JP2023118800A - Information processing system, information processing device, information processing method and program - Google Patents

Information processing system, information processing device, information processing method and program Download PDF

Info

Publication number
JP2023118800A
JP2023118800A JP2023104364A JP2023104364A JP2023118800A JP 2023118800 A JP2023118800 A JP 2023118800A JP 2023104364 A JP2023104364 A JP 2023104364A JP 2023104364 A JP2023104364 A JP 2023104364A JP 2023118800 A JP2023118800 A JP 2023118800A
Authority
JP
Japan
Prior art keywords
driving
user
diagnosis
unit
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023104364A
Other languages
Japanese (ja)
Inventor
健人 中田
Kento Nakada
亮介 古川
ryosuke Furukawa
拓也 成平
Takuya Narihira
章 中村
Akira Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021179958A external-priority patent/JP2022020742A/en
Application filed by Sony Group Corp filed Critical Sony Group Corp
Priority to JP2023104364A priority Critical patent/JP2023118800A/en
Publication of JP2023118800A publication Critical patent/JP2023118800A/en
Pending legal-status Critical Current

Links

Images

Abstract

To improve safety in driving of a mobile.SOLUTION: An information processing device comprises: a driving behavior detection section for detecting a driving behavior which is a behavior of a mobile by driving of a user; a diagnosis section for diagnosing an aptitude of the user to driving prior to the driving based on a state of the user prior to the driving and diagnosing an aptitude of the user during driving to driving based on a state of the user during driving and a detection result of the driving behavior; and a presentation control section for generating feedback information based on the diagnosis obtained by the diagnosis section. The driving behavior detection section detects the driving behavior based on a plurality of thresholds and as an aptitude degree of the user to driving based on the diagnosis is lower, a level of dangerous driving subjected to a detection target of the driving behavior detection section becomes lower. The present technique is applicable to e.g., an information processing system for performing a support in a case where a user drives a mobile, an information processing device or a mobile.SELECTED DRAWING: Figure 4

Description

本技術は、情報処理装置、情報処理方法、及び、プログラムに関し、特に、移動体の運転支援を行う場合に用いて好適な情報処理装置、情報処理方法、及び、プログラムに関する。 The present technology relates to an information processing device, an information processing method, and a program, and more particularly to an information processing device, an information processing method, and a program suitable for use in assisting driving of a moving object.

従来、運転者の運転中の状態を検出するために、運転者の生体情報が用いられている。 Conventionally, driver's biological information is used to detect the state of the driver during driving.

例えば、運転者の皮膚インピーダンスの安静閉眼時の測定値と通常活動時の測定値の平均値とに基づく補正データにより、運転者の皮膚インピーダンスの測定値を補正し、補正した値に基づいて、運転者の覚醒度の判断を行うことが提案されている(例えば、特許文献1参照)。 For example, the measured value of the driver's skin impedance is corrected by correction data based on the measured value of the driver's skin impedance when the eyes are closed at rest and the average value of the measured value during normal activity, and based on the corrected value, It has been proposed to determine the degree of wakefulness of the driver (see, for example, Patent Document 1).

例えば、車両の生体センサにより測定された生体データを、車内の充電器に設置された携帯端末及び公衆ネットワーク回線を介してデータ処理装置に送信し、データ処理装置が、受信した生体データを運転者の携帯端末に送信することが提案されている(例えば、特許文献2参照)。 For example, biometric data measured by a vehicle biosensor is transmitted to a data processing device via a mobile terminal installed in a charger in the vehicle and a public network line, and the data processing device transmits the received biometric data to the driver. It has been proposed to transmit to a portable terminal of the above (for example, see Patent Document 2).

特開平10-80405号公報JP-A-10-80405 特開2016-140377号公報JP 2016-140377 A

ところで、車両等の移動体の運転の安全性は、運転者の運転中の状態以外にも様々な要因により影響される。そして、それらの影響をできるだけ考慮して、移動体の運転の安全性を向上させることが望まれている。 By the way, the driving safety of a mobile object such as a vehicle is affected by various factors other than the driver's driving condition. Then, it is desired to improve the safety of driving a moving body by taking these influences into consideration as much as possible.

本技術は、このような状況に鑑みてなされたものであり、移動体の運転の安全性を向上させるようにするものである。 The present technology has been made in view of such circumstances, and is intended to improve the safety of driving a mobile object.

本技術の第1の側面の情報処理装置は、ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出部と、運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断部と、前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部とを備え、前記運転挙動検出部は、複数の閾値に基づいて、運転挙動を検出し、前記診断に基づくユーザの運転の適性度が低くなるほど、前記運転挙動検出部の検出対象となる危険運転のレベルが低くなる。 An information processing device according to a first aspect of the present technology includes a driving behavior detection unit that detects a driving behavior that is a behavior of a mobile object caused by a user driving, a diagnostic unit that diagnoses the user's aptitude for driving based on the detection results of the user's state and driving behavior while driving; and feedback information based on the diagnosis obtained by the diagnostic unit. The driving behavior detection unit detects the driving behavior based on a plurality of thresholds, and the lower the driving aptitude of the user based on the diagnosis, the more the driving behavior detection unit The level of dangerous driving to be detected is lowered.

本技術の第1の側面の情報処理方法は、ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出ステップと、運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断ステップと、前記診断ステップで得られる診断に基づいて、フィードバック情報を生成する提示制御ステップとを含み、前記運転挙動検出ステップにおいて、複数の閾値に基づいて、運転挙動を検出し、前記診断に基づくユーザの運転の適性度が低くなるほど、前記運転挙動検出ステップにおいて検出対象となる危険運転のレベルが低くなる。 An information processing method according to a first aspect of the present technology includes a driving behavior detection step of detecting a driving behavior, which is a behavior of a moving object caused by a user driving, and a driving behavior of the user before driving based on the state of the user before driving. a diagnosis step of diagnosing the aptitude for driving of the user during driving based on the detection results of the state and driving behavior of the user during driving; and feedback information based on the diagnosis obtained in the diagnosis step In the driving behavior detection step, the driving behavior is detected based on a plurality of thresholds, and the lower the user's driving aptitude based on the diagnosis, the lower the driving behavior detection step The level of dangerous driving to be detected is lowered.

本技術の第1の側面のプログラムは、ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出ステップと、運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断ステップと、前記診断ステップで得られる診断に基づいて、フィードバック情報を生成する提示制御ステップとを含み、前記運転挙動検出ステップにおいて、複数の閾値に基づいて、運転挙動を検出し、前記診断に基づくユーザの運転の適性度が低くなるほど、前記運転挙動検出ステップにおいて検出対象となる危険運転のレベルが低くなる。 A program according to a first aspect of the present technology includes a driving behavior detection step of detecting a driving behavior, which is a behavior of a moving object caused by a user driving, and generating feedback information based on the diagnostic step of diagnosing the driving aptitude of the user while driving based on the detection result of the state and driving behavior of the user while driving, and based on the diagnosis obtained in the diagnostic step in the driving behavior detection step, the driving behavior is detected based on a plurality of thresholds, and the lower the user's driving aptitude based on the diagnosis, the more detection targets in the driving behavior detection step The level of dangerous driving becomes lower.

本技術の第2の側面の情報処理装置は、ユーザの運転による挙動である運転挙動を複数の検出パラメータに基づいて検出する運転挙動検出部と、運転中のユーザの状態の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断部と、前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部とを備え、前記フィードバック情報は、前記診断の結果を時系列で表す。 An information processing device according to a second aspect of the present technology includes a driving behavior detection unit that detects driving behavior, which is behavior due to driving of a user, based on a plurality of detection parameters, and and a presentation control unit for generating feedback information based on the diagnosis obtained by the diagnosis unit, wherein the feedback information is the result of the diagnosis. Expressed as a series.

本技術の第3の側面の情報処理装置は、ユーザの運転による移動体の挙動である運転挙動を複数のパラメータに基づいて検出する運転挙動検出部と、運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断部と、前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部とを備え、前記運転挙動検出部は、前記複数のパラメータのうち1つまたは複数を用いて、危険な運転挙動を検出する。 An information processing device according to a third aspect of the present technology includes a driving behavior detection unit that detects, based on a plurality of parameters, a driving behavior that is a behavior of a mobile object driven by a user, and based on the state of the user before driving, a diagnosis unit that diagnoses the driving aptitude of the user before driving and diagnoses the driving aptitude of the user during driving based on the detection results of the state and driving behavior of the user during driving; and the diagnosis obtained by the diagnosis unit. and a presentation control unit for generating feedback information based on the driving behavior detection unit for detecting dangerous driving behavior using one or more of the plurality of parameters.

本技術の第4の側面の情報処理装置は、ユーザの運転による移動体の挙動である運転挙動を可変の閾値に基づいて検出する運転挙動検出部と、運転中のユーザの状態及び運転挙動の検出結果に基づいて、ユーザの運転に対する適性を診断する診断部と、前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部とを備える。 An information processing device according to a fourth aspect of the present technology includes a driving behavior detection unit that detects a driving behavior, which is a behavior of a mobile object driven by a user, based on a variable threshold value, and a user state and driving behavior during driving. A diagnostic unit that diagnoses a user's aptitude for driving based on the detection result, and a presentation control unit that generates feedback information based on the diagnosis obtained by the diagnostic unit.

本技術の第5の側面の情報処理装置は、ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出部と、運転中のユーザの状態及び運転挙動の検出結果に基づいて、移動体の運転に関するリスクを予測するリスク予測部と、リスクの内容を含むフィードバック情報を生成する提示制御部とを備え、前記運転挙動検出部は、運転挙動の種類に応じた閾値を用いて運転挙動を検出する。 An information processing device according to a fifth aspect of the present technology includes a driving behavior detection unit that detects a driving behavior that is a behavior of a mobile object driven by a user; A risk prediction unit that predicts risks associated with driving a mobile object, and a presentation control unit that generates feedback information including details of the risks. Detect behavior.

本技術の第1の側面においては、ユーザの運転による移動体の挙動である運転挙動が検出され、運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性が診断され、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性が診断され、診断に基づいて、フィードバック情報が生成され、複数の閾値に基づいて、運転挙動が検出され、前記診断に基づくユーザの運転の適性度が低くなるほど、検出対象となる危険運転のレベルが低くなる。 In a first aspect of the present technology, the driving behavior, which is the behavior of a moving object caused by the user driving, is detected, the user's aptitude for driving before driving is diagnosed based on the state of the user before driving, and Based on the detection results of the user's state and driving behavior, the user's aptitude for driving during driving is diagnosed, feedback information is generated based on the diagnosis, driving behavior is detected based on a plurality of thresholds, The lower the user's driving aptitude based on the diagnosis, the lower the level of dangerous driving to be detected.

本技術の第2の側面においては、ユーザの運転による挙動である運転挙動が複数の検出パラメータに基づいて検出され、運転中のユーザの状態の検出結果に基づいて、運転中のユーザの運転に対する適性が診断され、診断に基づいて、フィードバック情報が生成され、前記フィードバック情報では、前記診断の結果が時系列で表される。 In a second aspect of the present technology, a driving behavior that is a behavior due to driving of the user is detected based on a plurality of detection parameters, and based on the detection result of the user's state during driving, the user's driving behavior during driving is detected. Aptitude is diagnosed, feedback information is generated based on the diagnosis, and the feedback information represents the results of the diagnosis in chronological order.

本技術の第3の側面においては、ユーザの運転による移動体の挙動である運転挙動が複数のパラメータに基づいて検出され、転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性が診断され、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性が診断され、診断に基づいて、フィードバック情報が生成され、前記複数のパラメータのうち1つまたは複数を用いて、危険な運転挙動が検出される。 In a third aspect of the present technology, the driving behavior, which is the behavior of a moving object caused by the user driving, is detected based on a plurality of parameters, and the user's aptitude for driving before driving is detected based on the state of the user before driving. is diagnosed, based on the detection result of the user's state and driving behavior during driving, the user's aptitude for driving is diagnosed, feedback information is generated based on the diagnosis, and one of the plurality of parameters One or more are used to detect unsafe driving behavior.

本技術の第4の側面においては、ユーザの運転による移動体の挙動である運転挙動が可変の閾値に基づいて検出され、運転中のユーザの状態及び運転挙動の検出結果に基づいて、ユーザの運転に対する適性が診断され、診断に基づいて、フィードバック情報が生成される。 In a fourth aspect of the present technology, the driving behavior, which is the behavior of the moving object caused by the user driving, is detected based on a variable threshold, and based on the state of the user during driving and the detection result of the driving behavior, the user's Aptitude for driving is diagnosed and feedback information is generated based on the diagnosis.

本技術の第5の側面においては、ユーザの運転による移動体の挙動である運転挙動が検出され、運転中のユーザの状態及び運転挙動の検出結果に基づいて、移動体の運転に関するリスクが予測され、リスクの内容を含むフィードバック情報が生成され、運転挙動の種類に応じた閾値を用いて運転挙動が検出される。 In a fifth aspect of the present technology, the driving behavior, which is the behavior of the moving body caused by the user driving, is detected, and the risk associated with driving the moving body is predicted based on the state of the user during driving and the detection result of the driving behavior. Then, feedback information including risk content is generated, and the driving behavior is detected using a threshold corresponding to the type of driving behavior.

本技術の第1乃至第5の側面によれば、ユーザの移動体の運転に対する適性の診断精度が向上する。その結果、移動体の運転の安全性が向上する。 According to the first to fifth aspects of the present technology, the accuracy of diagnosing the user's aptitude for driving a mobile object is improved. As a result, the driving safety of the moving body is improved.

なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。 Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.

本技術を適用した情報処理システムの一実施の形態を示すブロック図である。1 is a block diagram showing an embodiment of an information processing system to which the present technology is applied; FIG. ユーザ端末部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a user terminal part. 車両の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a vehicle; FIG. サーバの構成例を示すブロック図である。It is a block diagram which shows the structural example of a server. サーバにより実行される運転支援処理を説明するためのフローチャートである。4 is a flowchart for explaining driving support processing executed by a server; サーバにより実行される運転支援処理を説明するためのフローチャートである。4 is a flowchart for explaining driving support processing executed by a server; ユーザの状態の推定処理を説明するための図である。FIG. 10 is a diagram for explaining user state estimation processing; ユーザの標準状態パターンの学習方法を説明するための図である。It is a figure for demonstrating the learning method of a user's standard state pattern. ユーザ集合状態パターンの学習方法を説明するための図である。FIG. 10 is a diagram for explaining a method of learning user aggregate state patterns; 運転診断の方法の例を説明するための図である。FIG. 4 is a diagram for explaining an example of a driving diagnosis method; FIG. コンピュータの構成例を示す図である。It is a figure which shows the structural example of a computer.

以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.実施の形態
2.変形例
3.その他
Embodiments for implementing the present technology will be described below. The explanation is given in the following order.
1. Embodiment 2. Modification 3. others

<<1.実施の形態>>
<情報処理システムの構成例>
図1は、本技術を適用した情報処理システムの一実施の形態を示すブロック図である。
<<1. Embodiment >>
<Configuration example of information processing system>
FIG. 1 is a block diagram showing an embodiment of an information processing system to which the present technology is applied.

情報処理システム10は、例えば、テレマティクス技術を用いて、車両の運転支援や自動車保険等のサービスを提供するシステムである。 The information processing system 10 is, for example, a system that uses telematics technology to provide services such as vehicle driving assistance and automobile insurance.

情報処理システム10は、ユーザ端末部11、車両12、及び、サーバ13を備える。ユーザ端末部11と車両12は、直接又はネットワーク14を介して通信を行う。サーバ13は、ユーザ端末部11及び車両12と、ネットワーク14を介して通信を行う。 The information processing system 10 includes a user terminal unit 11 , a vehicle 12 and a server 13 . The user terminal unit 11 and the vehicle 12 communicate directly or via the network 14 . The server 13 communicates with the user terminal unit 11 and the vehicle 12 via the network 14 .

ユーザ端末部11は、情報処理システム10を利用するユーザが持つ1以上の情報処理端末からなる。例えば、ユーザ端末部11は、モバイル端末及びウエアラブル端末を含み得る。 The user terminal unit 11 is composed of one or more information processing terminals owned by users who use the information processing system 10 . For example, the user terminal unit 11 may include mobile terminals and wearable terminals.

車両12は、情報処理システム10を利用するユーザが運転する車両である。 The vehicle 12 is a vehicle driven by a user who uses the information processing system 10 .

サーバ13は、ネットワーク14を介して、ユーザ端末部11及び車両12と通信を行うことにより、情報処理システム10を利用するユーザに対して、運転支援や自動車保険等のサービスを提供する。 The server 13 communicates with the user terminal unit 11 and the vehicle 12 via the network 14 to provide the user using the information processing system 10 with services such as driving assistance and automobile insurance.

なお、図1では、図を分かりやすくするために、ユーザ端末部11、車両12、及び、サーバ13を1つずつ図示しているが、2つ以上設けることが可能である。例えば、ユーザ端末部11及び車両12は、情報処理システム10を利用するユーザ数とほぼ等しい数だけ設けられる。 In FIG. 1, one user terminal unit 11, one vehicle 12, and one server 13 are shown for easy understanding of the drawing, but two or more can be provided. For example, the number of user terminals 11 and the number of vehicles 12 substantially equal to the number of users using the information processing system 10 is provided.

また、以下、説明を簡単にするために、ユーザ端末部11、車両12、及び、サーバ13がネットワーク14を介して通信を行う場合の「ネットワーク14を介して」の記載を省略する。 In the following, for the sake of simplicity, description of “via the network 14” when the user terminal unit 11, the vehicle 12, and the server 13 communicate via the network 14 will be omitted.

<ユーザ端末部の構成例>
図2は、ユーザ端末部11の構成例を示すブロック図である。この例では、ユーザ端末部11は、モバイル端末51及びウエアラブル端末52を備える。
<Configuration example of user terminal unit>
FIG. 2 is a block diagram showing a configuration example of the user terminal unit 11. As shown in FIG. In this example, the user terminal unit 11 has a mobile terminal 51 and a wearable terminal 52 .

モバイル端末51は、例えば、スマートフォン、携帯電話機、タブレット、ノート型のパーソナルコンピュータ、携帯型のゲーム機、携帯型の動画又は音楽再生装置等の携帯型の情報処理端末からなる。 The mobile terminal 51 is, for example, a mobile information processing terminal such as a smart phone, a mobile phone, a tablet, a notebook personal computer, a mobile game machine, or a mobile video or music player.

モバイル端末51は、GNSS(Global Navigation Satellite System)受信機61、慣性センサ62、環境センサ63、生体センサ64、入力部65、出力部66、制御部67、及び、通信部68を備える。 The mobile terminal 51 includes a GNSS (Global Navigation Satellite System) receiver 61 , an inertial sensor 62 , an environmental sensor 63 , a biosensor 64 , an input section 65 , an output section 66 , a control section 67 and a communication section 68 .

GNSS受信機61は、測位衛星からの電波を受信することにより、モバイル端末51(を持つユーザ)の現在位置を測定し、測定した現在位置を示す位置データを制御部67に供給する。 The GNSS receiver 61 measures the current position of (the user having) the mobile terminal 51 by receiving radio waves from positioning satellites, and supplies position data indicating the measured current position to the control unit 67 .

慣性センサ62は、モバイル端末51(を持つユーザ)に関する各種の慣性データを検出し、検出した慣性データを制御部67に供給する。慣性センサ62が検出する慣性データは、例えば、加速度、角速度等のうち1以上を含む。 The inertial sensor 62 detects various inertial data relating to (the user having) the mobile terminal 51 and supplies the detected inertial data to the control unit 67 . The inertial data detected by the inertial sensor 62 includes, for example, one or more of acceleration, angular velocity, and the like.

環境センサ63は、モバイル端末51(を持つユーザ)の周囲の各種の環境データを検出し、検出した環境データを制御部67に供給する。環境センサ63が検出する環境データは、例えば、地磁気、大気圧、二酸化炭素濃度等のうち1以上を含む。 The environment sensor 63 detects various environmental data around (the user having) the mobile terminal 51 and supplies the detected environmental data to the control unit 67 . Environmental data detected by the environmental sensor 63 includes, for example, one or more of geomagnetism, atmospheric pressure, carbon dioxide concentration, and the like.

生体センサ64は、ユーザの各種の生体データを検出し、検出した生体データを制御部67に供給する。生体センサ64が検出する生体データは、例えば、心拍、発汗量、血圧、血中酸素濃度、筋電、体温、体組成、呼気中アルコール濃度、最大酸素摂取量、消費カロリー、声のトーン、会話のスピード等のうちの1以上を含む。 The biosensor 64 detects various biometric data of the user and supplies the detected biometric data to the control unit 67 . The biometric data detected by the biosensor 64 includes, for example, heartbeat, perspiration, blood pressure, blood oxygen concentration, myoelectric potential, body temperature, body composition, breath alcohol concentration, maximum oxygen uptake, calorie consumption, tone of voice, and conversation. speed, etc.

