JP2023118143A - hydrogen generator - Google Patents

hydrogen generator Download PDF

Info

Publication number
JP2023118143A
JP2023118143A JP2022020912A JP2022020912A JP2023118143A JP 2023118143 A JP2023118143 A JP 2023118143A JP 2022020912 A JP2022020912 A JP 2022020912A JP 2022020912 A JP2022020912 A JP 2022020912A JP 2023118143 A JP2023118143 A JP 2023118143A
Authority
JP
Japan
Prior art keywords
cylinder
peripheral surface
hydrogen
gas
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022020912A
Other languages
Japanese (ja)
Inventor
柾峻 西崎
Masatoshi Nishizaki
憲有 武田
Kenyu Takeda
豊 吉田
Yutaka Yoshida
光生 吉村
Mitsuo Yoshimura
理 宮脇
Osamu Miyawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022020912A priority Critical patent/JP2023118143A/en
Publication of JP2023118143A publication Critical patent/JP2023118143A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

To provide a hydrogen generator equipped with a reformer and an evaporation section, which can shorten its overall length and reduce material cost while suppressing deterioration of a reforming catalyst caused by infiltration of liquid water into the reformer even if quantity of liquid water supplied to the evaporation section is large.SOLUTION: A hydrogen generator according to the present disclosure is equipped with a structure in which a convex part and a concave part are formed on inner and outer surfaces of an inner cylinder in a top-reverse integrated manner over the entire circumference, the convex part of the outer surface of the inner cylinder is in close contact with inner and outer surfaces of an outer cylinder over the entire circumference, and a lower part of the evaporation section is blocked.SELECTED DRAWING: Figure 1

Description

本開示は、水素生成装置に関する。 The present disclosure relates to hydrogen generators.

特許文献1には、加熱部を囲む改質器の上方に、水を蒸発させる蒸発部を配設した、多重円筒構造の水素生成装置において、蒸発部から排出された液水をトラップする水トラップ部を更に備えることにより、改質器に充填された改質触媒に液水が掛かって改質触媒が劣化する可能性を低減できることが、開示されている。 Patent Document 1 describes a water trap for trapping liquid water discharged from the evaporator in a hydrogen generator with a multi-cylindrical structure, in which an evaporator for evaporating water is arranged above a reformer surrounding a heating unit. It is disclosed that the possibility of deterioration of the reforming catalyst due to splashing of liquid water on the reforming catalyst packed in the reformer can be reduced by further providing the part.

この水素生成装置は、鉛直方向に中心軸を有する有底円筒形で、加熱部の燃焼排ガスによって内周面が加熱される内筒と、鉛直方向に中心軸を有する筒形で内筒の外周を囲む外筒と、を有している。 This hydrogen generator has a bottomed cylindrical shape with a vertical center axis, an inner cylinder whose inner peripheral surface is heated by combustion exhaust gas from a heating unit, and a cylindrical shape with a vertical center axis and an outer periphery of the inner cylinder. and an outer cylinder surrounding the .

蒸発部は、内筒と外筒との間における上部に螺旋状に曲げられた棒材を配置して螺旋状の流路を形成したものであり、改質器は、内筒と外筒との間における下部に改質触媒を充填して形成したものであり、水トラップ部は、内筒の外周面における改質器よりも上方で蒸発部よりも下方となる箇所に、断面がL字状で且つ環状の部材が取り付けられたものである。 The evaporator is formed by arranging a helically bent bar in the upper part between the inner cylinder and the outer cylinder to form a helical flow path, and the reformer is composed of the inner cylinder and the outer cylinder. The water trap part is formed by filling the lower part of the gap with the reforming catalyst, and the water trap part has an L-shaped cross section at a place above the reformer and below the evaporator on the outer peripheral surface of the inner cylinder A shaped and annular member is attached.

特開2008-19159号公報JP 2008-19159 A

本開示は、改質器の上方に蒸発部を配設した多重円筒構造の水素生成装置において、改質器へ液水が浸入して改質触媒が劣化するのを抑制しつつ、全長を短縮し、材料費の低減が可能な水素生成装置を提供する。 The present disclosure is a multi-cylindrical hydrogen generator in which an evaporator is arranged above the reformer, and the overall length is shortened while suppressing the deterioration of the reforming catalyst due to the infiltration of liquid water into the reformer. and provide a hydrogen generator capable of reducing material costs.

本開示における水素生成装置は、加熱部と、燃焼筒と、内筒と、外筒と、加熱部収納筒と、第1隔壁と、燃焼排ガス流路と、蒸発部と、改質器と、連通口と、を有している。 The hydrogen generator according to the present disclosure includes a heating unit, a combustion cylinder, an inner cylinder, an outer cylinder, a heating unit storage cylinder, a first partition, a flue gas flow path, an evaporator, a reformer, and a communication port.

加熱部は、可燃性ガスを燃焼して、燃焼排ガスを排出するように構成されている。燃焼筒は、鉛直方向に中心軸を有し、加熱部の外周を囲むように構成されている。内筒は、鉛直方向に中心軸を有する筒形で、燃焼筒の外周を囲むように構成されている。外筒は、鉛直方向に中心軸を有する筒形で、内筒の外周を囲むように構成されている。 The heating unit is configured to burn the combustible gas and discharge flue gas. The combustion cylinder has a central axis in the vertical direction and is configured to surround the outer circumference of the heating section. The inner cylinder has a cylindrical shape with a central axis in the vertical direction, and is configured to surround the outer circumference of the combustion cylinder. The outer cylinder has a cylindrical shape with a central axis in the vertical direction, and is configured to surround the outer circumference of the inner cylinder.

加熱部収納筒は、鉛直方向に中心軸を有する有底筒形で、燃焼筒を収納し、上端部が内筒の下端部または外筒の下端部に、接合されるように構成されている。第1隔壁は、鉛直方向に中心軸を有する有底筒形で、内筒と外筒と加熱部収納筒とを収納するように構成されている。燃焼排ガス流路は、内筒および加熱部収納筒とで構成される筒と、燃焼筒との間に形成され、上方に燃焼排ガスを流すように構成されている。 The heating unit housing cylinder is a bottomed cylinder having a vertical central axis, houses the combustion cylinder, and is configured such that the upper end is joined to the lower end of the inner cylinder or the lower end of the outer cylinder. . The first partition wall has a bottomed cylindrical shape with a central axis in the vertical direction, and is configured to accommodate the inner cylinder, the outer cylinder, and the heating unit housing cylinder. The combustion exhaust gas flow path is formed between the cylinder composed of the inner cylinder and the heating unit storage cylinder and the combustion cylinder, and is configured to flow the combustion exhaust gas upward.

蒸発部は、内筒と外筒との間に形成され、内筒を介して伝わる熱で、原料ガスと水とを加熱して、水を蒸発させ、且つ未蒸発の液水が下部で滞留するように構成されている。 The evaporator is formed between the inner cylinder and the outer cylinder, heats the raw material gas and water with heat transmitted through the inner cylinder, evaporates the water, and unevaporated liquid water stays in the lower part. is configured to

改質器は、蒸発部の下方に改質触媒を充填して形成され、加熱部収納筒を介して伝わる熱で、原料ガスと水蒸気との混合ガスから、改質反応で一酸化炭素を含む一次水素含有ガスを、生成するように構成されている。 The reformer is formed by filling a reforming catalyst under the evaporator, and the heat transmitted through the heating unit storage cylinder converts the mixed gas of the raw material gas and water vapor into carbon monoxide through a reforming reaction. A primary hydrogen-containing gas is configured to be generated.

連通口は、蒸発部の下部で蒸発せず滞留する液水の水位よりも高い位置において、外筒の円周方向に複数形成され、蒸発部から原料ガスと水蒸気とを、改質器へ流出させるように構成されている。 A plurality of communication ports are formed in the circumferential direction of the outer cylinder at a position higher than the water level of the liquid water remaining in the lower part of the evaporator without evaporating, so that the raw material gas and water vapor flow out from the evaporator to the reformer. It is configured to allow

内筒の下端近傍部分は、内周面に全周にわたって外周方向に凹んだ環状の凹部が形成され外周面に全周にわたって外周方向に突出した環状の凸部が形成されるように、内筒の筒壁が全周にわたって外周方向に曲がっており、未蒸発の液水が蒸発部の下部で滞留するように、内筒の外周面の凸部が外筒の内周面と全周にわたって密着している。 In the vicinity of the lower end of the inner cylinder, the inner cylinder is formed so that an annular concave portion recessed in the outer peripheral direction is formed on the entire inner peripheral surface, and an annular convex portion protruding in the outer peripheral direction is formed on the outer peripheral surface along the entire peripheral surface. The wall of the cylinder is bent in the outer peripheral direction over the entire circumference, and the protrusions on the outer peripheral surface of the inner cylinder are in close contact with the inner peripheral surface of the outer cylinder over the entire circumference so that unevaporated liquid water stays at the bottom of the evaporator. are doing.

