメント化法において決定される光電式コードリーダ(10)において、
前記制御及び評価ユニット(26)において実行される方法において、機械学習を用いる第2のセグメント化法においてコード画像領域の第2候補が決定され、前記コード画像領域を見つけ出すために前記第1候補と前記第2候補がマージされることを特徴とする光電式コードリーダ(10)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22157758.8A EP4231195B1 (de) | 2022-02-21 | 2022-02-21 | Auffinden von codebildbereichen in einem bild eines codetragenden objekts |
EP22157758 | 2022-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023121722A true JP2023121722A (ja) | 2023-08-31 |
Family
ID=80446194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022201590A Pending JP2023121722A (ja) | 2022-02-21 | 2022-12-16 | コードを付した物体の画像内のコード画像領域の発見 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230267293A1 (ja) |
EP (1) | EP4231195B1 (ja) |
JP (1) | JP2023121722A (ja) |
KR (1) | KR20230125749A (ja) |
CN (1) | CN116630946A (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3916633A1 (de) * | 2020-05-25 | 2021-12-01 | Sick Ag | Kamera und verfahren zum verarbeiten von bilddaten |
EP4312150B1 (de) * | 2022-07-25 | 2024-07-10 | Sick Ag | Lesen eines optischen codes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10137093A1 (de) | 2001-07-30 | 2003-02-13 | Sick Ag | Verfahren zum Erkennen eines Codes und Codeleser |
EP3428834B1 (de) | 2017-07-12 | 2019-06-12 | Sick AG | Optoelektronischer codeleser und verfahren zum lesen von optischen codes |
US10650211B2 (en) | 2018-03-28 | 2020-05-12 | Datalogic IP Tech, S.r.l. | Artificial intelligence-based machine readable symbol reader |
DE102018109392A1 (de) | 2018-04-19 | 2019-10-24 | Beckhoff Automation Gmbh | Verfahren zum erfassen optischer codes, automatisierungssystem und computerprogrammprodukt zum durchführen des verfahrens |
US11720766B2 (en) * | 2018-12-28 | 2023-08-08 | Packsize Llc | Systems and methods for text and barcode reading under perspective distortion |
EP3916633A1 (de) | 2020-05-25 | 2021-12-01 | Sick Ag | Kamera und verfahren zum verarbeiten von bilddaten |
-
2022
- 2022-02-21 EP EP22157758.8A patent/EP4231195B1/de active Active
- 2022-12-16 JP JP2022201590A patent/JP2023121722A/ja active Pending
-
2023
- 2023-02-10 US US18/108,243 patent/US20230267293A1/en active Pending
- 2023-02-14 KR KR1020230019365A patent/KR20230125749A/ko unknown
- 2023-02-17 CN CN202310134930.5A patent/CN116630946A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20230125749A (ko) | 2023-08-29 |
EP4231195C0 (de) | 2024-07-10 |
EP4231195B1 (de) | 2024-07-10 |
EP4231195A1 (de) | 2023-08-23 |
CN116630946A (zh) | 2023-08-22 |
US20230267293A1 (en) | 2023-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023121722A (ja) | コードを付した物体の画像内のコード画像領域の発見 | |
EP3740897B1 (en) | License plate reader using optical character recognition on plural detected regions | |
KR102010494B1 (ko) | 광전자 코드 판독기 및 광학 코드 판독 방법 | |
EP3576008B1 (en) | Image based lane marking classification | |
JP3910447B2 (ja) | マルチ解像度ラベルロケータ | |
CN1219273C (zh) | 用于读取邮政编码的成像引擎和技术 | |
JP7221329B2 (ja) | カメラ及び画像データ処理方法 | |
CN109550712A (zh) | 一种化纤丝尾丝外观缺陷检测系统及方法 | |
US9008426B2 (en) | Generating an image presegmented into regions of interest and regions of no interest | |
EP3462372B1 (en) | System and method for detecting optical codes with damaged or incomplete finder patterns | |
JP2010123090A (ja) | 文字列認識方法及び文字列認識装置 | |
JP7062722B2 (ja) | 光学コードのモジュールサイズの特定 | |
CN108171098B (zh) | 一种条码检测方法及设备 | |
CN114004858B (zh) | 基于机器视觉识别航空线缆表面编码的方法及装置 | |
CN116309277A (zh) | 基于深度学习的钢材检测方法及系统 | |
CN109583306A (zh) | 一种基于机器视觉的纱管残留纱线检测方法 | |
CN112287831A (zh) | 基于编码热红外标志的跟随机器人多目标识别系统及方法 | |
EP3098758B1 (en) | System and method for reading machine readable codes in transportation and logistic applications | |
Nguyen et al. | Digital transformation for shipping container terminals using automated container code recognition | |
CN114913413A (zh) | 一种用于物流仓储的货物分类装置 | |
KR20030005342A (ko) | 화상에서의 객체 탐색 방법 | |
Amatya et al. | The state of the art–Vehicle Number Plate Identification–a complete Survey | |
US20240028847A1 (en) | Reading an optical code | |
CN117576414B (zh) | 对矿石图像分割中的凹点检测的方法、设备和存储介质 | |
US11667474B1 (en) | Increasing scan rate of parcels within material handling facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240325 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240702 |