JP2023119229A - Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator - Google Patents

Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator Download PDF

Info

Publication number
JP2023119229A
JP2023119229A JP2022021989A JP2022021989A JP2023119229A JP 2023119229 A JP2023119229 A JP 2023119229A JP 2022021989 A JP2022021989 A JP 2022021989A JP 2022021989 A JP2022021989 A JP 2022021989A JP 2023119229 A JP2023119229 A JP 2023119229A
Authority
JP
Japan
Prior art keywords
crystal
hole
crystal piece
piece
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022021989A
Other languages
Japanese (ja)
Inventor
啓之 佐々木
Hiroyuki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2022021989A priority Critical patent/JP2023119229A/en
Publication of JP2023119229A publication Critical patent/JP2023119229A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

To provide a crystal oscillator with a novel structure having a through-hole that is preferable to conduct the front and back sides of a crystal piece.SOLUTION: A crystal oscillator 10 includes a crystal piece 11, a container 13 that accommodates the crystal piece, a conductive adhesive 15 that connects and fixes the crystal piece to the container, a through-hole 17, and electrodes (excitation electrode 11a and wiring electrode 11b) provided on one surface of the crystal piece, on an inner wall of the through-hole, and on the other surface of the crystal piece. The through-hole 17 is provided on a portion of a connecting and fixing area 11c of the crystal piece, penetrating the front and back sides of the crystal piece, and having on the inner wall a surface on which the crystallinity of the crystal is vanished. The through-hole 17 is formed using a picosecond laser or a femtosecond laser, which is a short pulse laser.SELECTED DRAWING: Figure 1

Description

本発明は、水晶片を容器に導電性接着剤によって接着固定する構造に特徴を有した水晶振動子及びその製造方法並びに水晶振動子用の中間体ウエハに関する。 The present invention relates to a crystal oscillator characterized by a structure in which a crystal piece is adhered and fixed to a container with a conductive adhesive, a manufacturing method thereof, and an intermediate wafer for the crystal oscillator.

近年のほとんどの水晶振動子は、SMD型のものである。従って、水晶片を容器に固定する際は、水晶片の2つの主面の一方を容器の接着パッド側に対向させ、当該主面の所定部分を接着パッドに導電性接着剤によって電気的かつ機械的に接続固定する。 Most modern crystal oscillators are of the SMD type. Therefore, when fixing the crystal blank to the container, one of the two main surfaces of the crystal blank faces the bonding pad side of the container, and a predetermined portion of the main surface is electrically and mechanically attached to the bonding pad by a conductive adhesive. properly connected and fixed.

一方、水晶片は、その表裏に励振用電極を有しているため、接着パッドとは反対面側にある励振用電極は、接着パッド側に引き回す必要がある。一般には、この引き回しは、水晶片の側面を経由して行われる。
水晶片の一方の面から他方の面に励振用電極を、水晶片の側面を経由して引き回す場合、水晶片の主面と側面との境界である水晶片のエッジで電極の断線が起き易い。
この断線を軽減する1つの策として、例えば特許文献1に示されているように、水晶片の一方の面から他方の面に貫通孔を設け、この貫通孔を利用して表裏の導通を図る構造がある(特許文献1,3,5、段落83等)。
On the other hand, since the crystal piece has excitation electrodes on its front and back sides, the excitation electrodes on the side opposite to the bonding pads must be routed toward the bonding pads. Generally, this routing is performed via the side surface of the crystal piece.
When the excitation electrodes are routed from one surface of the crystal piece to the other surface via the side surface of the crystal piece, disconnection of the electrode tends to occur at the edge of the crystal piece, which is the boundary between the main surface and the side surface of the crystal piece. .
As one measure for reducing this disconnection, for example, as shown in Patent Document 1, a through hole is provided from one surface of the crystal piece to the other surface, and the through hole is used to achieve conduction between the front and back surfaces. There is a structure (Patent Documents 1, 3, 5, paragraph 83, etc.).

特開2020-191579号公報JP 2020-191579 A

しかしながら、特許文献1には、貫通孔の具体的な構造、特に深さ方向の内部形状等の具体的な記載はない。また、貫通孔の製法に関する記載もない。貫通孔の製法としてフォトリソグラフィ技術及びウエットエッチング技術を用いる方法が考えられるが、この方法を水晶片の貫通孔の形成に使用した場合、貫通孔の開口部や内部が水晶の結晶性に起因した結晶面の影響を受け、貫通孔内部は複数の結晶面からから成る複雑な構造となる。そのため、貫通孔内部を、電極膜等の導通部材が形成し易い状態となった貫通孔を形成することが難しい。
すなわち、貫通孔の構造によっては、水晶片の表裏の導通を図るという目的を満足できない場合があり、貫通孔の構造やその製造方法に関して、改善の余地がある。
本出願に係る発明者も、水晶片の表裏の導通を図るための貫通孔の構造およびその製法について鋭意検討を行ってきた。
この出願は上記の点に鑑みなされたものであり、従って、この出願の目的は、水晶片の表裏を導通するための好ましい貫通孔を有した新規な構造の水晶振動子と、この構造を簡易に形成できる製造方法と、前記水晶振動子を形成するための中間体ウエハと、を提供することにある。
However, Patent Literature 1 does not describe the specific structure of the through-hole, especially the internal shape in the depth direction. Moreover, there is no description of a method for manufacturing through holes. A method using photolithography technology and wet etching technology can be considered as a method for manufacturing a through hole, but when this method is used to form a through hole in a crystal piece, the opening and inside of the through hole are caused by the crystallinity of the crystal. Due to the influence of the crystal planes, the inside of the through-hole has a complicated structure composed of multiple crystal planes. Therefore, it is difficult to form a through hole in which a conductive member such as an electrode film can be easily formed.
In other words, depending on the structure of the through-holes, the purpose of achieving conduction between the front and back surfaces of the crystal piece may not be satisfied, and there is room for improvement in the structure of the through-holes and the manufacturing method thereof.
The inventors of the present application have also made earnest studies on the structure of the through-holes for achieving conduction between the front and back surfaces of the crystal piece and the manufacturing method thereof.
This application has been made in view of the above points, and the object of this application is to provide a crystal resonator having a novel structure having through-holes suitable for conducting between the front and back surfaces of a crystal piece, and a crystal unit that simplifies this structure. and an intermediate wafer for forming the crystal oscillator.