本開示における水素生成装置は、蒸発部の下部に滞留する液水が、内筒における鉛直方向に平行な液水の内周側に隣接する側壁部に加え、鉛直方向に対して傾斜して液水の下側に隣接する凸部を介して燃焼排ガス流路と隣接する構造とすることで、断面がL字状で且つ環状の部材を内筒の外周面に設けた従来の構成と比較して、液水の滞留量に対して高温の燃焼排ガスから液水への伝熱面積が広くなっているので、従来よりも液水の蒸発が促進されて、蒸発部の全長を従来よりも短くしても液水を十分に蒸発させることができる。 In the hydrogen generator according to the present disclosure, the liquid water remaining in the lower part of the evaporating part is inclined with respect to the vertical direction in addition to the side wall part adjacent to the inner peripheral side of the liquid water parallel to the vertical direction in the inner cylinder. By adopting a structure adjacent to the combustion exhaust gas flow path through the convex portion adjacent to the lower side of the water, compared with the conventional configuration in which an annular member having an L-shaped cross section is provided on the outer peripheral surface of the inner cylinder. Since the heat transfer area from the high-temperature flue gas to the liquid water is wider than the liquid water retention amount, the evaporation of the liquid water is promoted more than before, and the total length of the evaporator is shorter than before. However, the liquid water can be sufficiently evaporated.

これにより、改質器へ液水が浸入することで発生する改質触媒の劣化を抑制しつつ、水素生成装置の鉛直方向の全長を短縮することができる。そして、水素生成装置の全長を短くすると、水素生成装置の外周面を覆う断熱材や水素生成装置を収納する筐体が小さくなるので、水素生成装置の材料費を低減できる。 As a result, it is possible to reduce the total length of the hydrogen generator in the vertical direction while suppressing the deterioration of the reforming catalyst caused by the intrusion of liquid water into the reformer. Further, when the overall length of the hydrogen generator is shortened, the heat insulating material covering the outer peripheral surface of the hydrogen generator and the housing for housing the hydrogen generator become smaller, so the material cost of the hydrogen generator can be reduced.

実施の形態1における水素生成装置の概略構成図Schematic diagram of the hydrogen generator in Embodiment 1 実施の形態2における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 2 他の実施の形態における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in another embodiment

(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、都市ガスなどの炭化水素系の原料ガスから水蒸気改質反応によって水素を生成し、更に副生した一酸化炭素(CO)などの不純物を除去することによって、燃料電池発電装置の燃料ガス等に適用可能な水素リッチな水素含有ガスを生成する技術があった。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors came up with the present disclosure, hydrogen was generated by a steam reforming reaction from a hydrocarbon source gas such as city gas, and impurities such as carbon monoxide (CO) produced as a by-product were removed. There is a technique for generating hydrogen-rich, hydrogen-containing gas that can be applied to the fuel gas of a fuel cell power generator, etc., by doing so.

この水素リッチな水素含有ガスを生成する技術は、全体形状が多重円筒構造で、その中心部にバーナを備えた加熱部が配設され、加熱部の周囲に改質触媒を充填した改質器が配設され、改質器の上方に、原料ガスと水とを加熱部からの伝熱で加熱する蒸発部が配設された水素生成装置により得るものであった。 This technology for generating hydrogen-rich hydrogen-containing gas is a reformer that has a multi-cylindrical overall shape, a heating unit equipped with a burner at the center, and a reforming catalyst that fills the periphery of the heating unit. is provided, and above the reformer, a hydrogen generator is provided in which an evaporating section for heating the source gas and water by heat transfer from the heating section is provided.

蒸発部に供給される水が蒸発部を通過する過程で水蒸気へ完全に蒸発しない場合、蒸発器から排出された液水が、改質器に浸入して改質触媒に掛かって、改質触媒が劣化する課題があった。 If the water supplied to the evaporator does not completely evaporate into steam in the course of passing through the evaporator, the liquid water discharged from the evaporator enters the reformer and splashes on the reforming catalyst. There was a problem that the

そのため、当該業界では、この課題に対して、蒸発部の下部において、液水が滞留する空間と、液水が滞留する空間の上部に連通口とを設けることで、蒸発部の下部に液水を滞留させ、原料ガスと水蒸気のみを連通口から流出させ、改質器への液水の浸入を抑制する
構造とすることで解決を図っていた。
Therefore, in the industry, in order to solve this problem, a space in which the liquid water stays in the lower part of the evaporator and a communication port in the upper part of the space in which the liquid water stays are provided. was retained, and only the raw material gas and water vapor were allowed to flow out from the communication port, thereby suppressing the intrusion of liquid water into the reformer.

そのため、滞留する液水の水位の変動を考慮し、余裕をもたせるために、蒸発部を構成する筒部品の高さを長くとる設計をするのが一般的であった。 Therefore, in consideration of fluctuations in the level of the stagnant liquid water, it has been common practice to increase the height of the cylinder part that constitutes the evaporator, in order to provide a margin.

そうした状況下において、発明者らは、水素生成装置の高さ方向の全長を短縮化することで材料費が低減され、水素生成装置を低コストで製造することが可能であることをヒントにして、従来は滞留する液水の水位に対して、高さを十分に長く取る設計をしていた蒸発部を短縮化し、水素生成装置の全長を短縮化するという着想を得た。 Under such circumstances, the inventors have found that shortening the overall length of the hydrogen generator in the height direction reduces the material cost and makes it possible to manufacture the hydrogen generator at low cost. The idea was to shorten the length of the hydrogen generator by shortening the evaporator, which was conventionally designed to have a sufficiently long height relative to the level of the remaining liquid water.

そして、発明者らは、その着想を実現するには、原料ガスの量や水の量が変動し、多量の原料ガスや水が供給された場合、滞留する液水への加熱量が不十分となるため、滞留する液水の水位が上昇し、液水の一部が連通口から流出し改質器へ浸入する課題があることを発見し、その課題を解決するために、本開示の主題を構成するに至った。 In order to realize the idea, the inventors have found that the amount of raw material gas and water fluctuates, and when a large amount of raw material gas and water are supplied, the amount of heating of the stagnant liquid water is insufficient. Therefore, we discovered that there is a problem that the level of the stagnant liquid water rises, and part of the liquid water flows out from the communication port and enters the reformer. I have come up with a topic.

そこで、本開示は、外筒とともに蒸発部を構成する内筒の下部は、全周にわたって凸部と凹部とが表裏一体に形成され、未蒸発の液水が蒸発部の下部で滞留するように、内筒の外周面の凸部が外筒の内周面と全周にわたって密着した構成にすることにより、蒸発部の下部で滞留する液水が凸部からも加熱される構造とし、液水の滞留量に対して液水への伝熱面積を広くして蒸発を促進させることで、改質器へ液水が浸入して改質触媒が劣化するのを抑制しつつ、全長を短縮し、材料費の低減が可能な水素生成装置を提供する。 Therefore, according to the present disclosure, the lower part of the inner cylinder, which forms the evaporating part together with the outer cylinder, is integrally formed with convex parts and concave parts over the entire circumference so that unevaporated liquid water stays in the lower part of the evaporating part. The liquid water remaining in the lower part of the evaporator is also heated from the protrusions by forming the protrusions on the outer peripheral surface of the inner cylinder in close contact with the inner peripheral surface of the outer cylinder over the entire circumference. By increasing the heat transfer area to the liquid water with respect to the amount of retention in the reformer and promoting evaporation, it is possible to reduce the overall length while suppressing the deterioration of the reforming catalyst caused by the intrusion of liquid water into the reformer. , to provide a hydrogen generator capable of reducing material costs.

以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.

(実施の形態1)
以下、図1を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIG.

[1-1.構成]
図1に示すように、水素生成装置100は、加熱部120と、蒸発部121と、改質器122と、CO低減器123と、燃焼筒130と、内筒131と、外筒132と、加熱部収納筒133と、第1隔壁134と、第2隔壁135と、水素含有ガス排出管136と、燃焼排ガス流路140と、リターン流路141と、連通口150と、を有する。
[1-1. composition]
As shown in FIG. 1, the hydrogen generator 100 includes a heating unit 120, an evaporating unit 121, a reformer 122, a CO reducer 123, a combustion cylinder 130, an inner cylinder 131, an outer cylinder 132, It has a heating unit storage cylinder 133 , a first partition 134 , a second partition 135 , a hydrogen-containing gas discharge pipe 136 , a flue gas channel 140 , a return channel 141 , and a communication port 150 .

加熱部120は、鉛直方向に中心軸を有する燃焼筒130の内周側に配置され、燃焼用空気が混合された可燃性ガスを燃焼して燃焼排ガスを排出するバーナと、バーナに可燃性ガスを供給するガス供給管と、バーナに燃焼用空気を供給する燃焼用空気供給管と、を備えている。加熱部120のバーナは、下向きの炎を形成するように構成されている。 The heating unit 120 is arranged on the inner peripheral side of a combustion cylinder 130 having a central axis in the vertical direction, and includes a burner that burns combustible gas mixed with combustion air and discharges combustion exhaust gas, and a combustible gas in the burner. and a combustion air supply pipe for supplying combustion air to the burner. The burners of heating section 120 are configured to produce downward flames.

可燃性ガスには、原料ガス(都市ガスやLPガス)を用いることができ、水素生成装置100が燃料電池発電装置に水素含有ガスを燃料ガスとして供給する場合は、燃料電池発電装置で利用されずに燃料電池発電装置から排出される燃料ガス(アノードオフガス)を用いることができる。 Raw material gas (city gas or LP gas) can be used as the combustible gas. A fuel gas (anode off-gas) discharged from the fuel cell power generation device can be used.