入力部65は、モバイル端末51に各種のデータを入力するための入力装置を備える。例えば、入力部65は、ボタン、スイッチ、キー、タッチパネル、マイクロフォン等のうち1以上を備える。入力部65は、入力データを制御部67に供給する。 The input unit 65 has an input device for inputting various data to the mobile terminal 51 . For example, the input unit 65 includes one or more of buttons, switches, keys, touch panel, microphone, and the like. The input unit 65 supplies input data to the control unit 67 .

出力部66は、各種の情報やデータを出力するための出力装置を備える。例えば、出力部66は、ディスプレイ、スピーカ、ブザー、バイブレータ等のうち1以上を備える。 The output unit 66 includes an output device for outputting various information and data. For example, the output unit 66 includes one or more of a display, speaker, buzzer, vibrator, and the like.

制御部67は、例えば、各種のプロセッサ等の制御装置を備える。制御部67は、GNSS受信機61、慣性センサ62、環境センサ63、生体センサ64、及び、入力部65から供給されるデータ、並びに、通信部68を介して外部から受信したデータ等に基づいて、モバイル端末51の各部の制御や各種の処理を行う。また、制御部67は、各種の処理により得られたデータを出力部66に供給したり、通信部68を介して他の機器に送信したりする。 The control unit 67 includes, for example, control devices such as various processors. Based on the data supplied from the GNSS receiver 61, the inertial sensor 62, the environment sensor 63, the biosensor 64, and the input unit 65, and the data received from the outside via the communication unit 68, the control unit 67 , controls each part of the mobile terminal 51 and performs various processes. The control unit 67 also supplies data obtained by various processes to the output unit 66 and transmits the data to other devices via the communication unit 68 .

通信部68は、所定の通信方式により他の機器(例えば、車両12、サーバ13、ウエアラブル端末52等)との通信を行う。通信部68の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部68は、複数の通信方式に対応することも可能である。 The communication unit 68 communicates with other devices (for example, the vehicle 12, the server 13, the wearable terminal 52, etc.) using a predetermined communication method. Any wireless or wired communication method can be adopted as the communication method of the communication unit 68 . Also, the communication unit 68 can support a plurality of communication methods.

ウエアラブル端末52は、例えば、眼鏡型、腕時計型、ブレスレット型、ネックレス型、ネックバンド型、イヤフォン型、ヘッドセット型、及び、ヘッドマウント型等の任意の形態のウエアラブル端末からなる。 The wearable terminal 52 is, for example, a wearable terminal of any type such as glasses type, wristwatch type, bracelet type, necklace type, neckband type, earphone type, headset type, and head mount type.

ウエアラブル端末52は、生体センサ81、入力部82、出力部83、制御部84、及び、通信部85を備える。 The wearable terminal 52 includes a biosensor 81 , an input section 82 , an output section 83 , a control section 84 and a communication section 85 .

生体センサ81は、モバイル端末51の生体センサ64と同様に、ユーザの各種の生体データを検出し、検出した生体データを制御部84に供給する。なお、生体センサ81が検出する生体データの種類と、モバイル端末51の生体センサ64が検出する生体データの種類とは重複していても構わない。 Like the biosensor 64 of the mobile terminal 51 , the biosensor 81 detects various biometric data of the user and supplies the detected biometric data to the control unit 84 . The type of biometric data detected by the biosensor 81 and the type of biometric data detected by the biosensor 64 of the mobile terminal 51 may overlap.

入力部82は、ウエアラブル端末52に各種のデータを入力するための入力装置を備える。例えば、入力部82は、ボタン、スイッチ、キー、タッチパネル、マイクロフォン等のうち1以上を備える。入力部82は、入力データを制御部67に供給する。 The input unit 82 has an input device for inputting various data to the wearable terminal 52 . For example, the input unit 82 includes one or more of buttons, switches, keys, touch panel, microphone, and the like. The input unit 82 supplies input data to the control unit 67 .

出力部83は、各種の情報やデータを出力するための出力装置を備える。例えば、出力部83は、ディスプレイ、スピーカ、ブザー、バイブレータ等のうち1以上を備える。 The output unit 83 includes an output device for outputting various information and data. For example, the output unit 83 includes one or more of a display, speaker, buzzer, vibrator, and the like.

制御部84は、例えば、各種のプロセッサ等の制御装置を備える。制御部84は、生体センサ81及び入力部82から供給されるデータ、並びに、通信部85を介して外部から受信したデータ等に基づいて、ウエアラブル端末52の各部の制御や各種の処理を行う。また、制御部84は、各種の処理により得られたデータを出力部83に供給したり、通信部85を介して他の機器に送信したりする。 The control unit 84 includes, for example, control devices such as various processors. The control unit 84 controls each unit of the wearable terminal 52 and performs various processes based on data supplied from the biosensor 81 and the input unit 82, data received from the outside via the communication unit 85, and the like. The control unit 84 also supplies data obtained by various processes to the output unit 83 and transmits the data to other devices via the communication unit 85 .

通信部85は、所定の通信方式により他の機器(例えば、車両12、サーバ13、モバイル端末51等)との通信を行う。通信部85の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部85は、複数の通信方式に対応することも可能である。 The communication unit 85 communicates with other devices (for example, the vehicle 12, the server 13, the mobile terminal 51, etc.) using a predetermined communication method. Any wireless or wired system can be adopted as the communication system of the communication unit 85 . Also, the communication unit 85 can support a plurality of communication methods.

<車両の構成例>
図3は、車両12の一部の構成例を示すブロック図である。車両12は、車載システム101を備える。車載システム101は、車両データ取得部111、映像音声取得部112、入力部113、出力部114、制御部115、及び、通信部116を備える。
<Vehicle configuration example>
FIG. 3 is a block diagram showing a configuration example of part of the vehicle 12. As shown in FIG. The vehicle 12 has an in-vehicle system 101 . The in-vehicle system 101 includes a vehicle data acquisition unit 111 , an audio/video acquisition unit 112 , an input unit 113 , an output unit 114 , a control unit 115 and a communication unit 116 .

車両データ取得部111は、例えば、各種のセンサ、通信機器、制御装置等を備える。車両データ取得部111は、車両12に関する車両データを取得し、取得した車両データを制御部115に供給する。車両データ取得部111が取得する車両データは、例えば、車速、トルク、ステアリング角度、ヨー角、ギアの状態、サイドブレーキの状態、アクセルペダルの踏み込み量、ブレーキペダルの踏み込み量、方向指示器の状態、ライトの状態、タイヤの回転角や回転速度、OBD(On-board Diagnostics)の診断結果を示すデータ(以下、OBDデータと称する)、並びに、ミリ波レーダ及びレーザレーダ等のセンサデータ等のうち1以上を含む。 The vehicle data acquisition unit 111 includes, for example, various sensors, communication devices, control devices, and the like. The vehicle data acquisition unit 111 acquires vehicle data regarding the vehicle 12 and supplies the acquired vehicle data to the control unit 115 . The vehicle data acquired by the vehicle data acquisition unit 111 includes, for example, vehicle speed, torque, steering angle, yaw angle, gear state, parking brake state, accelerator pedal depression amount, brake pedal depression amount, and direction indicator state. , light status, tire rotation angle and rotation speed, data indicating OBD (On-board Diagnostics) diagnosis results (hereinafter referred to as OBD data), and sensor data such as millimeter wave radar and laser radar including one or more.

映像音声取得部112は、例えば、カメラ及びマイクロフォン等を備える。映像音声取得部112が備えるカメラは、通常のカメラ以外にも、例えば、ToF(Time Of Flight)カメラ、ステレオカメラ、赤外線カメラ等の特殊なカメラであってもよい。映像音声取得部112は、例えば、車両12の周囲及び内部の映像及び音声を取得し、取得した映像及び音声を示す映像データ及び音声データを制御部115に供給する。 The video/audio acquisition unit 112 includes, for example, a camera and a microphone. The camera included in the video/audio acquisition unit 112 may be a special camera such as a ToF (Time Of Flight) camera, a stereo camera, an infrared camera, etc., in addition to a normal camera. The video/audio acquisition unit 112 , for example, acquires video and audio around and inside the vehicle 12 and supplies video data and audio data representing the acquired video and audio to the control unit 115 .

入力部113は、車両12に各種のデータを入力するための入力装置を備える。例えば、入力部113は、ボタン、スイッチ、キー、タッチパネル等のうち1以上を備える。入力部113は、入力データを制御部115に供給する。 The input unit 113 has an input device for inputting various data to the vehicle 12 . For example, the input unit 113 includes one or more of buttons, switches, keys, touch panels, and the like. The input unit 113 supplies input data to the control unit 115 .

出力部114は、各種の情報やデータを出力するための出力装置を備える。例えば、出力部114は、ディスプレイ(例えば、ヘッドアップディスプレイ)、スピーカ、ブザー、バイブレータ、インストルメントパネル等のうち1以上を備える。 The output unit 114 includes an output device for outputting various information and data. For example, the output unit 114 includes one or more of a display (eg, head-up display), speaker, buzzer, vibrator, instrument panel, and the like.

制御部115は、例えば、ECU(Electronic Control Unit)等の制御装置を備える。制御部115は、車両データ取得部111、映像音声取得部112、及び、入力部113から供給されるデータ、並びに、通信部116を介して外部から受信したデータ等に基づいて、車両12の各部の制御や各種の処理を行う。また、制御部115は、各種の処理により得られたデータを出力部114に供給したり、通信部116を介して他の機器に送信したりする。 The control unit 115 includes, for example, a control device such as an ECU (Electronic Control Unit). The control unit 115 controls each unit of the vehicle 12 based on the data supplied from the vehicle data acquisition unit 111, the video/audio acquisition unit 112, and the input unit 113, and the data received from the outside via the communication unit 116. control and various processing. Further, the control unit 115 supplies data obtained by various processes to the output unit 114 or transmits the data to other devices via the communication unit 116 .

通信部116は、所定の通信方式により他の機器(例えば、サーバ13、モバイル端末51、ウエアラブル端末52等)との通信を行う。通信部116の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部116は、複数の通信方式に対応することも可能である。 The communication unit 116 communicates with other devices (for example, the server 13, the mobile terminal 51, the wearable terminal 52, etc.) using a predetermined communication method. Any wireless or wired communication method can be adopted as the communication method of the communication unit 116 . Also, the communication unit 116 can support a plurality of communication methods.

<サーバの構成例>
図4は、サーバ13の構成例を示すブロック図である。サーバ13は、通信部151、状態推定部152、周辺データ取得部153、診断部154、運転挙動検出部155、リスク予測部156、損害予測部157、提示制御部158、評価部159、学習部160、保険料算定部161、及び、記憶部162を備える。
<Server configuration example>
FIG. 4 is a block diagram showing a configuration example of the server 13. As shown in FIG. The server 13 includes a communication unit 151, a state estimation unit 152, a peripheral data acquisition unit 153, a diagnosis unit 154, a driving behavior detection unit 155, a risk prediction unit 156, a damage prediction unit 157, a presentation control unit 158, an evaluation unit 159, and a learning unit. 160 , an insurance premium calculation unit 161 and a storage unit 162 .

通信部151は、所定の通信方式により、ネットワーク14を介して、他の機器(例えば、車両12、モバイル端末51、ウエアラブル端末52、他のサーバ(不図示)等)との通信を行う。通信部151の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部151は、複数の通信方式に対応することも可能である。 The communication unit 151 communicates with other devices (for example, the vehicle 12, the mobile terminal 51, the wearable terminal 52, other servers (not shown), etc.) via the network 14 using a predetermined communication method. Any wireless or wired system can be adopted as the communication system of the communication unit 151 . Also, the communication unit 151 can support a plurality of communication methods.

状態推定部152は、通信部151を介して、ユーザ端末部11及び車両12からユーザの状態に関するデータを取得する。状態推定部152は、ユーザの状態に関するデータのログである状態データログの生成及び更新を行い、記憶部162に記憶させる。 The state estimating unit 152 acquires data on the state of the user from the user terminal unit 11 and the vehicle 12 via the communication unit 151 . The state estimating unit 152 generates and updates a state data log, which is a log of data regarding the state of the user, and stores it in the storage unit 162 .

また、状態推定部152は、状態データログに基づいて、記憶部162に記憶されている状態推定モデルを用いて、ユーザの状態の推定処理を行う。ここで、状態推定モデルとは、ユーザの状態の推定に用いるモデルであり、例えば、ユーザ毎に生成される。状態推定部152は、ユーザの状態の推定結果の履歴である推定状態履歴の生成及び更新を行い、記憶部162に記憶させる。 In addition, the state estimation unit 152 performs user state estimation processing using the state estimation model stored in the storage unit 162 based on the state data log. Here, the state estimation model is a model used for estimating the user's state, and is generated for each user, for example. The state estimation unit 152 generates and updates an estimated state history, which is a history of estimation results of the user's state, and stores it in the storage unit 162 .

周辺データ取得部153は、通信部151を介して、ユーザ端末部11、車両12、及び、他のサーバ(不図示)から受信したデータに基づいて、車両12の周辺の状態を示す周辺データを取得する。周辺データ取得部153は、取得した周辺データを診断部154及びリスク予測部156に供給する。 The surrounding data acquisition unit 153 obtains surrounding data indicating the surrounding conditions of the vehicle 12 based on data received from the user terminal unit 11, the vehicle 12, and another server (not shown) via the communication unit 151. get. The peripheral data acquisition unit 153 supplies the acquired peripheral data to the diagnosis unit 154 and the risk prediction unit 156 .

診断部154は、ユーザの推定状態履歴、運転挙動履歴、及び、運転診断モデルを記憶部162から取得する。ここで、運転挙動履歴とは、運転中のユーザ又は車両12の挙動である運転挙動の検出結果の履歴であり、例えば、ユーザ毎に生成される。また、運転診断モデルとは、ユーザの車両の運転に対する適性を診断する運転診断に用いるモデルであり、例えば、ユーザ毎に生成される。診断部154は、取得した履歴に基づいて、運転診断モデルを用いて、ユーザの運転診断を行う。診断部154は、ユーザの運転診断結果の履歴である運転診断履歴の生成及び更新を行い、記憶部162に記憶させる。 The diagnosis unit 154 acquires the user's estimated state history, driving behavior history, and driving diagnosis model from the storage unit 162 . Here, the driving behavior history is the history of detection results of the driving behavior, which is the behavior of the user or the vehicle 12 during driving, and is generated for each user, for example. A driving diagnosis model is a model used for driving diagnosis for diagnosing a user's aptitude for driving a vehicle, and is generated for each user, for example. The diagnosis unit 154 diagnoses the driving of the user using the driving diagnosis model based on the acquired history. The diagnosis unit 154 generates and updates a driving diagnosis history, which is a history of driving diagnosis results of the user, and stores the driving diagnosis history in the storage unit 162 .

運転挙動検出部155は、通信部151を介して、ユーザ端末部11及び車両12からデータを受信する。また、運転挙動検出部155は、ユーザの推定状態履歴及び運転挙動検出モデルを記憶部162から取得する。ここで、運転挙動検出モデルとは、運転挙動の検出に用いるモデルであり、例えば、ユーザ毎に生成される。さらに、運転挙動検出部155は、損害予測部157から、ユーザによる車両の運転に関するリスク、及び、リスクにより発生する損害の予測結果を取得する。運転挙動検出部155は、取得した履歴及びデータ等に基づいて、運転挙動検出モデルを用いて、ユーザの運転挙動の検出処理を行う。運転挙動検出部155は、ユーザの運転挙動の検出結果の履歴である運転挙動履歴の生成及び更新を行い、記憶部162に記憶させる。 The driving behavior detection unit 155 receives data from the user terminal unit 11 and the vehicle 12 via the communication unit 151 . Further, the driving behavior detection unit 155 acquires the user's estimated state history and the driving behavior detection model from the storage unit 162 . Here, the driving behavior detection model is a model used for detecting driving behavior, and is generated for each user, for example. Furthermore, the driving behavior detection unit 155 acquires from the damage prediction unit 157 the risk associated with driving of the vehicle by the user and the prediction result of the damage caused by the risk. The driving behavior detection unit 155 performs detection processing of the user's driving behavior using a driving behavior detection model based on the acquired history, data, and the like. The driving behavior detection unit 155 generates and updates a driving behavior history, which is a history of detection results of the user's driving behavior, and stores the driving behavior history in the storage unit 162 .

リスク予測部156は、ユーザの推定状態履歴、運転診断履歴、運転挙動履歴、及び、リスク予測モデルを記憶部162から取得する。ここで、リスク予測モデルとは、ユーザによる車両12の運転に関するリスクの予測に用いるモデルであり、例えば、ユーザ毎に生成される。リスク予測部156は、取得した履歴に基づいて、リスク予測モデルを用いて、リスク予測を行う。リスク予測部156は、リスクの予測結果を損害予測部157に供給する。 The risk prediction unit 156 acquires the user's estimated state history, driving diagnosis history, driving behavior history, and risk prediction model from the storage unit 162 . Here, the risk prediction model is a model used for prediction of risks related to driving of the vehicle 12 by the user, and is generated for each user, for example. The risk prediction unit 156 performs risk prediction using a risk prediction model based on the acquired history. The risk prediction unit 156 supplies the risk prediction result to the damage prediction unit 157 .

損害予測部157は、評価部159により評価されるユーザの従順度を必要に応じて用いながら、リスク予測部156により予測されるリスクにより発生する損害を予測する。ここで、従順度とは、サーバ13からの提案等にユーザが素直に従う度合いである。損害予測部157は、リスク及び損害の予測結果を運転挙動検出部155及び提示制御部158に供給する。 The damage prediction unit 157 predicts the damage caused by the risk predicted by the risk prediction unit 156 while using the user's obedience evaluated by the evaluation unit 159 as necessary. Here, the degree of obedience is the degree to which the user obediently follows a proposal or the like from the server 13 . The damage prediction unit 157 supplies the risk and damage prediction results to the driving behavior detection unit 155 and the presentation control unit 158 .

提示制御部158は、ユーザの運転診断履歴、及び、保険料算定部161により算定された保険料を記憶部162から取得する。提示制御部158は、リスク及び損害の予測結果、並びに、ユーザの運転診断履歴及び保険料に基づいて、予測されるリスクに関する情報を含み、ユーザに提示されるフィードバック情報を生成する。提示制御部158は、生成したフィードバック情報を、通信部151を介して、ユーザのユーザ端末部11又は車両12に送信することにより、ユーザへのフィードバック情報の提示を制御する。また、提示制御部158は、フィードバック情報を評価部159に供給する。 The presentation control unit 158 acquires the user's driving diagnosis history and the insurance premium calculated by the insurance premium calculation unit 161 from the storage unit 162 . The presentation control unit 158 generates feedback information to be presented to the user, including information on predicted risks, based on the risk and damage prediction results, and the user's driving diagnosis history and insurance premiums. The presentation control unit 158 controls presentation of the feedback information to the user by transmitting the generated feedback information to the user's user terminal unit 11 or the vehicle 12 via the communication unit 151 . The presentation control unit 158 also supplies feedback information to the evaluation unit 159 .

評価部159は、ユーザの推定状態履歴及び運転挙動履歴を記憶部162から取得する。そして、評価部159は、取得した履歴、及び、フィードバック情報に基づいて、ユーザの従順度を評価する。評価部159は、ユーザの従順度を損害予測部157に供給するとともに、記憶部162に記憶させる。 The evaluation unit 159 acquires the user's estimated state history and driving behavior history from the storage unit 162 . Then, the evaluation unit 159 evaluates the user's obedient degree based on the acquired history and feedback information. The evaluation unit 159 supplies the degree of obedience of the user to the damage prediction unit 157 and stores it in the storage unit 162 .

学習部160は、ユーザの推定状態履歴を記憶部162から取得する。学習部160は、取得した推定状態履歴に基づいて、ユーザの標準的な状態のパターン(以下、標準状態パターンと称する)の学習を行い、得られた標準状態パターンを示すデータを記憶部162に記憶させる。 The learning unit 160 acquires the user's estimated state history from the storage unit 162 . Learning unit 160 learns a user's standard state pattern (hereinafter referred to as a standard state pattern) based on the acquired estimated state history, and stores data indicating the obtained standard state pattern in storage unit 162. Memorize.

また、学習部160は、所定のユーザ集合に含まれる各ユーザの推定状態履歴を記憶部162から取得する。学習部160は、取得した推定状態履歴に基づいて、ユーザ集合内のユーザの平均的な状態のパターン(以下、ユーザ集合状態パターンと称する)の学習を行い、得られたユーザ集合状態パターンを示すデータを記憶部162に記憶させる。 Also, the learning unit 160 acquires from the storage unit 162 the estimated state history of each user included in the predetermined user group. The learning unit 160 learns an average state pattern of users in a user group (hereinafter referred to as a user group state pattern) based on the acquired estimated state history, and shows the obtained user group state pattern. The data are stored in the storage unit 162 .

さらに、学習部160は、ユーザの状態データログ、推定状態履歴、運転診断履歴、及び、運転挙動履歴を記憶部162から取得する。学習部160は、取得したログ及び履歴に基づいて、状態推定モデル、運転診断モデル、運転挙動検出モデル、及び、リスク予測モデルの学習を行い、記憶部162に記憶させる。 Furthermore, the learning unit 160 acquires the user's state data log, estimated state history, driving diagnosis history, and driving behavior history from the storage unit 162 . The learning unit 160 learns the state estimation model, the driving diagnosis model, the driving behavior detection model, and the risk prediction model based on the acquired log and history, and stores them in the storage unit 162 .