この目的の達成を図るため、この出願の水晶振動子によれば、水晶片と、前記水晶片を収容する容器と、前記水晶片を容器に接続固定している導電性接着剤と、前記水晶片の前記接続固定領域の一部に設けられ前記水晶片の表裏を貫通している貫通孔と、を備える水晶振動子において、
前記貫通孔としての、水晶の結晶性を消失させた面を内壁に有する貫通孔と、
前記水晶片の一方の面、前記貫通孔の内壁上及び前記水晶片の他方の面に渡って設けられた電極と、を備えることを特徴とする。
In order to achieve this object, according to the crystal oscillator of this application, there are provided a crystal piece, a container for containing the crystal piece, a conductive adhesive for connecting and fixing the crystal piece to the container, and the crystal. a through hole provided in a part of the connecting and fixing region of the piece and penetrating the front and back of the crystal piece,
a through hole having, as the through hole, an inner wall surface in which crystallinity of crystal is eliminated;
and an electrode provided over one surface of the crystal piece, an inner wall of the through hole, and the other surface of the crystal piece.

ここで、水晶の結晶性を消失させた面とは、フォトリソグラフィ技術及びフッ酸系エッチャントを用いたウエットエッチング技術によって形成され、水晶の結晶面が凹部の内壁や底面の一部又は全部に残った面とは違う面、のことである。
具体的には、水晶の結晶性を消失させた面とは、当該貫通孔の内壁に水晶片表面から深さ方向に進行した線状痕跡が、内壁の周方向に並んでいて、これら並んだ線状痕跡による微小凹凸が生じている面である(図2(A)のSEM写真参照)。このような面は、本願の別発明である短パルスレーザ、例えばピコ秒レーザ又はフェムト秒レーザ等を用いる製法によって形成できる。
Here, the surface from which the crystallinity of the crystal has disappeared is formed by a photolithography technique and a wet etching technique using a hydrofluoric acid-based etchant, and the crystal surface of the crystal remains on part or all of the inner wall and bottom surface of the recess. It is a side that is different from the normal side.
Specifically, the surface where the crystallinity of the crystal is lost means that linear traces extending in the depth direction from the surface of the crystal piece are arranged on the inner wall of the through hole in the circumferential direction of the inner wall. This is the surface on which fine unevenness is generated by linear traces (see the SEM photograph of FIG. 2(A)). Such a surface can be formed by a manufacturing method using a short pulse laser, such as a picosecond laser or a femtosecond laser, which is another invention of the present application.

なお、この水晶振動子の発明を実施するに当たり、前記貫通孔は、水晶片の厚さ方向に沿って切った断面形状が、水晶片の第1表面側からその反対面である第2表面側に向かって先細りのロート状であることが好ましい(図1(C)参照)。
また、この水晶振動子の発明を実施するに当たり、前記貫通孔は、水晶片の厚さ方向に沿って切った断面形状が、水晶片の厚さ方向の途中で開口具合が低減し、その後拡大する、いわゆる砂時計状であっても良い(図2(B)参照)。
このようにロート状や砂時計形状であると、貫通孔内に電極形成用の膜を被覆し易い。
In carrying out the invention of the crystal oscillator, the cross-sectional shape of the through hole cut along the thickness direction of the crystal piece is from the first surface side of the crystal piece to the opposite second surface side. It preferably has a funnel shape that tapers toward (see FIG. 1(C)).
Further, in carrying out the invention of the crystal oscillator, the cross-sectional shape of the through-hole cut along the thickness direction of the crystal piece is reduced in the middle of the thickness direction of the crystal piece and then enlarged. It may have a so-called hourglass shape (see FIG. 2(B)).
Such a funnel shape or hourglass shape makes it easy to cover the inside of the through hole with a film for forming an electrode.

この出願の他の発明である水晶振動子の製造方法の発明によれば、水晶片を容器に導電性接着剤によって固定している構造を有した水晶振動子を製造するに当たり、
前記水晶片の導電性接着剤によって固定される予定領域の一部に、短パルスレーザによって、水晶片を貫通する貫通孔を形成する工程と、
前記貫通孔を形成した水晶片に水晶振動子の電極形成用の金属膜を、前記貫通孔内も被覆するよう形成する工程と、
前記金属膜を形成した水晶片に前記貫通孔内も被覆するようフォトレジストを形成する工程と、
前記フォトレジストを露光・現像して電極形成用のレジストパタンを形成する工程と、前記レジストパタンから露出する前記金属膜を選択的に除去して当該電極としての、前記貫通孔内も被覆している電極を形成する工程と
を含むことを特徴とする。
According to another invention of this application, which is an invention of a method for manufacturing a crystal oscillator, in manufacturing a crystal oscillator having a structure in which a crystal piece is fixed to a container with a conductive adhesive,
a step of forming a through-hole penetrating through the crystal piece by means of a short-pulse laser in a part of the region of the crystal piece to be fixed by the conductive adhesive;
a step of forming a metal film for forming an electrode of a crystal oscillator on the crystal piece in which the through holes are formed so as to cover the inside of the through holes;
a step of forming a photoresist on the crystal piece on which the metal film is formed so as to cover the inside of the through hole;
exposing and developing the photoresist to form a resist pattern for forming an electrode; and selectively removing the metal film exposed from the resist pattern to cover the inside of the through hole as the electrode. and forming an electrode on the substrate.