燃焼筒130は、鉛直方向に中心軸を有し、加熱部120の外周を囲む円筒形で、加熱
部120と同軸になるように配置されている。燃焼筒130は、燃焼筒130の内周側では、燃焼排ガスを鉛直方向の下方へ流し、燃焼筒130の外周側(内筒131および加熱部収納筒133とで構成される筒と、燃焼筒130との間に形成された燃焼排ガス流路140)では、燃焼排ガスを鉛直方向の上方へ流すための部材である。
Combustion cylinder 130 has a central axis in the vertical direction, has a cylindrical shape surrounding the outer periphery of heating section 120 , and is arranged coaxially with heating section 120 . The combustion cylinder 130 allows the combustion exhaust gas to flow downward in the vertical direction on the inner peripheral side of the combustion cylinder 130, 130 is a member for causing the flue gas to flow upward in the vertical direction.

燃焼筒130の下端部は、改質器122の下端部と略同じ高さ、もしくは改質器122の下端部よりも鉛直方向の下方に位置する。また、燃焼筒130の下端部は、燃焼筒130と同軸になるように配置され燃焼筒130を囲む有底円筒形の加熱部収納筒133の底部よりも鉛直方向の上方に位置している。 The lower end of the combustion cylinder 130 is positioned at substantially the same height as the lower end of the reformer 122 or vertically below the lower end of the reformer 122 . The lower end of the combustion cylinder 130 is positioned vertically above the bottom of a bottomed cylindrical heating unit storage cylinder 133 that surrounds the combustion cylinder 130 and is arranged coaxially with the combustion cylinder 130 .

水素生成装置100は、加熱部120のバーナの燃焼で発生した燃焼排ガスが、燃焼筒130の内周面に沿って燃焼筒130の内周側を下方に流れた後に、加熱部収納筒133の底部と燃焼筒130の下端部との隙間を通って燃焼筒130の外周側に出て上方に折り返して、加熱部収納筒133を介して改質器122の改質触媒と熱交換しながら加熱部収納筒133の内周面に沿って加熱部収納筒133と燃焼筒130との間の燃焼排ガス流路140を上方に流れた後に、内筒131を介して蒸発部121の水および原料ガスと熱交換しながら内筒131の内周面に沿って内筒131と燃焼筒130との間の燃焼排ガス流路140を上方に流れて、内筒131における上部に外筒132を貫通するように設けられた燃焼排ガス出口管から、水素生成装置100の外部に排出されるように構成されている。 In the hydrogen generator 100, after the flue gas generated by the combustion of the burner of the heating unit 120 flows downward along the inner peripheral surface of the combustion tube 130 along the inner peripheral side of the combustion tube 130, it enters the heating unit storage tube 133. It passes through the gap between the bottom and the lower end of the combustion tube 130, exits to the outer peripheral side of the combustion tube 130, folds upward, and heats while exchanging heat with the reforming catalyst of the reformer 122 via the heating unit storage tube 133. After flowing upward through the flue gas flow path 140 between the heating unit housing cylinder 133 and the combustion cylinder 130 along the inner peripheral surface of the heating unit housing cylinder 133, the water and raw material gas in the evaporating unit 121 pass through the inner cylinder 131. While exchanging heat with It is configured to be discharged to the outside of the hydrogen generator 100 from a combustion exhaust gas outlet pipe provided in the.

内筒131は、鉛直方向に中心軸を有する略円筒形の金属部材であり、内径が燃焼筒130の外径よりも大きく、燃焼筒130の外周面を囲み、燃焼筒130と同軸になるように配置される。 The inner cylinder 131 is a substantially cylindrical metal member having a central axis in the vertical direction. placed in

内筒131は、外筒132との間に、炭化水素を含む原料ガスと水とを螺旋状に流すための螺旋状の流路を形成する。 The inner cylinder 131 and the outer cylinder 132 form a helical flow path for helically flowing the raw material gas containing hydrocarbons and water.

内筒131における螺旋状の流路が形成されている部分では、内筒131の外周面が外筒132の内周面と密着する箇所と、内筒131の外周面が外筒132の内周面と密着しない箇所とが、内筒131の軸方向に交互に繰り返されるように、内筒131の筒壁の軸心方向の断面が波形に成形されている。 In the portion where the spiral flow path is formed in the inner cylinder 131, the outer peripheral surface of the inner cylinder 131 contacts the inner peripheral surface of the outer cylinder 132, and the outer peripheral surface of the inner cylinder 131 contacts the inner peripheral surface of the outer cylinder 132. The cross section of the cylinder wall of the inner cylinder 131 in the axial direction is wavy so that the surface and the non-contact portion are alternately repeated in the axial direction of the inner cylinder 131 .

内筒131における螺旋状の流路が形成されている部分では、筒壁が、内筒131の軸心方向において断面波型に成形されて、軸心方向に向かって螺旋状の凹凸が筒壁に形成されている。 In the portion of the inner cylinder 131 where the helical flow path is formed, the cylinder wall is formed to have a corrugated cross-section in the axial direction of the inner cylinder 131, and the helical unevenness in the axial direction is formed on the cylinder wall. is formed in

内筒131は、燃焼筒130との間に燃焼排ガス流路140を形成する。内筒131の下端部には、燃焼排ガス流路140を、内筒131よりも下側に延長するように、加熱部収納筒133が接合されている。 The inner cylinder 131 forms a flue gas flow path 140 with the combustion cylinder 130 . A heating unit storage tube 133 is joined to the lower end of the inner tube 131 so as to extend the flue gas flow path 140 below the inner tube 131 .

加熱部収納筒133は、鉛直方向に中心軸を有する有底円筒形の金属部材であり、上端部が内筒131の下端部に接合され、燃焼筒130を収納するように構成されている。加熱部収納筒133は、内径が燃焼筒130の外径よりも大きく、内筒131の鉛直方向の下方で燃焼筒130の外周面を囲み燃焼筒130と同軸になるように配置されている。 The heating unit housing cylinder 133 is a bottomed cylindrical metal member having a vertical central axis, and is configured to house the combustion cylinder 130 with its upper end joined to the lower end of the inner cylinder 131 . The heating unit storage cylinder 133 has an inner diameter larger than the outer diameter of the combustion cylinder 130 , and is arranged so as to surround the outer peripheral surface of the combustion cylinder 130 and be coaxial with the combustion cylinder 130 below the inner cylinder 131 in the vertical direction.

加熱部収納筒133の底部と燃焼筒130の下端部との間に、燃焼筒130の内周側を流れた燃焼排ガスが燃焼筒130の外周側へと通流する隙間がある。 There is a gap between the bottom portion of the heating unit housing tube 133 and the lower end portion of the combustion tube 130 through which the combustion exhaust gas that has flowed along the inner peripheral side of the combustion tube 130 flows to the outer peripheral side of the combustion tube 130 .

外筒132は、鉛直方向に中心軸を有する円筒形の金属部材であり、内筒131の外周
面を囲み内筒131と同軸になるように配置されている。外筒132における螺旋状の流路が形成されている部分では、外筒132の内周面が内筒131の外周面と密着する箇所と、外筒132の内周面が内筒131の外周面と密着しない箇所とが、外筒132の軸方向に交互に繰り返される。
The outer cylinder 132 is a cylindrical metal member having a central axis in the vertical direction, and is arranged so as to surround the outer peripheral surface of the inner cylinder 131 and be coaxial with the inner cylinder 131 . In the portion where the spiral flow path is formed in the outer cylinder 132 , the inner peripheral surface of the outer cylinder 132 contacts the outer peripheral surface of the inner cylinder 131 and the inner peripheral surface of the outer cylinder 132 contacts the outer peripheral surface of the inner cylinder 131 . The surface and the non-contact portion are alternately repeated in the axial direction of the outer cylinder 132 .

第2隔壁135は、内径が外筒132の外径よりも大きく、外筒132と同軸となるように配置され外筒132を囲む円筒形の側面部と、外周端が側面部の上端部に接続され内周端が外筒132の外周面に接合されるドーナツ盤形状の上面部と、を有する金属部材である。 The second partition wall 135 has a cylindrical side surface that has an inner diameter larger than the outer diameter of the outer cylinder 132 and is arranged coaxially with the outer cylinder 132 to surround the outer cylinder 132. and a donut disk-shaped upper surface portion that is connected and whose inner peripheral end is joined to the outer peripheral surface of the outer cylinder 132 .

第2隔壁135は、その側面部の下端部が、燃焼筒130の下端部と略同じ高さ、もしくは改質器122の下端部よりも鉛直方向の下方に位置し、そのドーナツ盤形状の上面部が連通口150よりも鉛直方向の上方に位置し、且つCO低減器123の下端よりも鉛直方向の下方に位置する。 The second partition wall 135 has a lower end portion of the side surface portion positioned substantially at the same height as the lower end portion of the combustion cylinder 130 or vertically lower than the lower end portion of the reformer 122, and has a doughnut-shaped upper surface. is located above the communication port 150 in the vertical direction and below the lower end of the CO reducer 123 in the vertical direction.

加熱部収納筒133と第2隔壁135との間は、原料ガスと水蒸気との混合ガスから改質反応で一次水素含有ガス(一酸化炭素を含む水素含有ガス)を生成する改質触媒が充填されている。 A reforming catalyst that generates a primary hydrogen-containing gas (a hydrogen-containing gas containing carbon monoxide) by a reforming reaction from a mixed gas of raw material gas and water vapor is filled between the heating unit housing cylinder 133 and the second partition wall 135. It is

内筒131と外筒132との間で、螺旋状の流路が形成された箇所は、炭化水素を含む原料ガスと水とが内筒131を介して高温の燃焼排ガスから伝わる熱で加熱されながら通過する蒸発部121となっており、蒸発部121の下方で改質触媒が充填された箇所は改質器122となっている。 Between the inner cylinder 131 and the outer cylinder 132, the portion where the helical flow path is formed is heated by the heat transmitted from the high-temperature flue gas through the inner cylinder 131 to the raw material gas containing hydrocarbons and water. A portion filled with a reforming catalyst below the evaporator 121 serves as a reformer 122 .

