JP2023120945A - Δς modulator and δς a/d converter - Google Patents

Δς modulator and δς a/d converter Download PDF

Info

Publication number
JP2023120945A
JP2023120945A JP2022024106A JP2022024106A JP2023120945A JP 2023120945 A JP2023120945 A JP 2023120945A JP 2022024106 A JP2022024106 A JP 2022024106A JP 2022024106 A JP2022024106 A JP 2022024106A JP 2023120945 A JP2023120945 A JP 2023120945A
Authority
JP
Japan
Prior art keywords
node
input
switch
capacitor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022024106A
Other languages
Japanese (ja)
Inventor
晴久 山口
Haruhisa Yamaguchi
謹司 伊藤
Kinshi Ito
敏夫 室田
Toshio Murota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2022024106A priority Critical patent/JP2023120945A/en
Publication of JP2023120945A publication Critical patent/JP2023120945A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a ΔΣ modulator capable of operating independent of common voltage of input voltage.SOLUTION: An input sampling circuit 110 is used in a ΔΣ modulator that converts a differential input signal VIN to a digital output signal and samples the differential input signal VIN. The input sampling circuit 110 is a switched-capacitor circuit and includes a first capacitor C1 and a second capacitor C2. A fifth switch SW5 is connected between a connection node of a third switch SW3 and a second capacitor C2 and a first input node IN1. A sixth switch SW6 is connected between a connection node of a first switch SW1 and a first capacitor C1 and a second input node IN2. Therefore, the fifth switch SW5 and sixth switch SW6 make a tied back configuration.SELECTED DRAWING: Figure 5

Description

本開示は、ΔΣ型A/Dコンバータに関する。 The present disclosure relates to a delta-sigma A/D converter.

高分解能が要求される微小信号の測定や、オーディオの用途において、ΔΣ型A/Dコンバータが使用される。図1は、ΔΣ型A/Dコンバータの基本構成を示すブロック図である。ΔΣ型A/Dコンバータ2は、アナログ入力信号VINをデジタル出力信号DOUTに変換する。ΔΣ型A/Dコンバータ2は、前段のアナログ部4と、後段のデジタル部6を備える。 A delta-sigma A/D converter is used for measurement of minute signals requiring high resolution and for audio applications. FIG. 1 is a block diagram showing the basic configuration of a delta-sigma A/D converter. A delta-sigma A/D converter 2 converts an analog input signal VIN into a digital output signal DOUT . The delta-sigma A/D converter 2 includes an analog section 4 at the front stage and a digital section 6 at the rear stage.

前段のアナログ部4は、ΔΣ変調器であり、アナログ入力信号VINをオーバーサンプリングし、オーバーサンプリングした信号を、1ビットもしくは数ビットの粗いレベルでデジタル信号Sに変換する。 The preceding analog section 4 is a delta-sigma modulator that oversamples the analog input signal VIN and converts the oversampled signal into a digital signal S at a rough level of 1 bit or several bits.

ΔΣ変調器の出力には量子化ノイズが含まれることになる。この量子化ノイズは、ΔΣ変調器内部のループフィルタ(積分回路)によって高周波領域に追いやられる(ノイズシェーピング)。 The output of the delta-sigma modulator will contain quantization noise. This quantization noise is driven to a high frequency region by a loop filter (integration circuit) inside the ΔΣ modulator (noise shaping).

後段のデジタル部6は、デジタルフィルタであり、帯域制限フィルタとデシメーションフィルタの機能を有する。具体的には、デジタルフィルタは、ΔΣ変調器の出力に含まれる高周波ノイズを低域通過の帯域制限フィルタによって減衰させ、デシメーションフィルタによってデータレートを低下させる(ダウンサンプリング)。 The post-stage digital unit 6 is a digital filter and has the functions of a band-limiting filter and a decimation filter. Specifically, the digital filter attenuates high-frequency noise contained in the output of the ΔΣ modulator with a low-pass band-limiting filter, and lowers the data rate with a decimation filter (downsampling).

図2は、ΔΣ変調器10の回路図である。ΔΣ変調器10は、主として、減算回路12、ループフィルタ14、量子化器16、D/Aコンバータ18を備える。 FIG. 2 is a circuit diagram of the delta-sigma modulator 10. As shown in FIG. The delta-sigma modulator 10 mainly includes a subtraction circuit 12, a loop filter 14, a quantizer 16, and a D/A converter 18.

減算回路12は、アナログ入力信号VINと、D/Aコンバータ18の出力信号VFBの誤差を生成する。ループフィルタ14は、誤差を積算し、ノイズシェーピングを行う。 Subtraction circuit 12 produces an error between analog input signal V IN and output signal V FB of D/A converter 18 . The loop filter 14 accumulates errors and performs noise shaping.

量子化器16は、ループフィルタ14の出力信号を量子化する。量子化された信号は、D/Aコンバータに入力される。 A quantizer 16 quantizes the output signal of the loop filter 14 . The quantized signal is input to the D/A converter.

図3は、フィードフォワード型の三次のΔΣ変調器10Aの回路図である。ΔΣ変調器10Aでは、減算回路12と三次のループフィルタ14が一体に構成される。 FIG. 3 is a circuit diagram of a feedforward type third-order delta-sigma modulator 10A. In the delta-sigma modulator 10A, the subtraction circuit 12 and the tertiary loop filter 14 are integrated.

減算回路12および三次のループフィルタ14を含むブロックは、次数と等しい複数(3個)の積分器INT1,INT2,INT3、複数の加減算器ADD1,ADD2,ADD3,ADD4、および複数のフィードフォワードパスおよびフィードバックパスを備える。a,a,b,b,b,b,c,c,cはフィードフォワードパスおよびフィードバック経路のゲインを示す。 The block containing subtraction circuit 12 and third-order loop filter 14 includes multiple (three) integrators INT1, INT2, INT3 equal in order, multiple adder-subtractors ADD1, ADD2, ADD3, ADD4, and multiple feedforward paths and Have a feedback path. a 1 , a 2 , b 1 , b 2 , b 3 , b 4 , c 1 , c 2 , c 3 denote the gains of the feedforward and feedback paths.

特開2011-101247号公報JP 2011-101247 A

ΔΣ変調器には、時間離散型と時間連続型がある。時間離散型のΔΣ変調器は、入力信号VINをサンプリングするサンプリング回路を有する。図3の場合、入力信号VINのパスb~bに、サンプリング回路が実装される。 Delta-sigma modulators are classified into time-discrete type and time-continuous type. A time-discrete delta-sigma modulator has a sampling circuit that samples an input signal VIN . In the case of FIG. 3, sampling circuits are implemented on the paths b 1 to b 4 of the input signal V IN .

一般に、サンプリング回路は、スイッチトキャパシタ回路を用いて構成される。入力信号VINが差動信号である場合、スイッチトキャパシタ回路も差動回路で構成される。差動のスイッチトキャパシタ回路は、基準電圧を利用して、入力信号VINをサンプリングする。 Generally, the sampling circuit is configured using a switched capacitor circuit. If the input signal V IN is a differential signal, the switched capacitor circuit is also composed of a differential circuit. A differential switched-capacitor circuit uses a reference voltage to sample the input signal VIN .

一般的には、基準電圧としては、電源電圧の1/2に設定されることが多い。差動入力信号VINのコモン電圧が、スイッチトキャパシタ回路の基準電圧からずれると、性能が低下する。 Generally, the reference voltage is often set to 1/2 of the power supply voltage. Performance degrades when the common voltage of the differential input signal V IN deviates from the reference voltage of the switched capacitor circuit.

本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、入力電圧のコモン電圧に依存しない動作が可能なΔΣ変調器の提供にある。 The present disclosure has been made in this context, and one exemplary object of certain aspects thereof is to provide a delta-sigma modulator capable of operation independent of the common voltage of the input voltage.

本開示のある態様は、差動入力信号をデジタル出力信号に変換するΔΣ変調器である。ΔΣ変調器は、差動入力信号をサンプリングするスイッチトキャパシタ型の入力サンプリング回路を備える。入力サンプリング回路は、差動入力を形成する第1入力ノードおよび第2入力ノードと、差動出力を形成する第1出力ノードおよび第2出力ノードと、基準電圧ノードと、第1入力ノードと第1出力ノードの間に直列に接続された第1スイッチ、第1キャパシタおよび第2スイッチと、第2入力ノードと第2出力ノードの間に直列に接続された第3スイッチ、第2キャパシタおよび第4スイッチと、第3スイッチおよび第2キャパシタの接続ノードと、第1入力ノードとの間に接続された第5スイッチと、第1スイッチおよび第1キャパシタの接続ノードと、第2入力ノードとの間に接続された第6スイッチと、第1キャパシタと第2スイッチの接続ノードと、基準電圧ノードとの間に接続された第7スイッチと、第2キャパシタと第4スイッチの接続ノードと、基準電圧ノードとの間に接続された第8スイッチと、を含む。 One aspect of the present disclosure is a delta-sigma modulator that converts a differential input signal to a digital output signal. The delta-sigma modulator includes a switched-capacitor input sampling circuit that samples a differential input signal. The input sampling circuit includes a first input node and a second input node forming a differential input, a first output node and a second output node forming a differential output, a reference voltage node, a first input node and a second input node. a first switch, a first capacitor and a second switch connected in series between one output node; and a third switch, a second capacitor and a second switch connected in series between the second input node and the second output node. 4 switches, a connection node of the third switch and the second capacitor, a fifth switch connected between the first input node, a connection node of the first switch and the first capacitor, and the second input node a sixth switch connected between a connection node of the first capacitor and the second switch; a seventh switch connected between a reference voltage node; a connection node of the second capacitor and the fourth switch; and an eighth switch connected between the voltage node.

なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Arbitrary combinations of the above constituent elements, and mutually replacing constituent elements and expressions among methods, devices, systems, etc. are also effective as embodiments of the present invention or the present disclosure. Furthermore, the description in this section (Summary of the Invention) does not describe all the essential features of the invention, and thus subcombinations of those described features can also be the invention. .

本開示に係るΔΣ変調器によれば、差動入力信号のコモン電圧に依存しない処理が可能となる。 The delta-sigma modulator according to the present disclosure enables processing independent of the common voltage of the differential input signal.

図1は、ΔΣ型A/Dコンバータの基本構成を示すブロック図である。FIG. 1 is a block diagram showing the basic configuration of a delta-sigma A/D converter. 図2は、ΔΣ変調器の回路図である。FIG. 2 is a circuit diagram of a delta-sigma modulator. 図3は、フィードフォワード型の三次のΔΣ変調器の回路図である。FIG. 3 is a circuit diagram of a feedforward type third-order ΔΣ modulator. 図4は、実施形態に係るΔΣ変調器のブロック図である。FIG. 4 is a block diagram of a delta-sigma modulator according to the embodiment. 図5は、実施形態に係る入力サンプリング回路の回路図である。FIG. 5 is a circuit diagram of an input sampling circuit according to the embodiment. 図6は、図5の入力サンプリング回路のレベルダイアグラムである。FIG. 6 is a level diagram of the input sampling circuit of FIG. 図7は、比較技術に係る入力サンプリング回路の回路図である。FIG. 7 is a circuit diagram of an input sampling circuit according to the comparison technique. 図8は、図7の入力サンプリング回路のレベルダイアグラムである。FIG. 8 is a level diagram of the input sampling circuit of FIG. 図9は、オペアンプのゲイン特性を示す図である。FIG. 9 is a diagram showing gain characteristics of an operational amplifier. 図10は、図4のΔΣ変調器の一部を示す回路図である。FIG. 10 is a circuit diagram showing part of the delta-sigma modulator of FIG. 図11は、実施形態に係るΔΣ変調器の回路図である。FIG. 11 is a circuit diagram of a delta-sigma modulator according to the embodiment. 図12は、実施形態に係るΔΣ変調器の回路図である。FIG. 12 is a circuit diagram of a delta-sigma modulator according to the embodiment. 図13は、実施形態に係るΔΣ変調器の回路図である。FIG. 13 is a circuit diagram of a delta-sigma modulator according to the embodiment. 図14は、図11のΔΣ変調器の構成要素を示す回路図である。14 is a circuit diagram showing components of the ΔΣ modulator of FIG. 11. FIG.

(実施形態の概要)
本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Overview of embodiment)
SUMMARY OF THE INVENTION Several exemplary embodiments of the disclosure are summarized. This summary presents, in simplified form, some concepts of one or more embodiments, as a prelude to the more detailed description that is presented later, and for the purpose of a basic understanding of the embodiments. The size is not limited. This summary is not a comprehensive overview of all possible embodiments, and it is intended to neither identify key elements of all embodiments nor delineate the scope of some or all aspects. For convenience, "one embodiment" may be used to refer to one embodiment (example or variation) or multiple embodiments (examples or variations) disclosed herein.

一実施形態に係るΔΣ変調器は、差動入力信号をデジタル出力信号に変換する。ΔΣ変調器は、差動入力信号をサンプリングするスイッチトキャパシタ型の入力サンプリング回路を備える。入力サンプリング回路は、差動入力を形成する第1入力ノードおよび第2入力ノードと、差動出力を形成する第1出力ノードおよび第2出力ノードと、基準電圧ノードと、第1入力ノードと第1出力ノードの間に直列に接続された第1スイッチ、第1キャパシタおよび第2スイッチと、第2入力ノードと第2出力ノードの間に直列に接続された第3スイッチ、第2キャパシタおよび第4スイッチと、第3スイッチおよび第2キャパシタの接続ノードと、第1入力ノードとの間に接続された第5スイッチと、第1スイッチおよび第1キャパシタの接続ノードと、第2入力ノードとの間に接続された第6スイッチと、第1キャパシタと第2スイッチの接続ノードと、基準電圧ノードとの間に接続された第7スイッチと、第2キャパシタと第4スイッチの接続ノードと、基準電圧ノードとの間に接続された第8スイッチと、を含む。 A delta-sigma modulator according to one embodiment converts a differential input signal into a digital output signal. The delta-sigma modulator includes a switched-capacitor input sampling circuit that samples a differential input signal. The input sampling circuit includes a first input node and a second input node forming a differential input, a first output node and a second output node forming a differential output, a reference voltage node, a first input node and a second input node. a first switch, a first capacitor and a second switch connected in series between one output node; and a third switch, a second capacitor and a second switch connected in series between the second input node and the second output node. 4 switches, a connection node of the third switch and the second capacitor, a fifth switch connected between the first input node, a connection node of the first switch and the first capacitor, and the second input node a sixth switch connected between a connection node of the first capacitor and the second switch; a seventh switch connected between a reference voltage node; a connection node of the second capacitor and the fourth switch; and an eighth switch connected between the voltage node.

第1状態では、第1スイッチ、第3スイッチ、第7スイッチ、第8スイッチがオンとなる。第2状態では、第2スイッチ、第4スイッチ、第5スイッチ、第6スイッチがオンとなる。基準電圧ラインの電圧をVr、第1入力ノードの電圧をVip、第2入力ノードの電圧をVinとする。また第1キャパシタおよび第2キャパシタの容量は等しくCsであるとする。第1状態において、第1キャパシタに蓄えられる電荷Qp、第2キャパシタに蓄えられる電荷Qnはそれぞれ、
Qp=Cs×(Vip-Vr)
Qn=Cs×(Vin-Vr)
である。
In the first state, the first switch, third switch, seventh switch, and eighth switch are turned on. In the second state, the second switch, fourth switch, fifth switch, and sixth switch are turned on. Let Vr be the voltage of the reference voltage line, Vip be the voltage of the first input node, and Vin be the voltage of the second input node. It is also assumed that the first capacitor and the second capacitor have the same capacitance Cs. In the first state, the charge Qp stored in the first capacitor and the charge Qn stored in the second capacitor are respectively
Qp=Cs×(Vip−Vr)
Qn=Cs×(Vin−Vr)
is.

第2状態において、第1出力ノードに発生する電圧Von、第2出力ノードに発生する電圧Vpはそれぞれ、以下の式で表される。
Von=Vin-Qp/Cs=Vin-(Vip-Vr)=Vin-Vip+Vr
Vop=Vip-Qn/Cs=Vip-(Vin-Vr)=Vip-Vin+Vr
In the second state, the voltage Von generated at the first output node and the voltage Vp generated at the second output node are expressed by the following equations.
Von=Vin-Qp/Cs=Vin-(Vip-Vr)=Vin-Vip+Vr
Vop=Vip-Qn/Cs=Vip-(Vin-Vr)=Vip-Vin+Vr

差動入力信号の信号成分(入力電圧振幅)Vp-VnをVsigと表記する。このとき、
Von=-Vsig+Vr
Vop=+Vsig+Vr
となる。差動出力信号Vop,Vonのコモン電圧は、Vrであり、差動入力信号のコモン電圧に依存しない。つまり上記構成によれば、差動入力信号のコモン電圧に依存しない差動出力信号を生成できる。
A signal component (input voltage amplitude) Vp-Vn of the differential input signal is denoted as Vsig. At this time,
Von=-Vsig+Vr
Vop=+Vsig+Vr
becomes. The common voltage of the differential output signals Vop and Von is Vr and does not depend on the common voltage of the differential input signals. That is, according to the above configuration, it is possible to generate a differential output signal that does not depend on the common voltage of the differential input signal.

一実施形態において、ΔΣ変調器は、入力サンプリング回路と一体に構成される積分アンプをさらに備えてもよい。積分アンプは、入力サンプリング回路の第1出力ノードと接続される第3入力ノードと、入力サンプリング回路の第2出力ノードと接続される第4入力ノードと、第3出力ノードと、第4出力ノードと、第3入力ノードと第3出力ノードの間に接続された第3キャパシタと、第4入力ノードと第4出力ノードの間に接続された第4キャパシタと、第1入力が第3入力ノードと接続され、第2入力が第4入力ノードと接続され、第1出力が第3出力ノードと接続され、第2出力が第4出力ノードと接続された完全差動型のオペアンプと、を含んでもよい。 In one embodiment, the delta-sigma modulator may further comprise an integrating amplifier integrated with the input sampling circuit. The integrating amplifier has a third input node connected to the first output node of the input sampling circuit, a fourth input node connected to the second output node of the input sampling circuit, a third output node, and a fourth output node. a third capacitor connected between the third input node and the third output node; a fourth capacitor connected between the fourth input node and the fourth output node; a fully differential operational amplifier having a second input connected to the fourth input node, a first output connected to the third output node, and a second output connected to the fourth output node It's okay.