保険料算定部161は、ユーザの運転診断履歴、運転挙動履歴、及び、従順度を記憶部162から取得する。保険料算定部161は、取得した履歴及び従順度に基づいて、ユーザの自動車保険の保険料の算定を行う。保険料算定部161は、算定した保険料を示すデータを記憶部162に記憶させる。 The insurance premium calculation unit 161 acquires the user's driving diagnosis history, driving behavior history, and obedience degree from the storage unit 162 . The insurance premium calculation unit 161 calculates the insurance premium of the user's automobile insurance based on the acquired history and obedient degree. The insurance premium calculation unit 161 causes the storage unit 162 to store data indicating the calculated insurance premium.

<運転支援処理>
次に、図5及び図6のフローチャートを参照して、サーバ13により実行される運転支援処理について説明する。
<Driving support processing>
Next, the driving support processing executed by the server 13 will be described with reference to the flowcharts of FIGS. 5 and 6. FIG.

なお、以下、主に1人の特定のユーザ(以下、注目ユーザと称する)に対する処理を中心に説明するが、実際には注目ユーザ以外の他のユーザに対する処理が並行して行われる。 Although the following description will focus on processing for one specific user (hereinafter referred to as a user of interest), in practice, processing for users other than the user of interest is performed in parallel.

ステップS1において、サーバ13は、非運転時のユーザ(注目ユーザ)の状態の推定処理を開始する。具体的には、例えば、以下の処理が開始される。 In step S1, the server 13 starts a process of estimating the state of the user (noted user) when not driving. Specifically, for example, the following processing is started.

状態推定部152は、通信部151が注目ユーザのユーザ端末部11から受信したデータ(例えば、慣性データ、環境データ、生体データ、入力データ等)の中から、注目ユーザの状態に関するデータを取得する。状態推定部152は、各データを取得された時刻とともに記憶部162に記憶させる。これにより、注目ユーザの状態データログが更新される。 The state estimating unit 152 acquires data regarding the state of the noted user from among the data (eg, inertial data, environmental data, biological data, input data, etc.) received by the communication unit 151 from the user terminal unit 11 of the noted user. . The state estimation unit 152 causes the storage unit 162 to store each piece of data together with the acquired time. This updates the status data log of the user of interest.

なお、注目ユーザの状態データログは、注目ユーザ自身の状態に関するデータだけでなく、注目ユーザの周囲の状態に関するデータも含み得る。 Note that the status data log of the user of interest may include not only data about the status of the user of interest, but also data about the surrounding status of the user of interest.

状態推定部152は、直近の所定の期間内の注目ユーザの状態データログに基づいて、記憶部162に記憶されている注目ユーザの状態推定モデルを用いて、注目ユーザの現在の状態を推定する。例えば、状態推定部152は、注目ユーザの現在の状態として、注目ユーザの現在の生体状態、行動、及び、感情を推定する。 The state estimation unit 152 estimates the current state of the user of interest using the state estimation model of the user of interest stored in the storage unit 162 based on the state data log of the user of interest within the most recent predetermined period. . For example, the state estimation unit 152 estimates the current biological state, behavior, and emotion of the user of interest as the current state of the user of interest.

例えば、図7に例示されるように、状態推定部152は、注目ユーザの状態を示すセンサデータ群の時系列の変化に基づいて、所定の時間のフレーム毎に、注目ユーザの生体状態及び行動を推定する。例えば、注目ユーザの心拍及び発汗量等に基づいて、集中度、覚醒度、疲労度、ストレス度、緊張度、運動の激しさ等の注目ユーザの各種の生体状態が推定される。例えば、注目ユーザの加速度及び角速度、並びに、周囲の気圧等に基づいて、注目ユーザの行動の種類(例えば、静止、歩行、ランニング、サイクリング、階段の上り下り、食事、睡眠等)が推定される。 For example, as exemplified in FIG. 7, the state estimating unit 152 estimates the biological state and behavior of the user of interest for each frame of a predetermined time based on changes in time series of the sensor data group indicating the state of the user of interest. to estimate For example, based on the heartbeat, perspiration amount, etc. of the user of interest, various biological states of the user of interest, such as the degree of concentration, wakefulness, fatigue, stress, tension, and intensity of exercise, are estimated. For example, based on the acceleration and angular velocity of the user of interest and the ambient air pressure, etc., the type of behavior of the user of interest (for example, standing still, walking, running, cycling, climbing stairs, eating, sleeping, etc.) is estimated. .

また、例えば、状態推定部152は、注目ユーザの位置データ及び加速度等に基づいて、注目ユーザの移動距離、移動速度、及び、行動範囲等を推定する。 Also, for example, the state estimation unit 152 estimates the movement distance, movement speed, action range, and the like of the user of interest based on the position data, acceleration, and the like of the user of interest.

さらに、状態推定部152は、注目ユーザの生体データ、及び、注目ユーザの生体状態の推定結果等に基づいて、注目ユーザの感情を推定する。例えば、状態推定部152は、注目ユーザの喜怒哀楽の度合い、興奮度、焦燥度、不安度等を推定する。 Further, the state estimation unit 152 estimates the emotion of the user of interest based on the biological data of the user of interest, the estimation result of the biological state of the user of interest, and the like. For example, the state estimation unit 152 estimates the degree of emotion, excitement, frustration, anxiety, and the like of the user of interest.

なお、注目ユーザの生体状態と感情とは、必ずしも全てが明確に分かれるものではなく、重複するものもある。例えば、興奮度は、注目ユーザの生体状態及び感情のいずれでもあり得る。 It should be noted that the biological state and emotions of the user of interest are not necessarily clearly separated, and may overlap. For example, the degree of excitement can be any of the biological state and emotions of the user of interest.

また、ユーザの状態の推定方法には、任意の方法を採用することができる。さらに、推定するユーザの状態の種類は、上述した例に限定されるものではなく、必要に応じて追加したり、削除したりすることができる。 Also, any method can be adopted as a method of estimating the state of the user. Furthermore, the types of user states to be estimated are not limited to the examples described above, and can be added or deleted as necessary.

状態推定部152は、推定した注目ユーザの状態を、推定した時刻とともに記憶部162に記憶させる。これにより、注目ユーザの推定状態履歴が更新される。 The state estimation unit 152 causes the storage unit 162 to store the estimated state of the user of interest together with the estimated time. As a result, the estimated state history of the noted user is updated.

なお、例えば、図7に例示されるように、推定状態履歴は、覚醒度のようにフレーム毎の数値を時系列に並べたデータや、行動のようにフレーム毎に付与された(行動の種類を示す)ラベルを時系列に並べたデータを含む。 For example, as exemplified in FIG. 7, the estimated state history includes data obtained by arranging numerical values for each frame in chronological order, such as the degree of arousal, and given to each frame such as behavior (type of behavior). ) contains data in which the labels are arranged in chronological order.

ステップS2において、学習部160は、ユーザ(注目ユーザ)の標準的な状態のパターン(標準状態パターン)を学習するか否かを判定する。例えば、注目ユーザの標準状態パターンの学習は、注目ユーザが情報処理システム10の利用を開始したとき、所定の時間が経過する毎、注目ユーザの推定状態履歴のデータ量が所定の量以上増加する毎等の所定のタイミングで実行される。そして、学習部160は、現在が注目ユーザの標準状態パターンの学習を行うタイミングである場合、注目ユーザの標準状態パターンを学習すると判定し、処理はステップS3に進む。 In step S2, the learning unit 160 determines whether or not to learn the standard state pattern (standard state pattern) of the user (noted user). For example, the learning of the standard state pattern of the noted user is such that when the noted user starts using the information processing system 10, the data amount of the noted user's estimated state history increases by a predetermined amount or more each time a predetermined time elapses. It is executed at a predetermined timing such as every time. Then, when it is time to learn the standard state pattern of the user of interest, the learning unit 160 determines to learn the standard state pattern of the user of interest, and the process proceeds to step S3.

ステップS3において、学習部160は、ユーザ(注目ユーザ)の標準的な状態のパターン(標準状態パターン)を学習する。例えば、学習部160は、図8に例示されるように、注目ユーザの直近の比較的長期の期間内(例えば、月単位、年単位)の推定状態履歴に基づいて、注目ユーザの標準状態パターンを学習する。 In step S3, the learning unit 160 learns the standard state pattern (standard state pattern) of the user (noted user). For example, as exemplified in FIG. 8, the learning unit 160 calculates the standard state pattern of the user of interest based on the estimated state history of the user of interest within the most recent relatively long-term period (for example, in units of months or years). to learn.

例えば、学習部160は、注目ユーザの標準状態パターンとして、以下の各項目の所定の時間(例えば、1分、10分、30分、又は、1時間)の期間毎の平均及び分散等を算出することにより、各項目の所定の期間(例えば、1日)の標準的な推移を示す推移パターンを学習する。例えば、注目ユーザの集中度、覚醒度、疲労度、ストレス度、緊張度、運動の激しさ、心拍、発汗量、運動量、喜怒哀楽の度合い、興奮度、焦燥度、不安度等の1日の標準的な推移パターンが学習される。 For example, the learning unit 160 calculates the average and variance of each of the following items for each period of a predetermined time period (eg, 1 minute, 10 minutes, 30 minutes, or 1 hour) as the standard state pattern of the noted user. By doing so, a transition pattern indicating a standard transition of each item for a predetermined period (for example, one day) is learned. For example, the attention user's concentration level, arousal level, fatigue level, stress level, tension level, exercise intensity, heart rate, sweating amount, exercise amount, emotion level, excitement level, frustration level, anxiety level, etc. A standard transition pattern of is learned.

また、例えば、学習部160は、注目ユーザの標準状態パターンとして、以下の各項目の1日毎(曜日毎)の平均及び分散等を算出することにより、各項目の所定の期間(例えば、1週間)あたりの標準的な推移パターンを学習する。例えば、睡眠時間、起床時刻、就寝時刻、運動量、移動範囲、食事の回数、食事時間、食事時間帯、運転時間、運転時間帯、通勤時間帯、通学時間帯等の1週間の標準的な推移パターンが学習される。 Further, for example, the learning unit 160 calculates the average and variance of each of the following items for each day (for each day of the week) as the standard state pattern of the noted user. ) to learn standard transition patterns. For example, sleep time, wake-up time, bedtime, amount of exercise, movement range, number of meals, meal time, meal time period, driving time, driving time period, commuting time period, school commuting time period, etc. patterns are learned.

また、学習部160は、注目ユーザの標準状態パターンの比較対象として、所定のユーザ集合内の各ユーザの推定状態履歴に基づいて、ユーザ集合内の平均的な標準状態パターン(ユーザ集合状態パターン)を学習する。 In addition, the learning unit 160 calculates an average standard state pattern (group of users state pattern) in the user group based on the estimated state history of each user in the predetermined user group as a comparison target for the standard state pattern of the user of interest. to learn.

ここで、ユーザ集合には、情報処理システム10の全てのユーザを含めるようにしてもよいし、一部のユーザのみを含めるようにしてもよい。後者の場合、例えば、注目ユーザと類似するユーザからなるユーザ集合としてもよい。ここで、注目ユーザと類似するユーザとは、例えば、注目ユーザと属性(例えば、年齢、性別、職業、住所等)、行動パターン、嗜好等が類似するユーザのことである。また、ユーザ集合に注目ユーザを含めてもよいし、含めなくてもよい。 Here, the user set may include all users of the information processing system 10, or may include only some users. In the latter case, for example, a user group consisting of users similar to the user of interest may be used. Here, a user similar to the user of interest is, for example, a user similar to the user of interest in attributes (for example, age, gender, occupation, address, etc.), behavior patterns, preferences, and the like. Also, the user group may or may not include the user of interest.

例えば、学習部160は、図9に例示されるように、ユーザ集合内の各ユーザの標準状態パターンの平均を集計することにより、ユーザ集合状態パターンを学習する。例えば、各項目の1日の標準的な推移パターンの平均がユーザ集合内において集計されることにより、ユーザ集合内の各項目の平均的な1日の推移パターンが学習される。また、例えば、各項目の1週間の標準的な推移パターンの平均がユーザ集合内において集計されることにより、ユーザ集合内の各項目の平均的な1週間の推移パターンが学習される。 For example, as illustrated in FIG. 9, the learning unit 160 learns user group state patterns by aggregating the average of the standard state patterns of each user in the user group. For example, the average daily transition pattern of each item in the user set is learned by aggregating the average of the standard transition patterns of each item in a day within the user set. In addition, for example, the average weekly transition pattern of each item in the user group is learned by aggregating the average of the standard transition patterns of each item for one week in the user group.

学習部160は、注目ユーザの標準状態パターン、及び、ユーザ集合状態パターンの学習結果を示すデータを記憶部162に記憶させる。 The learning unit 160 causes the storage unit 162 to store data indicating the results of learning the standard state pattern of the user of interest and the group state pattern of users.

なお、注目ユーザの標準状態パターンの学習と、ユーザ集合状態パターンの学習とを行うタイミングは、必ずしも同期する必要はなく、それぞれ異なるタイミングで行われてもよい。 Note that the timing of learning the standard state pattern of the user of interest and the learning of the group state pattern of users do not necessarily have to be synchronized, and may be performed at different times.

その後、処理はステップS4に進む。 After that, the process proceeds to step S4.

一方、ステップS2において、注目ユーザの標準状態パターンを学習しないと判定された場合、ステップS3の処理はスキップされ、処理はステップS4に進む。 On the other hand, if it is determined in step S2 that the standard state pattern of the user of interest is not learned, the process of step S3 is skipped and the process proceeds to step S4.

ステップS4において、診断部154は、非運転時の運転診断を行う。例えば、診断部154は、注目ユーザの推定状態履歴に基づいて、上述した標準状態パターンと同じ項目について、直近の比較的短期の期間内(例えば、1日及び1週間)の推移パターン(以下、直近状態パターンと称する)を検出する。 In step S4, the diagnosis unit 154 performs driving diagnosis during non-driving. For example, based on the estimated state history of the noted user, the diagnosis unit 154 determines a transition pattern (hereinafter referred to as a (referred to as the immediate state pattern).

次に、診断部154は、例えば、図10に例示されるように、注目ユーザの直近状態パターンと標準状態パターンとの乖離度を示す乖離度ベクトルx、及び、注目ユーザの直近状態パターンとユーザ集合状態パターンとの乖離度を示す乖離度ベクトルyを算出する。例えば、乖離度ベクトルx及び乖離度ベクトルyは、比較対象となる2つの状態パターンの項目毎の乖離度を正規化した値を含むベクトルされる。 Next, for example, as illustrated in FIG. 10, the diagnosis unit 154 generates a divergence vector x indicating the degree of divergence between the most recent state pattern of the user of interest and the standard state pattern, and the most recent state pattern of the user of interest and the user A divergence vector y indicating the degree of divergence from the collective state pattern is calculated. For example, the divergence vector x and the divergence vector y are vectors containing values obtained by normalizing the divergence for each item of the two state patterns to be compared.

そして、診断部154は、次式(1)の関数fにより表される注目ユーザの運転診断モデルを用いて、注目ユーザの非運転時の運転適性度uを算出する。 Then, the diagnosis unit 154 uses the driving diagnosis model of the user of interest represented by the function f of the following equation (1) to calculate the driving aptitude u of the user of interest when the vehicle is not driving.

u=f(x,y,wx,wy) ・・・(1) u=f(x, y, wx, wy) (1)

なお、wxは、乖離度ベクトルxに対する重みであり、wyは、乖離度ベクトルyに対する重みである。 Note that wx is the weight for the divergence vector x, and wy is the weight for the divergence vector y.

運転適性度uは、乖離度ベクトルxに含まれる各項目の乖離度が小さくなるほど大きくなる。すなわち、注目ユーザの直近状態パターンが標準状態パターンに近いほど、換言すれば、注目ユーザの直近の状態と標準的な状態との差が小さいほど、より運転に適した状態であると判定される。一方、運転適性度uは、乖離度ベクトルxに含まれる各項目の乖離度が大きくなるほど小さくなる。すなわち、注目ユーザの直近状態パターンが標準状態パターンから遠いほど、換言すれば、注目ユーザの直近の状態と標準的な状態との差が大きいほど、より運転に適していない状態であると判定される。 The degree of driving suitability u increases as the deviation of each item included in the deviation vector x decreases. That is, the closer the current state pattern of the user of interest is to the standard state pattern, in other words, the smaller the difference between the current state of the user of interest and the standard state, the more suitable it is determined to be for driving. . On the other hand, the degree of driving suitability u decreases as the deviation of each item included in the deviation vector x increases. That is, the farther the noted user's recent state pattern is from the standard state pattern, in other words, the greater the difference between the noted user's recent state and the standard state, the more unsuitable for driving is determined. be.

また、運転適性度uは、乖離度ベクトルyに含まれる各項目の乖離度が小さくなるほど大きくなる。すなわち、注目ユーザの直近状態パターンがユーザ集合状態パターンに近いほど、換言すれば、注目ユーザの直近の状態とユーザ集合における平均的な状態との差が小さいほど、より運転に適した状態であると判定される。一方、運転適性度uは、乖離度ベクトルyに含まれる各項目の乖離度が大きくなるほど小さくなる。すなわち、注目ユーザの直近状態パターンがユーザ集合状態パターンから遠いほど、換言すれば、注目ユーザの直近の状態とユーザ集合における平均的な状態との差が大きいほど、より運転に適していない状態であると判定される。 Further, the degree of driving suitability u increases as the degree of divergence of each item included in the degree of divergence vector y decreases. That is, the closer the current state pattern of the user of interest is to the state pattern of the group of users, in other words, the smaller the difference between the current state of the user of interest and the average state of the group of users, the more suitable for driving. is determined. On the other hand, the degree of driving suitability u decreases as the deviation of each item included in the deviation vector y increases. That is, the farther the current state pattern of the user of interest is from the collective state pattern of users, in other words, the greater the difference between the recent state of the user of interest and the average state of the user group, the less suitable for driving. It is determined that there is

なお、重みwxが大きくなるほど、運転適性度uに対する乖離度ベクトルx(すなわち、注目ユーザの直近状態パターンと標準状態パターンの差)の影響が大きくなる。一方、重みwyが大きくなるほど、運転適性度uに対する乖離度ベクトルy(すなわち、注目ユーザのユーザ集合状態パターンと標準状態パターンの差)の影響が大きくなる。 Note that the greater the weight wx, the greater the influence of the divergence vector x (that is, the difference between the most recent state pattern of the user of interest and the standard state pattern) on the degree of driving suitability u. On the other hand, the greater the weight wy, the greater the influence of the divergence vector y (that is, the difference between the user group state pattern of the user of interest and the standard state pattern) on the degree of driving suitability u.

また、例えば、診断部154は、運転適性度uが所定の閾値未満である場合、運転適性度uの低下要因を推定する。例えば、診断部154は、乖離度ベクトルxにおいて、重みwxと乖離度の積が所定の値以上となる項目を抽出する。また、診断部154は、乖離度ベクトルyにおいて、重みwyと乖離度の積が所定の値以上となる項目を抽出する。そして、診断部154は、抽出した各項目について、直近状態パターンと標準状態パターン又はユーザ集合平均パターンとを比較することにより、運転適性度uの低下要因を推定する。 Further, for example, when the degree of driving suitability u is less than a predetermined threshold value, the diagnosis unit 154 estimates a factor for lowering the degree of suitability for driving u. For example, the diagnosis unit 154 extracts items in the divergence vector x for which the product of the weight wx and the divergence is greater than or equal to a predetermined value. Further, the diagnosis unit 154 extracts items in the divergence vector y for which the product of the weight wy and the divergence is equal to or greater than a predetermined value. The diagnosis unit 154 then compares the most recent state pattern with the standard state pattern or the user set average pattern for each of the extracted items, thereby estimating the cause of the decrease in the degree of driving aptitude u.

例えば、注目ユーザの直近状態パターンにおける睡眠時間が標準状態パターン又はユーザ集合平均パターンを大幅に下回っている場合、睡眠不足が低下要因であると推定される。 For example, if the sleep time in the most recent state pattern of the noted user is significantly below the standard state pattern or the user set average pattern, it is estimated that sleep deprivation is the cause of the deterioration.

例えば、注目ユーザの直近状態パターンにおける運動時間、心拍、及び、発汗量のうち1つ以上が標準状態パターン又はユーザ集合平均パターンを大幅に上回っている場合、激しい運動による肉体疲労が低下要因であると推定される。 For example, if one or more of the exercise time, heart rate, and sweating amount in the most recent state pattern of the noted user significantly exceeds the standard state pattern or the user set average pattern, physical fatigue due to vigorous exercise is a factor of deterioration. It is estimated to be.