蒸発部121の螺旋状の流路は、内筒131の内周面と外周面とを、軸心方向(鉛直方向)に向かって螺旋状の凸部と凹部とが表裏一体に形成されるように加工して(内筒131の外周面に雄ネジのような凹凸を形成するとともに、内筒131の内周面に雌ネジのような凹凸を形成して)外周面の凹凸における外周方向に突出した凸部が外筒132の内周面に密着するようにして形成している。 The spiral flow path of the evaporating section 121 is formed so that the inner and outer peripheral surfaces of the inner cylinder 131 are integrally formed with spiral protrusions and recesses extending in the axial direction (vertical direction). In the outer peripheral direction of the unevenness of the outer peripheral surface The projecting convex portion is formed so as to be in close contact with the inner peripheral surface of the outer cylinder 132 .

蒸発部121の下部では、内筒131の下端近傍部分の拡管によって、内筒131の内周面に全周にわたって外周方向に凹んだ環状の溝(凹部)が形成されるとともに、内筒131の外周面における内周面の環状の溝(凹部)に対応する部分には全周にわたって外周方向に突出した環状の凸部が形成されて、その内筒131の外周面における環状の凸部が外筒132の内周面と全周にわたって密着して、蒸発部121の下部を閉塞している。 In the lower part of the evaporating part 121 , an annular groove (recess) recessed in the outer peripheral direction is formed on the inner peripheral surface of the inner cylinder 131 by expanding the portion near the lower end of the inner cylinder 131 . An annular protrusion projecting in the outer peripheral direction is formed over the entire circumference in a portion of the outer peripheral surface corresponding to the annular groove (recess) on the inner peripheral surface, and the annular protrusion on the outer peripheral surface of the inner cylinder 131 extends outward. It is in close contact with the inner peripheral surface of the cylinder 132 over the entire circumference to close the lower portion of the evaporating section 121 .

内筒131の下端近傍部分の内周面の環状の溝(凹部)は、溝の鉛直方向の中央部が溝の最深部になっており、溝の最深部に向かうほど溝の鉛直方向の幅が狭くなっている。 The annular groove (recess) on the inner peripheral surface of the portion near the lower end of the inner cylinder 131 has the deepest portion at the center in the vertical direction of the groove, and the width of the groove in the vertical direction increases toward the deepest portion of the groove. is narrowed.

内筒131の下端近傍部分の内周面の環状の溝(凹部)は、溝の最深部から上方に向かうに従って内筒131の内径が小さくなり、溝の最深部から下方に向かうに従って内筒131の内径が小さくなる形状である。 In the annular groove (recess) on the inner peripheral surface of the portion near the lower end of the inner cylinder 131, the inner diameter of the inner cylinder 131 decreases upward from the deepest part of the groove, and the inner cylinder 131 decreases downward from the deepest part of the groove. It is a shape with a smaller inner diameter.

内筒131の下端近傍部分の外周面の環状の凸部は、外筒132の内周面と全周にわたって密着する部分から上方に向かうに従って内筒131の外径が小さくなり、外筒132の内周面と全周にわたって密着する部分から下方に向かうに従って内筒131の外径が小さくなる形状である。 The annular protrusion on the outer peripheral surface of the portion near the lower end of the inner cylinder 131 has an outer diameter that decreases upward from a portion that is in close contact with the inner peripheral surface of the outer cylinder 132 over the entire circumference. The inner cylinder 131 has a shape in which the outer diameter of the inner cylinder 131 decreases as it goes downward from the part that is in close contact with the inner peripheral surface over the entire circumference.

蒸発部121の下部は、内筒131の内周面と外周面とに、全周にわたって凸部と凹部とが表裏一体に形成されるように加工して、凹凸における外周方向に突出した凸部が外筒
132の内周面と全周にわたって密着するようにして閉塞されるため、未蒸発の液水は蒸発部121の下部に滞留する。
The lower part of the evaporating part 121 is processed so that the inner peripheral surface and the outer peripheral surface of the inner cylinder 131 are integrally formed with a convex portion and a concave portion over the entire circumference, and the convex portion protruding in the outer peripheral direction of the unevenness. is closed so as to be in close contact with the inner peripheral surface of the outer cylinder 132 over the entire circumference, the unevaporated liquid water stays in the lower part of the evaporating part 121 .

内筒131の下端近傍部分は、内周面に全周にわたって外周方向に凹んだ環状の凹部が形成され外周面に全周にわたって外周方向に突出した環状の凸部が形成されるように、内筒131の筒壁が全周にわたって外周方向に曲がっている。 A portion near the lower end of the inner cylinder 131 is formed with an annular recess that is recessed in the outer peripheral direction along the entire circumference of the inner peripheral surface, and an annular convex portion that protrudes in the outer peripheral direction is formed on the outer peripheral surface along the entire circumference. A cylinder wall of the cylinder 131 is bent in the outer peripheral direction over the entire circumference.

蒸発部121から原料ガスと水蒸気とを改質器122へ流出させるため、蒸発部121の下部に滞留する液水の水位よりも高い位置において外筒132の円周方向に複数の連通口150が設けられている。 A plurality of communication ports 150 are formed in the circumferential direction of the outer cylinder 132 at positions higher than the water level of the liquid water staying in the lower part of the evaporator 121 in order to allow the source gas and water vapor to flow out from the evaporator 121 to the reformer 122 . is provided.

連通口が設けられる位置は、滞留する液水の水位を考慮し、内筒131の外周面の凸部が外筒132の内周面と全周にわたって密着し蒸発部121の下部を閉塞する位置から鉛直方向の上方に5mmの位置となるようにする。内筒131の外周面の凸部が外筒132の内周面と全周にわたって密着し蒸発部121の下部を閉塞する箇所は、気密に接合されている。 The position where the communication port is provided is the position where the convex portion of the outer peripheral surface of the inner cylinder 131 is in close contact with the inner peripheral surface of the outer cylinder 132 over the entire circumference and closes the lower part of the evaporating section 121, considering the level of the liquid water that remains. 5 mm above the vertical direction. A convex portion on the outer peripheral surface of the inner cylinder 131 is in close contact with the inner peripheral surface of the outer cylinder 132 over the entire circumference, and the part where the lower part of the evaporating section 121 is blocked is airtightly joined.

蒸発部121の螺旋状の流路は、内筒131を加工して設ける代わりに、螺旋状の丸棒を配置して形成しても構わない。螺旋状の丸棒は、例えば、弦巻ばね(コイルばね)のように螺旋形状に曲げた丸棒を用いてもよい。弦巻ばね(コイルばね)のように螺旋形状に曲げた丸棒を、内筒131の外周面と外筒132の内周面とに密着するように設置することによって、蒸発部121の螺旋状の流路を形成することができる。 The spiral flow path of the evaporating section 121 may be formed by arranging a spiral round bar instead of processing the inner cylinder 131 to provide it. As the spiral round bar, for example, a round bar bent into a spiral shape such as a coiled spring (coil spring) may be used. By installing a round bar bent in a helical shape like a coil spring (coil spring) so as to be in close contact with the outer peripheral surface of the inner cylinder 131 and the inner peripheral surface of the outer cylinder 132, the helical shape of the evaporating part 121 is formed. A channel can be formed.

改質器122は、加熱部収納筒133と第2隔壁135との間に改質触媒を充填して形成され、加熱部収納筒133を介して伝わる熱で、原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。改質器122に充填される改質触媒は、直径が2~3mmの粒状の白金系の触媒である。 The reformer 122 is formed by filling a reforming catalyst between the heating unit housing cylinder 133 and the second partition wall 135, and the heat transmitted through the heating unit housing cylinder 133 converts the mixed gas of the raw material gas and steam into a mixed gas. from the reforming reaction to produce a primary hydrogen-containing gas containing carbon monoxide. The reforming catalyst filled in the reformer 122 is a granular platinum-based catalyst with a diameter of 2 to 3 mm.

本実施の形態では、改質触媒に白金系の触媒を用いたが、改質触媒は白金系の触媒に限らず、改質器122に充填される改質触媒に、ロジウム系、ルテニウム系、ニッケル系の触媒を用いてもよい。 In the present embodiment, a platinum-based catalyst is used as the reforming catalyst, but the reforming catalyst is not limited to a platinum-based catalyst. A nickel-based catalyst may also be used.

改質触媒が充填された部分の直下には、充填された改質触媒が落下しないように、改質触媒を下から支持する改質触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、加熱部収納筒133と第2隔壁135との間に配置されている。 Directly below the portion filled with the reforming catalyst, a vent hole with a diameter of 1 mm, which is smaller than the particle size of the reforming catalyst that supports the reforming catalyst from below, is formed so that the reforming catalyst does not fall. A doughnut board-shaped plate having a ventilation structure is disposed between the heating unit storage cylinder 133 and the second partition wall 135 .