第3キャパシタおよび第4キャパシタの容量を等しくCiであるとする。このとき、積分回路の時定数は、T×Ci/(2×Cs)となる。Tは、スイッチトキャパシタ回路のスイッチング周期である。一般的なクロール型のスイッチトキャパシタ積分回路の時定数は、T×Ci/Csである。したがって、上記構成によれば、一般的なクロール型の積分回路に比べて、同じ時定数を得るためのキャパシタCsの容量を1/2に減らすことができ、チップサイズを小さくできる。 Assume that the capacitances of the third capacitor and the fourth capacitor are equal to Ci. At this time, the time constant of the integrating circuit is T×Ci/(2×Cs). T is the switching period of the switched capacitor circuit. The time constant of a typical crawl-type switched-capacitor integration circuit is T×Ci/Cs. Therefore, according to the above configuration, the capacitance of the capacitor Cs for obtaining the same time constant can be reduced to 1/2 compared to a general crawl type integrating circuit, and the chip size can be reduced.

一実施形態において、ΔΣ変調器は、入力信号以外のΔΣ変調器内の内部信号をサンプリングする内部サンプリング回路をさらに備えてもよい。内部サンプリング回路は、差動入力を形成する第5入力ノードおよび第6入力ノードと、差動出力を形成する第5出力ノードおよび第6出力ノードと、第5入力ノードと第5出力ノードの間に直列に接続された第9スイッチ、第5キャパシタおよび第10スイッチと、第6入力ノードと第6出力ノードの間に直列に接続された第11スイッチ、第6キャパシタおよび第12スイッチと、第9スイッチおよび第5キャパシタの接続ノードと、基準電圧ノードとの間に接続された第13スイッチと、第11スイッチおよび第6キャパシタの接続ノードと、基準電圧ノードとの間に接続された第14スイッチと、第5キャパシタと第10スイッチの接続ノードと、基準電圧ノードとの間に接続された第15スイッチと、第6キャパシタと第12スイッチの接続ノードと、基準電圧ノードとの間に接続された第16スイッチと、を含んでもよい。 In one embodiment, the delta-sigma modulator may further include an internal sampling circuit that samples internal signals within the delta-sigma modulator other than the input signal. The internal sampling circuit includes a fifth input node and a sixth input node forming a differential input, a fifth output node and a sixth output node forming a differential output, and between the fifth input node and the fifth output node. a ninth switch, a fifth capacitor and a tenth switch serially connected to the , an eleventh switch, a sixth capacitor and a twelfth switch serially connected between the sixth input node and the sixth output node; a thirteenth switch connected between a connection node of the 9th switch and the fifth capacitor and the reference voltage node; and a fourteenth switch connected between the connection node of the eleventh switch and the sixth capacitor and the reference voltage node. A fifteenth switch connected between the switch, a connection node of the fifth capacitor and the tenth switch, and the reference voltage node, and a connection node of the sixth capacitor and the twelfth switch, and the reference voltage node. and a sixteenth switch.

内部サンプリング回路は、第1状態において、第9スイッチ、第11スイッチ、第15スイッチ、第16スイッチがオンとなる。第2状態では、第10スイッチ、第12スイッチ、第13スイッチ、第14スイッチがオンとなる。基準電圧ラインの電圧をVr、第1入力ノードの電圧をVip、第2入力ノードの電圧をVinとする。また第5キャパシタおよび第6キャパシタの容量は等しくCsであるとする。第1状態において、第5キャパシタに蓄えられる電荷Qp、第6キャパシタに蓄えられる電荷Qnはそれぞれ、
Qp=Cs×(Vip-Vr)
Qn=Cs×(Vin-Vr)
である。
In the first state, the internal sampling circuit turns on the ninth switch, the eleventh switch, the fifteenth switch, and the sixteenth switch. In the second state, the tenth switch, the twelfth switch, the thirteenth switch, and the fourteenth switch are turned on. Let Vr be the voltage of the reference voltage line, Vip be the voltage of the first input node, and Vin be the voltage of the second input node. It is also assumed that the fifth capacitor and the sixth capacitor have the same capacitance Cs. In the first state, the charge Qp stored in the fifth capacitor and the charge Qn stored in the sixth capacitor are respectively
Qp=Cs×(Vip−Vr)
Qn=Cs×(Vin−Vr)
is.

第2状態において、第1出力ノードに発生する電圧Vop、第2出力ノードに発生する電圧Vnはそれぞれ、以下の式で表される。
Vop=Vr-Qp/Cs=Vr-(Vip-Vr)=2Vr-Vip
Von=Vr-Qn/Cs=Vr-(Vin-Vr)=2Vr-Vin
In the second state, the voltage Vop generated at the first output node and the voltage Vn generated at the second output node are represented by the following equations.
Vop=Vr-Qp/Cs=Vr-(Vip-Vr)=2Vr-Vip
Von=Vr-Qn/Cs=Vr-(Vin-Vr)=2Vr-Vin

内部サンプリング回路の入力は、基準電圧Vrを基準に生成されたものなので、そのコモン電圧はVrになる。したがって、差動出力信号Vop,Vonのコモン電圧Vocは、
Voc=(Vop+Von)/2=2Vr-(Vip+Vin)/2=Vr
となる。つまり、内部回路に関してはコモン電圧は一定となっている。
Since the input of the internal sampling circuit is generated based on the reference voltage Vr, its common voltage is Vr. Therefore, the common voltage Voc of the differential output signals Vop and Von is
Voc=(Vop+Von)/2=2Vr-(Vip+Vin)/2=Vr
becomes. That is, the common voltage is constant for the internal circuit.

一実施形態において、ΔΣ変調器は、入力サンプリング回路とともに積分回路を構成する積分アンプをさらに備えてもよい。積分アンプは、入力サンプリング回路の第1出力ノードと接続される第3入力ノードと、入力サンプリング回路の第2出力ノードと接続される第4入力ノードと、第3出力ノードと、第4出力ノードと、第3入力ノードと第3出力ノードの間に接続された第3キャパシタと、第4入力ノードと第4出力ノードの間に接続された第4キャパシタと、第1入力が第3入力ノードと接続され、第2入力が第4入力ノードと接続され、第1出力が第3出力ノードと接続され、第2出力が第4出力ノードと接続された完全差動型のオペアンプと、を含んでもよい。 In one embodiment, the delta-sigma modulator may further include an integration amplifier that forms an integration circuit together with the input sampling circuit. The integrating amplifier has a third input node connected to the first output node of the input sampling circuit, a fourth input node connected to the second output node of the input sampling circuit, a third output node, and a fourth output node. a third capacitor connected between the third input node and the third output node; a fourth capacitor connected between the fourth input node and the fourth output node; a fully differential operational amplifier having a second input connected to the fourth input node, a first output connected to the third output node, and a second output connected to the fourth output node It's okay.

一実施形態において、ΔΣ変調器は、ΔΣ変調器内の入力信号以外の内部信号をサンプリングする内部サンプリング回路をさらに備えてもよい。内部サンプリング回路は、差動入力を形成する第5入力ノードおよび第6入力ノードと、差動出力を形成する第5出力ノードおよび第6出力ノードと、第5入力ノードと第5出力ノードの間に直列に接続された第9スイッチ、第5キャパシタおよび第10スイッチと、第6入力ノードと第6出力ノードの間に直列に接続された第11スイッチ、第6キャパシタおよび第12スイッチと、第9スイッチおよび第5キャパシタの接続ノードと、基準電圧ノードとの間に接続された第13スイッチと、第11スイッチおよび第6キャパシタの接続ノードと、基準電圧ノードとの間に接続された第14スイッチと、第5キャパシタと第10スイッチの接続ノードと、基準電圧ノードとの間に接続された第15スイッチと、第6キャパシタと第12スイッチの接続ノードと、基準電圧ノードとの間に接続された第16スイッチと、を含んでもよい。内部サンプリング回路の第5出力ノードおよび第6出力ノードの一方は、積分アンプの第3入力ノードと接続され、内部サンプリング回路の第5出力ノードおよび第6出力ノードの他方は、積分アンプの第4入力ノードと接続されてもよい。 In one embodiment, the delta-sigma modulator may further comprise an internal sampling circuit that samples an internal signal other than the input signal within the delta-sigma modulator. The internal sampling circuit includes a fifth input node and a sixth input node forming a differential input, a fifth output node and a sixth output node forming a differential output, and between the fifth input node and the fifth output node. a ninth switch, a fifth capacitor and a tenth switch connected in series to ; an eleventh switch, a sixth capacitor and a twelfth switch connected in series between the sixth input node and the sixth output node; a thirteenth switch connected between a connection node of the 9th switch and the fifth capacitor and the reference voltage node; and a fourteenth switch connected between the connection node of the eleventh switch and the sixth capacitor and the reference voltage node. A fifteenth switch connected between the switch, a connection node of the fifth capacitor and the tenth switch, and the reference voltage node, and a connection node of the sixth capacitor and the twelfth switch, and the reference voltage node. and a sixteenth switch. One of the fifth and sixth output nodes of the internal sampling circuit is connected to the third input node of the integrating amplifier, and the other of the fifth and sixth output nodes of the internal sampling circuit is connected to the fourth output node of the integrating amplifier. It may be connected to an input node.