この出願の水晶振動子によれば、水晶片の容器と接続される領域の一部に、水晶片を貫通していて、水晶の結晶性を消失させた面を内壁に有する貫通孔と、前記水晶片の一方の面、前記貫通孔の内壁上及び前記水晶片の他方の面に渡って設けた電極と、を備えている。従って、貫通孔内に水晶片の結晶面が無い構造を持つ水晶片を有した水晶振動子が得られる。しかも、容器の側とは反対側の励振用電極はこの貫通孔を介して容器側に引き回されて接着パッドと接続された水晶振動子が得られる。ここで、貫通孔内に水晶の結晶面があると、結晶面は結晶の異方性に起因した面であるため、貫通孔の開口度を低下し易いことが多いため、貫通孔を利用して電極を引き回すという目的の弊害になる。一方、本発明では、貫通孔は結晶性を消失させた側面を持つものであるため、結晶面を有する場合に比べ、貫通孔の開口率を高くできる。従って、水晶片の一方の面、貫通孔の内壁上および水晶片の他方の面に渡って設けた電極も、貫通孔内に有効に形成されたものとなるため、水晶片の表裏の導通を確実に行える。
また、この出願の水晶振動子の製造方法によれば、水晶片の表裏を貫通する貫通孔を短パルスレーザによって形成するため、水晶の結晶性を消失させた面を有する貫通孔を簡易に形成できる。また、水晶の結晶性を消失させた面を持つ貫通孔は、水晶の結晶性を有する面を持つ貫通孔に比べて、貫通孔の開口率は高くなり易く、かつ、内壁は金属膜やフォトレジトの被膜性が高い貫通孔になる。そのため、水晶振動子の電極形成用の金属膜やフォトレジストを貫通孔内に被覆し易いので、貫通孔内に所望の電極を形成できる。
According to the crystal oscillator of this application, a through hole penetrating through the crystal piece and having a surface in which the crystallinity of the crystal is eliminated is provided in a part of the region of the crystal piece connected to the container of the crystal piece; an electrode provided over one surface of the crystal piece, the inner wall of the through hole, and the other surface of the crystal piece. Therefore, a crystal oscillator having a crystal piece having a structure in which there is no crystal plane of the crystal piece in the through hole can be obtained. Moreover, the excitation electrodes on the side opposite to the container side are routed to the container side through the through holes to obtain a crystal oscillator connected to the bonding pads. Here, if there is a crystal plane of quartz crystal in the through-hole, the crystal plane is a plane resulting from the anisotropy of the crystal, and the opening degree of the through-hole tends to be lowered in many cases. This is a detriment to the purpose of routing the electrodes. On the other hand, in the present invention, since the through-holes have side surfaces in which crystallinity has disappeared, the aperture ratio of the through-holes can be increased compared to the case where the through-holes have crystal planes. Therefore, the electrodes provided on one surface of the crystal blank, on the inner wall of the through hole, and on the other surface of the crystal blank are also effectively formed in the through hole, so that the front and back of the crystal blank are electrically connected. I can do it for sure.
In addition, according to the method of manufacturing a crystal oscillator of this application, since the through-holes penetrating the front and back of the crystal piece are formed by a short-pulse laser, the through-holes having crystallinity-disappeared surfaces can be easily formed. can. In addition, a through-hole having a surface in which crystallinity is lost tends to have a higher opening ratio than a through-hole having a surface having crystallinity, and the inner wall is made of a metal film or a photoresist. It becomes a through-hole with a high coating property. Therefore, it is easy to cover the inside of the through hole with a metal film or a photoresist for forming the electrode of the crystal oscillator, so that a desired electrode can be formed inside the through hole.

(A)~(D)は、実施形態の水晶振動子10の説明図である。(A) to (D) are explanatory diagrams of the crystal resonator 10 of the embodiment. (A)~(C)は、本発明に係る貫通孔のいくつかの具体例を説明するための図である。(A) to (C) are diagrams for explaining some specific examples of through holes according to the present invention. (A)及び(B)は、製造方法の実施形態を説明するための工程図である。(A) and (B) are process diagrams for explaining an embodiment of a manufacturing method. (A)及び(B)は、製造方法の実施形態を説明するための図3に続く工程図である。(A) and (B) are process diagrams following FIG. 3 for describing the embodiment of the manufacturing method.

以下、図面を参照してこの出願の各発明の実施形態について説明する。なお、説明に用いる各図はこれら発明を理解できる程度に概略的に示してあるにすぎない。また、説明に用いる各図において、同様な構成成分については同一の番号を付して示し、その説明を省略する場合もある。また、以下の実施形態中で述べる形状、材質、製法例等はこの発明の範囲内の好適例に過ぎない。従って、本発明が以下の実施形態のみに限定されるものではない。 Hereinafter, embodiments of each invention of this application will be described with reference to the drawings. It should be noted that each drawing used for explanation is only schematically shown to the extent that these inventions can be understood. In addition, in each drawing used for explanation, the same component may be denoted by the same number, and the explanation thereof may be omitted. Further, the shapes, materials, manufacturing method examples, etc. described in the following embodiments are merely preferred examples within the scope of the present invention. Therefore, the present invention is not limited only to the following embodiments.

1. 水晶振動子の実施形態
図1を参照して実施形態の水晶振動子10について、説明する。図1(A)~(D)は実施形態の水晶振動子10の説明図である。特に、(A)図はその上面図、(B)図は水晶片11に着目した上面図、(C)図は(B)図中のP-P線での断面図、(D)図は(C)図中のQ部分を水晶片11の上方(図中Rで示す方向)から見た上面図である。
実施形態の水晶振動子10は、水晶片11と、水晶片11を収容する容器13と、水晶片11を容器13に接続固定している導電性接着剤15と、水晶片11の導電性接着剤15との接続固定領域11c(図1(B)参照)の一部に設けられ、水晶の結晶性を消失させた面を内壁に有する貫通孔17と、を備えている。以下、各構成成分について具体的に説明する。
1. Embodiment of Crystal Oscillator A crystal oscillator 10 of an embodiment will be described with reference to FIG. 1A to 1D are explanatory diagrams of a crystal oscillator 10 according to an embodiment. In particular, (A) is a top view thereof, (B) is a top view focusing on the crystal piece 11, (C) is a cross-sectional view taken along line PP in (B), and (D) is a (C) is a top view of the portion Q in the drawing viewed from above the crystal piece 11 (in the direction indicated by R in the drawing).
The crystal resonator 10 of the embodiment includes a crystal piece 11, a container 13 for accommodating the crystal piece 11, a conductive adhesive 15 connecting and fixing the crystal piece 11 to the container 13, and a conductive adhesive for the crystal piece 11. A through hole 17 is provided in a part of the connection fixing region 11c (see FIG. 1(B)) with the agent 15 and has a crystal-free crystal surface on the inner wall. Each component will be specifically described below.

水晶片11は、この場合、ATカットの水晶片である。水晶片11は、励振用電極11aと、引出電極11bと、本発明の特徴である貫通孔17(詳細は後述する)と、を備えている。励振用電極11aは、水晶片11の表裏の主面の所定領域に設けてあり、任意好適な金属膜で構成してある。引出電極11bは、水晶片11の両主面の励振用電極11a各々から、貫通孔17内を経由して、水晶片11の他方の面のこの例の場合は水晶片の一端側に引きまわしてある。すなわち、容器側とは反対面にある励振用電極はこの貫通孔17内の電極を介して容器側の面に引き回された構造が実現される。なお、励振用電極の水晶片の表裏の引き回しのために、水晶片の側壁を介した引き回し構造を併用しても良い。 In this case, the crystal blank 11 is an AT-cut crystal blank. The crystal piece 11 includes an excitation electrode 11a, an extraction electrode 11b, and a through hole 17 (details will be described later), which is a feature of the present invention. The excitation electrodes 11a are provided in predetermined regions on the front and back main surfaces of the crystal piece 11, and are made of any suitable metal film. The extraction electrodes 11b are routed from the excitation electrodes 11a on both main surfaces of the crystal piece 11 to one end side of the crystal piece 11 on the other side of the crystal piece 11 through the through holes 17 in this example. There is. That is, a structure is realized in which the excitation electrodes on the opposite side to the container side are routed to the container side surface via the electrodes in the through holes 17 . In order to route the excitation electrodes on the front and back sides of the crystal piece, a structure for routing through the side walls of the crystal piece may be used together.