改質触媒が充填された部分の直上には、水素生成装置100の製造時に、製造途中の水素生成装置100の上下を逆にしても(水素生成装置100の使用時の重力方向の上下を反転させても)改質触媒が蒸発部121の方へ移動しないように、改質触媒を上から覆う改質触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、加熱部収納筒133と第2隔壁135との間に配置されている。 Immediately above the portion filled with the reforming catalyst, even if the hydrogen generator 100 is turned upside down during manufacture (the direction of gravity when the hydrogen generator 100 is used is reversed) In order to prevent the reforming catalyst from moving toward the evaporating part 121, the reforming catalyst is covered from above with a donut disk structure in which a vent hole having a diameter of 1 mm smaller than the particle diameter of the reforming catalyst is formed. A shaped plate is arranged between the heating unit storage cylinder 133 and the second partition 135 .

外筒132における螺旋状の流路が配置された箇所よりも上部には、蒸発部121に原料ガスと水とを供給する供給管が接続されている。 A supply pipe for supplying raw material gas and water to the evaporator 121 is connected to a portion of the outer cylinder 132 above the location where the spiral flow path is arranged.

第1隔壁134は、内径が第2隔壁135の外径よりも大きく、外筒132と第2隔壁135と同軸になるように配置され、外筒132と第2隔壁135との外周面を囲む有底円筒形の側面部と、外周端が側面部の上端部に接続され内周端が外筒132の外周面に接合されるドーナツ盤形状の上面部とを有する金属部材である。 The first partition 134 has an inner diameter larger than the outer diameter of the second partition 135, is arranged coaxially with the outer cylinder 132 and the second partition 135, and surrounds the outer peripheral surfaces of the outer cylinder 132 and the second partition 135. It is a metal member having a bottomed cylindrical side surface and a doughnut-shaped upper surface whose outer peripheral end is connected to the upper end of the side surface and whose inner peripheral end is joined to the outer peripheral surface of the outer cylinder 132 .

第1隔壁134は、第2隔壁135との間にリターン流路141を形成し、第2隔壁135よりも上方に位置する外筒132との間に一酸化炭素低減触媒が充填されたCO低減器123を構成する。第1隔壁134の底部と第2隔壁135の下端部との間に一次水素含有ガスが通流する隙間がある。 The first partition 134 forms a return flow path 141 with the second partition 135, and the CO reduction filled with a carbon monoxide reduction catalyst between the outer cylinder 132 positioned above the second partition 135. A device 123 is constructed. Between the bottom of the first partition 134 and the lower end of the second partition 135 there is a gap through which the primary hydrogen-containing gas flows.

第1隔壁134の底部は加熱部収納筒133の底部よりも大きく、第1隔壁134は外筒132と第2隔壁135と加熱部収納筒133とを収納するように構成されている。 The bottom of the first partition 134 is larger than the bottom of the heating unit storage cylinder 133 , and the first partition 134 is configured to accommodate the outer cylinder 132 , the second partition 135 and the heating unit storage cylinder 133 .

第1隔壁134と外筒132との間で蒸発部121の外周側に隣接する部分は、改質器122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を化学反応で低減して二次水素含有ガスを生成する一酸化炭素低減触媒が充填されたCO低減器123となっている。 The portion adjacent to the outer peripheral side of the evaporating section 121 between the first partition 134 and the outer cylinder 132 reduces the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reformer 122 by a chemical reaction. The CO reducer 123 is filled with a carbon monoxide reduction catalyst that generates secondary hydrogen-containing gas.

CO低減器123に充填される一酸化炭素低減触媒は、直径が2~3mmの粒状のCu-Zn系の触媒である。本実施の形態では、一酸化炭素低減触媒にCu-Zn系の触媒を用いたが、一酸化炭素低減触媒はCu-Zn系の触媒に限らず、CO低減器123に充填される一酸化炭素低減触媒に、Ru系の触媒を用いてもよい。 The carbon monoxide reduction catalyst filled in the CO reducer 123 is a granular Cu—Zn catalyst with a diameter of 2 to 3 mm. In the present embodiment, a Cu—Zn-based catalyst is used as the carbon monoxide reduction catalyst, but the carbon monoxide reduction catalyst is not limited to the Cu—Zn-based catalyst. A Ru-based catalyst may be used as the reducing catalyst.

一酸化炭素低減触媒が充填された部分の直下には、充填された一酸化炭素低減触媒が落下しないように、一酸化炭素低減触媒を下から支持する一酸化炭素低減触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、外筒132と第1隔壁134との間に配置されている。 Immediately below the portion filled with the carbon monoxide reduction catalyst, a particle size smaller than the carbon monoxide reduction catalyst that supports the carbon monoxide reduction catalyst from below so that the filled carbon monoxide reduction catalyst does not fall. A donut disk-shaped plate having a ventilation structure with a 1 mm diameter ventilation hole is disposed between the outer cylinder 132 and the first partition 134 .

一酸化炭素低減触媒が充填された部分の直上には、水素生成装置100の製造時に、製造途中の水素生成装置100の上下を逆にしても(水素生成装置100の使用時の重力方向の上下を反転させても)一酸化炭素低減触媒が流出しないように、一酸化炭素低減触媒を上から覆う一酸化炭素低減触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、外筒132と第1隔壁134との間に配置されている。 Immediately above the portion filled with the carbon monoxide reduction catalyst, even if the hydrogen generator 100 is turned upside down during manufacture (vertical direction of gravity when the hydrogen generator 100 is used) In order to prevent the carbon monoxide reduction catalyst from flowing out even if the carbon monoxide reduction catalyst is turned upside down, a ventilation structure in which a vent hole having a diameter of 1 mm smaller than the particle diameter of the carbon monoxide reduction catalyst covering the carbon monoxide reduction catalyst is formed. A doughnut-shaped plate is arranged between the outer cylinder 132 and the first partition 134 .

リターン流路141は、第1隔壁134と第2隔壁135との間、且つCO低減器123よりも鉛直方向の下方に形成され、改質器122から流出した一次水素含有ガスを上方に流すように構成されている。 The return channel 141 is formed between the first partition 134 and the second partition 135 and below the CO reducer 123 in the vertical direction so that the primary hydrogen-containing gas that has flowed out of the reformer 122 flows upward. is configured to

水素含有ガス排出管136は、第1隔壁134の側面部におけるCO低減器123よりも鉛直方向の上方に設けられ、CO低減器123から流出した二次水素含有ガスを外部へ排出するように構成されている。 The hydrogen-containing gas discharge pipe 136 is provided vertically above the CO reducer 123 on the side surface of the first partition 134, and configured to discharge the secondary hydrogen-containing gas that has flowed out of the CO reducer 123 to the outside. It is

[1-2.動作]
以上のように構成された水素生成装置100において、以下、その動作、作用を説明する。
[1-2. motion]
The operation and function of the hydrogen generator 100 configured as described above will be described below.

加熱部120は、可燃性ガスを燃焼して燃焼排ガスを排出する。加熱部120が可燃性ガスを燃焼することで、その熱が改質器122に伝搬する。これにより、改質器122を所望の温度に引き上げることができる。 The heating unit 120 burns the combustible gas and discharges flue gas. Heat from the combustible gas is transferred to the reformer 122 by the heating unit 120 burning the combustible gas. Thereby, the reformer 122 can be raised to a desired temperature.

蒸発部121には都市ガスなどの原料ガスと液体の水とが供給され、螺旋状の流路を通過する過程で内筒131を介して伝わる熱で水が蒸発し、原料ガスと水蒸気との混合ガスとなる。 Raw material gas such as city gas and liquid water are supplied to the evaporating part 121, and in the process of passing through the spiral flow path, the water is evaporated by the heat transmitted through the inner cylinder 131, and the raw material gas and water vapor are produced. It becomes a mixed gas.

このとき、蒸発部121に供給される原料ガスの量と水の量とが、螺旋状の流路で蒸発する水の量に対して、多いために、未蒸発の液水が残る場合でも、液水は蒸発部121の下部に滞留し、原料ガスと水蒸気とのみが連通口150を経由し蒸発部121から流出するため、液水の改質器122への浸入は抑制される。 At this time, since the amount of raw material gas and the amount of water supplied to the evaporator 121 are larger than the amount of water evaporated in the spiral flow path, even if unevaporated liquid water remains, Since the liquid water stays in the lower part of the evaporator 121 and only the source gas and water vapor flow out of the evaporator 121 through the communication port 150, the liquid water is prevented from entering the reformer 122. FIG.

また、蒸発部121の下部に滞留する液水は、液水の側面の内筒131に加え、鉛直方向の下に位置する凸部を介して燃焼排ガス流路と隣接するため、高温の燃焼排ガスから液水への伝熱面積を大きくすることができ、滞留する液水を十分に蒸発させ、滞留する液水の水位を低くすることができる。 In addition, the liquid water remaining in the lower part of the evaporating part 121 is adjacent to the flue gas flow path through the convex part located vertically below in addition to the inner cylinder 131 on the side of the liquid water, so that the high temperature flue gas It is possible to increase the heat transfer area from the to the liquid water, sufficiently evaporate the remaining liquid water, and lower the level of the remaining liquid water.

これにより、蒸発部121の全長が短くとも、滞留する液水の水位は連通口150の高さまで上昇せず、液水の連通口150からの流出は抑制される。 As a result, even if the total length of the evaporating section 121 is short, the level of the stagnant liquid water does not rise to the height of the communication port 150, and the outflow of the liquid water from the communication port 150 is suppressed.