この構成により、積分アンプは、内部信号と入力信号を重み付け加算した値を積分することができる。 With this configuration, the integration amplifier can integrate the weighted addition of the internal signal and the input signal.

一実施形態において、ΔΣ変調器の次数は3であってもよい。一実施形態において、ΔΣ変調器の次数は2であってもよい。一実施形態において、ΔΣ変調器の次数は4であってもよい。 In one embodiment, the order of the delta-sigma modulator may be three. In one embodiment, the order of the delta-sigma modulator may be two. In one embodiment, the order of the delta-sigma modulator may be four.

一実施形態においてΔΣ変調器は、ひとつの半導体基板に集積化されてもよい。「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。回路を1つのチップ上に集積化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。 In one embodiment, the delta-sigma modulator may be integrated on one semiconductor substrate. "Integrated integration" includes cases in which all circuit components are formed on a semiconductor substrate and cases in which the main components of a circuit are integrated. A resistor, capacitor, or the like may be provided outside the semiconductor substrate. By integrating the circuits on one chip, the circuit area can be reduced and the characteristics of the circuit elements can be kept uniform.

一実施形態において、ΔΣ型A/Dコンバータは、上述のいずれかのΔΣ変調器と、ΔΣ変調器の出力信号を帯域制限し、ダウンサンプリングするフィルタと、を備えてもよい。 In one embodiment, a delta-sigma A/D converter may include any of the above-described delta-sigma modulators and a filter that band-limits and down-samples the output signal of the delta-sigma modulator.

(実施形態)
図4は、実施形態に係るΔΣ変調器100のブロック図である。ΔΣ変調器100は、差動入力信号VINをΔΣ変調してデジタル出力信号SOUTに変換する。差動入力信号VINは、相補的な正極信号Vipおよび負極信号Vinを含む。ΔΣ変調器100は、ひとつの半導体基板に集積化される。
(embodiment)
FIG. 4 is a block diagram of the delta-sigma modulator 100 according to the embodiment. The delta-sigma modulator 100 delta-sigma modulates the differential input signal VIN to convert it into a digital output signal SOUT . The differential input signal VIN includes complementary positive signal Vip and negative signal Vin. The delta-sigma modulator 100 is integrated on one semiconductor substrate.

ΔΣ変調器100は、減算回路12、ループフィルタ14、量子化器16、D/Aコンバータ18および入力サンプリング回路110を備える。ΔΣ変調器100は時間離散型であり、入力サンプリング回路110は、スイッチドキャパシタ回路で構成され、差動入力信号VINをサンプリングする。 The delta-sigma modulator 100 comprises a subtraction circuit 12, a loop filter 14, a quantizer 16, a D/A converter 18 and an input sampling circuit 110. The delta-sigma modulator 100 is of the time-discrete type, and the input sampling circuit 110 consists of a switched capacitor circuit and samples the differential input signal VIN .

D/Aコンバータ18は、ΔΣ変調器100の出力信号、すなわち量子化器16の出力信号SOUTをアナログのフィードバック信号VFBに変換する。減算回路12は、入力サンプリング回路110がサンプリングした入力信号VINと、フィードバック信号VFBの誤差を生成する。 The D/A converter 18 converts the output signal of the delta-sigma modulator 100, that is, the output signal SOUT of the quantizer 16, into an analog feedback signal VFB . The subtraction circuit 12 generates an error between the input signal V IN sampled by the input sampling circuit 110 and the feedback signal V FB .

ループフィルタ14は、積分回路を含んでおり、減算回路12が生成する誤差信号をフィルタリングし、ノイズシェーピングする。ループフィルタ14の次数は特に限定されない。またループフィルタ14の構成も限定されず、フィードフォワード型であってもよいし、フィードバック型であってもよい。フィードフォワード型の場合、入力サンプリング回路110がサンプリングした入力信号VINは、ループフィルタ14に対してフィードフォワードされる。 Loop filter 14 includes an integration circuit to filter and noise shape the error signal produced by subtraction circuit 12 . The order of the loop filter 14 is not particularly limited. Also, the configuration of the loop filter 14 is not limited, and may be of a feedforward type or a feedback type. In the feedforward type, the input signal V IN sampled by the input sampling circuit 110 is fed forward to the loop filter 14 .

量子化器16は、ループフィルタ14が生成するノイズシェーピング後の信号を量子化する。量子化器16のビット数nは、1ビットであってもよいし、2ビット以上(マルチビット)であってもよい。 A quantizer 16 quantizes the noise-shaped signal generated by the loop filter 14 . The number of bits n of the quantizer 16 may be 1 bit or 2 or more bits (multibit).

図5は、実施形態に係る入力サンプリング回路110の回路図である。入力サンプリング回路110は、完全差動型であり、差動入力を形成する第1入力ノードIN1および第2入力ノードIN2と、差動出力を形成する第1出力ノードOUT1および第2出力ノードOUT2と、基準電圧ノードREFを有する。第1入力ノードIN1、第2入力ノードIN2には、差動入力信号Vip,Vinが入力される。基準電圧ノードREFには基準電圧Vrが供給される。基準電圧Vrは、たとえばΔΣ変調器100の電源電圧の1/2が選ばれる。 FIG. 5 is a circuit diagram of the input sampling circuit 110 according to the embodiment. The input sampling circuit 110 is of a fully differential type, and includes a first input node IN1 and a second input node IN2 forming differential inputs, and a first output node OUT1 and a second output node OUT2 forming differential outputs. , has a reference voltage node REF. Differential input signals Vip and Vin are input to the first input node IN1 and the second input node IN2. A reference voltage Vr is supplied to the reference voltage node REF. Reference voltage Vr is selected to be, for example, half the power supply voltage of ΔΣ modulator 100 .

入力サンプリング回路110は、複数のスイッチSW1~SW8、第1キャパシタC1、第2キャパシタC2を備える。第1スイッチSW1、第1キャパシタC1および第2スイッチSW2は、第1入力ノードIN1と第1出力ノードOUT1の間に直列に接続される。第3スイッチSW3、第2キャパシタC2および第4スイッチSW4は、第2入力ノードIN2と第2出力ノードOUT2の間に直列に接続される。第1キャパシタC1および第2キャパシタC2の容量は等しくCsであるとする。 The input sampling circuit 110 includes a plurality of switches SW1-SW8, a first capacitor C1 and a second capacitor C2. A first switch SW1, a first capacitor C1 and a second switch SW2 are connected in series between a first input node IN1 and a first output node OUT1. A third switch SW3, a second capacitor C2 and a fourth switch SW4 are connected in series between the second input node IN2 and the second output node OUT2. Assume that the first capacitor C1 and the second capacitor C2 have the same capacitance Cs.

第5スイッチSW5は、第3スイッチSW3および第2キャパシタC2の接続ノードと、第1入力ノードIN1との間に接続される。第6スイッチSW6は、第1スイッチSW1および第1キャパシタC1の接続ノードと、第2入力ノードIN2との間に接続される。つまり、第5スイッチSW5および第6スイッチSW6によって、たすき掛けの構成が提供される。 The fifth switch SW5 is connected between the connection node of the third switch SW3 and the second capacitor C2 and the first input node IN1. The sixth switch SW6 is connected between a connection node of the first switch SW1 and the first capacitor C1 and the second input node IN2. In other words, the fifth switch SW5 and the sixth switch SW6 provide a crossing configuration.

第7スイッチSW7は、第1キャパシタC1と第2スイッチSW2の接続ノードと、基準電圧ノードREFとの間に接続される。第8スイッチSW8は、第2キャパシタC2と第4スイッチSW4の接続ノードと、基準電圧ノードREFとの間に接続される。 The seventh switch SW7 is connected between a connection node between the first capacitor C1 and the second switch SW2 and the reference voltage node REF. The eighth switch SW8 is connected between a connection node between the second capacitor C2 and the fourth switch SW4 and the reference voltage node REF.

以上がΔΣ変調器100および入力サンプリング回路110の構成である。続いて入力サンプリング回路110の動作を説明する。 The configurations of the ΔΣ modulator 100 and the input sampling circuit 110 are as described above. Next, the operation of the input sampling circuit 110 will be explained.

入力サンプリング回路110は、第1状態φ1と第2状態φ2を交互に繰り返す。第1状態φ1では、第1スイッチSW1、第3スイッチSW3、第7スイッチSW7、第8スイッチSW8がオンとなる。 The input sampling circuit 110 alternately repeats the first state φ1 and the second state φ2. In the first state φ1, the first switch SW1, the third switch SW3, the seventh switch SW7, and the eighth switch SW8 are turned on.