容器13は、この例の場合、水晶片11を収容する凹部13aと、凹部13aを生じさせている土手部13bと、接着パッド13cとを備えるものである。接着パッド13cは、この例の場合、凹部13aの底面であって、水晶片11の引出電極11bと対応する領域に設けてある。接着パッド13cは、容器13の裏面に設けた外部接続端子(図示を省略)に、ビア配線又はキャスタレーション配線(いずれも図示せず)を介して接続してある。 そして、水晶片11は、接着パッド13cに、引出電極11bの位置で、導電性接着剤15によって電気的及び機械的に接続固定してある。すなわち、水晶片11は容器13に片持ち支持されている。
容器13の土手部13bの天面に、蓋部材(図示を省略)が接合されて、水晶片11は、容器13に封止してある。なお、容器13と蓋部材との接合は、封止方式に応じた任意好適な方法で行われる。容器13は、例えばセラミック製パッケージで構成できる。
導電性接着剤15は、任意好適なもので構成できるが、この例の場合はシリコーン系の導電性接着剤としてある。
In this example, the container 13 includes a recess 13a for accommodating the crystal piece 11, a bank portion 13b forming the recess 13a, and an adhesive pad 13c. In this example, the bonding pad 13c is provided on the bottom surface of the recess 13a and in a region corresponding to the extraction electrode 11b of the crystal piece 11. As shown in FIG. The bonding pads 13c are connected to external connection terminals (not shown) provided on the rear surface of the container 13 via via wiring or castellation wiring (both not shown). The crystal piece 11 is electrically and mechanically connected and fixed to the adhesive pad 13c at the position of the extraction electrode 11b by a conductive adhesive 15. As shown in FIG. That is, the crystal piece 11 is cantilevered by the container 13 .
A lid member (not shown) is joined to the top surface of the bank portion 13 b of the container 13 to seal the crystal piece 11 in the container 13 . Incidentally, the joining of the container 13 and the lid member is performed by any suitable method according to the sealing method. The container 13 can be composed of, for example, a ceramic package.
The conductive adhesive 15 can be composed of any suitable material, but in this example, a silicone-based conductive adhesive is used.

次に、本発明の特徴である貫通孔17の、具体的構造例について説明する。この説明を図1に加えて図2を参照して行う。図2(A)は、水晶片11の接続固定領域11C付近を水晶片11の厚さ方向に切った断面の、SEM(電子顕微鏡)写真である。また、図2(B)、図2(C)は貫通孔の他の例を示した図であり、図2(A)同様の位置での断面図である。なお、図2(A)のSEM写真中に記した寸法は、短パルスレーザによる試作加工時の寸法例である。
貫通孔17は、水晶片11の表裏を導通する電極を設けるための貫通孔であり、然も、内壁が水晶の結晶性を消失させた面17aとなっている貫通孔である。
この例の場合は、面17aは、貫通孔17の内壁に水晶片11の表面から深さ方向に進行した線状痕跡が、内壁の周方向に並んでいて、これら並んだ線状痕跡による微小凹凸が生じている面17aである。このような面は、本願の別発明である短パルスレーザを用いる製法によって容易に形成できる(詳細は後述する)。
Next, a specific structural example of the through-hole 17, which is a feature of the present invention, will be described. This description is made with reference to FIG. 2 in addition to FIG. FIG. 2A is an SEM (electron microscope) photograph of a cross section of the crystal piece 11 near the connection fixing region 11C cut in the thickness direction of the crystal piece 11. FIG. 2(B) and 2(C) are diagrams showing other examples of through holes, and are cross-sectional views at the same position as FIG. 2(A). Note that the dimensions shown in the SEM photograph of FIG. 2(A) are examples of the dimensions at the time of prototype processing using a short-pulse laser.
The through-hole 17 is a through-hole for providing an electrode that electrically connects the front and back surfaces of the crystal blank 11, and the inner wall of the through-hole 17 is a surface 17a in which the crystallinity of the crystal is eliminated.
In this example, the surface 17a has linear traces extending in the depth direction from the surface of the crystal piece 11 on the inner wall of the through hole 17 and arranged in the circumferential direction of the inner wall. This is the surface 17a having irregularities. Such a surface can be easily formed by a manufacturing method using a short-pulse laser, which is another invention of the present application (details will be described later).

また、この実施形態の貫通孔17は、図1(C)、図2(A)に示したように、水晶片の厚さ方向に沿った断面で見た際の形状が、水晶片の第1表面側からその反対面である第2表面側に向かって先細りのロート状となっている。このような形状であると、貫通孔の内壁に電極形成用の金属膜を例えばスパッタ法等で成膜する際に金属膜を被覆させ易く、さらに、貫通孔の内壁にフォトレジストを被覆させ易いので、好ましい。貫通孔17の大きさは、金属膜やレジスト膜の被覆のし易さ等を考慮して決める。これに限られないが、貫通孔17の大きな開口側(図2(A)の上方の開口)の直径が例えば20~50μm、貫通孔17の小さな開口側(図2(A)の下方側の開口)の直径が例えば10~30μmが良い。 Further, as shown in FIGS. 1(C) and 2(A), the through-hole 17 of this embodiment has a cross-sectional shape along the thickness direction of the crystal piece. It has a funnel shape that tapers from the first surface toward the second surface, which is the opposite surface. With such a shape, it is easy to coat the metal film for electrode formation on the inner wall of the through-hole by, for example, a sputtering method, and to coat the inner wall of the through-hole with a photoresist. so preferred. The size of the through-hole 17 is determined in consideration of the ease of coating with a metal film or a resist film. Although not limited to this, the diameter of the large opening side of the through-hole 17 (upper opening in FIG. 2A) is, for example, 20 to 50 μm, and the small opening side of the through-hole 17 (lower side in FIG. 2A) It is preferable that the diameter of the opening is, for example, 10 to 30 μm.