本実施の形態では、原料ガスとして、脱硫後のメタンを主成分とする都市ガスを使用する。また、蒸発部121へ供給する水の量については、原料ガス平均組成の炭素原子の3倍量となる酸素分子を含むように、水の量を設定する。 In the present embodiment, city gas containing desulfurized methane as a main component is used as the raw material gas. Also, the amount of water supplied to the evaporator 121 is set so that the amount of oxygen molecules that is three times the amount of carbon atoms in the average composition of the raw material gas is included.

本実施の形態では、メタンを主成分とする都市ガスを原料ガスとして用いる構成とするため、供給する1モルのメタンに対して3モルの水蒸気が存在するために必要な水の量を蒸発部121に供給する。すなわち、スチームカーボン比(S/C比)が3となる水の量を蒸発部121に供給する。 In the present embodiment, since city gas containing methane as a main component is used as the raw material gas, the amount of water required for the presence of 3 moles of water vapor per 1 mole of methane to be supplied is 121. That is, the amount of water that makes the steam carbon ratio (S/C ratio) 3 is supplied to the evaporator 121 .

水素生成装置100は、多重円筒構造であるため、改質器122も略ドーナツ状の形状(中心に孔が空いた円柱形状)をしており、その上面の全周から原料ガスと水蒸気との混合ガスが改質器122に流入する。 Since the hydrogen generator 100 has a multi-cylindrical structure, the reformer 122 also has a substantially donut shape (cylindrical shape with a hole in the center), and the raw material gas and steam flow from the entire top surface of the reformer 122 . The mixed gas flows into reformer 122 .

改質器122に流入した原料ガスと水蒸気との混合ガスは、加熱部120の熱によって600℃に温められ、且つ改質触媒によって一酸化炭素を含む一次水素含有ガスに改質される。このとき、(化1)に示すようにメタンと水から水素と二酸化炭素を生成する反応と、(化2)に示すようにメタンと水から水素と一酸化炭素を生成する反応が起こっている。 The mixed gas of the raw material gas and steam that has flowed into the reformer 122 is heated to 600° C. by the heat of the heating unit 120 and reformed into a primary hydrogen-containing gas containing carbon monoxide by the reforming catalyst. At this time, a reaction to produce hydrogen and carbon dioxide from methane and water as shown in (Chem. 1) and a reaction to produce hydrogen and carbon monoxide from methane and water as shown in (Chem. 2) are taking place. .

Figure 2023118143000002
Figure 2023118143000002

Figure 2023118143000003
ただし、600℃は典型的な温度であって、反応による改質器122内の温度は、改質器122の構造や材質、大きさにも依存して変わる。例えば、400℃~650℃の範囲で変動し得る。
Figure 2023118143000003
However, 600.degree. For example, it can range from 400°C to 650°C.

一次水素含有ガスは、改質器122からリターン流路141に流入する。リターン流路141はドーナツ状の形状をしており、リターン流路141の全周を伝って、一次水素含有ガスが軸心方向の上方に流れ、CO低減器123に供給される。CO低減器123もドーナツ状の形状をしており、その下面の全周から一次水素含有ガスがCO低減器123に
流入する。
The primary hydrogen-containing gas flows from reformer 122 into return channel 141 . The return channel 141 has a donut shape, and the primary hydrogen-containing gas flows upward in the axial direction along the entire circumference of the return channel 141 and is supplied to the CO reducer 123 . The CO reducer 123 also has a doughnut-like shape, and the primary hydrogen-containing gas flows into the CO reducer 123 from the entire circumference of the lower surface thereof.

CO低減器123は、一次水素含有ガスに含まれる一酸化炭素を低減して二次水素含有ガスとして排出する。詳細には、一酸化炭素低減触媒で起こる(化3)に示す変成反応によって、一次水素含有ガスに含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素を生成し、一酸化炭素の濃度が0.1~0.2%程度となるまで一酸化炭素を低減している。 The CO reducer 123 reduces carbon monoxide contained in the primary hydrogen-containing gas and discharges it as a secondary hydrogen-containing gas. Specifically, the carbon monoxide and water vapor contained in the primary hydrogen-containing gas are reacted with each other to produce carbon dioxide and hydrogen by the transformation reaction shown in (Chemical 3) occurring in the carbon monoxide reduction catalyst, and the concentration of carbon monoxide is carbon monoxide is reduced to about 0.1 to 0.2%.

このとき変成反応によって発生する熱の一部は、外筒132を介して蒸発部121へ移動することで、CO低減器123は化学反応に適した温度である250℃が維持される。 At this time, part of the heat generated by the transformation reaction is transferred to the evaporator 121 via the outer cylinder 132, so that the CO reducer 123 is maintained at 250° C., which is suitable for chemical reaction.

ただし、250℃は典型的な温度であって、反応によるCO低減器123内の温度は、CO低減器123の構造や材質、大きさにも依存して変わる。例えば200℃~300℃の範囲で変動し得る。 However, 250° C. is a typical temperature, and the temperature inside the CO reducer 123 due to the reaction varies depending on the structure, material, and size of the CO reducer 123 . For example, it can vary from 200°C to 300°C.

Figure 2023118143000004
CO低減器123から排出された二次水素含有ガスは、水素含有ガス排出管136から水素生成装置100の外部に排出された後に、燃料電池発電装置などの水素利用機器に供給される。
Figure 2023118143000004
The secondary hydrogen-containing gas discharged from the CO reducer 123 is discharged from the hydrogen-containing gas discharge pipe 136 to the outside of the hydrogen generator 100, and then supplied to a hydrogen utilization device such as a fuel cell power generator.

加熱部120のバーナの燃焼で発生した燃焼排ガスは、燃焼筒130の内周面に沿って燃焼筒130の内周側を下方に流れた後に、加熱部収納筒133の底部と燃焼筒130の下端部との隙間を通って燃焼筒130の外周側に出た後に上方に折り返して、燃焼筒130と加熱部収納筒133との間の燃焼排ガス流路140を通流するときに、改質器122と熱交換し、その後、燃焼筒130と内筒131との間の燃焼排ガス流路140を通流するときに、蒸発部121と熱交換して、内筒131における上部に設けられた燃焼排ガス出口管から水素生成装置100の外部に排出される。 The combustion exhaust gas generated by the combustion of the burner of the heating unit 120 flows downward along the inner peripheral surface of the combustion tube 130 and then flows downward along the inner peripheral side of the combustion tube 130, and then passes through the bottom of the heating unit storage tube 133 and the combustion tube 130. After coming out to the outer peripheral side of the combustion cylinder 130 through the gap with the lower end, it is folded back upward and flows through the combustion exhaust gas flow path 140 between the combustion cylinder 130 and the heating unit storage cylinder 133. When reforming 122, and then heat-exchanged with the evaporator 121 when passing through the flue gas flow path 140 between the combustion cylinder 130 and the inner cylinder 131, and is provided in the upper part of the inner cylinder 131. It is discharged to the outside of the hydrogen generator 100 from the combustion exhaust gas outlet pipe.

[1-3.効果]
以上のように、本実施の形態における水素生成装置100は、加熱部120と、蒸発部121と、改質器122と、燃焼筒130と、内筒131と、外筒132と、加熱部収納筒133と、第1隔壁134と、燃焼排ガス流路140と、連通口150と、を有している。
[1-3. effect]
As described above, the hydrogen generator 100 according to the present embodiment includes the heating unit 120, the evaporating unit 121, the reformer 122, the combustion cylinder 130, the inner cylinder 131, the outer cylinder 132, and the heating unit housing. It has a cylinder 133 , a first partition 134 , a flue gas flow path 140 and a communication port 150 .

加熱部120は、可燃性ガスを燃焼して燃焼排ガスを排出するように構成されている。燃焼筒130は、鉛直方向に中心軸を有し、加熱部120の外周を囲むように構成されている。内筒131は、鉛直方向に中心軸を有する筒形で、燃焼筒130の外周を囲むように構成されている。外筒132は、鉛直方向に中心軸を有する筒形で、内筒131の外周を囲むように構成されている。 The heating unit 120 is configured to burn combustible gas and discharge flue gas. Combustion cylinder 130 has a central axis in the vertical direction and is configured to surround the outer circumference of heating section 120 . The inner cylinder 131 has a cylindrical shape with a central axis in the vertical direction, and is configured to surround the outer circumference of the combustion cylinder 130 . The outer cylinder 132 has a cylindrical shape with a central axis in the vertical direction, and is configured to surround the outer circumference of the inner cylinder 131 .

加熱部収納筒133は、鉛直方向に中心軸を有する有底筒形で、上端部が内筒131の下端部に接合され、燃焼筒130を収納するように構成されている。第1隔壁134は、鉛直方向に中心軸を有する有底筒形で、内筒131と外筒132と加熱部収納筒133とを収納するように構成されている。 The heating unit housing cylinder 133 is a bottomed cylinder having a vertical center axis, and is configured to house the combustion cylinder 130 by joining the upper end to the lower end of the inner cylinder 131 . The first partition 134 has a bottomed cylindrical shape with a central axis in the vertical direction, and is configured to accommodate the inner cylinder 131 , the outer cylinder 132 , and the heating unit housing cylinder 133 .

燃焼排ガス流路140は、内筒131および加熱部収納筒133とで構成される筒と、燃焼筒130との間に形成され、上方に燃焼排ガスを流すように構成されている。 The combustion exhaust gas flow path 140 is formed between the cylinder composed of the inner cylinder 131 and the heating unit storage cylinder 133 and the combustion cylinder 130, and is configured to flow the combustion exhaust gas upward.