第1状態φ1において、第1キャパシタに蓄えられる電荷Qp、第2キャパシタに蓄えられる電荷Qnはそれぞれ、
Qp=Cs×(Vip-Vr)
Qn=Cs×(Vin-Vr)
である。
In the first state φ1, the charge Qp stored in the first capacitor and the charge Qn stored in the second capacitor are respectively
Qp=Cs×(Vip−Vr)
Qn=Cs×(Vin−Vr)
is.

第2状態φ2において、第1出力ノードOUT1に発生する電圧Von、第2出力ノードOUT2に発生する電圧Vpはそれぞれ、式(1)、(2)で表される。
Von=Vin-Qp/Cs=Vin-(Vip-Vr)
=Vin-Vip+Vr …(1)
Vop=Vip-Qn/Cs=Vip-(Vin-Vr)
=Vip-Vin+Vr …(2)
In the second state φ2, the voltage Von generated at the first output node OUT1 and the voltage Vp generated at the second output node OUT2 are represented by equations (1) and (2), respectively.
Von=Vin-Qp/Cs=Vin-(Vip-Vr)
=Vin-Vip+Vr (1)
Vop=Vip-Qn/Cs=Vip-(Vin-Vr)
=Vip−Vin+Vr (2)

図6は、図5の入力サンプリング回路110のレベルダイアグラムである。差動入力Inputのコモン電圧Vic(=(Vip+Vin)/2)が、入力サンプリング回路110の基準電圧Vrからずれている場合を示している。差動入力信号の信号成分(入力電圧振幅)Vp-Vnを、Vsigと表記する。 FIG. 6 is a level diagram of the input sampling circuit 110 of FIG. It shows a case where the common voltage Vic (=(Vip+Vin)/2) of the differential input Input deviates from the reference voltage Vr of the input sampling circuit 110 . A signal component (input voltage amplitude) Vp-Vn of the differential input signal is denoted as Vsig.

式(1)より、第2出力ノードOUT2の電圧Vop、第1出力ノードOUT1の電圧Vonはそれぞれ、
Vop=-Vsig+Vr …(3)
Von=+Vsig+Vr …(4)
となる。差動出力信号Vop,Vonのコモン電圧Vocは、
Voc=(Vop+Von)/2=Vr
となる。つまりコモン電圧Vocは、入力サンプリング回路110の基準電圧Vrと一致しており、差動入力信号のコモン電圧Vicに依存しない。つまり図5の構成によれば、差動入力信号Vip,Vinのコモン電圧Vicに依存しない差動出力信号Vop,Vonを生成できる。
From the equation (1), the voltage Vop of the second output node OUT2 and the voltage Von of the first output node OUT1 are respectively
Vop=-Vsig+Vr (3)
Von=+Vsig+Vr (4)
becomes. The common voltage Voc of the differential output signals Vop and Von is
Voc=(Vop+Von)/2=Vr
becomes. That is, the common voltage Voc matches the reference voltage Vr of the input sampling circuit 110 and does not depend on the common voltage Vic of the differential input signal. That is, according to the configuration of FIG. 5, the differential output signals Vop and Von can be generated independent of the common voltage Vic of the differential input signals Vip and Vin.

入力サンプリング回路110の利点は、比較技術に係る入力サンプリング回路との対比によって明確となる。そこで比較技術について説明する。 The advantage of the input sampling circuit 110 becomes clear by contrasting it with the input sampling circuit according to the comparison technique. Therefore, the comparison technique will be explained.

図7は、比較技術に係る入力サンプリング回路110Rの回路図である。入力サンプリング回路110Rは、図5の入力サンプリング回路110と同様に、複数のスイッチSW1~SW8、キャパシタC1,C2を備える。図5との違いは、第5スイッチSW5、第6スイッチSW6の接続態様であり、第5スイッチSW5および第6スイッチSW6それぞれの一端は、基準電圧ノードREFに共通に接続されている。 FIG. 7 is a circuit diagram of the input sampling circuit 110R according to the comparison technique. The input sampling circuit 110R includes a plurality of switches SW1 to SW8 and capacitors C1 and C2, like the input sampling circuit 110 in FIG. The difference from FIG. 5 is the connection mode of the fifth switch SW5 and the sixth switch SW6, and one end of each of the fifth switch SW5 and the sixth switch SW6 is commonly connected to the reference voltage node REF.

入力サンプリング回路110Rの動作を説明する。入力サンプリング回路110Rは、第1状態φ1と第2状態φ2を交互に繰り返す。第1状態φ1では、第1スイッチSW1、第3スイッチSW3、第7スイッチSW7、第8スイッチSW8がオンとなる。 The operation of the input sampling circuit 110R will be described. The input sampling circuit 110R alternately repeats the first state φ1 and the second state φ2. In the first state φ1, the first switch SW1, the third switch SW3, the seventh switch SW7, and the eighth switch SW8 are turned on.

第1状態φ1において、第1キャパシタに蓄えられる電荷Qp、第2キャパシタに蓄えられる電荷Qnはそれぞれ、
Qp=Cs×(Vip-Vr)
Qn=Cs×(Vin-Vr)
であり、実施形態に係る入力サンプリング回路110と同じである。
In the first state φ1, the charge Qp stored in the first capacitor and the charge Qn stored in the second capacitor are respectively
Qp=Cs×(Vip−Vr)
Qn=Cs×(Vin−Vr)
and is the same as the input sampling circuit 110 according to the embodiment.

第2状態φ2において、第1出力ノードOUT1に発生する電圧Von、第2出力ノードOUT2に発生する電圧Vpはそれぞれ、式(5)、(6)で表される。
Von=Vr-Qp/Cs=Vr-(Vip-Vr)
=2Vr-Vip …(5)
Vop=Vr-Qn/Cs=Vr-(Vin-Vr)
=2Vr-Vin …(6)
In the second state φ2, the voltage Von generated at the first output node OUT1 and the voltage Vp generated at the second output node OUT2 are represented by equations (5) and (6), respectively.
Von=Vr-Qp/Cs=Vr-(Vip-Vr)
= 2Vr-Vip (5)
Vop=Vr-Qn/Cs=Vr-(Vin-Vr)
= 2Vr-Vin (6)

図8は、図7の入力サンプリング回路110Rのレベルダイアグラムである。差動入力Inputのコモン電圧Vic(=(Vip+Vin)/2)が、入力サンプリング回路110の基準電圧Vrからずれている場合を示している。 FIG. 8 is a level diagram of the input sampling circuit 110R of FIG. It shows a case where the common voltage Vic (=(Vip+Vin)/2) of the differential input Input deviates from the reference voltage Vr of the input sampling circuit 110 .

式(5)および(6)より、差動出力Vop,Vonのコモン電圧Voc’は、
Voc’=(Vop+Von)/2=2Vr-Vic
となる。すなわち比較技術に係る入力サンプリング回路110Rでは、コモン電圧Voc’は、の基準電圧Vrと一致しておらず、差動入力信号のコモン電圧Vicに依存している。
From equations (5) and (6), the common voltage Voc' of the differential outputs Vop and Von is
Voc'=(Vop+Von)/2=2Vr-Vic
becomes. That is, in the input sampling circuit 110R according to the comparison technique, the common voltage Voc' does not match the reference voltage Vr, but depends on the common voltage Vic of the differential input signal.

入力サンプリング回路110(110R)の後段には、オペアンプが配置される場合がある。図9は、オペアンプのゲイン特性を示す図である。オペアンプは、基準電圧Vrを中心とする線形範囲において一定のゲインが得られ、基準電圧Vrから離れるとゲインが低下する。また、オペアンプの入力コモン電圧が同一で無い場合は、ゲインが一定では無くなるため、線形性を十分確保できなくなる。 An operational amplifier may be arranged after the input sampling circuit 110 (110R). FIG. 9 is a diagram showing gain characteristics of an operational amplifier. The operational amplifier has a constant gain in a linear range around the reference voltage Vr, and the gain decreases away from the reference voltage Vr. Further, if the input common voltages of the operational amplifiers are not the same, the gain will not be constant, so it will be impossible to ensure sufficient linearity.

比較技術では、入力サンプリング回路110Rの出力信号、言い換えるとオペアンプの入力信号は、Vrからずれた範囲で変化する。したがって、オペアンプを線形性が高い線形範囲内で動作させることが難しい。 In the comparison technique, the output signal of the input sampling circuit 110R, in other words, the input signal of the operational amplifier changes in a range deviating from Vr. Therefore, it is difficult to operate the operational amplifier within its highly linear range.

これに対して実施形態に係る入力サンプリング回路110の出力信号、言い換えるとオペアンプの入力信号は、Vrを中心として変化する。したがってオペアンプの線形性が高い線形範囲内で動作させることができる。これにより、ΔΣ変調器100の特性を改善することができる。 On the other hand, the output signal of the input sampling circuit 110 according to the embodiment, in other words, the input signal of the operational amplifier changes around Vr. Therefore, it can be operated within the linear range where the operational amplifier has high linearity. Thereby, the characteristics of the delta-sigma modulator 100 can be improved.