なお、貫通孔は、水晶片の厚さ方向に沿った断面で見た際の形状が、水晶片の厚さ方向の途中で開口具合が低減し、その後拡大する、いわゆる砂時計状の貫通孔17x(図2(B)参照)であっても良い。この例の場合も、貫通孔の内壁に電極形成用の金属膜を例えばスパッタ法等で成膜する際に、金属粒子は水晶片の両面から貫通孔内に親友し易くなるので、金属膜を被覆させ易く、さらに、貫通孔の内壁にフォトレジストを被覆させ易いので、好ましい。断面形状が砂時計状の貫通孔17xを構成する場合、水晶片の表裏から見て貫通孔17xの細くなる部分までの深さd1、d2(図2(B)参照)は、同じ程度が好ましい、すなわち、水晶片11の厚さの中央付近で細くなる構造が好ましい。しかし、d1>d2の場合や、d1<d2の場合があっても良い。
また、図2(C)に示すように、貫通孔は水晶片11の表裏に渡ってほぼ同じ太さの貫通孔17yあっても良い。ただし、この貫通孔17yの場合は、図2(A)、(B)の場合に暮部、貫通孔の内壁に金属膜やレジストを被覆させにくい。
なお、図2の各例では貫通孔は、反対電位とされる2つの励振用電極に対し1個ずつの例であったが、貫通孔は2つずつ以上設ける場合があっても良い。
The shape of the through-hole when viewed in cross section along the thickness direction of the crystal piece is a so-called hourglass-shaped through-hole 17x, in which the degree of opening decreases in the middle of the thickness direction of the crystal piece and then expands. (See FIG. 2B). In the case of this example as well, when a metal film for electrode formation is formed on the inner wall of the through-hole by, for example, sputtering, the metal particles are likely to enter the through-hole from both sides of the crystal piece. It is preferable because it is easy to coat, and it is easy to coat the inner wall of the through-hole with the photoresist. When the cross-sectional shape of the through hole 17x is hourglass-shaped, the depths d1 and d2 (see FIG. 2(B)) to the narrowed portion of the through hole 17x when viewed from the front and back of the crystal piece are preferably about the same. That is, a structure in which the thickness of the crystal piece 11 is thin near the center is preferable. However, there may be cases where d1>d2 or d1<d2.
Further, as shown in FIG. 2(C), through holes 17y having substantially the same thickness may be formed on the front and back sides of the crystal piece 11. As shown in FIG. However, in the case of this through-hole 17y, it is difficult to coat the inner wall of the through-hole with a metal film or a resist in the case of FIGS. 2A and 2B.
In each example of FIG. 2, one through-hole is provided for each of the two excitation electrodes having opposite potentials, but two or more through-holes may be provided for each.

貫通孔17の平面的形状は任意のものとできるが、貫通孔の開口際での電極膜のカバレージ等を考慮すれば、貫通孔の開口部は、円形状や楕円形状であることが好ましい。
この発明の水晶振動子10では、所定の貫通孔と貫通孔内の電極とによって、水晶片の表裏の導通をとることができるので、貫通孔17を用いず水晶片の側壁を介して電極を引き回す場合に比べて、電極引き回しの信頼性が高まる。
Although the planar shape of the through-hole 17 can be arbitrary, considering the coverage of the electrode film at the opening of the through-hole, the opening of the through-hole is preferably circular or elliptical.
In the crystal oscillator 10 of the present invention, the front and back surfaces of the crystal blank can be electrically connected by the predetermined through holes and the electrodes in the through holes. The reliability of electrode routing is improved compared to the case of routing.

2. 製造方法の実施形態
次に、本願の製造方法の発明の実施形態について、図3を及び図4を参照して説明する。図3、図4は、いずれも、実施形態の製造方法の要部を示した製造工程図である。なお、本発明の水晶振動子10は、大型の水晶ウエハからフォトリソグラフィ技術及び成膜技術を用いた工法によって製造することが好ましいので、本実施形態ではそのような例を説明する。
先ず、水晶振動子10を製造するための、ATカット水晶ウエハであって所定厚み及び大きさのATカットの水晶ウエハ110を、用意する(図3(A))。そして、水晶ウエハ110に、周知の方法で、水晶振動子10の中間体11xとして、水晶片11の外形加工が済んでいて励振用電極が形成される前の中間体11xを、マトリクス状に多数形成する(図3(A))。
次に、このような水晶ウエハ110の個々の振動子の中間体11xの、導電性接着剤によって接着される接続固定領域11cの一部に対し、レーザ装置例えば短パルスレーザ装置21から、短パルスレーザ光21aを照射して貫通孔17を形成する。レーザ装置21は、ガルバノミラー(図示を省略)を備えていて、レーザ光21aを接続固定領域11cに任意の形状で走査できるので、任意の平面形状の貫通孔17を形成できる。また、レーザ光21aのパワー及び又は走査回数を所定の条件にすることによって、貫通孔17の大きさを調整できる(図3(A)参照)。このようにレーザによって形成された貫通孔17は、内壁や底面が水晶の接結晶性を消失させた面、すなわち線状痕跡が多数並んで生じた微小凹凸面になる。
なお、貫通孔として図2(B)に示した断面が砂時計状の貫通孔17xを水晶ウエハ110に形成する場合は、水晶ウエハ110の両面からレーザ光をそれぞれ照射すれば良い。
2. Embodiment of Manufacturing Method Next, an embodiment of the manufacturing method of the present application will be described with reference to FIGS. 3 and 4. FIG. 3 and 4 are manufacturing process diagrams showing essential parts of the manufacturing method of the embodiment. The crystal oscillator 10 of the present invention is preferably manufactured from a large crystal wafer by a construction method using photolithography technology and film formation technology, so such an example will be described in this embodiment.
First, an AT-cut crystal wafer 110 having a predetermined thickness and size for manufacturing the crystal resonator 10 is prepared (FIG. 3A). Then, on the crystal wafer 110, by a well-known method, a large number of intermediate bodies 11x for which the crystal blank 11 has been processed and before the excitation electrodes are formed are arranged in a matrix as the intermediate bodies 11x of the crystal oscillator 10. formed (FIG. 3(A)).
Next, a short pulse from a laser device, for example, a short pulse laser device 21 is applied to a part of the connection fixing region 11c of the intermediate body 11x of the individual oscillators of the crystal wafer 110, which is adhered with a conductive adhesive. A through-hole 17 is formed by irradiating the laser beam 21a. The laser device 21 has a galvanomirror (not shown) and can scan the connecting and fixing region 11c with the laser beam 21a in any shape, so that the through hole 17 can be formed in any planar shape. Further, the size of the through-hole 17 can be adjusted by setting the power of the laser beam 21a and/or the number of times of scanning to predetermined conditions (see FIG. 3A). The through-hole 17 formed by laser in this way has an inner wall and a bottom surface in which crystal tangency of crystal is lost, that is, a micro uneven surface in which a large number of linear traces are lined up.
Note that when the through hole 17x having an hourglass-shaped cross section shown in FIG.