例えば、注目ユーザの直近状態パターンにおけるストレス度、緊張度、及び、焦燥度のうち1つ以上が、標準状態パターン又はユーザ集合平均パターンを大幅に上回っている場合、注目ユーザの焦りが低下要因であると推定される。 For example, if one or more of the stress level, tension level, and frustration level in the noted user's most recent state pattern significantly exceeds the standard state pattern or the user set average pattern, the noted user's impatience is a decreasing factor. presumed to be.

なお、運転適性度uが所定の閾値以上の場合、例えば、運転適性度uの低下要因は、特になしとなる。 When the degree u of driving suitability is equal to or greater than a predetermined threshold value, for example, there is no factor for lowering the degree of suitability for driving u.

診断部154は、運転適性度u、及び、推定される低下要因を、診断した時刻とともに、注目ユーザの運転の適性の診断結果として記憶部162に記憶させる。これにより、注目ユーザの運転診断履歴が更新される。 The diagnosis unit 154 causes the storage unit 162 to store the driving aptitude level u and the estimated decrease factor together with the diagnosis time as a diagnosis result of the driving aptitude of the user of interest. As a result, the driving diagnosis history of the noted user is updated.

ステップS5において、リスク予測部156は、リスク予測を行う。具体的には、リスク予測部156は、注目ユーザの運転診断履歴及びリスク予測モデルを記憶部162から取得する。リスク予測部156は、注目ユーザの運転診断履歴に基づいて、注目ユーザのリスク予測モデルを用いて、現時点で注目ユーザが運転を行った場合のリスクを予測する。 In step S5, the risk prediction unit 156 performs risk prediction. Specifically, the risk prediction unit 156 acquires the driving diagnosis history and the risk prediction model of the user of interest from the storage unit 162 . The risk prediction unit 156 uses a risk prediction model of the user of interest based on the driving diagnosis history of the user of interest to predict the risk of the current driving of the user of interest.

例えば、運転適性度uの低下要因が睡眠不足又は肉体疲労である場合、居眠り運転のリスクがあると推定される。 For example, if the factor for lowering the driving aptitude u is lack of sleep or physical fatigue, it is estimated that there is a risk of drowsy driving.

例えば、運転適性度uの低下要因が注目ユーザの焦りである場合、例えば、速度オーバーや無理な追い越し等による他車両との衝突又は接触、並びに、注目ユーザの不注意による障害物(例えば、他車両、自転車、歩行者等)との衝突や接触等のリスクがあると推定される。 For example, if the cause of the lowering of the driving aptitude u is the attention user's impatience, for example, collision or contact with another vehicle due to excessive speed or unreasonable overtaking, as well as obstacles (for example, other (vehicles, bicycles, pedestrians, etc.).

また、リスク予測部156は、予測されるリスクの発生確率を推定する。例えば、注目ユーザの睡眠時間が短いほど、居眠り運転の推定発生確率は高くなる。 Also, the risk prediction unit 156 estimates the occurrence probability of the predicted risk. For example, the shorter the sleep time of the noted user, the higher the estimated occurrence probability of drowsy driving.

なお、一般的に、運転適性度uが低くなるほど、予測されるリスク及び発生確率が大きくなる。 In general, the lower the driving aptitude u, the greater the predicted risk and probability of occurrence.

リスク予測部156は、リスクの予測結果を損害予測部157に供給する。このリスクの予測結果には、予測されるリスク、リスクを予測した根拠(例えば、運転適性度uの低下要因)、及び、リスクの発生確率が含まれる。 The risk prediction unit 156 supplies the risk prediction result to the damage prediction unit 157 . The risk prediction result includes the predicted risk, the grounds for predicting the risk (for example, factors that reduce driving aptitude u), and the risk occurrence probability.

ステップS6において、損害予測部157は、損害予測を行う。具体的には、損害予測部157は、リスク予測部156により予測されるリスクにより発生する損害(例えば、リスク/ペナルティ値)を予測する。このとき、リスクの発生確率が加味される。すなわち、発生確率が高いほど、予測される損害が大きくなり、発生確率が低いほど、予測される損害が小さくなる。損害予測部157は、リスク及び損害の予測結果を運転挙動検出部155及び提示制御部158に供給する。 In step S6, the damage prediction unit 157 performs damage prediction. Specifically, the damage prediction unit 157 predicts the damage (for example, risk/penalty value) caused by the risk predicted by the risk prediction unit 156 . At this time, the risk occurrence probability is added. That is, the higher the probability of occurrence, the greater the predicted damage, and the lower the probability of occurrence, the smaller the predicted damage. The damage prediction unit 157 supplies the risk and damage prediction results to the driving behavior detection unit 155 and the presentation control unit 158 .

ステップS7において、運転挙動検出部155は、運転挙動の検出パラメータを調整する。例えば、運転挙動検出部155は、予測されるリスク及び損害に応じて、各種の運転挙動のうち、危険運転の検出用のパラメータを調整する。 In step S7, the driving behavior detection unit 155 adjusts the detection parameter of the driving behavior. For example, the driving behavior detection unit 155 adjusts parameters for detecting dangerous driving among various driving behaviors according to predicted risks and damages.

ここで、危険運転の検出に関わる運転挙動とは、例えば、急発進、急加速、急ブレーキ、及び、急ステアリング等の急操作、蛇行運転、居眠り運転、覚醒度や集中力の低下、脇見運転、前方不注意、速度オーバー、無理な追い越し、車間距離の不足、並びに、障害物への接近等の危険な運転挙動のことである。 Here, the driving behavior related to the detection of dangerous driving includes, for example, sudden starting, sudden acceleration, sudden braking, and sudden steering such as sudden steering, meandering driving, drowsy driving, decreased arousal and concentration, and inattentive driving. , carelessness ahead, overspeeding, overtaking, insufficient following distance, and dangerous driving behavior such as approaching obstacles.

また、推定されるリスク及び損害が大きくなるほど、検出対象となる危険運転のレベル(危険度)がより低くなるように、検出パラメータが調整される。これにより、より早期かつより軽微な段階から危険運転が検出されるようになる。 Further, the detection parameter is adjusted so that the level (degree of danger) of dangerous driving to be detected decreases as the estimated risk and damage increase. As a result, dangerous driving can be detected at an earlier and more minor stage.

例えば、居眠り運転の発生が予測される場合、より早くユーザの眠気を検出するように、眠気判定における瞬きの回数の閾値が小さくされる。例えば、脇見運転、前方不注意、速度オーバー等の発生が予測される場合、急加速や急ブレーキが検出されやすくなるように、急加速や急ブレーキの検出用の閾値が小さくされる。 For example, when the occurrence of drowsy driving is predicted, the threshold for the number of times of blinking in drowsiness determination is decreased so that drowsiness of the user can be detected earlier. For example, when the occurrence of inattentive driving, inattentive driving, excessive speed, etc. is predicted, the threshold value for detecting sudden acceleration and sudden braking is decreased so that sudden acceleration and sudden braking can be easily detected.

さらに、検出対象となる危険運転のレベルが低くなるほど、予測対象となるリスクのレベル(危険度)が低くなる。すなわち、より早期かつより軽微な段階のリスクが予測されるようになる。 Furthermore, the lower the level of dangerous driving to be detected, the lower the level of risk (degree of danger) to be predicted. That is, earlier and lesser stages of risk are predicted.

ここで、注目ユーザの運転適性度uにより、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが変化する。例えば、上述したように、一般的に運転適性度uが低くなるほど、予測されるリスク及び損害発生確率が大きくなり、予測される損害も大きくなる。従って、検出対象となる危険運転のレベルがより低くなるように、検出パラメータが調整される。その結果、運転適性度uが低くなるほど、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが低くなる。 Here, the level of dangerous driving to be detected and the level of risk to be predicted change depending on the driving aptitude u of the user of interest. For example, as described above, generally, the lower the driving aptitude u, the greater the predicted risk and probability of damage occurrence, and the greater the predicted damage. Therefore, the detection parameters are adjusted so that the level of dangerous driving to be detected is lower. As a result, the lower the driving aptitude u, the lower the level of dangerous driving to be detected and the level of risk to be predicted.

ステップS8において、提示制御部158は、ユーザ(注目ユーザ)へのフィードバックを行うか否かを判定する。注目ユーザへのフィードバックは、所定のタイミングで実行される。例えば、注目ユーザのユーザ端末部11からフィードバックの要求が送信されてきたとき、所定の時間が経過する毎、又は、重大なリスクが予測されるとき等のタイミングで、フィードバックが実行される。そして、提示制御部158は、現在が注目ユーザへのフィードバックを行うタイミングである場合、注目ユーザへのフィードバックを行うと判定し、処理はステップS9に進む。 In step S8, the presentation control unit 158 determines whether or not to give feedback to the user (noted user). Feedback to the user of interest is performed at a predetermined timing. For example, when a request for feedback is sent from the user terminal unit 11 of the user of interest, feedback is performed every time a predetermined time elapses, or when a serious risk is predicted. Then, when it is time to give feedback to the user of interest, the presentation control unit 158 determines to give feedback to the user of interest, and the process proceeds to step S9.

ステップS9において、サーバ13は、ユーザ(注目ユーザ)へのフィードバックを行う。具体的には、提示制御部158は、注目ユーザに提示するフィードバック情報を生成する。このフィードバック情報は、例えば、注目ユーザの運転診断の結果、予測されるリスクの内容、運転診断結果の根拠又はリスクを予測した根拠、及び、リスクを避けるための提案(以下、リスク回避案と称する)のうち1つ以上を含む。提示制御部158は、生成したフィードバック情報を、通信部151を介して、注目ユーザのユーザ端末部11に送信する。 In step S9, the server 13 provides feedback to the user (noted user). Specifically, the presentation control unit 158 generates feedback information to be presented to the noted user. This feedback information includes, for example, the result of the driving diagnosis of the user of interest, the details of the predicted risk, the grounds for the driving diagnosis result or the grounds for predicting the risk, and a proposal for avoiding the risk (hereinafter referred to as a risk avoidance plan). ). The presentation control unit 158 transmits the generated feedback information to the user terminal unit 11 of the user of interest via the communication unit 151 .

例えば、注目ユーザのモバイル端末51がフィードバック情報を受信した場合、モバイル端末51の出力部66は、視覚情報(例えば、映像)及び聴覚情報(例えば、音声)のうち少なくとも1つを用いてフィードバック情報を注目ユーザに提示する。また、例えば、注目ユーザのウエアラブル端末52がフィードバック情報を受信した場合、ウエアラブル端末52の出力部83は、視覚情報及び聴覚情報のうち少なくとも1つを用いてフィードバック情報を注目ユーザに提示する。 For example, when the mobile terminal 51 of the user of interest receives feedback information, the output unit 66 of the mobile terminal 51 outputs the feedback information using at least one of visual information (e.g., video) and auditory information (e.g., voice). is presented to the noted user. Also, for example, when the wearable terminal 52 of the user of interest receives feedback information, the output unit 83 of the wearable terminal 52 presents the feedback information to the user of interest using at least one of visual information and auditory information.

例えば、注目ユーザの睡眠不足が推定されている場合、「寝不足状態です。少し睡眠を取ってから運転することをお勧めします。」のような音声メッセージが出力される。 For example, when it is estimated that the user of interest is sleep deprived, a voice message such as "I am sleep deprived. It is recommended that you get some sleep before driving." is output.

また、例えば、注目ユーザの運転診断結果として、運転適性度uが所定の段階(例えば、10段階)の値により提示されるともに、その根拠が提示される。 Further, for example, as the result of the driving diagnosis of the user of interest, the driving aptitude u is presented as values in a predetermined level (for example, 10 levels) and the grounds thereof are presented.

さらに、例えば、注目ユーザの状態の推定結果が提示されてもよい。例えば、注目ユーザの喜怒哀楽、興奮度、攻撃性等の感情指数が所定の段階(例えば、10段階)の値より提示されてもよい。 Further, for example, an estimation result of the state of the user of interest may be presented. For example, the emotional index of the noted user's emotions, excitement level, aggression, etc., may be presented from predetermined levels (for example, 10 levels).

その後、処理はステップS10に進む。 After that, the process proceeds to step S10.

一方、ステップS8において、注目ユーザへのフィードバックを行わないと判定された場合、ステップS9の処理はスキップされ、処理はステップS10に進む。 On the other hand, if it is determined in step S8 that the feedback to the user of interest is not performed, the process of step S9 is skipped and the process proceeds to step S10.

ステップS10において、状態推定部152は、ユーザ(注目ユーザ)が運転を開始したか否かを判定する。具体的には、状態推定部152は、通信部151を介して、注目ユーザのユーザ端末部11及び車両12のうち少なくとも1つから受信したデータに基づいて、注目ユーザが運転を開始したか否かを判定する。 In step S10, the state estimation unit 152 determines whether or not the user (noted user) has started driving. Specifically, the state estimation unit 152 determines whether the noted user has started driving based on data received from at least one of the user terminal unit 11 and the vehicle 12 of the noted user via the communication unit 151 . determine whether

運転開始の判定処理は、ユーザ端末部11、車両12、及び、サーバ13のいずれで行ってもよい。例えば、モバイル端末51が、注目ユーザの運転認識処理を行ったり、車両12とビーコン同期を行ったりすることにより、運転開始の判定処理を実行するようにしてもよい。また、例えば、車両12の車載表示デバイス等と一体化した計測機器が、運転開始の判定処理を実行するようにしてもよい。 The operation start determination process may be performed by any of the user terminal unit 11 , the vehicle 12 , and the server 13 . For example, the mobile terminal 51 may perform the driving start determination process by performing the driving recognition process of the user of interest or performing beacon synchronization with the vehicle 12 . Further, for example, a measuring device integrated with an in-vehicle display device or the like of the vehicle 12 may execute the operation start determination process.

なお、ユーザ端末部11又は車両12で判定処理を行う場合、ユーザ端末部11又は車両12から送信されるデータにその判定結果が含まれ、状態推定部152は、その判定結果に基づいて、注目ユーザが運転を開始したか否かを判定する。 When the user terminal unit 11 or the vehicle 12 performs the determination process, the determination result is included in the data transmitted from the user terminal unit 11 or the vehicle 12, and the state estimation unit 152 performs the determination based on the determination result. It is determined whether or not the user has started driving.

そして、注目ユーザが運転を開始していないと判定された場合、処理はステップS2に戻る。その後、ステップS10において、注目ユーザが運転を開始したと判定されるまで、ステップS2乃至ステップS10の処理が繰り返し実行される。これにより、注目ユーザの運転診断、リスク予測、及び、損害予測が適宜行われ、その結果に基づいて、危険運転の検出パラメータの調整や注目ユーザへのフィードバックが行われる。また、注目ユーザの標準状態パターン、及び、ユーザ集合状態パターンが適宜更新される。 Then, if it is determined that the user of interest has not started driving, the process returns to step S2. After that, the processing from step S2 to step S10 is repeatedly executed until it is determined in step S10 that the noted user has started driving. As a result, driving diagnosis, risk prediction, and damage prediction for the user of interest are appropriately performed, and based on the results, adjustment of detection parameters for dangerous driving and feedback to the user of interest are performed. Also, the standard state pattern of the user of interest and the collective state pattern of users are updated as appropriate.

一方、ステップS10において、注目ユーザが運転を開始したと判定された場合、処理はステップS11に進む。 On the other hand, if it is determined in step S10 that the user of interest has started driving, the process proceeds to step S11.

ステップS11において、サーバ13は、運転時のユーザ(注目ユーザ)の状態の推定処理を開始する。この推定処理は、ステップS1の推定処理と比較して、注目ユーザのユーザ端末部11に加えて、車両12から送信されてくるデータに基づいて、推定処理が行われる点が大きく異なる。 In step S11, the server 13 starts a process of estimating the state of the user (attention user) during driving. This estimation process differs greatly from the estimation process in step S1 in that the estimation process is performed based on data transmitted from the vehicle 12 in addition to the user terminal unit 11 of the user of interest.

例えば、車両12からの映像データに基づいて、注目ユーザの視線、瞬き、表情等が検出され、注目ユーザの集中度、覚醒度、疲労度、感情等の推定に用いられる。また、例えば、車両12からの車両データに基づいて、注目ユーザの運転操作の内容等が推定される。 For example, based on the image data from the vehicle 12, the eye gaze, blink, facial expression, etc. of the user of interest are detected and used to estimate the degree of concentration, wakefulness, fatigue, emotion, etc. of the user of interest. Further, for example, based on the vehicle data from the vehicle 12, the details of the driving operation of the user of interest are estimated.

さらに、例えば、車両12の走行ルートや注目ユーザが運転している時間帯に基づいて、注目ユーザの状態が推定される。例えば、注目ユーザの心拍数や運動量が急速に上昇した後、通常とは異なる時間帯(例えば、深夜や早朝)に注目ユーザが運転したり、車両12が注目ユーザの日常の生活範囲の圏外を走行したりしている場合、注目ユーザが何らかの緊急事態により焦っていると推定される。 Furthermore, for example, the state of the noted user is estimated based on the travel route of the vehicle 12 and the time zone during which the noted user is driving. For example, after a rapid increase in the heart rate or amount of exercise of the user of interest, the user of interest drives during an unusual time period (for example, late at night or early in the morning), or the vehicle 12 moves out of the range of daily life of the user of interest. If the user is running, it is presumed that the user of interest is in a hurry due to some kind of emergency.

また、状態推定部152は、ステップS1の処理と同様に、注目ユーザの状態データログ及び推定状態履歴の更新を適宜行う。 In addition, the state estimation unit 152 appropriately updates the state data log and the estimated state history of the user of interest, as in the process of step S1.

ステップS12において、周辺データ取得部153は、車両12の周辺データの取得を開始する。例えば、周辺データ取得部153は、ユーザ端末部11又は車両12から送信されてくる位置情報、並びに、通信部151を介して他のサーバ等から受信した地図情報等に基づいて、注目ユーザの車両12の周辺の構造物、道路、渋滞、天候等の状態の検出を行う。また、例えば、周辺データ取得部153は、ユーザ端末部11又は車両12から送信されてくる映像データ、音声データ、及び、センサデータ等に基づいて、車両12周辺の物体(例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等)の検出を行う。なお、ユーザ端末部11又は車両12が、車両12の周辺の物体の検出処理を行い、検出結果をサーバ13に送信するようにしてもよい。 In step S<b>12 , the peripheral data acquisition unit 153 starts acquiring peripheral data of the vehicle 12 . For example, the peripheral data acquisition unit 153 acquires information about the vehicle of the noted user based on location information transmitted from the user terminal unit 11 or the vehicle 12 and map information received from another server or the like via the communication unit 151 . 12 surrounding structures, roads, traffic jams, weather conditions, etc. are detected. Further, for example, the peripheral data acquisition unit 153 acquires objects around the vehicle 12 (for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, etc.). Note that the user terminal unit 11 or the vehicle 12 may detect objects around the vehicle 12 and transmit the detection result to the server 13 .

周辺データ取得部153は、取得した車両12の周辺データを診断部154及びリスク予測部156に供給する。 The peripheral data acquisition unit 153 supplies the acquired peripheral data of the vehicle 12 to the diagnosis unit 154 and the risk prediction unit 156 .

ステップS13において、サーバ13は、運転挙動の検出処理を開始する。具体的には、例えば、以下の処理が開始される。 In step S13, the server 13 starts a driving behavior detection process. Specifically, for example, the following processing is started.

運転挙動検出部155は、通信部151が注目ユーザのユーザ端末部11及び車両12から受信したデータのうち、運転挙動(例えば、運転中の注目ユーザ又は車両12の挙動)に関するデータを通信部151から取得する。また、運転挙動検出部155は、取得した運転挙動に関するデータ、記憶部162に記憶されている注目ユーザの推定状態履歴、及び、周辺データ取得部153から取得した車両12の周辺データに基づいて、記憶部162に記憶されている注目ユーザの運転挙動検出モデルを用いて、運転挙動を検出する。すなわち、運転中の注目ユーザの挙動と車両12の挙動が検出される。例えば、車両12の速度、加速度、減速度、ブレーキ操作、ステアリング角度、走行ルート等が検出される。 The driving behavior detection unit 155 transmits data related to driving behavior (for example, the behavior of the user of interest or the vehicle 12 during driving) among the data received by the communication unit 151 from the user terminal unit 11 of the user of interest and the vehicle 12 to the communication unit 151 . Get from Further, the driving behavior detection unit 155, based on the acquired data related to the driving behavior, the estimated state history of the noted user stored in the storage unit 162, and the peripheral data of the vehicle 12 acquired from the peripheral data acquisition unit 153, The driving behavior is detected using the driving behavior detection model of the noted user stored in the storage unit 162 . That is, the behavior of the user of interest and the behavior of the vehicle 12 while driving are detected. For example, the speed, acceleration, deceleration, brake operation, steering angle, travel route, etc. of the vehicle 12 are detected.

なお、運転中の注目ユーザの挙動の一部は、ステップS11において、状態推定部152により検出(推定)されてもよい。 Part of the behavior of the user of interest while driving may be detected (estimated) by the state estimation unit 152 in step S11.

また、運転挙動の検出は、ユーザ端末部11、車両12、及び、サーバ13のいずれで行われてもよいし、ユーザ端末部11、車両12、及び、サーバ13が分担して行ってもよい。 Further, detection of driving behavior may be performed by any of the user terminal unit 11, the vehicle 12, and the server 13, or may be performed by the user terminal unit 11, the vehicle 12, and the server 13. .