図5の入力サンプリング回路110と図7の入力サンプリング回路110Rのノイズを比較する。入力ノードIN1,IN2に入力されるノイズ量をvnp,vnnとする。図7の入力サンプリング回路110Rでは、ノイズ量は、式(7)で表される。

Figure 2023120945000002
The noises of the input sampling circuit 110 of FIG. 5 and the input sampling circuit 110R of FIG. 7 are compared. Let vnp and vnn be the noise amounts input to the input nodes IN1 and IN2. In the input sampling circuit 110R of FIG. 7, the noise amount is represented by Equation (7).
Figure 2023120945000002

これに対して、図5の入力サンプリング回路110では、同じノイズvnp,vnnが入力されたときのノイズ量は、式(8)で表される。

Figure 2023120945000003
ただし、vnhp,vnhnは、ホールド時の入力のノイズ量を表す。 On the other hand, in the input sampling circuit 110 of FIG. 5, the noise amount when the same noises vnp and vnn are input is expressed by Equation (8).
Figure 2023120945000003
However, vnhp and vnhn represent the amount of input noise during hold.

つまり、実施形態によれば、サンプリング時とホールド時のノイズを取り込んで平均化するため、ノイズ量を減らすことができる。 That is, according to the embodiment, the noise amount is reduced because the noise at the time of sampling and at the time of holding is taken in and averaged.

図10は、図4のΔΣ変調器100の一部を示す回路図である。図10には、入力サンプリング回路110と、ループフィルタ14の一部が示されている。ループフィルタ14は、積分アンプ120を含む。 FIG. 10 is a circuit diagram showing part of the delta-sigma modulator 100 of FIG. FIG. 10 shows the input sampling circuit 110 and part of the loop filter 14 . Loop filter 14 includes an integrating amplifier 120 .

積分アンプ120は、入力サンプリング回路110とともにクロール型の積分回路INTを構成する。差動入力を形成する第3入力ノードIN3および第4入力ノードIN4、差動出力を形成する第3出力ノードOUT3および第4出力ノードOUT4を有する。 The integration amplifier 120 constitutes a crawl type integration circuit INT together with the input sampling circuit 110 . It has a third input node IN3 and a fourth input node IN4 forming a differential input, and a third output node OUT3 and a fourth output node OUT4 forming a differential output.

積分アンプ120は、第3キャパシタC3、第4キャパシタC4およびオペアンプOA1を含む。第3キャパシタC3は、第3入力ノードIN3と第3出力ノードOUT3の間に接続される。第4キャパシタC4は、第4入力ノードIN4と第4出力ノードOUT4の間に接続される。オペアンプOA1は完全差動型であり、第1入力(-)が第3入力ノードIN3と接続され、第2入力(+)が第4入力ノードIN4と接続され、第1出力(+)が第3出力ノードOUT3と接続され、第2出力(-)が第4出力ノードOUT4と接続される。 Integrating amplifier 120 includes a third capacitor C3, a fourth capacitor C4 and an operational amplifier OA1. A third capacitor C3 is connected between a third input node IN3 and a third output node OUT3. A fourth capacitor C4 is connected between a fourth input node IN4 and a fourth output node OUT4. The operational amplifier OA1 is of a fully differential type, the first input (-) is connected to the third input node IN3, the second input (+) is connected to the fourth input node IN4, and the first output (+) is connected to the third input node IN3. 3 is connected to the output node OUT3, and the second output (-) is connected to the fourth output node OUT4.

第3キャパシタC3および第4キャパシタC4の容量を等しくCiであるとする。このとき、積分回路INTの時定数は、T×Ci/(2×Cs)となる。Tは、スイッチトキャパシタ回路である入力サンプリング回路110のスイッチング周期である。 Assume that the capacitances of the third capacitor C3 and the fourth capacitor C4 are equal to Ci. At this time, the time constant of the integrating circuit INT is T×Ci/(2×Cs). T is the switching period of the input sampling circuit 110, which is a switched capacitor circuit.

なお、前段に比較技術に係る入力サンプリング回路110Rを採用した場合のクロール型のスイッチトキャパシタ積分回路の時定数は、T×Ci/Csである。したがって、上記構成によれば、一般的なクロール型の積分回路に比べて、同じ時定数を得るためのキャパシタCsの容量を1/2に減らすことができ、チップサイズを小さくできる。 Note that the time constant of the crawl type switched capacitor integration circuit when the input sampling circuit 110R according to the comparison technique is employed in the preceding stage is T×Ci/Cs. Therefore, according to the above configuration, the capacitance of the capacitor Cs for obtaining the same time constant can be reduced to 1/2 compared to a general crawl type integrating circuit, and the chip size can be reduced.

図10の例では、積分回路INTは、加減算器ADDの機能を含んでいる。中間サンプリング回路130は、ΔΣ変調器100内の、入力信号以外の内部信号をサンプリングする。この例では、内部信号はフィードバック信号VFBである。中間サンプリング回路130は、実施形態に係る入力サンプリング回路110と同じ構成であってもよいし、比較技術に係る入力サンプリング回路110Rと同じ構成であってもよい。 In the example of FIG. 10, integration circuit INT includes the function of adder/subtractor ADD. Intermediate sampling circuit 130 samples internal signals other than the input signal in ΔΣ modulator 100 . In this example, the internal signal is the feedback signal VFB . The intermediate sampling circuit 130 may have the same configuration as the input sampling circuit 110 according to the embodiment, or may have the same configuration as the input sampling circuit 110R according to the comparison technique.

入力サンプリング回路110、中間サンプリング回路130および積分アンプ120は、加算型の積分回路を形成している。ここで、中間サンプリング回路130の出力は、入力サンプリング回路110の出力とは反対の極性で積分アンプ120と接続されているため、中間サンプリング回路130の出力は、入力サンプリング回路110の出力に対して逆極性で加算される。 The input sampling circuit 110, the intermediate sampling circuit 130 and the integrating amplifier 120 form an adding type integrating circuit. Here, since the output of the intermediate sampling circuit 130 is connected to the integration amplifier 120 with the polarity opposite to the output of the input sampling circuit 110, the output of the intermediate sampling circuit 130 is equal to the output of the input sampling circuit 110. Added in reverse polarity.

なお、中間サンプリング回路130の入力であるフィードバック信号VFBはD/Aコンバータ18によって生成される差動信号であり、そのコモン電圧は、基準電圧Vrと一致させることができる。したがって中間サンプリング回路130は、比較技術に係る入力サンプリング回路110Rで構成することができる。あるいは中間サンプリング回路130を実施形態に係る入力サンプリング回路110と同じ構成としてもよい。 The feedback signal VFB , which is the input of the intermediate sampling circuit 130, is a differential signal generated by the D/A converter 18, and its common voltage can be matched with the reference voltage Vr. Therefore, the intermediate sampling circuit 130 can be composed of the input sampling circuit 110R according to the comparison technique. Alternatively, the intermediate sampling circuit 130 may have the same configuration as the input sampling circuit 110 according to the embodiment.

図11は、実施形態に係るΔΣ変調器100Aの回路図である。ΔΣ変調器100Aは三次のΔΣ変調器であり、図3のΔΣ変調器10Aと実質的に同じ構成を有する。 FIG. 11 is a circuit diagram of the delta-sigma modulator 100A according to the embodiment. The delta-sigma modulator 100A is a third-order delta-sigma modulator and has substantially the same configuration as the delta-sigma modulator 10A in FIG.

差動入力信号VINを受けるパスb,b,b,bそれぞれには、入力サンプリング回路110が組み込まれる。その他の中間信号が伝送するパスc,c,c,a,a,gには、中間サンプリング回路130が組み込まれる。 An input sampling circuit 110 is incorporated in each of the paths b 1 , b 2 , b 3 , b 4 that receive the differential input signal V IN . Intermediate sampling circuits 130 are incorporated in paths c 1 , c 2 , c 3 , a 1 , a 2 , g 1 along which other intermediate signals are transmitted.

図12は、実施形態に係るΔΣ変調器100Bの回路図である。ΔΣ変調器100Bは二次のΔΣ変調器であり、2個の積分回路INT1,INT2を含む。差動入力信号VINを受けるパスb,b,bそれぞれには、入力サンプリング回路110が組み込まれる。その他の中間信号が伝送するパスc,c,a,a,gには、中間サンプリング回路130が組み込まれる。 FIG. 12 is a circuit diagram of the delta-sigma modulator 100B according to the embodiment. The delta-sigma modulator 100B is a secondary delta-sigma modulator and includes two integration circuits INT1 and INT2. An input sampling circuit 110 is incorporated in each of the paths b 1 , b 2 , b 3 that receive the differential input signal V IN . Intermediate sampling circuits 130 are incorporated in paths c 1 , c 2 , a 1 , a 2 , g 1 along which other intermediate signals are transmitted.