貫通孔17の形成が済んだ水晶ウエハ110に対し、周知の成膜技術、例えばスパッタ法によって、励振用電極11a及び引出電極11bを形成するための金属膜11mを、水晶ウエハの全面に形成して、金属膜形成済みの水晶ウエハ112を得る(図3(B))。この際、図4(A)に示したように、金属膜11mを水晶ウエハ112の両面はもちろん、貫通孔17の内壁にも被覆する。本発実施形態の貫通孔17であると、水晶の結晶性が消失された微小凹凸状態及びロート状の断面の効果によって、金属膜11mは所望の通りに貫通孔17に被覆できる。
次に、この水晶ウエハ112全面及び貫通孔17内に、フォトレジスト23を被覆する(図4(A))。本発実施形態の貫通孔17であると、上記した側面状態及び断面のロート形状の効果によって、フォトレジスト23は所望の通りに貫通孔17に被覆できる。
次に、フォトレジスト23を露光・現像して電極形成用のレジストパタン(図示を省略)を形成し、次いで、レジストパタンから露出する金属膜11mを選択的に除去して当該電極としての、前記貫通孔内も被覆している電極、すなわち励振用電極11a及び引出電極11bを形成する。この図4(B)に示した水晶ウエハ112は、水晶振動子用の中間体ウエハに相当する。
その後、周知の方法で水晶ウエハ112から水晶振動子の中間体11yを個片化し、それを容器13(図1参照)に導電性接着剤によって接着固定する。
導電性接着剤の硬化が済んだ水晶片11に対し周波数調整をし、容器13を蓋部材(図示を省略)によって封止することによって、図1(A)に示した水晶振動子10を形成できる。
この製造方法によれば、貫通孔17を短パルスレーザによって形成するので、内壁や底面が水晶の結晶性を除去した面となっている貫通孔であって、電極形成用の金属膜やフォトレジストを貫通孔内に被覆させ易い形状の貫通孔を容易に形成できる。
A metal film 11m for forming the excitation electrodes 11a and the extraction electrodes 11b is formed on the entire surface of the crystal wafer 110 on which the through holes 17 have been formed by a well-known film forming technique such as sputtering. to obtain a crystal wafer 112 on which a metal film has been formed (FIG. 3(B)). At this time, as shown in FIG. 4A, not only both surfaces of the crystal wafer 112 but also the inner walls of the through holes 17 are covered with the metal film 11m. With the through-hole 17 of the present embodiment, the through-hole 17 can be coated with the metal film 11m as desired due to the effect of the micro-unevenness state in which the crystallinity of the quartz has disappeared and the funnel-shaped cross section.
Next, the entire surface of the crystal wafer 112 and the through holes 17 are covered with a photoresist 23 (FIG. 4A). With the through-hole 17 of the present embodiment, the through-hole 17 can be coated with the photoresist 23 as desired due to the effect of the above-described side surface state and funnel shape of the cross section.
Next, the photoresist 23 is exposed and developed to form a resist pattern (not shown) for forming an electrode, and then the metal film 11m exposed from the resist pattern is selectively removed to form the electrode. Electrodes covering the inside of the through-hole, that is, the excitation electrode 11a and the extraction electrode 11b are formed. The crystal wafer 112 shown in FIG. 4B corresponds to an intermediate wafer for crystal oscillators.
After that, the crystal wafer 112 is singulated into intermediate bodies 11y of crystal oscillators by a well-known method, and these are bonded and fixed to the container 13 (see FIG. 1) with a conductive adhesive.
The crystal oscillator 10 shown in FIG. 1A is formed by adjusting the frequency of the crystal piece 11 whose conductive adhesive has been cured and sealing the container 13 with a lid member (not shown). can.
According to this manufacturing method, the through hole 17 is formed by a short-pulse laser. It is possible to easily form a through-hole having a shape that facilitates covering the inside of the through-hole.

なお、上記した実施形態では、水晶片としてATカットの水晶片を用いた例を示したが、水晶片は、ATカットの水晶片以外の水晶片、例えば音叉型水晶片や、SCカットの水晶片などのいわゆる2回回転の水晶片であって良い。また、引出電極11bは、水晶片11の両主面の励振用電極11a各々から、水晶片11の1つの辺の側であって当該1つの辺の両端領域に引き出した例、すなわち片持ち保持に対応する形状の例を示したが、両持ち支持の2点固定や両持ち支持の4点固定の接着構造に対しても本発明は適用できる。また、容器13として凹部13aを有した構造の例を示したが、容器が平板状で、蓋部材が水晶片を収容する凹部を有したキャップ状のものとした水晶振動子に対しても、本発明は適用できる。 In the above-described embodiment, an example of using an AT-cut crystal piece as the crystal piece was shown, but the crystal piece may be a crystal piece other than the AT-cut crystal piece, such as a tuning-fork type crystal piece or an SC-cut crystal piece. It may be a so-called two-turn crystal piece, such as a piece. In addition, the lead-out electrodes 11b are led from the excitation electrodes 11a on both main surfaces of the crystal piece 11 to the both end regions of one side of the crystal piece 11, i.e., cantilever holding. However, the present invention can also be applied to a two-point fixation structure supporting both ends and a four-point fixation structure supporting both ends. In addition, although an example of a structure having a concave portion 13a as the container 13 has been shown, the container may be flat plate-shaped, and the lid member may be a cap-shaped cap having a concave portion for accommodating the crystal piece. The present invention is applicable.