蒸発部121は、内筒131と外筒132との間に形成され、内筒131を介して伝わる熱で、原料ガスと水とを加熱して、水を蒸発させ、且つ未蒸発の液水が下部で滞留するように構成されている。 The evaporator 121 is formed between the inner cylinder 131 and the outer cylinder 132, heats the source gas and water with heat transmitted through the inner cylinder 131, evaporates the water, and converts the unevaporated liquid water into is configured to stay at the bottom.

改質器122は、蒸発部121の下方に改質触媒を充填して形成され、加熱部収納筒133を介して伝わる熱で、原料ガスと水蒸気との混合ガスから、改質反応で一酸化炭素を含む一次水素含有ガスを、生成するように構成されている。 The reformer 122 is formed by filling a reforming catalyst below the evaporator 121, and the heat transmitted through the heating unit housing cylinder 133 converts the mixed gas of the raw material gas and steam into monoxide through a reforming reaction. It is configured to produce a primary hydrogen-containing gas containing carbon.

連通口150は、蒸発部121の下部で蒸発せずに滞留する液水の水位よりも高い位置において、外筒132の円周方向に複数形成され、蒸発部121から原料ガスと水蒸気とを、改質器122へ流出させるように構成されている。 A plurality of communication ports 150 are formed in the circumferential direction of the outer cylinder 132 at a position higher than the water level of the liquid water remaining in the lower portion of the evaporating section 121 without evaporating. It is configured to flow out to the reformer 122 .

内筒131の下端近傍部分は、内周面に全周にわたって外周方向に凹んだ環状の凹部が形成され外周面に全周にわたって外周方向に突出した環状の凸部が形成されるように、内筒131の筒壁が全周にわたって外周方向に曲がっており、未蒸発の液水が蒸発部121の下部で滞留するように、内筒131の外周面の凸部が外筒132の内周面と全周にわたって密着している。 A portion near the lower end of the inner cylinder 131 is formed with an annular recess that is recessed in the outer peripheral direction along the entire circumference of the inner peripheral surface, and an annular convex portion that protrudes in the outer peripheral direction is formed on the outer peripheral surface along the entire circumference. The cylinder wall of the cylinder 131 is bent in the outer peripheral direction over the entire circumference, and the protrusions on the outer peripheral surface of the inner cylinder 131 are curved on the inner peripheral surface of the outer cylinder 132 so that the unevaporated liquid water stays in the lower part of the evaporating part 121 . and adheres all around.

上記構成において、蒸発部121の下部に滞留する液水が、内筒131における鉛直方向に平行な液水の内周側に隣接する側壁部に加え、鉛直方向に対して傾斜して液水の下側に隣接する凸部を介して燃焼排ガス流路140と隣接する構造とすることで、断面がL字状で且つ環状の部材を内筒の外周面に設けた従来の構成と比較して、液水の滞留量に対して高温の燃焼排ガスから液水への伝熱面積が広くなっているので、従来よりも液水の蒸発が促進されて、蒸発部121の全長(鉛直方向の長さ)を従来よりも短くしても液水を十分に蒸発させることができる。 In the above configuration, the liquid water remaining in the lower part of the evaporating part 121 is not only on the side wall part adjacent to the inner peripheral side of the liquid water parallel to the vertical direction in the inner cylinder 131, but also on the side wall part that is inclined with respect to the vertical direction. By adopting a structure adjacent to the combustion exhaust gas flow path 140 via the convex portion adjacent to the lower side, compared to the conventional configuration in which an annular member having an L-shaped cross section is provided on the outer peripheral surface of the inner cylinder Since the heat transfer area from the high-temperature flue gas to the liquid water is larger than the liquid water retention amount, the evaporation of the liquid water is promoted more than before, and the total length (vertical length) of the evaporator 121 is increased. ) can be made shorter than before, the liquid water can be sufficiently evaporated.

これにより、改質器122へ液水が浸入することで発生する改質触媒の劣化を抑制しつつ、水素生成装置100の鉛直方向の全長を短縮することができる。そして、水素生成装置100の全長を短くすると、水素生成装置100の外周面を覆う断熱材や水素生成装置100を収納する筐体が小さくなるので、水素生成装置100の材料費を低減できる。 As a result, it is possible to reduce the overall length of the hydrogen generator 100 in the vertical direction while suppressing the deterioration of the reforming catalyst caused by the infiltration of liquid water into the reformer 122 . If the overall length of the hydrogen generator 100 is shortened, the heat insulating material that covers the outer peripheral surface of the hydrogen generator 100 and the housing that houses the hydrogen generator 100 become smaller, so the material cost of the hydrogen generator 100 can be reduced.

本実施の形態のように、水素生成装置100における蒸発部121は、内筒131の内周面と外周面とに、連通口150よりも鉛直方向の上側において、軸心方向に向かって螺旋状の凸部と凹部とを表裏一体に形成し、内筒131の外周面の凸部を外筒132の内周面に密着させることによって、内筒131と外筒132との間に、水を蒸発させるための螺旋状の流路を形成してもよい。 As in the present embodiment, the evaporator 121 in the hydrogen generator 100 is formed in the inner and outer peripheral surfaces of the inner cylinder 131 vertically above the communication port 150 in a spiral shape toward the axial direction. The protrusions and recesses of the inner cylinder 131 are formed integrally with each other, and the protrusions on the outer peripheral surface of the inner cylinder 131 are brought into close contact with the inner peripheral surface of the outer cylinder 132 to prevent water from flowing between the inner cylinder 131 and the outer cylinder 132. A spiral channel may be formed for vaporization.

これにより、蒸発部121に、連通口150よりも鉛直方向の上側において、水を蒸発させるための螺旋状の流路を、部品点数を増やすことなく、バルジ加工(ハイドロフォーミング)などにより容易に形成できる。 As a result, a spiral flow path for evaporating water is easily formed by bulging (hydroforming) or the like in the evaporating section 121 above the communication port 150 in the vertical direction without increasing the number of parts. can.

さらに、蒸発部121の螺旋状の流路の形成と、未蒸発の液水が蒸発部121の下部で滞留するように、連通口150よりも鉛直方向の下側において、外筒132の内周面に密着する内筒131の外周面の環状の凸部の形成とを、一度のバルジ加工で同時に形成できる。そのため、蒸発部121を簡便に製造することができ、製造コストを低減できる。 Furthermore, the inner periphery of the outer cylinder 132 is vertically below the communication port 150 so that the evaporating part 121 has a spiral flow path and the unevaporated liquid water stays in the lower part of the evaporating part 121. The formation of the annular protrusion on the outer peripheral surface of the inner cylinder 131 that is in close contact with the surface can be simultaneously formed by one bulging process. Therefore, the evaporating section 121 can be manufactured easily, and the manufacturing cost can be reduced.

また、本実施の形態において、水素生成装置100は、CO低減器123と、第2隔壁135と、水素含有ガス排出管136と、リターン流路141と、を備えるようにしてもよい。 In addition, in the present embodiment, hydrogen generator 100 may include CO reducer 123 , second partition 135 , hydrogen-containing gas discharge pipe 136 , and return channel 141 .

CO低減器123は、第1隔壁134と外筒132との間で、蒸発部121の外周側に隣接する部分に一酸化炭素低減触媒を充填して形成され、改質器122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を化学反応で低減して二次水素含有ガスとして排出するように構成されている。 The CO reducer 123 is formed by filling a portion adjacent to the outer peripheral side of the evaporating section 121 with a carbon monoxide reducing catalyst between the first partition 134 and the outer cylinder 132 . It is configured to reduce the concentration of carbon monoxide contained in the hydrogen-containing gas through a chemical reaction and discharge it as a secondary hydrogen-containing gas.

第2隔壁135は、外筒132の外径より大きい内径を有する側面部と、外周端が側面部の上端部に接続され内周端が外筒132の外周面に接合されるドーナツ盤形状の上面部と、を有し、改質器122は、加熱部収納筒133と第2隔壁135との間に、改質触媒を充填して形成される。 The second partition wall 135 has a donut-shaped side portion having an inner diameter larger than the outer diameter of the outer cylinder 132 , an outer peripheral end connected to the upper end of the side portion, and an inner peripheral end joined to the outer peripheral surface of the outer cylinder 132 . The reformer 122 is formed by filling a reforming catalyst between the heating unit housing tube 133 and the second partition wall 135 .

リターン流路141は、第1隔壁134と第2隔壁135との間に形成され、改質器122から流出した一次水素含有ガスを上方に(CO低減器123に)流すように構成されている。 The return flow path 141 is formed between the first partition 134 and the second partition 135 and configured to flow the primary hydrogen-containing gas that has flowed out of the reformer 122 upward (to the CO reducer 123). .

水素含有ガス排出管136は、第1隔壁134に設けられ、二次水素含有ガスを外部へ排出するように構成されている。 The hydrogen-containing gas discharge pipe 136 is provided in the first partition wall 134 and configured to discharge the secondary hydrogen-containing gas to the outside.

これにより、改質器122は加熱部120から周方向均一に伝熱され、効率よく改質反応を行わせることができる。さらに、改質器122において生成された一次水素含有ガスに含まれる一酸化炭素の濃度を、CO低減器123において化学反応(変成反応)で低減できる。 As a result, the reformer 122 can receive heat uniformly from the heating section 120 in the circumferential direction, and the reforming reaction can be efficiently performed. Furthermore, the concentration of carbon monoxide contained in the primary hydrogen-containing gas produced in the reformer 122 can be reduced by a chemical reaction (transformation reaction) in the CO reducer 123 .