次に、運転挙動検出部155は、検出した運転挙動、注目ユーザの推定状態履歴、及び、車両12の周辺データに基づいて、危険運転の検出処理を行う。 Next, the driving behavior detection unit 155 performs dangerous driving detection processing based on the detected driving behavior, the estimated state history of the noted user, and the peripheral data of the vehicle 12 .

例えば、OBD情報等に基づく車両12の速度、ステアリング角度、若しくは、トルク等の急変動、又は、ユーザ端末部11により検出される加速度又は角速度等の急変動により、急操作が検出される。 For example, a sudden operation is detected by a sudden change in the speed, steering angle, or torque of the vehicle 12 based on OBD information or the like, or a sudden change in acceleration, angular velocity, or the like detected by the user terminal unit 11 .

例えば、OBD情報等に基づく車両12の速度、ステアリング角度、若しくは、トルク等の周期的変動、又は、ユーザ端末部11により検出される加速度又は角速度等の周期的変動により、蛇行運転が検出される。 For example, meandering driving is detected by periodic fluctuations such as the speed, steering angle, or torque of the vehicle 12 based on OBD information, etc., or periodic fluctuations such as acceleration or angular velocity detected by the user terminal unit 11. .

例えば、ステレオカメラ、レーザレーダ、ミリ波レーダを用いて検出される先行車の位置により、車間距離の不足が検出される。 For example, the lack of inter-vehicle distance is detected from the position of the preceding vehicle detected using a stereo camera, laser radar, or millimeter wave radar.

ここで、上述したステップS7又は後述するステップS20において調整される検出パラメータが、危険運転の検出処理に用いられる。従って、上述したように、注目ユーザの運転適性度uが低くなるほど、検出対象となる危険運転のレベルが低くなり、より早期かつより軽微な段階から検出対象が危険運転として検出されるようになる。 Here, the detection parameters adjusted in step S7 described above or step S20 described later are used in the dangerous driving detection process. Therefore, as described above, the lower the driving aptitude u of the user of interest, the lower the level of dangerous driving to be detected. .

運転挙動検出部155は、運転挙動の検出結果を、検出した時刻とともに記憶部162に記憶させる。これにより、注目ユーザの運転挙動履歴が更新される。 The driving behavior detection unit 155 causes the storage unit 162 to store the detection result of the driving behavior together with the detection time. Thereby, the driving behavior history of the noted user is updated.

ステップS14において、診断部154は、運転時の運転診断を行う。例えば、診断部154は、運転開始後の注目ユーザの推定状態履歴、及び、運転挙動履歴に基づいて、記憶部162に記憶されている注目ユーザの運転診断モデルを用いて、運転適性度uを補正する。 In step S14, the diagnosis unit 154 performs driving diagnosis during driving. For example, the diagnosis unit 154 uses the driving diagnosis model of the user of interest stored in the storage unit 162 based on the estimated state history and the driving behavior history of the user of interest after the start of driving to determine the degree of driving aptitude u. to correct.

例えば、注目ユーザの集中度又は覚醒度の低下や、注目ユーザの疲労度、ストレス度、又は、緊張度の上昇が発生している場合、運転適性度uが下げられる。一方、例えば、注目ユーザの集中度又は覚醒度の上昇や、注目ユーザの疲労度、ストレス度、又は、緊張度の低下が発生している場合、運転適性度uが上げられる。また、例えば、危険運転が検出されている場合、検出頻度に応じて運転適性度uが下げられる。一方、危険運転が検出されない状態が継続している場合、継続時間に応じて、運転適性度uが上げられる。 For example, when the attention user's degree of concentration or alertness decreases, or when the attention user's fatigue level, stress level, or tension level increases, the driving aptitude level u is lowered. On the other hand, for example, when the focused user's degree of concentration or wakefulness increases, or when the focused user's fatigue level, stress level, or tension level decreases, the driving aptitude level u is increased. Further, for example, when dangerous driving is detected, the driving aptitude u is lowered according to the detection frequency. On the other hand, when the state in which dangerous driving is not detected continues, the degree of driving suitability u is increased according to the duration.

なお、ブレーキやアクセルペダルの踏み方の滑らかさ、コーナリングの際のステアリングホイールのさばき方、加速及び減速の滑らかさ等の注目ユーザの運転操作の良し悪しに基づいて、運転適性度uが補正されてもよい。 The degree of driving aptitude u is corrected based on the quality of the driving operation of the user of interest, such as the smoothness of stepping on the brake or accelerator pedal, the handling of the steering wheel during cornering, and the smoothness of acceleration and deceleration. may

診断部154は、補正後の運転適性度u、及び、推定される低下要因を、診断した時刻とともに、注目ユーザの運転の適性の診断結果として記憶部162に記憶させる。これにより、注目ユーザの運転診断履歴が更新される。 The diagnosis unit 154 causes the storage unit 162 to store the corrected degree of driving aptitude u and the estimated decrease factor together with the diagnosis time as a diagnosis result of the driving aptitude of the user of interest. As a result, the driving diagnosis history of the noted user is updated.

ステップS15において、リスク予測部156は、リスク予測を行う。ここで、リスク予測部156は、ステップS5の処理と異なり、注目ユーザの運転診断履歴に加えて、記憶部162に記憶されている注目ユーザの推定状態履歴及び運転挙動履歴をさらに用いて、リスク予測を行う。例えば、注目ユーザの運転適性度uが高くても、危険運転の検出頻度が高くなるほど、及び、検出された危険運転の危険度が高くなるほど、予測されるリスクが大きくなる。一方、例えば、注目ユーザの運転適性度uが低くても、危険運転が検出されない場合、予測されるリスクが小さくなる。このように、実際の注目ユーザの運転中の状態や運転挙動をさらに用いて、リスク予測が行われるため、ステップS5の処理と比較して、リスク予測の精度が向上する。 In step S15, the risk prediction unit 156 performs risk prediction. Here, unlike the processing in step S5, the risk prediction unit 156 further uses the noted user's estimated state history and driving behavior history stored in the storage unit 162 in addition to the noted user's driving diagnosis history to determine the risk. make predictions. For example, even if the driving aptitude degree u of the user of interest is high, the predicted risk increases as the frequency of detection of dangerous driving increases and the degree of risk of detected dangerous driving increases. On the other hand, for example, even if the driving aptitude degree u of the user of interest is low, if dangerous driving is not detected, the predicted risk becomes small. In this way, risk prediction is performed further using the actual driving state and driving behavior of the user of interest, so the accuracy of risk prediction is improved compared to the processing in step S5.

また、リスク予測部156は、リスク及びその発生確率だけでなく、今後リスクの発生確率が高くなる時刻(以下、リスク上昇時刻と称する)を予測することも可能である。例えば、リスク予測部156は、注目ユーザの集中度、緊張度、又は、覚醒度の時系列の変化に基づいて、それらが所定の閾値を下回る時刻を、リスク上昇時刻として推定する。 In addition, the risk prediction unit 156 can predict not only risks and their occurrence probabilities, but also the time when the risk occurrence probability will increase in the future (hereinafter referred to as risk rise time). For example, the risk prediction unit 156 estimates, as the risk rise time, the time when the focused user's degree of concentration, degree of tension, or degree of alertness falls below a predetermined threshold based on time-series changes.

リスク予測部156は、リスクの予測結果を損害予測部157に供給する。このリスクの予測結果には、予測されるリスクの内容、リスクを予測した根拠(例えば、運転適性度uの低下要因や危険運転の検出結果)、及び、リスクの発生確率が含まれる。また、必要に応じて、リスク上昇時刻が含まれる。 The risk prediction unit 156 supplies the risk prediction result to the damage prediction unit 157 . This risk prediction result includes the content of the predicted risk, the grounds for the risk prediction (for example, the factor of lowering the driving aptitude level u and the detection result of dangerous driving), and the probability of occurrence of the risk. In addition, the risk rise time is included as needed.

ステップS16において、ステップS6の処理と同様に、損害予測が行われる。ただし、損害予測部157は、ステップS6の処理と異なり、注目ユーザの従順度をさらに用いて、損害予測を行う。すなわち、注目ユーザの従順度が高いほどリスクを回避する可能性が高くなり、従順度が低いほどリスクを回避する可能性が低くなる。従って、従順度が高いほど、予測される損害が小さくなり、従順度が低いほど、予測される損害が大きくなる。損害予測部157は、リスク及び損害の予測結果を運転挙動検出部155及び提示制御部158に供給する。 In step S16, damage prediction is performed in the same manner as in step S6. However, unlike the processing in step S6, the damage prediction unit 157 further uses the obedience level of the noted user to predict damage. That is, the higher the degree of obedience of the user of interest, the higher the possibility of avoiding risk, and the lower the degree of obedience, the lower the possibility of avoiding risk. Thus, the higher the compliance, the lower the expected damage, and the lower the compliance, the higher the expected damage. The damage prediction unit 157 supplies the risk and damage prediction results to the driving behavior detection unit 155 and the presentation control unit 158 .

ここで、注目ユーザの従順度により、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが変化する。例えば、上述したように、注目ユーザの従順度が低くなるほど、予測されるリスクの損害が大きくなる。従って、検出対象となる危険運転のレベルがより低くなるように、検出パラメータが調整される。その結果、従順度が低くなるほど、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが低くなる。 Here, the level of dangerous driving to be detected and the level of risk to be predicted change depending on the obedience of the user of interest. For example, as noted above, the less compliant the user of interest is, the more damaging the predicted risk. Therefore, the detection parameters are adjusted so that the level of dangerous driving to be detected is lower. As a result, the lower the obedience, the lower the level of dangerous driving to be detected and the level of risk to be predicted.

ステップS17において、提示制御部158は、ユーザ(注目ユーザ)へのフィードバックを行うか否かを判定する。例えば、提示制御部158は、注目ユーザに通知する必要があるリスクの発生が予測されている場合、注目ユーザへのフィードバックを行うと判定し、処理はステップS18に進む。 In step S17, the presentation control unit 158 determines whether or not to give feedback to the user (noted user). For example, if the occurrence of a risk that requires notification to the user of interest is predicted, the presentation control unit 158 determines to provide feedback to the user of interest, and the process proceeds to step S18.

ステップS18において、ステップS8の処理と同様に、注目ユーザへのフィードバックが行われる。ここで、注目ユーザに提示されるフィードバック情報の具体例について説明する。 In step S18, feedback to the noted user is performed in the same manner as in step S8. Here, a specific example of feedback information presented to the noted user will be described.

例えば、注目ユーザの睡眠不足が推定されている場合に、急操作又は蛇行運転が検出されたとき、危険運転に対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「寝不足状態です。注意して運転してください。」のような音声メッセージが出力される。例えば、「注意して運転してください」の部分がリスク回避案となり、「寝不足状態です」の部分が、リスク回避案を提示する根拠となる。 For example, when it is estimated that the user of interest is sleep-deprived, and abrupt maneuvers or meandering driving is detected, attention to dangerous driving is issued. For example, the user terminal unit 11 or the vehicle 12 of the user of interest outputs a voice message such as "I am sleep deprived. Please drive carefully." For example, the part "Please drive carefully" is the risk avoidance plan, and the part "I am sleep deprived" is the basis for presenting the risk avoidance plan.

例えば、注目ユーザが日常生活の圏外にいると推定される場合、又は、強いストレスを感じていると推定される場合に、前方車両への接近が検出されたとき、危険運転に対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「急いでいませんか?落ち着いて運転しましょう。」のような音声メッセージが出力される。例えば、「落ち着いて運転しましょう」の部分がリスク回避案となり、「急いでいませんか?」の部分が、リスク回避案を提示する根拠となる。 For example, when it is estimated that the user of interest is out of range of daily life, or when it is estimated that he/she is under strong stress, and an approaching vehicle is detected, caution against dangerous driving is issued. will be For example, the user terminal unit 11 or vehicle 12 of the user of interest outputs a voice message such as "Are you in a hurry? Let's drive calmly." For example, the part "Let's drive calmly" is the risk avoidance plan, and the part "Aren't you in a hurry?"

例えば、注目ユーザが運転前に激しい運動をしていたと推定される場合に、注目ユーザの視線の一点集中が検出されたとき、又は、車両12周辺に多数の歩行者が検出されたとき、危険運転のおそれに対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「眠くなっていませんか?周囲に注意して運転してください。」のような音声メッセージが出力される。例えば、「周囲に注意して運転してください」の部分がリスク回避案となり、「眠くなっていませんか?」の部分が、リスク回避案を提示する根拠となる。 For example, when it is estimated that the user of interest has exercised vigorously before driving, when concentration of the gaze of the user of interest is detected, or when a large number of pedestrians are detected around the vehicle 12, danger A warning is given to the danger of driving. For example, the user terminal unit 11 or the vehicle 12 of the user of interest outputs a voice message such as "Are you sleepy? Please pay attention to your surroundings while driving." For example, the part "Please drive carefully around you" is the risk avoidance plan, and the part "Are you sleepy?" is the basis for presenting the risk avoidance plan.

例えば、注目ユーザが日常生活の圏外にいると推定される場合に、又は、注目ユーザの睡眠不足が推定される場合に、高速道路を走行中に急操作又は蛇行運転が検出されたとき、危険運転に対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「次のサービスエリアで休憩してはいかがでしょうか?あなたは昨日寝不足で、現在蛇行運転しています。」のような音声メッセージが出力される。例えば、「次のサービスエリアで休憩してはいかがでしょうか?」の部分がリスク回避案となり、「あなたは昨日寝不足で、現在蛇行運転しています」の部分が、リスク回避案を提示する根拠となる。 For example, when it is estimated that the user of interest is out of range of daily life, or when it is estimated that the user of interest is sleep-deprived, and when abrupt maneuvers or meandering driving is detected while driving on a highway, there is danger. A warning for driving is performed. For example, the user terminal unit 11 or vehicle 12 of the user of interest outputs a voice message such as "Would you like to take a break in the next service area? You were sleep deprived yesterday and are currently driving meandering." be. For example, "Why don't you take a rest at the next service area?" is a risk avoidance plan, and "You didn't get enough sleep last night and you are currently driving meandering" is the basis for suggesting a risk avoidance plan. becomes.

例えば、注目ユーザの睡眠不足又は極度の緊張状態が推定される場合に、危険運転が頻繁に検出されたとき、自動車保険の保険料上昇の注意喚起、及び、その原因の提示が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「寝不足(又は、緊張)による危険運転が頻発しています。あとx回の危険運転が検出されると、保険料のキャッシュバックの権利を失います。」のような音声メッセージが出力される。例えば、「あとx回の危険運転が検出されると、保険料のキャッシュバックの権利を失います」の部分が注目ユーザへの警告となり、「寝不足(又は、緊張)による危険運転が頻発しています」の部分が、警告を行う根拠となる。 For example, when it is estimated that the user of interest is sleep-deprived or extremely tense, and dangerous driving is frequently detected, an alert for an increase in automobile insurance premiums and the cause thereof are presented. For example, in the user terminal unit 11 or the vehicle 12 of the noted user, "Dangerous driving due to lack of sleep (or nervousness) is occurring frequently. If dangerous driving is detected x more times, the right to cash back insurance premiums will be granted. I will lose it." is output. For example, the part ``If dangerous driving is detected more than x times, you will lose the right to receive cashback for insurance premiums'' becomes a warning to the noted user, and ``Dangerous driving due to lack of sleep (or nervousness) is occurring frequently. The part of "I'm sorry" is the basis for issuing a warning.

例えば、注目ユーザが日常生活の圏外の慣れない道を走行していると推定され、疲労によるリスク上昇時刻が推定された場合、「疲れていませんか?サービスエリアAで休憩してはいかがでしょうか?」のような音声メッセージが出力される。なお、サービスエリアAは、リスク上昇時刻になるまでの間に、注目ユーザの車両12が到達可能であると推定されるサービスエリアである。例えば、「サービスエリアAで休憩してはいかがでしょうか?」の部分がリスク回避案となり、「疲れていませんか?」の部分が、リスク回避案を提示する根拠となる。 For example, if it is presumed that the user of interest is driving on an unfamiliar road outside the range of daily life, and the time at which the risk increases due to fatigue is presumed, the user may ask, "Are you tired? Why don't you take a break in service area A?" Are you sure?" is output. Note that the service area A is a service area that is estimated to be reachable by the vehicle 12 of the user of interest before the risk rise time. For example, the part "Why don't you take a rest in service area A?" is the risk avoidance plan, and the part "Aren't you tired?"

なお、リスク回避案は、例えば、「60km/hまでスピードを落としてください。」や「すぐに正面を向いてください。」等のように、より具体的な内容にすることも可能である。 It should be noted that the risk avoidance plan can also be made more specific, such as "Please slow down to 60 km/h" or "Please face straight ahead".

また、提示制御部158は、フィードバック情報を評価部159に供給する。 The presentation control unit 158 also supplies feedback information to the evaluation unit 159 .

ステップS19において、評価部159は、ユーザ(注目ユーザ)の従順度を評価する。具体的には、評価部159は、注目ユーザに対するフィードバックが行われた後の注目ユーザの推定状態履歴及び運転挙動履歴を記憶部162から取得する。そして、評価部159は、取得した履歴に基づいて、フィードバックに対する注目ユーザの反応(例えば、運転の内容)を検出する。 In step S19, the evaluation unit 159 evaluates the degree of obedience of the user (noted user). Specifically, the evaluation unit 159 acquires from the storage unit 162 the estimated state history and the driving behavior history of the user of interest after the feedback to the user of interest has been performed. Then, based on the acquired history, the evaluation unit 159 detects the attention user's reaction to the feedback (for example, details of driving).

また、評価部159は、注目ユーザの反応に基づいて、注目ユーザの従順度の評価値を更新する。例えば、今回提示されたフィードバック情報にリスク回避案が含まれており、そのリスク回避案に注目ユーザが従った場合、注目ユーザの従順度は上昇する。また、注目ユーザがリスク回避案に従うまでの時間が短いほど(反応速度が速いほど)、又は、注目ユーザの反応とリスク回避案との差が小さいほど、注目ユーザの従順度の上げ幅が大きくなる。逆に、注目ユーザがリスク回避案に従うまでの時間が長いほど(反応速度が遅いほど)、又は、注目ユーザの反応とリスク回避案との差が大きいほど、注目ユーザの従順度の上げ幅は小さくなる。 Also, the evaluation unit 159 updates the evaluation value of the degree of obedience of the user of interest based on the reaction of the user of interest. For example, if the feedback information presented this time includes a risk avoidance plan and the user of interest follows the risk avoidance plan, the degree of obedience of the user of interest increases. In addition, the shorter the time it takes for the noted user to follow the risk avoidance plan (the faster the reaction speed), or the smaller the difference between the noted user's reaction and the risk avoidance plan, the greater the increase in the degree of obedience of the noted user. . Conversely, the longer it takes for the noted user to follow the risk avoidance plan (the slower the reaction speed), or the greater the difference between the noted user's reaction and the risk avoidance plan, the smaller the extent of increase in the noted user's degree of obedience. Become.

一方、注目ユーザがリスク回避案に従わなかった場合、例えば、注目ユーザがリスク回避案を無視した場合、又は、注目ユーザがリスク回避案とは異なる反応を示した場合、注目ユーザの従順度は低下する。特に、注目ユーザがリスク回避案に従わずに危険運転を行った場合、注目ユーザの従順度の下げ幅は大きくなる。 On the other hand, if the noted user does not follow the risk avoidance plan, for example, if the noted user ignores the risk avoidance plan, or if the noted user reacts differently from the risk avoidance plan, the obedience degree of the noted user is descend. In particular, when the user of interest drives dangerously without following the risk avoidance plan, the obedience level of the user of interest greatly decreases.

評価部159は、更新した注目ユーザの従順度を損害予測部157に供給するとともに、記憶部162に記憶させる。 The evaluation unit 159 supplies the updated obedience degree of the user of interest to the damage prediction unit 157 and stores it in the storage unit 162 .

その後、処理はステップS20に進む。 After that, the process proceeds to step S20.

一方、ステップS17において、注目ユーザへのフィードバックを行わないと判定された場合、ステップS18及びステップS19の処理はスキップされ、処理はステップS20に進む。 On the other hand, when it is determined in step S17 that the feedback to the user of interest is not performed, the processing of steps S18 and S19 is skipped, and the processing proceeds to step S20.

ステップS20において、ステップS7の処理と同様に、運転挙動の検出パラメータが調整される。 In step S20, the driving behavior detection parameter is adjusted in the same manner as in step S7.

ステップS21において、状態推定部152は、ユーザが運転を停止したか否かを判定する。すなわち、状態推定部152は、ステップS10の運転開始の判定処理と同様に、通信部151を介して注目ユーザのユーザ端末部11及び車両12のうち少なくとも1つから受信したデータに基づいて、注目ユーザが運転を停止したか否かを判定する。 In step S21, the state estimation unit 152 determines whether or not the user has stopped driving. That is, the state estimating unit 152, similar to the process of determining whether to start driving in step S10, based on the data received from at least one of the user terminal unit 11 and the vehicle 12 of the user of interest via the communication unit 151, It is determined whether or not the user has stopped driving.