10:実施形態の水晶振動子、 11:水晶片、
11a:励振用電極、 11b:引出電極、
11c:接続固定領域、 13:容器、
13a:凹部、 13b:土手部、
13c:接着パッド、 15:導電性接着剤、
17:貫通孔、 17a:水晶の接結晶性を消失させた面
21:レーザ装置、 21a:レーザ光、
23:フォトレジスト
110:水晶ウエハ
112:水晶ウエハ(水晶振動子用の中間体ウエハ)、
11x、11y:水晶振動子の中間体
11m:電極形成用の金属膜



























10: crystal oscillator of the embodiment, 11: crystal piece,
11a: excitation electrode, 11b: extraction electrode,
11c: connection fixing area, 13: container,
13a: concave portion, 13b: embankment portion,
13c: adhesive pad, 15: conductive adhesive,
17: Through-hole 17a: Crystal tangency-free surface 21: Laser device 21a: Laser light
23: Photoresist 110: Crystal wafer 112: Crystal wafer (intermediate wafer for crystal oscillator),
11x, 11y: crystal oscillator intermediate 11m: metal film for electrode formation



























1. 製造方法の実施形態
次に、本願の製造方法の発明の実施形態について、図3を及び図4を参照して説明する。図3、図4は、いずれも、実施形態の製造方法の要部を示した製造工程図である。なお、本発明の水晶振動子10は、大型の水晶ウエハからフォトリソグラフィ技術及び成膜技術を用いた工法によって製造することが好ましいので、本実施形態ではそのような例を説明する。
先ず、水晶振動子10を製造するための、ATカット水晶ウエハであって所定厚み及び大きさのATカットの水晶ウエハ110を、用意する(図3(A))。そして、水晶ウエハ110に、周知の方法で、水晶振動子10の中間体11xとして、水晶片11の外形加工が済んでいて励振用電極が形成される前の中間体11xを、マトリクス状に多数形成する(図3(A))。
次に、このような水晶ウエハ110の個々の振動子の中間体11xの、導電性接着剤によって接着される接続固定領域11cの一部に対し、レーザ装置例えば短パルスレーザ装置21から、短パルスレーザ光21aを照射して貫通孔17を形成する。レーザ装置21は、ガルバノミラー(図示を省略)を備えていて、レーザ光21aを接続固定領域11cに任意の形状で走査できるので、任意の平面形状の貫通孔17を形成できる。また、レーザ光21aのパワー及び又は走査回数を所定の条件にすることによって、貫通孔17の大きさを調整できる(図3(A)参照)。このようにレーザによって形成された貫通孔17は、内壁や底面が水晶の結晶性を消失させた面、すなわち線状痕跡が多数並んで生じた微小凹凸面になる。
なお、貫通孔として図2(B)に示した断面が砂時計状の貫通孔17xを水晶ウエハ110に形成する場合は、水晶ウエハ110の両面からレーザ光をそれぞれ照射すれば良い。
1. Embodiment of Manufacturing Method Next, an embodiment of the manufacturing method of the present application will be described with reference to FIGS. 3 and 4. FIG. 3 and 4 are manufacturing process diagrams showing essential parts of the manufacturing method of the embodiment. The crystal oscillator 10 of the present invention is preferably manufactured from a large crystal wafer by a construction method using photolithography technology and film formation technology, so such an example will be described in this embodiment.
First, an AT-cut crystal wafer 110 having a predetermined thickness and size for manufacturing the crystal resonator 10 is prepared (FIG. 3A). Then, on the crystal wafer 110, by a well-known method, a large number of intermediate bodies 11x for which the crystal blank 11 has been processed and before the excitation electrodes are formed are arranged in a matrix as the intermediate bodies 11x of the crystal oscillator 10. formed (FIG. 3(A)).
Next, a short pulse from a laser device, for example, a short pulse laser device 21 is applied to a part of the connection fixing region 11c of the intermediate body 11x of the individual oscillators of the crystal wafer 110, which is adhered with a conductive adhesive. A through-hole 17 is formed by irradiating the laser beam 21a. The laser device 21 has a galvanomirror (not shown) and can scan the connecting and fixing region 11c with the laser beam 21a in any shape, so that the through hole 17 can be formed in any planar shape. Further, the size of the through-hole 17 can be adjusted by setting the power of the laser beam 21a and/or the number of times of scanning to predetermined conditions (see FIG. 3A). The through-hole 17 formed by laser in this manner has an inner wall and a bottom surface in which the crystallinity of the crystal has disappeared, that is, a micro uneven surface in which a large number of linear traces are lined up.
Note that when the through hole 17x having an hourglass-shaped cross section shown in FIG.

10:実施形態の水晶振動子、 11:水晶片、
11a:励振用電極、 11b:引出電極、
11c:接続固定領域、 13:容器、
13a:凹部、 13b:土手部、
13c:接着パッド、 15:導電性接着剤、
17:貫通孔、 17a:水晶の結晶性を消失させた面
21:レーザ装置、 21a:レーザ光、
23:フォトレジスト
110:水晶ウエハ
112:水晶ウエハ(水晶振動子用の中間体ウエハ)、
11x、11y:水晶振動子の中間体
11m:電極形成用の金属膜


10: crystal oscillator of the embodiment, 11: crystal piece,
11a: excitation electrode, 11b: extraction electrode,
11c: connection fixing area, 13: container,
13a: concave portion, 13b: embankment portion,
13c: adhesive pad, 15: conductive adhesive,
17: through-hole 17a: surface where the crystallinity of crystal is eliminated 21: laser device 21a: laser beam
23: Photoresist 110: Crystal wafer 112: Crystal wafer (intermediate wafer for crystal oscillator),
11x, 11y: crystal oscillator intermediate 11m: metal film for electrode formation


Claims (7)