図13は、実施形態に係るΔΣ変調器100Cの回路図である。ΔΣ変調器100Cは4次のΔΣ変調器であり、4個の積分回路INT1~INT4を含む。差動入力信号VINを受けるパスb~bそれぞれには、入力サンプリング回路110が組み込まれる。その他の中間信号が伝送するパスc~c,a~a,g,gには、中間サンプリング回路130が組み込まれる。 FIG. 13 is a circuit diagram of the delta-sigma modulator 100C according to the embodiment. The delta-sigma modulator 100C is a fourth-order delta-sigma modulator and includes four integration circuits INT1 to INT4. An input sampling circuit 110 is incorporated in each of the paths b 1 to b 5 that receive the differential input signal V IN . Intermediate sampling circuits 130 are incorporated in paths c 1 to c 4 , a 1 to a 4 , g 1 and g 2 along which other intermediate signals are transmitted.

図14は、図11~図13のΔΣ変調器100A~100Cの構成要素150を示す回路図である。構成要素150は、入力サンプリング回路110、m個の中間サンプリング回路130、加減算器ADD、積分アンプ120を含む。 FIG. 14 is a circuit diagram showing component 150 of ΔΣ modulators 100A-100C of FIGS. 11-13. Components 150 include input sampling circuit 110 , m intermediate sampling circuits 130 , adder/subtractor ADD, and integrating amplifier 120 .

構成要素150は、図11~図13それぞれにおける、積分器INT(j=1,2…))加減算器ADD、パスa,b,c,gに含まれるサンプリング回路に対応する回路ブロックである。 Component 150 is a circuit block corresponding to the integrator INT j (j=1, 2...)) adder/subtractor ADD j and the sampling circuit included in paths a, b, c, and g in each of FIGS. be.

入力サンプリング回路110は、図11~図13のパスbに配置される。中間サンプリング回路130_1は、図11~図13のパスcに配置される。中間サンプリング回路130_2~130_mは、パスc以外のパスであって、加減算器ADDに入力されるパスa,gに配置される。 The input sampling circuit 110 is placed on path bj in FIGS. 11-13. Intermediate sampling circuit 130_1 is placed on path cj in FIGS. 11-13. The intermediate sampling circuits 130_2 to 130_m are arranged in paths a and g that are input to the adder/subtractor ADDj , which are paths other than the path c.

中間サンプリング回路130は、第5入力ノードIN5、第6入力ノードIN6、第5出力ノードOUT5、第6出力ノードOUT6、第9スイッチSW9~第16スイッチSW16、第5キャパシタC5、第6キャパシタC6を含む。中間サンプリング回路130の構成は、図7の入力サンプリング回路110Rと同様である。なお中間サンプリング回路130_1~130_mのうちのひとつ、複数、あるいは全部を、入力サンプリング回路110と同じ構成としてもよい。 The intermediate sampling circuit 130 connects a fifth input node IN5, a sixth input node IN6, a fifth output node OUT5, a sixth output node OUT6, a ninth switch SW9 to a sixteenth switch SW16, a fifth capacitor C5 and a sixth capacitor C6. include. The configuration of the intermediate sampling circuit 130 is similar to that of the input sampling circuit 110R of FIG. One, a plurality, or all of the intermediate sampling circuits 130_1 to 130_m may have the same configuration as the input sampling circuit 110. FIG.

(用途)
実施形態に係るΔΣ変調器100は、図1のΔΣ型A/Dコンバータのアナログ部に採用することができる。ただしΔΣ変調器100の用途は、A/Dコンバータに限定されず、その他のさまざまな用途に利用できる。
(Application)
The delta-sigma modulator 100 according to the embodiment can be employed in the analog section of the delta-sigma A/D converter in FIG. However, the use of the delta-sigma modulator 100 is not limited to the A/D converter, and can be used for various other uses.

実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにさまざまな変形例が存在すること、またそうした変形例も本開示または本発明の範囲に含まれることは当業者に理解されるところである。 Those skilled in the art will understand that the embodiments are examples, and that there are various modifications in the combination of each component and each processing process, and that such modifications are also included in the scope of the present disclosure or the present invention. It is about

100 ΔΣ変調器
12 減算回路
14 ループフィルタ
16 量子化器
18 D/Aコンバータ
110 入力サンプリング回路
IN1 第1入力ノード
IN2 第2入力ノード
OUT1 第1出力ノード
OUT2 第2出力ノード
REF 基準電圧ノード
C1 第1キャパシタ
C2 第2キャパシタ
SW1 第1スイッチ
SW2 第2スイッチ
SW3 第3スイッチ
SW4 第4スイッチ
SW5 第5スイッチ
SW6 第6スイッチ
SW7 第7スイッチ
SW8 第8スイッチ
120 積分アンプ
IN3 第3入力ノード
IN4 第4入力ノード
OUT3 第3出力ノード
OUT4 第4出力ノード
C3 第3キャパシタ
C4 第4キャパシタ
OA1 オペアンプ
130 中間サンプリング回路
IN5 第5入力ノード
IN6 第6入力ノード
OUT5 第5出力ノード
OUT6 第6出力ノード
SW9 第9スイッチ
SW10 第10スイッチ
SW11 第11スイッチ
SW12 第12スイッチ
C5 第5キャパシタ
C6 第6キャパシタ
100 ΔΣ modulator 12 subtraction circuit 14 loop filter 16 quantizer 18 D/A converter 110 input sampling circuit IN1 first input node IN2 second input node OUT1 first output node OUT2 second output node REF reference voltage node C1 first Capacitor C2 Second capacitor SW1 First switch SW2 Second switch SW3 Third switch SW4 Fourth switch SW5 Fifth switch SW6 Sixth switch SW7 Seventh switch SW8 Eighth switch 120 Integration amplifier IN3 Third input node IN4 Fourth input node OUT3 third output node OUT4 fourth output node C3 third capacitor C4 fourth capacitor OA1 operational amplifier 130 intermediate sampling circuit IN5 fifth input node IN6 sixth input node OUT5 fifth output node OUT6 sixth output node SW9 ninth switch SW10 10th switch SW11 11th switch SW12 12th switch C5 5th capacitor C6 6th capacitor

Claims (9)