そして、注目ユーザが運転を停止していないと判定された場合、処理はステップS14に戻る。その後、ステップS21において、注目ユーザが運転を停止したと判定されるまで、ステップS14乃至ステップS21の処理が繰り返し実行される。これにより、注目ユーザの運転診断、リスク予測、及び、損害予測が適宜行われ、その結果に基づいて、危険運転の検出パラメータの調整や注目ユーザへのフィードバックが行われる。また、注目ユーザの従順度が適宜更新される。 Then, if it is determined that the user of interest has not stopped driving, the process returns to step S14. After that, the processing from step S14 to step S21 is repeatedly executed until it is determined in step S21 that the noted user has stopped driving. As a result, driving diagnosis, risk prediction, and damage prediction for the user of interest are appropriately performed, and based on the results, adjustment of detection parameters for dangerous driving and feedback to the user of interest are performed. Also, the obedient degree of the noted user is updated as appropriate.

一方、ステップS21において、注目ユーザが運転を停止したと判定された場合、処理はステップS22に進む。 On the other hand, if it is determined in step S21 that the user of interest has stopped driving, the process proceeds to step S22.

ステップS22において、ステップS1の処理と同様に、非運転時の注目ユーザの状態の推定処理が開始される。 In step S22, similarly to the process of step S1, the process of estimating the state of the noted user during non-driving is started.

ステップS23において、周辺データ取得部153は、車両12の周辺のデータの取得を停止する。 In step S<b>23 , the peripheral data acquisition unit 153 stops acquiring peripheral data of the vehicle 12 .

ステップS24において、運転挙動検出部155は、運転挙動の検出処理を停止する。 In step S24, the driving behavior detection unit 155 stops the driving behavior detection process.

ステップS25において、学習部160は、学習処理を行う。例えば、学習部160は、記憶部162に記憶されている注目ユーザの状態データログ、推定状態履歴、運転診断履歴、及び、運転挙動履歴に基づいて、状態推定モデル、運転診断モデル、運転挙動検出モデル、及び、リスク予測モデルの学習を行う。 In step S25, the learning unit 160 performs learning processing. For example, the learning unit 160, based on the state data log, the estimated state history, the driving diagnosis history, and the driving behavior history of the noted user stored in the storage unit 162, the state estimation model, the driving diagnosis model, the driving behavior detection Learn a model and a risk prediction model.

例えば、運転適性度uが低く評価されたにも関わらず、安全運転が行われた場合、上述した運転診断モデルを表す式(1)の重みwx及び重みwyが小さく設定される。これにより、注目ユーザの運転適性度uが、これまでより高く評価されるようになる。逆に、運転適性度uが高く評価されたにも関わらず、危険運転が頻繁に行われた場合、式(1)の重みwx及び重みwyが大きく設定される。これにより、注目ユーザの運転適性度uが、これまでより低く評価されるようになる。 For example, when safe driving is performed even though the degree of driving aptitude u is evaluated as low, the weights wx and wy of the above-described equation (1) representing the driving diagnosis model are set small. As a result, the driving aptitude level u of the user of interest is evaluated higher than before. Conversely, when dangerous driving is frequently performed even though the degree of driving aptitude u is highly evaluated, the weights wx and wy in equation (1) are set large. As a result, the driving aptitude level u of the user of interest is evaluated lower than before.

また、例えば、注目ユーザの直近状態パターンとユーザ集合状態パターンとの差が大きく、運転適性度uが低く評価されたにも関わらず、安全運転が行われた場合、上述した式(1)の重みwxが大きくされ、重みwyが小さくされる。すなわち、運転診断において、より注目ユーザの直近状態パターンと標準状態パターンとの差が重視されるようになる。 Further, for example, when the difference between the most recent state pattern of the user of interest and the collective state pattern of users is large and safe driving is performed even though the driving aptitude degree u is evaluated as low, the above equation (1) The weight wx is increased and the weight wy is decreased. That is, in the driving diagnosis, more emphasis is placed on the difference between the noted user's most recent state pattern and the standard state pattern.

なお、例えば、注目ユーザがサービスの利用を開始した当初は、事前の実験等により得られた平均的なユーザに対応するモデルが使用される。その後、学習処理により、各モデルが、より注目ユーザに適したモデルに更新されていく(個人化される)。 It should be noted that, for example, when the user of interest starts using the service, a model corresponding to an average user obtained by preliminary experiments or the like is used. After that, each model is updated (personalized) to a model more suitable for the user of interest through learning processing.

なお、この学習処理は、必ずしも注目ユーザの運転が終了する毎に行う必要はなく、例えば、所定の期間毎、運転が所定の回数行われる毎、運転時間が所定の時間以上増加する毎等の任意のタイミングで行われるようにしてもよい。また、必ずしも全てのモデルの学習処理を同時に行う必要はなく、モデル毎に異なるタイミングで学習処理を行うようにしてもよい。 Note that this learning process does not necessarily have to be performed every time the driving of the user of interest ends. You may make it perform at arbitrary timings. Moreover, it is not necessary to perform the learning process for all the models at the same time, and the learning process may be performed at different timings for each model.

また、例えば、学習部160は、推定状態履歴に示される運転前及び運転中の注目ユーザの疲労度の推移に基づいて、注目ユーザの疲労度を予測する疲労度推定モデルの学習を行ってもよい。例えば、状態推定部152は、疲労度推定モデルを用いて、走行予定ルートの各地点における注目ユーザの疲労度を推定することができる。さらに、例えば、学習部160は、時間帯、天候、渋滞の状況、道路の種類(例えば、一般道又は高速道)等の車両12の周囲の状態を加味して、疲労度推定モデルの学習を行うことにより、疲労度の推定精度を向上させることができる。 Further, for example, the learning unit 160 may learn a fatigue level estimation model that predicts the fatigue level of the user of interest based on transitions in the level of fatigue of the user of interest before and during driving indicated in the estimated state history. good. For example, the state estimation unit 152 can estimate the fatigue level of the user of interest at each point on the planned travel route using the fatigue level estimation model. Further, for example, the learning unit 160 takes into consideration the conditions around the vehicle 12 such as the time of day, weather, traffic conditions, road type (for example, general road or expressway), and learns the fatigue level estimation model. By doing so, it is possible to improve the accuracy of estimating the degree of fatigue.

また、学習処理の方法には、例えば、ニューラルネットワーク等の機械学習やその他の任意の方法を用いることができる。 Also, as a method of learning processing, for example, machine learning such as a neural network or any other method can be used.

ステップS26において、保険料算定部161は、ユーザ(注目ユーザ)の保険料の算定を行う。例えば、保険料算定部161は、注目ユーザの自動車保険の保険料又は保険料に対するキャッシュバック金額がリアルタイムに変動する場合、記憶部162に記憶されている注目ユーザの運転診断履歴、運転挙動履歴、及び、従順度に基づいて、保険料又はキャッシュバック金額を更新する。保険料算定部161は、更新した注目ユーザの保険料又はキャッシュバック金額を記憶部162に記憶させる。 In step S26, the insurance premium calculator 161 calculates the insurance premium for the user (noted user). For example, when the car insurance premium of the noted user or the amount of cash back for the insurance premium fluctuates in real time, the insurance premium calculation unit 161 and update the premium or cashback amount based on compliance. The insurance premium calculation unit 161 causes the storage unit 162 to store the updated insurance premium or cashback amount of the noted user.

例えば、運転適性度uの平均値がより低いほど、保険料が上がり(又は、キャッシュバック金額が下がり)、運転適性度uの平均値がより高いほど、保険料が下がる(又は、キャッシュバック金額が上がる)。 For example, the lower the average driving aptitude u, the higher the insurance premium (or the lower the cashback amount), and the higher the average driving aptitude u, the lower the insurance premium (or the cashback amount). increases).

また、例えば、危険運転の頻度又は累積回数が大きいほど、保険料が上がり(又は、キャッシュバック金額が下がり)、危険運転の頻度又は累積回数が小さいほど、保険料が下がる(又は、キャッシュバック金額が上がる)。さらに、例えば、危険運転に対して予測される損害の平均又は合計が高いほど、保険料が上がり(又は、キャッシュバック金額が下がり)、危険運転に対して予測される損害の平均又は合計が低いほど、保険料が下がる(又は、キャッシュバック金額が上がる)。 Also, for example, the higher the frequency or cumulative number of dangerous driving, the higher the insurance premium (or the lower the cashback amount), and the lower the frequency or the cumulative number of dangerous driving, the lower the insurance premium (or the lower the cashback amount). increases). Further, for example, the higher the average or total predicted damage for dangerous driving, the higher the insurance premium (or the lower the cashback amount), and the lower the average or total predicted damage for dangerous driving. The more you pay, the lower your insurance premium (or the higher your cashback amount will be).

また、例えば、従順度が低いほど、リスクの低下が期待できないため、保険料が上がり(又は、キャッシュバック金額が下がり)、従順度が高いほど、リスクの低下が期待できるため、保険料が下がる(又は、キャッシュバック金額が上がる)。特に、注目ユーザがリスク回避案に従わずに危険運転を行った場合、例えば、ペナルティとして、保険料の上げ幅(又は、キャッシュバック金額の下げ幅)が大きくなる。 Also, for example, the lower the obedient degree, the less risk reduction can be expected, so the insurance premium will increase (or the cashback amount will decrease), and the higher the obedient degree, the less risk can be expected, and the insurance premium will decrease. (or the cashback amount increases). In particular, if the user of interest drives dangerously without following the risk avoidance plan, for example, as a penalty, the amount of increase in insurance premium (or the amount of decrease in cashback amount) increases.

なお、この保険料算定処理は、必ずしも注目ユーザの運転が終了する毎に行う必要はなく、例えば、所定の期間毎、運転が所定の回数行われる毎、運転時間が所定の時間以上増加する毎等の任意のタイミングで行われるようにしてもよい。 Note that this insurance premium calculation processing does not necessarily have to be performed each time the driving of the user of interest ends. You may make it perform at arbitrary timings, such as.

また、この保険料算定処理は、例えば、次回の保険の更新時に、保険料の見積もり金額を算定するために実行されてもよい。 Further, this insurance premium calculation process may be executed, for example, to calculate an estimated insurance premium amount at the time of the next insurance renewal.

さらに、例えば、1回の運転毎又は1日単位の自動車保険の場合、この保険料算定処理を運転前に実行することにより、保険料を算定してもよい。この場合、例えば、注目ユーザの運転適性度u及び従順度のうち少なくとも1つを用いて、保険料が算定される。 Furthermore, for example, in the case of automobile insurance for each driving or daily basis, insurance premiums may be calculated by executing this insurance premium calculation process before driving. In this case, for example, the insurance premium is calculated using at least one of the driving aptitude u and the obedient degree of the user of interest.

また、算定した保険料又はキャッシュバック金額が、フィードバック情報として注目ユーザに提示されてもよい。 Also, the calculated insurance premium or cashback amount may be presented to the user of interest as feedback information.

その後、処理はステップS2に戻り、ステップS2以降の処理が実行される。 After that, the process returns to step S2, and the processes after step S2 are executed.

例えば、運転挙動は、運転中のユーザの状態だけでなく、運転前のユーザの状態(例えば、行動、生体状態、感情等)に影響される。これに対して、以上のように、ユーザの運転中の状態や運転挙動に加えて、運転前のユーザの状態を複合的に考慮することにより、より適切に運転適性度uが評価される。また、運転適性度uの精度が向上することにより、リスク予測及び損害予測の精度が向上する。その結果、より適切なタイミングで適切なフィードバック情報を提示することができ、安全性が向上し、事故の発生を防止することができる。 For example, the driving behavior is influenced not only by the state of the user during driving, but also by the state of the user before driving (for example, behavior, biological state, emotion, etc.). On the other hand, as described above, the driving aptitude u can be evaluated more appropriately by taking into consideration the user's state before driving in combination with the user's state during driving and driving behavior. Further, by improving the accuracy of the driving aptitude u, the accuracy of risk prediction and damage prediction is improved. As a result, appropriate feedback information can be presented at a more appropriate timing, safety can be improved, and accidents can be prevented.

また、フィードバック情報に、運転診断の結果の根拠又はリスクを予測した根拠が示されるため、ユーザの納得感が向上し、ユーザがリスク回避案に従う確率が高くなる。また、提示された根拠が誤っている場合、例えば、ユーザがサーバ13に訂正を指示し、学習処理に反映することにより、運転診断モデルやリスク予測モデルの精度が向上する。 In addition, since the feedback information indicates the grounds for the result of the driving diagnosis or the grounds for predicting the risk, the user's sense of satisfaction is improved, and the probability that the user follows the risk avoidance plan increases. Also, if the presented grounds are incorrect, for example, the user instructs the server 13 to correct them and reflect them in the learning process, thereby improving the accuracy of the driving diagnosis model and the risk prediction model.

さらに、ユーザの従順度を評価し、従順度に基づいて、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが変化することにより、ユーザがより確実にリスクを回避することができるようになる。 Furthermore, by evaluating the user's degree of obedience and changing the level of dangerous driving to be detected and the level of risk to be predicted based on the degree of obedience, the user can more reliably avoid risks. will be able to

また、ユーザの運転挙動だけでなく、運転適性度u及び従順度に基づいて、自動車保険の保険料(キャッシュバック金額を含む)を算定することにより、ユーザ毎により適切な保険料を設定することができる。これにより、例えば、ユーザがリスク回避案に従う動機づけを行うことができ、ユーザがより確実にリスクを回避することができるようになる。 Further, by calculating the insurance premium (including the cashback amount) of automobile insurance based on not only the user's driving behavior but also the degree of driving aptitude u and the degree of obedience, it is possible to set a more appropriate insurance premium for each user. can be done. Thereby, for example, the user can be motivated to follow the risk avoidance plan, and the user can more reliably avoid the risk.

<<2.変形例>>
以下、上述した本開示に係る技術の実施の形態の変形例について説明する。
<<2. Modification>>
Modifications of the embodiments of the technology according to the present disclosure described above will be described below.

<システムの構成に関する変形例>
図1乃至図4の情報処理システム10の構成例は、その一例であり、必要に応じて変更することが可能である。
<Modified example of system configuration>
The configuration example of the information processing system 10 shown in FIGS. 1 to 4 is one example, and can be changed as necessary.

例えば、以上の説明では、サーバ13が、ユーザ端末部11及び車両12(車載システム101)から取得したデータに基づいて、ほとんどの処理を行う例を示したが、例えば、ユーザ端末部11、車両12、及び、サーバ13で処理を分担したり、ユーザ端末部11又は車両12が単独で処理を行ったりすることも可能である。 For example, in the above description, the server 13 performs most of the processing based on data acquired from the user terminal unit 11 and the vehicle 12 (in-vehicle system 101). 12 and the server 13 may share the processing, or the user terminal unit 11 or the vehicle 12 may perform the processing alone.

例えば、ユーザ端末部11及び車両12の少なくとも一方が、サーバ13の処理の一部又は全部を行うようにすることが可能である。 For example, at least one of the user terminal unit 11 and the vehicle 12 can perform part or all of the processing of the server 13 .

例えば、ユーザ端末部11及び車両12の少なくとも一方が、状態推定部152、運転挙動検出部155、及び、評価部159の処理の一部又は全部を行い、推定結果及び検出結果をサーバ13に送信するようにしてもよい。 For example, at least one of the user terminal unit 11 and the vehicle 12 performs part or all of the processing of the state estimation unit 152, the driving behavior detection unit 155, and the evaluation unit 159, and transmits the estimation results and detection results to the server 13. You may make it

例えば、ユーザ端末部11及び車両12の少なくとも一方が、周辺データ取得部153の処理の一部又は全部を行い、取得した周辺データをサーバ13に送信するようにしてもよい。 For example, at least one of the user terminal unit 11 and the vehicle 12 may perform part or all of the processing of the peripheral data acquisition unit 153 and transmit the acquired peripheral data to the server 13 .

例えば、ユーザ端末部11及び車両12の少なくとも一方が、診断部154、リスク予測部156、及び、損害予測部157の処理の一部又は全部を行い、診断結果及び予測結果をサーバ13に送信するようにしてもよい。 For example, at least one of the user terminal unit 11 and the vehicle 12 performs part or all of the processing of the diagnosis unit 154, the risk prediction unit 156, and the damage prediction unit 157, and transmits the diagnosis results and prediction results to the server 13. You may do so.

また、例えば、運転支援に関する処理をユーザ端末部11で行うようにしてもよい。この場合、ユーザ端末部11は、複数の装置で構成してもよいし、1つの装置で構成してもよい。また、ユーザ端末部11が、車両12から各種のデータ(例えば、車両データ、映像データ、音声データ等)を取得し、処理に用いるようにしてもよいし、車両12からのデータを処理に用いないようにしてもよい。また、運転診断処理にユーザ集合状態パターンを用いてもよいし、用いなくてもよい。ユーザ集合状態パターンを用いる場合、例えば、サーバ13は、各ユーザのユーザ端末部11から取得した各ユーザの標準状態パターンに基づいて、ユーザ集合状態パターンの学習を行う。そして、サーバ13は、ユーザ集合状態パターンを示すデータを各ユーザのユーザ端末部11に送信する。 Further, for example, the user terminal unit 11 may perform processing related to driving assistance. In this case, the user terminal unit 11 may be composed of a plurality of devices, or may be composed of a single device. Further, the user terminal unit 11 may acquire various data (for example, vehicle data, video data, audio data, etc.) from the vehicle 12 and use it for processing, or may use the data from the vehicle 12 for processing. You can choose not to. Also, the user aggregate state pattern may or may not be used in the driving diagnosis process. When using the user group state pattern, for example, the server 13 learns the user group state pattern based on the standard state pattern of each user acquired from the user terminal unit 11 of each user. Then, the server 13 transmits data indicating the user group state pattern to the user terminal unit 11 of each user.

この場合、保険料の算定処理は、ユーザ端末部11及びサーバ13のいずれで行ってもよい。ユーザ端末部11が行う場合、例えば、保険料の算定処理を行うアプリケーションプログラムが、サーバ13から提供される。一方、サーバ13が行う場合、例えば、保険料の算定に必要なデータがユーザ端末部11からサーバ13に提供される。 In this case, either the user terminal unit 11 or the server 13 may perform the premium calculation processing. When the user terminal unit 11 performs, for example, an application program for calculating insurance premiums is provided from the server 13 . On the other hand, when the server 13 performs the calculation, for example, the user terminal unit 11 provides the server 13 with data necessary for calculating insurance premiums.

さらに、例えば、運転支援に関する処理のうち、非運転時のユーザの状態の推定処理及び標準状態パターンの学習処理を除くほぼ全ての処理を車両12(車載システム101)で行うようにしてもよい。この場合、例えば、ユーザ端末部11が、非運転時のユーザの状態の推定処理及び標準状態パターンの学習処理を行い、その結果得られる推定状態履歴及び標準状態パターンを示すデータを運転前に車両12に送信する。そして、車両12が、残りの処理を実行する。この場合、運転診断処理にユーザ集合状態パターンを用いてもよいし、用いなくてもよい。ユーザ集合状態パターンを用いる場合、ユーザ集合状態パターンを用いる場合、例えば、サーバ13は、各ユーザのユーザ端末部11から取得した各ユーザの標準状態パターンに基づいて、ユーザ集合状態パターンの学習を行う。そして、サーバ13は、ユーザ集合状態パターンを示すデータを各ユーザのユーザ端末部11又は車両12に送信する。 Further, for example, among the processes related to driving assistance, almost all the processes excluding the process of estimating the user's state when not driving and the process of learning the standard state pattern may be performed by the vehicle 12 (in-vehicle system 101). In this case, for example, the user terminal unit 11 performs a process of estimating the state of the user when not driving and a process of learning a standard state pattern. Send to 12. Vehicle 12 then performs the rest of the process. In this case, the user collective state pattern may or may not be used in the driving diagnosis process. When using user aggregate state patterns, for example, the server 13 learns user aggregate state patterns based on the standard state patterns of each user acquired from the user terminal unit 11 of each user. . Then, the server 13 transmits data indicating the user group state pattern to the user terminal unit 11 or the vehicle 12 of each user.

この場合、保険料の算定処理は、ユーザ端末部11、車両12、及び、サーバ13のいずれで行ってもよい。ユーザ端末部11又は車両12が行う場合、例えば、保険料の算定処理を行うアプリケーションプログラムが、サーバ13から提供される。一方、サーバ13が行う場合、例えば、保険料の算定に必要なデータがユーザ端末部11及び車両12からサーバ13に提供される。 In this case, the insurance premium calculation process may be performed by any of the user terminal unit 11 , the vehicle 12 , and the server 13 . When the user terminal unit 11 or the vehicle 12 performs the processing, the server 13 provides, for example, an application program for calculating insurance premiums. On the other hand, when the server 13 performs the calculation, for example, the user terminal unit 11 and the vehicle 12 provide the server 13 with data necessary for calculating insurance premiums.