水晶片と、前記水晶片を収容する容器と、前記水晶片を容器に接続固定している導電性接着剤と、前記水晶片の前記接続固定領域の一部に設けられ前記水晶片の表裏を貫通している貫通孔と、を備える水晶振動子において、
前記貫通孔としての、水晶の結晶性を消失させた面を内壁に有する貫通孔と、
前記水晶片の一方の面、前記貫通孔の内壁上及び前記水晶片の他方の面に渡って設けられた電極と、を備えることを特徴とする水晶振動子。
A crystal piece, a container for housing the crystal piece, a conductive adhesive that connects and fixes the crystal piece to the container, and a portion of the connection and fixing region of the crystal piece that is provided on the front and back of the crystal piece. A crystal oscillator comprising a through-hole that penetrates,
a through hole having, as the through hole, an inner wall surface in which crystallinity of crystal is eliminated;
A crystal oscillator, comprising: an electrode provided over one surface of the crystal piece, an inner wall of the through hole, and the other surface of the crystal piece.
前記貫通孔は、水晶片の厚さ方向に沿って切った断面形状が、水晶片の第1表面側からその反対面である第2表面側に向かって先細りのロート状であることを特徴とする請求項1に記載の水晶振動子。 A cross-sectional shape of the through hole cut along the thickness direction of the crystal piece is a funnel shape that tapers from the first surface side of the crystal piece toward the second surface side opposite thereto. The crystal oscillator according to claim 1. 前記貫通孔は、水晶片の厚さ方向に沿って切った面形状が、水晶片の厚さ方向の途中で開口具合が低減し、その後拡大する砂時計状であることを特徴とする請求項1に記載の水晶振動子。 2. A surface shape of said through-hole cut along the thickness direction of the crystal piece is an hourglass shape in which the degree of opening decreases in the middle of the thickness direction of the crystal piece and then expands. Crystal oscillator described in . 水晶片を容器に導電性接着剤によって固定している構造を有した水晶振動子を製造するに当たり、
前記水晶片の導電性接着剤によって固定される予定領域の一部に、短パルスレーザによって、水晶片を貫通する貫通孔を形成する工程と、
前記貫通孔を形成した水晶片に水晶振動子の電極形成用の金属膜を、前記貫通孔内も被覆するよう形成する工程と、
前記金属膜を形成した水晶片に前記貫通孔内も被覆するようフォトレジストを形成する工程と、
前記フォトレジストを露光・現像して電極形成用のレジストパタンを形成する工程と、前記レジストパタンから露出する前記金属膜を選択的に除去して当該電極としての、前記貫通孔内も被覆している電極を形成する工程と
を含むことを特徴とする水晶振動子の製造方法。
In manufacturing a crystal oscillator having a structure in which a crystal piece is fixed to a container with a conductive adhesive,
a step of forming a through-hole penetrating through the crystal piece by means of a short-pulse laser in a part of the region of the crystal piece to be fixed by the conductive adhesive;
a step of forming a metal film for forming an electrode of a crystal oscillator on the crystal piece in which the through holes are formed so as to cover the inside of the through holes;
a step of forming a photoresist on the crystal piece on which the metal film is formed so as to cover the inside of the through hole;
exposing and developing the photoresist to form a resist pattern for forming an electrode; and selectively removing the metal film exposed from the resist pattern to cover the inside of the through hole as the electrode. A method of manufacturing a crystal oscillator, comprising:
水晶振動子形成用の中間体である水晶片をマトリクス状に多数備える水晶振動子用の中間体ウエハにおいて、
前記中間体である水晶片の、導電性接着剤によって容器に接続固定される領域の一部に、前記水晶片の表裏を貫通している貫通孔であって、水晶の結晶性を消失させた面を内壁に有する貫通孔と、
前記水晶片の一方の面、前記貫通孔の内壁上及び前記水晶片の他方の面に渡っても設けられた電極と、を備えることを特徴とする水晶振動子用の中間体ウエハ。
In an intermediate wafer for crystal oscillators, which includes a large number of crystal pieces arranged in a matrix as intermediates for forming crystal oscillators,
A through hole penetrating through the front and back of the crystal blank in a part of the area of the crystal blank that is the intermediate body to be connected and fixed to the container by the conductive adhesive, and the crystallinity of the crystal is lost. a through hole having a surface on the inner wall;
An intermediate wafer for a crystal oscillator, comprising: an electrode provided on one surface of the crystal piece, an inner wall of the through hole, and the other surface of the crystal piece.
前記貫通孔は、水晶片の厚さ方向に沿って切った断面形状が、水晶片の第1表面側からその反対面である第2表面側に向かって先細りのロート状であることを特徴とする請求項5に記載の水晶振動子用の中間体ウエハ。
に水晶振動子。
A cross-sectional shape of the through hole cut along the thickness direction of the crystal piece is a funnel shape that tapers from the first surface side of the crystal piece toward the second surface side opposite thereto. 6. The intermediate wafer for crystal oscillators according to claim 5.
crystal oscillator.
前記貫通孔は、水晶片の厚さ方向に沿って切った断面形状が、水晶片の厚さ方向の途中で開口具合が低減しその後拡大する、砂時計状であることを特徴とする請求項5に記載の水晶振動子用の中間体ウエハ。 6. A cross-sectional shape of the through-hole cut along the thickness direction of the crystal piece is an hourglass shape in which the degree of opening decreases in the middle of the thickness direction of the crystal piece and then expands. An intermediate wafer for the crystal resonator according to .
JP2022021989A 2022-02-16 2022-02-16 Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator Pending JP2023119229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022021989A JP2023119229A (en) 2022-02-16 2022-02-16 Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022021989A JP2023119229A (en) 2022-02-16 2022-02-16 Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator

Publications (1)

Publication Number Publication Date
JP2023119229A true JP2023119229A (en) 2023-08-28

Family

ID=87763451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022021989A Pending JP2023119229A (en) 2022-02-16 2022-02-16 Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator

Country Status (1)

Country Link
JP (1) JP2023119229A (en)

Similar Documents

Publication Publication Date Title
JP4933903B2 (en) Quartz vibrator, quartz vibrator and quartz wafer
KR101249312B1 (en) Piezoelectric vibrating device
EP1764916A2 (en) Through-hole forming method, and piezoelectric device manufacturing method and piezoelectric device manufactured thereby
JP2007142526A (en) Piezoelectric wafer and piezoelectric device
JP2006203700A (en) Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator
JP7496908B2 (en) Quartz crystal element and crystal device
JP5213614B2 (en) Piezoelectric device and manufacturing method thereof
JP2009159000A (en) Inverted mesa shaped piezoelectric vibrating reed, inverted mesa shaped piezoelectric device and method of manufacturing inverted mesa shaped piezoelectric device
JP2011193436A (en) Tuning fork crystal resonator chip, tuning fork crystal resonator, and method of manufacturing the tuning fork crystal resonator chip
JP6439808B2 (en) Tuning fork type vibrator
JP6483371B2 (en) Crystal resonator element and crystal resonator element
JP5171210B2 (en) Method for manufacturing piezoelectric vibrator
JP2023119229A (en) Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator
JP6939876B2 (en) Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using the tuning fork type piezoelectric vibrating piece
WO2018142789A1 (en) Tuning fork type vibrator
JP2005020141A (en) Manufacturing method of piezoelectric vibration chip and manufacturing method of piezoelectric device
JP2010109861A (en) Frequency adjusting method for tuning-fork type crystal vibrating element
JP2017200093A (en) Crystal device
TWI741101B (en) Tuning fork type vibrator, tuning fork type vibrator and manufacturing method thereof
JP2023119228A (en) Crystal oscillator, manufacturing method for the same, and intermediate wafer for crystal oscillator
KR100808760B1 (en) Through-hole forming method, and piezoelectric device manufacturing method and piezoelectric device manufactured thereby
WO2020241849A1 (en) Crystal element and crystal device
WO2021106921A1 (en) Crystal element, crystal device, electronic equipment, and method for manufacturing crystal element
JP7427399B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP2009111931A (en) Piezoelectric vibrator and method for manufacturing piezoelectric vibrator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525