差動入力信号をデジタル出力信号に変換するΔΣ変調器であって、
前記差動入力信号をサンプリングするスイッチトキャパシタ型の入力サンプリング回路を備え、
前記入力サンプリング回路は、
差動入力を形成する第1入力ノードおよび第2入力ノードと、
差動出力を形成する第1出力ノードおよび第2出力ノードと、
基準電圧ノードと、
前記第1入力ノードと前記第1出力ノードの間に直列に接続された第1スイッチ、第1キャパシタおよび第2スイッチと、
前記第2入力ノードと前記第2出力ノードの間に直列に接続された第3スイッチ、第2キャパシタおよび第4スイッチと、
前記第3スイッチおよび前記第2キャパシタの接続ノードと、前記第1入力ノードとの間に接続された第5スイッチと、
前記第1スイッチおよび前記第1キャパシタの接続ノードと、前記第2入力ノードとの間に接続された第6スイッチと、
前記第1キャパシタと前記第2スイッチの接続ノードと、前記基準電圧ノードとの間に接続された第7スイッチと、
前記第2キャパシタと前記第4スイッチの接続ノードと、前記基準電圧ノードとの間に接続された第8スイッチと、
を含む、ΔΣ変調器。
A delta-sigma modulator that converts a differential input signal into a digital output signal,
comprising a switched capacitor type input sampling circuit for sampling the differential input signal;
The input sampling circuit is
a first input node and a second input node forming a differential input;
a first output node and a second output node forming a differential output;
a reference voltage node;
a first switch, a first capacitor and a second switch connected in series between the first input node and the first output node;
a third switch, a second capacitor and a fourth switch connected in series between the second input node and the second output node;
a fifth switch connected between a connection node of the third switch and the second capacitor and the first input node;
a sixth switch connected between a connection node of the first switch and the first capacitor and the second input node;
a seventh switch connected between a connection node of the first capacitor and the second switch and the reference voltage node;
an eighth switch connected between a connection node of the second capacitor and the fourth switch and the reference voltage node;
A delta-sigma modulator, including
前記入力サンプリング回路とともに積分回路を形成する積分アンプをさらに備え、
前記積分アンプは、
前記入力サンプリング回路の前記第1出力ノードと接続される第3入力ノードと、
前記入力サンプリング回路の前記第2出力ノードと接続される第4入力ノードと、
第3出力ノードと、
第4出力ノードと、
前記第3入力ノードと前記第3出力ノードの間に接続された第3キャパシタと、
前記第4入力ノードと前記第4出力ノードの間に接続された第4キャパシタと、
第1入力が前記第3入力ノードと接続され、第2入力が前記第4入力ノードと接続され、第1出力が前記第3出力ノードと接続され、第2出力が前記第4出力ノードと接続された完全差動型のオペアンプと、
を含む、請求項1に記載のΔΣ変調器。
further comprising an integration amplifier that forms an integration circuit together with the input sampling circuit;
The integration amplifier is
a third input node connected to the first output node of the input sampling circuit;
a fourth input node connected to the second output node of the input sampling circuit;
a third output node;
a fourth output node;
a third capacitor connected between the third input node and the third output node;
a fourth capacitor connected between the fourth input node and the fourth output node;
A first input is connected to the third input node, a second input is connected to the fourth input node, a first output is connected to the third output node, and a second output is connected to the fourth output node. a fully differential operational amplifier with
The delta-sigma modulator of claim 1, comprising:
前記ΔΣ変調器内の入力信号以外の内部信号をサンプリングする内部サンプリング回路をさらに備え、
前記内部サンプリング回路は、
差動入力を形成する第5入力ノードおよび第6入力ノードと、
差動出力を形成する第5出力ノードおよび第6出力ノードと、
前記第5入力ノードと前記第5出力ノードの間に直列に接続された第9スイッチ、第5キャパシタおよび第10スイッチと、
前記第6入力ノードと前記第6出力ノードの間に直列に接続された第11スイッチ、第6キャパシタおよび第12スイッチと、
前記第9スイッチおよび前記第5キャパシタの接続ノードと、前記基準電圧ノードとの間に接続された第13スイッチと、
前記第11スイッチおよび前記第6キャパシタの接続ノードと、前記基準電圧ノードとの間に接続された第14スイッチと、
前記第5キャパシタと前記第10スイッチの接続ノードと、前記基準電圧ノードとの間に接続された第15スイッチと、
前記第6キャパシタと前記第12スイッチの接続ノードと、前記基準電圧ノードとの間に接続された第16スイッチと、
を含む、請求項1または2に記載のΔΣ変調器。
further comprising an internal sampling circuit for sampling an internal signal other than the input signal in the ΔΣ modulator;
The internal sampling circuit is
a fifth input node and a sixth input node forming a differential input;
a fifth output node and a sixth output node forming a differential output;
a ninth switch, a fifth capacitor and a tenth switch connected in series between the fifth input node and the fifth output node;
an eleventh switch, a sixth capacitor and a twelfth switch connected in series between the sixth input node and the sixth output node;
a thirteenth switch connected between a connection node of the ninth switch and the fifth capacitor and the reference voltage node;
a fourteenth switch connected between a connection node of the eleventh switch and the sixth capacitor and the reference voltage node;
a fifteenth switch connected between a connection node of the fifth capacitor and the tenth switch and the reference voltage node;
a sixteenth switch connected between a connection node of the sixth capacitor and the twelfth switch and the reference voltage node;
3. The delta-sigma modulator according to claim 1, comprising:
前記ΔΣ変調器内の、入力信号以外の内部信号をサンプリングする内部サンプリング回路をさらに備え、
前記内部サンプリング回路は、
差動入力を形成する第5入力ノードおよび第6入力ノードと、
差動出力を形成する第5出力ノードおよび第6出力ノードと、
前記第5入力ノードと前記第5出力ノードの間に直列に接続された第9スイッチ、第5キャパシタおよび第10スイッチと、
前記第6入力ノードと前記第6出力ノードの間に直列に接続された第11スイッチ、第6キャパシタおよび第12スイッチと、
前記第9スイッチおよび前記第5キャパシタの接続ノードと、前記基準電圧ノードとの間に接続された第13スイッチと、
前記第11スイッチおよび前記第6キャパシタの接続ノードと、前記基準電圧ノードとの間に接続された第14スイッチと、
前記第5キャパシタと前記第10スイッチの接続ノードと、前記基準電圧ノードとの間に接続された第15スイッチと、
前記第6キャパシタと前記第12スイッチの接続ノードと、前記基準電圧ノードとの間に接続された第16スイッチと、
を含み、
前記内部サンプリング回路の前記第5出力ノードおよび前記第6出力ノードの一方は、前記積分アンプの前記第3入力ノードと接続され、
前記内部サンプリング回路の前記第5出力ノードおよび前記第6出力ノードの他方は、前記積分アンプの前記第4入力ノードと接続される、請求項2に記載のΔΣ変調器。
further comprising an internal sampling circuit for sampling an internal signal other than the input signal in the ΔΣ modulator;
The internal sampling circuit is
a fifth input node and a sixth input node forming a differential input;
a fifth output node and a sixth output node forming a differential output;
a ninth switch, a fifth capacitor and a tenth switch connected in series between the fifth input node and the fifth output node;
an eleventh switch, a sixth capacitor and a twelfth switch connected in series between the sixth input node and the sixth output node;
a thirteenth switch connected between a connection node of the ninth switch and the fifth capacitor and the reference voltage node;
a fourteenth switch connected between a connection node of the eleventh switch and the sixth capacitor and the reference voltage node;
a fifteenth switch connected between a connection node of the fifth capacitor and the tenth switch and the reference voltage node;
a sixteenth switch connected between a connection node of the sixth capacitor and the twelfth switch and the reference voltage node;
including
one of the fifth output node and the sixth output node of the internal sampling circuit is connected to the third input node of the integrating amplifier;
3. The ΔΣ modulator according to claim 2, wherein the other of said fifth output node and said sixth output node of said internal sampling circuit is connected to said fourth input node of said integrating amplifier.
前記ΔΣ変調器の次数は3である、請求項1から4のいずれかに記載のΔΣ変調器。 5. The delta-sigma modulator according to claim 1, wherein the order of said delta-sigma modulator is three. 前記ΔΣ変調器の次数は2である、請求項1から4のいずれかに記載のΔΣ変調器。 5. The delta-sigma modulator according to claim 1, wherein the order of said delta-sigma modulator is two. 前記ΔΣ変調器の次数は4である、請求項1から4のいずれかに記載のΔΣ変調器。 5. The delta-sigma modulator according to claim 1, wherein the order of said delta-sigma modulator is four. ひとつの半導体基板に集積化される、請求項1から7のいずれかに記載のΔΣ変調器。 8. The delta-sigma modulator according to claim 1, which is integrated on one semiconductor substrate. 請求項1から8のいずれかに記載のΔΣ変調器と、
前記ΔΣ変調器の出力信号を帯域制限し、ダウンサンプリングするフィルタと、
を備える、ΔΣ型A/Dコンバータ。
A ΔΣ modulator according to any one of claims 1 to 8;
a filter for band-limiting and down-sampling the output signal of the delta-sigma modulator;
A delta-sigma A/D converter.
JP2022024106A 2022-02-18 2022-02-18 Δς modulator and δς a/d converter Pending JP2023120945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022024106A JP2023120945A (en) 2022-02-18 2022-02-18 Δς modulator and δς a/d converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022024106A JP2023120945A (en) 2022-02-18 2022-02-18 Δς modulator and δς a/d converter

Publications (1)

Publication Number Publication Date
JP2023120945A true JP2023120945A (en) 2023-08-30

Family

ID=87797532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022024106A Pending JP2023120945A (en) 2022-02-18 2022-02-18 Δς modulator and δς a/d converter

Country Status (1)

Country Link
JP (1) JP2023120945A (en)

Similar Documents

Publication Publication Date Title
US6744392B2 (en) Noise shapers with shared and independent filters and multiple quantizers and data converters and methods using the same
US8077066B2 (en) ΔΣ modulator
EP0454407B1 (en) Multi-stage sigma-delta analog-to-digital converter
US7446686B2 (en) Incremental delta-sigma data converters with improved stability over wide input voltage ranges
US6697004B1 (en) Partial mismatch-shaping digital-to-analog converter
US7936293B2 (en) Delta-sigma modulator
JP5836020B2 (en) A / D converter
US7446687B2 (en) Method and apparatus to reduce internal circuit errors in a multi-bit delta-sigma modulator
EP1966894B1 (en) Architecture combining a continuous-time stage with a switched-capacitor stage for digital-to-analog converters and low-pass filters
US6972705B1 (en) Signal processing system having an ADC delta-sigma modulator with single-ended input and feedback signal inputs
US7388533B2 (en) Multi-bit sigma-delta modulator and digital-to-analog converter with one digital-to-analog capacitor
JP5633398B2 (en) ΔΣ modulator and signal processing system
US20050052300A1 (en) Single loop feed-forward modulator with summing flash quantizer and multi-bit feedback
JPH088489B2 (en) Double-rate oversampled interpolator for analog-to-digital conversion
US10439633B2 (en) Sigma delta modulator, integrated circuit and method therefor
US7034728B2 (en) Bandpass delta-sigma modulator with distributed feedforward paths
Burmas et al. A second-order double-sampled delta-sigma modulator using additive-error switching
JP2016100871A (en) Δς modulator
Keller et al. On the implicit anti-aliasing feature of continuous-time cascaded sigma–delta modulators
US10469098B2 (en) Non-switched capacitor circuits for delta-sigma ADCs
JP2023120945A (en) Δς modulator and δς a/d converter
KR100766073B1 (en) Multi-bit Sigma Delta Modulator with One DAC Capacitor and Digital-Analog Convertor for Multi-bit Sigma Delta Modulator
JP4939497B2 (en) ΔΣ type analog-digital converter
JP2023137066A (en) ΔΣ modulator and ΔΣ type A/D converter
US11962331B2 (en) Sigma-delta analog-to-digital converter