また、例えば、ユーザ端末部11とサーバ13で分担して処理を行うようにしてもよい。この場合、車両12からのデータを処理に用いてもよいし、用いなくてもよい。 Further, for example, the user terminal unit 11 and the server 13 may share the processing. In this case, data from the vehicle 12 may or may not be used for processing.

さらに、例えば、車両12とサーバ13で分担して処理を行うようにしてもよい。この場合、例えば、ユーザ端末部11から車両12及びサーバ13に処理に必要なデータ(例えば、ユーザの標準状態パターン及び直近状態パターン等)が提供される。 Furthermore, for example, the vehicle 12 and the server 13 may share the processing. In this case, for example, the user terminal unit 11 provides the vehicle 12 and the server 13 with data necessary for processing (for example, the user's standard state pattern and latest state pattern).

また、例えば、複数のサーバで処理を分担してもよい。例えば、運転支援に関する処理と保険料算定に関する処理を異なるサーバで行ってもよい。 Also, for example, a plurality of servers may share the processing. For example, different servers may perform processing related to driving assistance and processing related to insurance premium calculation.

さらに、例えば、車両12とサーバ13との間の通信を、ユーザ端末部11を介して行うようにしてもよい。この場合、例えば、車両12からのデータが、いったんユーザ端末部11に送信された後、ユーザ端末部11からサーバ13に転送される。また、サーバ13からのデータが、いったんユーザ端末部11に送信された後、ユーザ端末部11から車両12に転送される。 Furthermore, for example, communication between the vehicle 12 and the server 13 may be performed via the user terminal unit 11 . In this case, for example, data from the vehicle 12 is once transmitted to the user terminal unit 11 and then transferred from the user terminal unit 11 to the server 13 . Data from the server 13 is once transmitted to the user terminal unit 11 and then transferred from the user terminal unit 11 to the vehicle 12 .

また、例えば、ユーザ端末部11とサーバ13との間の通信を、車両12を介して行うようにしてもよい。この場合、例えば、ユーザ端末部11からのデータが、いったん車両12に送信された後、車両12からサーバ13に転送される。また、サーバ13からのデータが、いったん車両12に送信された後、車両12からユーザ端末部11に転送される。 Further, for example, communication between the user terminal unit 11 and the server 13 may be performed via the vehicle 12 . In this case, for example, data from the user terminal unit 11 is once transmitted to the vehicle 12 and then transferred from the vehicle 12 to the server 13 . Data from the server 13 is once transmitted to the vehicle 12 and then transferred from the vehicle 12 to the user terminal unit 11 .

さらに、例えば、推定状態履歴の代わりに、ユーザの状態を推定する前の状態データログを直接用いて、診断部154の運転診断、リスク予測部156のリスク予測、及び、運転挙動検出部155の運転挙動の検出が行われてもよい。この場合、状態推定部152を削除することが可能である。 Furthermore, for example, instead of the estimated state history, the state data log before estimating the user's state is directly used to perform the driving diagnosis of the diagnosis unit 154, the risk prediction of the risk prediction unit 156, and the driving behavior detection unit 155. A detection of driving behavior may be performed. In this case, the state estimator 152 can be deleted.

<その他の変形例>
例えば、ユーザの直近状態パターンと標準状態パターン又はユーザ集合平均パターンとの乖離度に加えて、現在のユーザの状態を用いて、運転適性度uを算出するようにしてもよい。例えば、ユーザの直近状態パターンと標準状態パターンとの差が小さくても、例えば、ユーザの覚醒度が低かったり、興奮したり、落ち込んだりしている場合、危険運転が行われる可能性が高い。そこで、例えば、ユーザの状態を示す各項目のうち、運転への影響が大きい項目については、それらの項目の現在の状態(例えば、覚醒度、興奮度、落ち込み度)を、運転適性度uの算出に用いるようにしてもよい。
<Other Modifications>
For example, the driving aptitude u may be calculated using the current state of the user in addition to the degree of divergence between the user's most recent state pattern and the standard state pattern or user set average pattern. For example, even if the difference between the user's most recent state pattern and the standard state pattern is small, for example, if the user is less aroused, excited, or depressed, there is a high possibility of dangerous driving. Therefore, for example, among the items indicating the user's state, the current state of those items (for example, the degree of arousal, the degree of excitement, and the degree of depression) of those items that have a large influence on driving is used as the driving aptitude u. You may make it use for calculation.

また、推定するユーザの状態は、上述した生体状態、行動、及び、感情の3種類に限定されるものではない。例えば、上記の3種類のうち1種類又は2種類のみ推定するようにしてもよいし、他の種類の状態を推定するようにしてもよい。 Also, the user's state to be estimated is not limited to the three types of biological state, behavior, and emotion described above. For example, only one or two of the above three types may be estimated, or other types of states may be estimated.

さらに、例えば、通常は運転に直接影響しないと想定されるユーザの行動を、運転適性度uの算出に用いるようにしてもよい。例えば、ユーザの購買履歴に基づいて、ユーザが通常と異なる傾向のショッピングをした場合(例えば、非常に高価な買い物をした場合)、ユーザの状態(例えば、感情)が通常とは異なることが想定される。そこで、例えば、運転適性度uの算出に、ユーザの購買履歴を用いてもよい。 Further, for example, the user's behavior, which is normally assumed not to directly affect driving, may be used to calculate the degree of driving aptitude u. For example, based on the user's purchase history, it is assumed that the user's state (e.g., emotions) is different from normal if the user has an unusual shopping trend (e.g., very expensive shopping). be done. Therefore, for example, the purchase history of the user may be used to calculate the driving aptitude u.

また、例えば、運転適性度uの算出に、非運転時のユーザの状態に基づいて検出されるユーザの能力であって、運転にも影響する能力を用いてもよい。例えば、日常生活の判断能力が高いユーザの運転適性度uが高く設定され、判断能力が低いユーザの運転適性度uが低く設定されるようにしてもよい。 Further, for example, the driving aptitude u may be calculated using the ability of the user that is detected based on the state of the user when not driving and that also affects driving. For example, the driving aptitude u may be set high for users with high judgment ability in daily life, and the driving aptitude u may be set low for users with low judgment ability.

なお、この場合、例えば、判断能力が高いユーザと低いユーザが同じように車線変更を高頻度に繰り返していても、判断能力が高いユーザに対して予測されるリスクは低くなり、判断能力が低いユーザに対して予測されるリスクは高くなる。ただし、判断能力が高いユーザであっても、車線変更を減らすようにリスク回避案が提示されたにも関わらず、無視して車線変更を繰り返す場合、従順度が低く評価されるため、予測されるリスクは高くなる。 In this case, for example, even if a user with high judgment ability and a user with low judgment ability repeatedly change lanes with high frequency, the risk predicted for the user with high judgment ability is low, and the user with low judgment ability is low. The expected risk to the user is higher. However, even for users with high decision-making ability, if they ignore the risk avoidance plan to reduce lane changes and repeatedly change lanes, their obedience will be evaluated as low. increased risk of

さらに、例えば、ユーザの状態の推定結果、運転診断の結果、及び、運転挙動の検出結果のうち1つ又は2つのみに基づいて、リスク予測が行われるようにしてもよい。また、例えば、運転診断の結果を用いてリスク予測が行われる場合、運転前の運転適性度u及び運転中の運転適性度uのうち一方のみを用いるようにしてもよい。 Further, for example, risk prediction may be performed based on only one or two of the user's condition estimation result, driving diagnosis result, and driving behavior detection result. Further, for example, when risk prediction is performed using the results of driving diagnosis, only one of the driving aptitude degree u before driving and the driving aptitude degree u during driving may be used.

また、例えば、運転前及び運転中の一方のユーザの状態のみに基づいて、運転診断が行われるようにしてもよい。 Further, for example, the driving diagnosis may be performed based only on one of the user's states before driving and during driving.

さらに、例えば、事故の発生原因の究明に、推定状態履歴、運転診断履歴、及び、運転挙動履歴を用いることが可能である。例えば、ドライブレコーダに、推定状態履歴、運転診断履歴、及び、運転挙動履歴を記録することにより、事故発生時のユーザ(運転者)の状態や挙動に加えて、運転前のユーザの状態に基づいて、事故の発生原因を究明することが可能になる。 Furthermore, for example, it is possible to use the estimated state history, the driving diagnosis history, and the driving behavior history to investigate the cause of the accident. For example, by recording the estimated state history, the driving diagnosis history, and the driving behavior history in the drive recorder, in addition to the state and behavior of the user (driver) at the time of the accident, Therefore, it becomes possible to investigate the cause of the accident.

また、例えば、ユーザ端末部11又は車両12が、他のユーザの運転適性度uやリスクの予測結果等を、他のユーザのユーザ端末部11若しくは車両12、又は、サーバ13から取得できるようにしてもよい。これにより、例えば、運転適性度uが低いユーザが運転する危険車両が近くに存在する場合、例えば、ユーザは、事前にその情報を取得することにより、危険車両による事故に巻き込まれることを回避することができる。 Further, for example, the user terminal unit 11 or the vehicle 12 can acquire the driving aptitude u of the other user, the risk prediction result, etc. from the user terminal unit 11 or the vehicle 12 of the other user, or the server 13. may As a result, for example, when a dangerous vehicle driven by a user with a low driving aptitude u exists nearby, the user can avoid being involved in an accident caused by the dangerous vehicle by obtaining the information in advance. be able to.

さらに、状態推定モデル、運転診断モデル、運転挙動検出モデル、及び、リスク予測モデルの個人化は、必ずしも行う必要はなく、所定のアルゴリズム等を用いたモデルを用いるようにしてもよい。また、例えば、上記のモデルの学習をユーザ毎に行わずに、例えば、ユーザ集合全体で行い、各ユーザで共通のモデルを用いるようにしてもよい。 Furthermore, the state estimation model, the driving diagnosis model, the driving behavior detection model, and the risk prediction model do not necessarily have to be personalized, and a model using a predetermined algorithm or the like may be used. Further, for example, the learning of the above model may not be performed for each user, but may be performed for the entire user group, and a common model may be used for each user.

また、例えば、ユーザの従順度に基づいて、フィードバック情報の提示方法、提示頻度、及び、提示内容等を変更してもよい。 Further, for example, the feedback information presentation method, presentation frequency, presentation content, etc. may be changed based on the user's obedience.

<適用例>
本技術の運転支援処理は、先に例示した車両以外にも、(例えば、本技術は、自動二輪車、自転車、パーソナルモビリティ、飛行機、船舶、建設機械、農業機械(トラクター)等の各種の移動体の運転を行う場合にも適用することができる。すなわち、運転前及び運転中のユーザの状態の推定結果を用いて、運転診断、リスク予測、損害予測、ユーザへのフィードバック等を行うことができる。なお、本技術が適用可能な移動体には、場所を移動するもの以外にも、一部の建設機械等(例えば、固定式のクレーン等)の、固定された場所において作業を行う部分等が移動する移動体も含まれる。また、本技術が適用可能な移動体には、例えば、ドローン、ロボット等のユーザが搭乗せずにリモートで運転(操作)する移動体も含まれる。
<Application example>
The driving support processing of this technology can be applied to vehicles other than the vehicles exemplified above (for example, this technology can be applied to various mobile objects such as motorcycles, bicycles, personal mobility, airplanes, ships, construction machinery, agricultural machinery (tractors), etc.). In other words, it is possible to perform driving diagnosis, risk prediction, damage prediction, feedback to the user, etc. using the estimation results of the user's state before and during driving. In addition to moving objects that move from place to place, this technology can also be applied to parts of construction machinery, etc. (for example, fixed cranes, etc.) that work in a fixed place. Mobile objects to which the present technology can be applied also include, for example, mobile objects that are remotely driven (operated) without a user on board, such as drones and robots.

また、本技術は、自動車保険以外にも、生命保険、損害保険、医療保険等の各種の保険を提供するシステム及び装置等に適用することができる。例えば、ユーザの推定状態履歴及び従順度に基づいて、各種の保険料(キャッシュバック金額を含む)を算定することができる。具体的には、例えば、生命保険又は医療保険の場合、ユーザ端末部11又はサーバ13が、ユーザの状態推定処理を行い、推定状態履歴を蓄積する。また、ユーザ端末部11又はサーバ13が、推定状態履歴に基づくユーザの生活習慣及び生体状態等に基づいて、病気等のリスクを避けるための提案(リスク回避案)をユーザに提示し、その反応に基づいて、ユーザの従順度を評価する。そして、ユーザ端末部11又はサーバ13が、ユーザの生活習慣及び生体状態、並びに、従順度等に基づいて、生命保険又は医療保険の保険料を算定する。 In addition to automobile insurance, the present technology can be applied to systems and devices that provide various types of insurance such as life insurance, casualty insurance, and medical insurance. For example, various insurance premiums (including cashback amounts) can be calculated based on the user's estimated state history and obedience. Specifically, for example, in the case of life insurance or medical insurance, the user terminal unit 11 or the server 13 performs user state estimation processing and accumulates an estimated state history. In addition, the user terminal unit 11 or the server 13 presents the user with a proposal (risk avoidance plan) for avoiding the risk of illness or the like based on the user's lifestyle habits, biological condition, etc. based on the estimated state history, and the user's reaction. Evaluate user compliance based on Then, the user terminal unit 11 or the server 13 calculates insurance premiums for life insurance or medical insurance based on the user's lifestyle habits, biological condition, degree of obedience, and the like.

例えば、生活習慣及び生体状態が良いユーザほど、保険料が安くなり、生活習慣及び生体状態が悪いユーザほど、保険料が高くなる。また、従順度が高いユーザほど、保険料が安くなり、従順度が低いユーザほど、保険料が高くなる。このように、ユーザの生活習慣及び生体状態だけでなく、ユーザの従順度を考慮することにより、上述した自動車保険の場合と同様に、ユーザ毎により適切な保険料を設定することができる。 For example, a user with good lifestyle habits and a good biometric condition has a lower insurance premium, and a user with a bad lifestyle habit and a bad biometric condition has a higher insurance premium. In addition, a user with a higher degree of obedience has a lower insurance premium, and a user with a lower degree of obedience has a higher insurance premium. In this way, by considering not only the user's lifestyle habits and biological condition but also the user's obedience, it is possible to set a more appropriate insurance premium for each user, as in the case of automobile insurance described above.

<<3.その他>>
<コンピュータの構成例>
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
<<3. Other>>
<Computer configuration example>
The series of processes described above can be executed by hardware or by software. When executing a series of processes by software, a program that constitutes the software is installed in the computer. Here, the computer includes, for example, a computer built into dedicated hardware and a general-purpose personal computer capable of executing various functions by installing various programs.

図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。 FIG. 11 is a block diagram showing a configuration example of hardware of a computer that executes the series of processes described above by a program.

コンピュータにおいて、CPU(Central Processing Unit)401,ROM(Read Only Memory)402,RAM(Random Access Memory)403は、バス404により相互に接続されている。 In the computer, a CPU (Central Processing Unit) 401 , a ROM (Read Only Memory) 402 and a RAM (Random Access Memory) 403 are interconnected by a bus 404 .

バス404には、さらに、入出力インターフェース405が接続されている。入出力インターフェース405には、入力部406、出力部407、記録部408、通信部409、及びドライブ410が接続されている。 An input/output interface 405 is also connected to the bus 404 . An input unit 406 , an output unit 407 , a recording unit 408 , a communication unit 409 and a drive 410 are connected to the input/output interface 405 .

入力部406は、入力スイッチ、ボタン、マイクロフォン、撮像素子などよりなる。出力部407は、ディスプレイ、スピーカなどよりなる。記録部408は、ハードディスクや不揮発性のメモリなどよりなる。通信部409は、ネットワークインターフェースなどよりなる。ドライブ410は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体411を駆動する。 An input unit 406 includes input switches, buttons, a microphone, an imaging device, and the like. The output unit 407 includes a display, a speaker, and the like. A recording unit 408 is composed of a hard disk, a nonvolatile memory, or the like. A communication unit 409 includes a network interface and the like. A drive 410 drives a removable recording medium 411 such as a magnetic disk, optical disk, magneto-optical disk, or semiconductor memory.

以上のように構成されるコンピュータでは、CPU401が、例えば、記録部408に記録されているプログラムを、入出力インターフェース405及びバス404を介して、RAM403にロードして実行することにより、上述した一連の処理が行われる。 In the computer configured as described above, the CPU 401 loads, for example, a program recorded in the recording unit 408 into the RAM 403 via the input/output interface 405 and the bus 404, and executes the above-described series of programs. is processed.

コンピュータ(CPU401)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体411に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 A program executed by the computer (CPU 401) can be provided by being recorded on a removable recording medium 411 such as a package medium, for example. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.

コンピュータでは、プログラムは、リムーバブル記録媒体411をドライブ410に装着することにより、入出力インターフェース405を介して、記録部408にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部409で受信し、記録部408にインストールすることができる。その他、プログラムは、ROM402や記録部408に、あらかじめインストールしておくことができる。 In the computer, the program can be installed in the recording unit 408 via the input/output interface 405 by loading the removable recording medium 411 into the drive 410 . Also, the program can be received by the communication unit 409 and installed in the recording unit 408 via a wired or wireless transmission medium. In addition, the program can be installed in the ROM 402 or the recording unit 408 in advance.

なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be executed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.

また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 Further, in this specification, a system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether or not all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing, are both systems. .

さらに、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Furthermore, the embodiments of the present technology are not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present technology.

例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.

また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the flowchart above can be executed by one device, or can be shared by a plurality of devices and executed.

さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Furthermore, when one step includes a plurality of processes, the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.

<構成の組み合わせ例>
本技術は、以下のような構成をとることもできる。
<Configuration example combination>
This technique can also take the following configurations.

(1)
予め取得された移動体を運転するユーザの運転前の状態、及び、運転中に取得される当該運転するユーザの状態に基づいて、前記ユーザの運転に対する適性の診断を行う診断部と、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部と
を備える情報処理装置。
(2)
運転中の前記ユーザ又は前記移動体の挙動である運転挙動を検出する運転挙動検出部を
さらに備え、
前記運転挙動検出部の検出対象となる危険運転のレベルが、前記診断の結果に基づいて変化する
前記(1)に記載の情報処理装置。
(3)
前記診断部は、さらに前記運転挙動の検出結果に基づいて、前記診断を行う
前記(2)に記載の情報処理装置。
(4)
前記診断部は、運転前の前記ユーザの状態に基づいて、運転前の前記ユーザの運転に対する適性を診断し、運転中の前記ユーザの状態及び前記運転挙動の検出結果に基づいて、運転中の前記ユーザの運転に対する適性を診断する
前記(3)に記載の情報処理装置。
(5)
前記診断の結果、及び、前記運転挙動の検出結果のうち少なくとも1つに基づいて、前記ユーザによる前記移動体の運転に関するリスクを予測するリスク予測部を
さらに備える前記(2)乃至(4)のいずれかに記載の情報処理装置。
(6)
前記フィードバック情報は、前記リスクの内容、及び、前記リスクが予測された根拠を含む
前記(5)に記載の情報処理装置。
(7)
前記リスクが予測された根拠は、前記診断の結果に基づく
前記(6)に記載の情報処理装置。
(8)
前記フィードバック情報は、前記リスクの回避案を含む
前記(5)乃至(7)のいずれかに記載の情報処理装置。
(9)
前記診断に基づく前記ユーザの運転の適性度が低くなるほど、前記運転挙動検出部の検出対象となる危険運転のレベルが低くなる
前記(2)乃至(8)のいずれかに記載の情報処理装置。
(10)
前記診断の結果、及び、前記運転挙動の検出結果に基づいて、前記診断を行うモデルの学習を行う学習部を
さらに備える前記(2)乃至(9)のいずれかに記載の情報処理装置。
(11)
前記診断部は、前記ユーザの直近の状態と前記ユーザの標準的な状態との差に基づいて、前記診断を行う
前記(1)乃至(10)のいずれかに記載の情報処理装置。
(12)
前記診断部は、さらに、前記ユーザの直近の状態と、複数のユーザを含むユーザ集合におけるユーザの平均的な状態との差に基づいて、前記診断を行う
前記(11)に記載の情報処理装置。
(13)
運転前及び運転中の前記ユーザの状態を推定する状態推定部を
さらに備え、
前記診断部は、前記ユーザの状態の推定結果に基づいて、前記診断を行う
前記(1)乃至(12)のいずれかに記載の情報処理装置。
(14)
前記ユーザの状態は、前記ユーザの生体状態、行動、及び、感情のうち少なくとも1つを含む
前記(13)に記載の情報処理装置。
(15)
前記診断部は、前記ユーザの運転前及び運転中に取得された前記ユーザの状態を示すデータに基づいて、前記診断を行う
前記(1)乃至(12)のいずれかに記載の情報処理装置。
(16)
予め取得された移動体を運転するユーザの運転前の状態、及び、運転中に取得される当該運転するユーザの状態に基づいて、前記ユーザの運転に対する適性の診断を行う診断ステップと、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御ステップと
を含む情報処理方法。
(17)
予め取得された移動体を運転するユーザの運転前の状態、及び、運転中に取得される当該運転するユーザの状態に基づいて、前記ユーザの運転に対する適性の診断を行う診断ステップと、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御ステップと
を含む処理をコンピュータに実行させるためのプログラム。
(1)
a diagnosis unit that diagnoses the driving aptitude of the user based on the previously acquired state of the user before driving and the state of the user acquired during driving;
and a presentation control unit that generates feedback information based on the diagnosis obtained by the diagnosis unit.
(2)
further comprising a driving behavior detection unit that detects a driving behavior that is the behavior of the user or the moving object during driving,
The information processing apparatus according to (1), wherein the level of dangerous driving to be detected by the driving behavior detection unit changes based on the result of the diagnosis.
(3)
The information processing apparatus according to (2), wherein the diagnosis unit further performs the diagnosis based on the detection result of the driving behavior.
(4)
The diagnosis unit diagnoses the driving aptitude of the user before driving based on the state of the user before driving, and diagnoses the driving aptitude of the user before driving based on the state of the user during driving and the detection result of the driving behavior. The information processing device according to (3), which diagnoses the user's aptitude for driving.
(5)
(2) to (4) above, further comprising a risk prediction unit that predicts a risk associated with driving of the moving body by the user based on at least one of the result of the diagnosis and the detection result of the driving behavior. The information processing device according to any one of the above.
(6)
The information processing apparatus according to (5), wherein the feedback information includes details of the risk and grounds for predicting the risk.
(7)
The information processing apparatus according to (6), wherein the basis for predicting the risk is based on the result of the diagnosis.
(8)
The information processing apparatus according to any one of (5) to (7), wherein the feedback information includes a plan for avoiding the risk.
(9)
The information processing apparatus according to any one of (2) to (8), wherein the lower the user's driving aptitude based on the diagnosis, the lower the level of dangerous driving to be detected by the driving behavior detection unit.
(10)
The information processing apparatus according to any one of (2) to (9), further comprising a learning unit that learns a model for performing the diagnosis based on the result of the diagnosis and the detection result of the driving behavior.
(11)
The information processing apparatus according to any one of (1) to (10), wherein the diagnosis unit performs the diagnosis based on a difference between the user's most recent state and the user's standard state.
(12)
The information processing device according to (11), wherein the diagnosis unit further performs the diagnosis based on a difference between the most recent state of the user and an average state of users in a user group including a plurality of users. .
(13)
further comprising a state estimating unit that estimates the state of the user before and during driving,
The information processing apparatus according to any one of (1) to (12), wherein the diagnosis unit performs the diagnosis based on a result of estimating the state of the user.
(14)
The information processing apparatus according to (13), wherein the user's state includes at least one of the user's biological state, behavior, and emotion.
(15)
The information processing apparatus according to any one of (1) to (12), wherein the diagnosis unit performs the diagnosis based on data indicating the state of the user acquired before and during the driving of the user.
(16)
a diagnosis step of diagnosing the driving aptitude of the user based on the pre-obtained state of the user before driving and the state of the user acquired during driving;
and a presentation control step of generating feedback information based on the diagnosis obtained by the diagnosis unit.
(17)
a diagnosis step of diagnosing the driving aptitude of the user based on the pre-obtained state of the user before driving and the state of the user acquired during driving;
and a presentation control step of generating feedback information based on the diagnosis obtained by the diagnosis unit.

なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be provided.

10 情報処理システム, 11 ユーザ端末部, 12 車両, 13 サーバ, 51 モバイル端末, 52 ウエアラブル端末, 61 GNSS受信機, 62 慣性センサ, 63 環境センサ, 64 生体センサ, 66 出力部, 67 制御部, 81 生体センサ, 83 出力部, 84 制御部, 101 車載システム, 111 車両データ取得部, 112 映像音声取得部, 114 出力部, 115 制御部, 152 状態推定部, 154 診断部, 155 運転挙動検出部, 156 リスク予測部, 157 損害予測部, 158 提示制御部, 159 評価部, 160 学習部, 161 保険料算定部 10 information processing system, 11 user terminal unit, 12 vehicle, 13 server, 51 mobile terminal, 52 wearable terminal, 61 GNSS receiver, 62 inertial sensor, 63 environment sensor, 64 biological sensor, 66 output unit, 67 control unit, 81 biological sensor, 83 output unit, 84 control unit, 101 in-vehicle system, 111 vehicle data acquisition unit, 112 video/audio acquisition unit, 114 output unit, 115 control unit, 152 state estimation unit, 154 diagnosis unit, 155 driving behavior detection unit, 156 risk prediction unit, 157 damage prediction unit, 158 presentation control unit, 159 evaluation unit, 160 learning unit, 161 insurance premium calculation unit

本技術は、情報処理システム、情報処理装置、情報処理方法、及び、プログラムに関し、特に、移動体の運転支援を行う場合に用いて好適な情報処理システム、情報処理装置、情報処理方法、及び、プログラムに関する。 The present technology relates to an information processing system, an information processing device, an information processing method, and a program, and in particular, an information processing system, an information processing device, an information processing method, and an information processing method suitable for use in assisting driving of a moving body. Regarding the program.

本技術の第1の側面の情報処理システムは、運転中のユーザ又は車両の挙動である運転挙動を検出する運転挙動検出部と、運転挙動の検出結果に基づいて、ユーザの運転診断を行う診断部と、前記運転診断に基づいて、フィードバック情報を生成する提示制御部とを備え、前記運転挙動検出部は、1つ又は複数の前記運転検出用パラメータにおいて、複数の閾値を持つ。
本技術の第の側面の情報処理装置は、運転中のユーザ又は車両の挙動である運転挙動の検出結果を取得し、運転検出用パラメータを用いて検出された運転挙動の検出結果に基づいて、ユーザの運転診断を行う診断部と、前記運転診断に基づいて、フィードバック情報を生成する提示制御部とを備え、1つ又は複数の前記運転検出用パラメータにおいて、複数の閾値を持つ。
An information processing system according to a first aspect of the present technology includes a driving behavior detection unit that detects a driving behavior that is a behavior of a user or a vehicle during driving, and a diagnosis that performs driving diagnosis of the user based on the detection result of the driving behavior. and a presentation control unit that generates feedback information based on the driving diagnosis, and the driving behavior detection unit has a plurality of thresholds in one or more of the driving detection parameters.
An information processing device according to a second aspect of the present technology acquires a driving behavior detection result that is a behavior of a user or a vehicle while driving, and based on the driving behavior detection result detected using a driving detection parameter, and a presentation control unit for generating feedback information based on the driving diagnosis , wherein one or more of the driving detection parameters have a plurality of thresholds.

本技術の第の側面の情報処理方法は、運転中のユーザ又は車両の挙動である運転挙動を検出し、運転検出用パラメータを用いて検出された運転挙動の検出結果に基づいて、ユーザの運転診断を行い、前記運転診断に基づいて、フィードバック情報を生成し、1つ又は複数の前記運転検出用パラメータにおいて、複数の閾値を持つ。 An information processing method according to a third aspect of the present technology detects a driving behavior that is a behavior of a user or a vehicle while driving , and based on the detection result of the driving behavior detected using a driving detection parameter , A driving diagnosis is performed, feedback information is generated based on the driving diagnosis , and a plurality of threshold values are provided for one or more of the driving detection parameters.

本技術の第の側面のプログラムは、運転中のユーザ又は車両の挙動である運転挙動を検出し、運転検出用パラメータを用いて検出された運転挙動の検出結果に基づいて、ユーザの運転診断を行い、前記運転診断に基づいて、フィードバック情報を生成し、1つ又は複数の前記運転検出用パラメータにおいて、複数の閾値を持つ処理をコンピュータに実行させる。 A program according to a third aspect of the present technology detects a driving behavior that is a behavior of a user or a vehicle during driving , and based on the detection result of the driving behavior detected using the driving detection parameters , the user 's A driving diagnosis is performed, feedback information is generated based on the driving diagnosis , and a computer is caused to execute processing having a plurality of threshold values for one or more of the driving detection parameters.

本技術の第1の側面においては、運転中のユーザ又は車両の挙動である運転挙動が検出され、運転挙動の検出結果に基づいて、ユーザの運転診断が行われ、前記運転診断に基づいて、フィードバック情報が生成される。 In a first aspect of the present technology, driving behavior, which is the behavior of a user or a vehicle during driving, is detected , driving diagnosis of the user is performed based on the detection result of the driving behavior, and the driving diagnosis is performed. Based on this, feedback information is generated.

本技術の第2の側面においては、運転検出用パラメータを用いて検出された運転中のユーザ又は車両の挙動である運転挙動の検出結果が取得され、運転挙動の検出結果に基づいて、ユーザの運転診断が行われ、前記運転診断に基づいて、フィードバック情報が生成される。 In a second aspect of the present technology, a driving behavior detection result, which is the behavior of the user or vehicle during driving detected using the driving detection parameters, is acquired, and based on the driving behavior detection result, the user's A driving diagnosis is performed and feedback information is generated based on the driving diagnosis .

本技術の第3の側面においては、運転中のユーザ又は車両の挙動である運転挙動が検され、運転検出用パラメータを用いて検出された運転挙動の検出結果に基づいて、ユーザの運転診断が行われ、前記運転診断に基づいて、フィードバック情報が生成される。 In a third aspect of the present technology, the driving behavior that is the behavior of the user or the vehicle during driving is detected , and based on the detection result of the driving behavior detected using the driving detection parameters , the user 's A driving diagnosis is performed and feedback information is generated based on the driving diagnosis .

本技術の第1乃至第3の側面によれば、ユーザの移動体の運転に対する適性の診断精度
が向上する。その結果、移動体の運転の安全性が向上する。
According to the first to third aspects of the present technology, the accuracy of diagnosing the user's aptitude for driving a mobile object is improved. As a result, the driving safety of the moving body is improved.

Claims (17)

ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出部と、
運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断部と、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部と
を備え、
前記運転挙動検出部は、複数の閾値に基づいて、運転挙動を検出し、
前記診断に基づくユーザの運転の適性度が低くなるほど、前記運転挙動検出部の検出対象となる危険運転のレベルが低くなる
情報処理装置。
a driving behavior detection unit that detects a driving behavior, which is a behavior of a mobile object driven by a user;
Diagnosis for diagnosing the driving aptitude of the user before driving based on the state of the user before driving, and diagnosing the driving aptitude of the user during driving based on the state and driving behavior of the user during driving Department and
a presentation control unit that generates feedback information based on the diagnosis obtained by the diagnosis unit;
The driving behavior detection unit detects driving behavior based on a plurality of thresholds,
The level of dangerous driving to be detected by the driving behavior detector decreases as the user's driving aptitude based on the diagnosis decreases.
ユーザの運転による挙動である運転挙動を複数の検出パラメータに基づいて検出する運転挙動検出部と、
運転中のユーザの状態の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断部と、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部と
を備え、
前記フィードバック情報は、前記診断の結果を時系列で表す
情報処理装置。
a driving behavior detection unit that detects a driving behavior, which is a behavior caused by a user's driving, based on a plurality of detection parameters;
a diagnosis unit for diagnosing the driving aptitude of the user who is driving based on the detection result of the state of the user who is driving;
a presentation control unit that generates feedback information based on the diagnosis obtained by the diagnosis unit;
The information processing device, wherein the feedback information represents the results of the diagnosis in time series.
ユーザの運転による移動体の挙動である運転挙動を複数のパラメータに基づいて検出する運転挙動検出部と、
運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断部と、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部と
を備え、
前記運転挙動検出部は、前記複数のパラメータのうち1つまたは複数を用いて、危険な運転挙動を検出する
情報処理装置。
a driving behavior detection unit that detects, based on a plurality of parameters, a driving behavior, which is the behavior of a mobile object driven by a user;
Diagnosis for diagnosing the driving aptitude of the user before driving based on the state of the user before driving, and diagnosing the driving aptitude of the user during driving based on the state and driving behavior of the user during driving Department and
a presentation control unit that generates feedback information based on the diagnosis obtained by the diagnosis unit;
The information processing device, wherein the driving behavior detection unit detects a dangerous driving behavior using one or more of the plurality of parameters.
ユーザの運転による移動体の挙動である運転挙動を可変の閾値に基づいて検出する運転挙動検出部と、
運転中のユーザの状態及び運転挙動の検出結果に基づいて、ユーザの運転に対する適性を診断する診断部と、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部と
を備える情報処理装置。
a driving behavior detection unit that detects a driving behavior, which is a behavior of a mobile object driven by a user, based on a variable threshold;
a diagnosis unit that diagnoses the user's aptitude for driving based on the detection result of the user's state and driving behavior during driving;
and a presentation control unit that generates feedback information based on the diagnosis obtained by the diagnosis unit.
ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出部と、
運転中のユーザの状態及び運転挙動の検出結果に基づいて、移動体の運転に関するリスクを予測するリスク予測部と、
リスクの内容を含むフィードバック情報を生成する提示制御部と
を備え、
前記運転挙動検出部は、運転挙動の種類に応じた閾値を用いて運転挙動を検出する
情報処理装置。
a driving behavior detection unit that detects a driving behavior, which is a behavior of a mobile object driven by a user;
a risk prediction unit that predicts a risk associated with driving a mobile object based on the user's driving state and driving behavior detection results;
a presentation control unit that generates feedback information including risk content;
The information processing device, wherein the driving behavior detection unit detects the driving behavior using a threshold corresponding to the type of driving behavior.
前記診断の結果、及び、運転挙動の検出結果のうち少なくとも1つに基づいて、ユーザによる移動体の運転に関するリスクを予測するリスク予測部を
さらに備える請求項1乃至4のいずれかに記載の情報処理装置。
5. The information according to any one of claims 1 to 4, further comprising a risk prediction unit that predicts a risk associated with the user's driving of the moving object based on at least one of the result of the diagnosis and the detection result of the driving behavior. processing equipment.
前記フィードバック情報は、前記リスクの内容、及び、前記リスクが予測された根拠を含む
請求項6に記載の情報処理装置。
The information processing apparatus according to claim 6, wherein the feedback information includes details of the risk and grounds for predicting the risk.
前記リスクが予測された根拠は、前記診断の結果に基づく
請求項7に記載の情報処理装置。
The information processing apparatus according to claim 7, wherein the basis for predicting the risk is based on the result of the diagnosis.
前記フィードバック情報は、前記リスクの回避案を含む
請求項6乃至8のいずれかに記載の情報処理装置。
The information processing apparatus according to any one of claims 6 to 8, wherein the feedback information includes a plan for avoiding the risk.
前記診断の結果、及び、運転挙動の検出結果に基づいて、前記診断を行うモデルの学習を行う学習部を
さらに備える請求項1乃至4のいずれかに記載の情報処理装置。
The information processing apparatus according to any one of claims 1 to 4, further comprising a learning unit that learns a model for performing the diagnosis based on the result of the diagnosis and the detection result of the driving behavior.
前記診断部は、ユーザの直近の状態とユーザの標準的な状態との差に基づいて、前記診断を行う
請求項1乃至4のいずれかに記載の情報処理装置。
The information processing apparatus according to any one of claims 1 to 4, wherein the diagnosis unit performs the diagnosis based on a difference between a user's most recent state and a user's standard state.
前記診断部は、さらに、ユーザの直近の状態と、複数のユーザを含むユーザ集合におけるユーザの平均的な状態との差に基づいて、前記診断を行う
請求項11に記載の情報処理装置。
The information processing apparatus according to claim 11, wherein the diagnosis unit further performs the diagnosis based on a difference between a user's most recent state and a user's average state in a user group including a plurality of users.
運転前及び運転中のユーザの状態を推定する状態推定部を
さらに備え、
前記診断部は、ユーザの状態の推定結果に基づいて、前記診断を行う
請求項1乃至3のいずれかに記載の情報処理装置。
further comprising a state estimation unit for estimating the state of the user before and during driving;
The information processing apparatus according to any one of claims 1 to 3, wherein the diagnosis unit performs the diagnosis based on an estimation result of the user's state.
ユーザの状態は、ユーザの生体状態、行動、及び、感情のうち少なくとも1つを含む
請求項13に記載の情報処理装置。
The information processing apparatus according to claim 13, wherein the user's state includes at least one of the user's biological state, behavior, and emotion.
前記診断部は、ユーザの運転前及び運転中に取得されたユーザの状態を示すデータに基づいて、前記診断を行う
請求項1乃至4のいずれかに記載の情報処理装置。
The information processing apparatus according to any one of claims 1 to 4, wherein the diagnosis unit performs the diagnosis based on data indicating the state of the user acquired before and during driving of the user.
ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出ステップと、
運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断ステップと、
前記診断ステップで得られる診断に基づいて、フィードバック情報を生成する提示制御ステップと
を含み、
前記運転挙動検出ステップにおいて、複数の閾値に基づいて、運転挙動を検出し、
前記診断に基づくユーザの運転の適性度が低くなるほど、前記運転挙動検出ステップにおいて検出対象となる危険運転のレベルが低くなる
情報処理方法。
a driving behavior detection step of detecting a driving behavior, which is a behavior of a mobile object driven by a user;
Diagnosis for diagnosing the driving aptitude of the user before driving based on the state of the user before driving, and diagnosing the driving aptitude of the user during driving based on the state and driving behavior of the user during driving a step;
a presentation control step of generating feedback information based on the diagnosis obtained in the diagnosis step;
In the driving behavior detection step, driving behavior is detected based on a plurality of thresholds;
The information processing method, wherein the level of dangerous driving to be detected in the driving behavior detection step decreases as the user's driving aptitude based on the diagnosis decreases.
ユーザの運転による移動体の挙動である運転挙動を検出する運転挙動検出ステップと、
運転前のユーザの状態に基づいて、運転前のユーザの運転に対する適性を診断し、運転中のユーザの状態及び運転挙動の検出結果に基づいて、運転中のユーザの運転に対する適性を診断する診断ステップと、
前記診断ステップで得られる診断に基づいて、フィードバック情報を生成する提示制御ステップと
を含み、
前記運転挙動検出ステップにおいて、複数の閾値に基づいて、運転挙動を検出し、
前記診断に基づくユーザの運転の適性度が低くなるほど、前記運転挙動検出ステップにおいて検出対象となる危険運転のレベルが低くなる
処理をコンピュータに実行させるためのプログラム。
a driving behavior detection step of detecting a driving behavior, which is a behavior of a mobile object driven by a user;
Diagnosis for diagnosing the driving aptitude of the user before driving based on the state of the user before driving, and diagnosing the driving aptitude of the user during driving based on the state and driving behavior of the user during driving a step;
a presentation control step of generating feedback information based on the diagnosis obtained in the diagnosis step;
In the driving behavior detection step, driving behavior is detected based on a plurality of thresholds;
A program for causing a computer to execute a process in which the level of dangerous driving to be detected in the driving behavior detection step decreases as the user's driving aptitude based on the diagnosis decreases.
JP2023104364A 2021-11-04 2023-06-26 Information processing system, information processing device, information processing method and program Pending JP2023118800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023104364A JP2023118800A (en) 2021-11-04 2023-06-26 Information processing system, information processing device, information processing method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179958A JP2022020742A (en) 2017-04-14 2021-11-04 Information processing device, information processing method, program, and information processing system
JP2023104364A JP2023118800A (en) 2021-11-04 2023-06-26 Information processing system, information processing device, information processing method and program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021179958A Division JP2022020742A (en) 2017-04-14 2021-11-04 Information processing device, information processing method, program, and information processing system

Publications (1)

Publication Number Publication Date
JP2023118800A true JP2023118800A (en) 2023-08-25

Family

ID=80216299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023104364A Pending JP2023118800A (en) 2021-11-04 2023-06-26 Information processing system, information processing device, information processing method and program

Country Status (1)

Country Link
JP (1) JP2023118800A (en)

Similar Documents

Publication Publication Date Title
JP7092116B2 (en) Information processing equipment, information processing methods, and programs
JP6972629B2 (en) Information processing equipment, information processing methods, and programs
CN112041910B (en) Information processing apparatus, mobile device, method, and program
JP7288911B2 (en) Information processing device, mobile device, method, and program
JP7080598B2 (en) Vehicle control device and vehicle control method
US10467488B2 (en) Method to analyze attention margin and to prevent inattentive and unsafe driving
US10493914B2 (en) System and method for vehicle collision mitigation with vulnerable road user context sensing
Kashevnik et al. Cloud-based driver monitoring system using a smartphone
JP7324716B2 (en) Information processing device, mobile device, method, and program
JP7273031B2 (en) Information processing device, mobile device, information processing system and method, and program
WO2021145131A1 (en) Information processing device, information processing system, information processing method, and information processing program
US11702103B2 (en) Affective-cognitive load based digital assistant
JP7303901B2 (en) Suggestion system that selects a driver from multiple candidates
CN116034408A (en) Information processing apparatus, information processing method, and information processing program
JP2023118800A (en) Information processing system, information processing device, information processing method and program
JP2024026816A (en) Information processing system, information processing device, information processing method, and program
US20240112562A1 (en) Systems and methods for increasing the safety of voice conversations between drivers and remote parties
JP7238193B2 (en) Vehicle control device and vehicle control method
Alomari Human-centric detection and mitigation approach for various levels of cell phone-based driver distractions
JP2023135475A (en) Information processing device, information processing method, program, and storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305