そのため、水素生成装置100が燃料電池発電装置へ燃料ガスを供給する場合は、CO低減器123によって一酸化炭素濃度が低減された水素含有ガスを燃料電池発電装置へ燃料ガスとして供給できるため、一酸化炭素による燃料電池発電装置の性能低下を抑制できる。 Therefore, when the hydrogen generator 100 supplies fuel gas to the fuel cell power generation device, the hydrogen-containing gas whose carbon monoxide concentration is reduced by the CO reducer 123 can be supplied to the fuel cell power generation device as the fuel gas. It is possible to suppress deterioration in the performance of the fuel cell power generation device due to carbon oxide.

また、水素生成装置100の鉛直方向の全長を長くすることなく、改質器122の改質触媒を改質触媒に適した温度にするとともに、CO低減器123の一酸化炭素低減触媒を化学反応(変成反応)に適した温度にすることが可能になる。 In addition, without increasing the total length of the vertical direction of the hydrogen generator 100, the reforming catalyst of the reformer 122 is set to a temperature suitable for the reforming catalyst, and the carbon monoxide reduction catalyst of the CO reducer 123 is chemically reacted. It becomes possible to set the temperature suitable for (modification reaction).

また、本実施の形態において、水素生成装置100は、未蒸発の液水が蒸発部121の下部で滞留するように、内筒131の外周面の凸部が外筒132の内周面と全周にわたって密着している箇所を、気密に接合してもよい。 In addition, in the present embodiment, the hydrogen generator 100 is configured so that the protrusions on the outer peripheral surface of the inner cylinder 131 are completely aligned with the inner peripheral surface of the outer cylinder 132 so that the unevaporated liquid water stays in the lower part of the evaporating part 121 . You may join the location which adhere|attaches over the circumference|pipe airtightly.

これにより、蒸発部121の下部に滞留する液水が、内筒131の外周面の凸部と外筒132の内周面とが全周にわたって密着する箇所を通り抜けて、改質器122へ浸入することを抑制できる。そのため、改質器122へ液水が浸入することで発生する改質触媒の劣化を抑制できる。 As a result, the liquid water remaining in the lower portion of the evaporator 121 passes through the portion where the convex portion on the outer peripheral surface of the inner cylinder 131 and the inner peripheral surface of the outer cylinder 132 are in close contact over the entire circumference, and enters the reformer 122. can be suppressed. Therefore, deterioration of the reforming catalyst caused by intrusion of liquid water into the reformer 122 can be suppressed.

また、本実施の形態において、水素生成装置100は、内筒131と加熱部収納筒133とを一体で構成してもよい。 Further, in the present embodiment, the hydrogen generator 100 may be configured by integrating the inner cylinder 131 and the heating unit storage cylinder 133 .

これにより、未蒸発の液水が蒸発部121の下部で滞留するように、内筒131の外周面の凸部が外筒132の内周面と全周にわたって密着している箇所を、気密に接合する作業を、外筒132の外周方向から行える構造とすることができる。そのため、水素生成装置100の製造を簡便にできる。 As a result, the portion where the convex portion on the outer peripheral surface of the inner cylinder 131 is in close contact with the inner peripheral surface of the outer cylinder 132 over the entire circumference is airtight so that the non-evaporated liquid water stays in the lower portion of the evaporating portion 121. A structure can be employed in which the joining work can be performed from the outer peripheral direction of the outer cylinder 132 . Therefore, the manufacturing of the hydrogen generator 100 can be simplified.

(実施の形態2)
以下、図2を用いて、実施の形態2を説明する。
(Embodiment 2)
Embodiment 2 will be described below with reference to FIG.

[2-1.構成]
図2に示すように、水素生成装置200は、加熱部220と、蒸発部221と、改質器222と、CO低減器223と、燃焼筒230と、内筒231と、外筒232と、加熱部収納筒233と、第1隔壁234と、第2隔壁235と、水素含有ガス排出管236と、燃焼排ガス流路240と、リターン流路241と、連通口250と、を有する。
[2-1. composition]
As shown in FIG. 2, the hydrogen generator 200 includes a heating unit 220, an evaporating unit 221, a reformer 222, a CO reducer 223, a combustion cylinder 230, an inner cylinder 231, an outer cylinder 232, It has a heating unit storage tube 233 , a first partition 234 , a second partition 235 , a hydrogen-containing gas discharge pipe 236 , a flue gas flow path 240 , a return flow path 241 , and a communication port 250 .

加熱部220は、鉛直方向に中心軸を有する燃焼筒230の内周側に配置され、燃焼用空気が混合された可燃性ガスを燃焼して燃焼排ガスを排出するバーナと、バーナに可燃性ガスを供給するガス供給管と、バーナに燃焼用空気を供給する燃焼用空気供給管と、を備えている。加熱部220のバーナは、下向きの炎を形成するように構成されている。 The heating unit 220 is arranged on the inner peripheral side of a combustion cylinder 230 having a central axis in the vertical direction, and includes a burner that burns combustible gas mixed with combustion air and discharges combustion exhaust gas, and a combustible gas in the burner. and a combustion air supply pipe for supplying combustion air to the burner. The burners of heating section 220 are configured to produce downward flames.

可燃性ガスには、原料ガス(都市ガスやLPガス)を用いることができ、水素生成装置200が燃料電池発電装置に水素含有ガスを燃料ガスとして供給する場合は、燃料電池発電装置で利用されずに燃料電池発電装置から排出される燃料ガス(アノードオフガス)を用いることができる。 Raw material gas (city gas or LP gas) can be used as the combustible gas. A fuel gas (anode off-gas) discharged from the fuel cell power generation device can be used.

燃焼筒230は、鉛直方向に中心軸を有し、加熱部220の外周を囲む円筒形で、加熱部220と同軸になるように配置されている。燃焼筒230は、燃焼筒230の内周側では、燃焼排ガスを鉛直方向の下方へ流し、燃焼筒230の外周側(内筒231および加熱部収納筒233とで構成される筒と、燃焼筒230との間に形成された燃焼排ガス流路240)では、燃焼排ガスを鉛直方向の上方へ流すための部材である。 Combustion cylinder 230 has a central axis in the vertical direction, is cylindrical and surrounds the outer circumference of heating section 220 , and is arranged coaxially with heating section 220 . The combustion cylinder 230 allows the combustion exhaust gas to flow downward in the vertical direction on the inner peripheral side of the combustion cylinder 230, 230 is a member for causing the flue gas to flow upward in the vertical direction.

燃焼筒230の下端部は、改質器222の下端部と略同じ高さ、もしくは改質器222の下端部よりも鉛直方向の下方に位置する。また、燃焼筒230の下端部は、燃焼筒230と同軸になるように配置され燃焼筒230を囲む有底円筒形の加熱部収納筒233の底部よりも鉛直方向の上方に位置している。 The lower end of the combustion cylinder 230 is positioned at substantially the same height as the lower end of the reformer 222 or vertically below the lower end of the reformer 222 . The lower end of the combustion cylinder 230 is positioned vertically above the bottom of a bottomed cylindrical heating unit storage cylinder 233 that surrounds the combustion cylinder 230 and is arranged coaxially with the combustion cylinder 230 .

水素生成装置200は、加熱部220のバーナの燃焼で発生した燃焼排ガスが、燃焼筒230の内周面に沿って燃焼筒230の内周側を下方に流れた後に、加熱部収納筒233の底部と燃焼筒230の下端部との隙間を通って燃焼筒230の外周側に出て上方に折り返して、加熱部収納筒233を介して改質器222の改質触媒と熱交換しながら加熱部収納筒233の内周面に沿って加熱部収納筒233と燃焼筒230との間の燃焼排ガス流路240を上方に流れた後に、内筒231を介して蒸発部221の水および原料ガスと熱交換しながら内筒231の内周面に沿って内筒231と燃焼筒230との間の燃焼排ガス流路240を上方に流れて、内筒231における上部に外筒232を貫通するように設けられた燃焼排ガス出口管から、水素生成装置200の外部に排出されるように構成されている。 In the hydrogen generator 200, the flue gas generated by the combustion of the burner of the heating unit 220 flows downward along the inner peripheral surface of the combustion tube 230, and then flows into the heating unit housing tube 233. It goes out to the outer peripheral side of the combustion tube 230 through the gap between the bottom part and the lower end part of the combustion tube 230 and folds upward, and heats while exchanging heat with the reforming catalyst of the reformer 222 via the heating unit storage tube 233 . After flowing upward through the flue gas flow path 240 between the heating unit housing cylinder 233 and the combustion cylinder 230 along the inner peripheral surface of the heating unit housing cylinder 233, the water and raw material gas in the evaporating unit 221 pass through the inner cylinder 231. While exchanging heat with It is configured to be discharged to the outside of the hydrogen generator 200 from a combustion exhaust gas outlet pipe provided in the.

内筒231は、鉛直方向に中心軸を有する略円筒形の金属部材であり、内径が燃焼筒230の外径よりも大きく、燃焼筒230の外周面を囲み、燃焼筒230と同軸になるように配置される。 The inner cylinder 231 is a substantially cylindrical metal member having a central axis in the vertical direction. placed in

内筒231は、外筒232との間に、炭化水素を含む原料ガスと水とを螺旋状に流すために、弦巻ばね(コイルばね)のように螺旋状に曲げられた丸棒が配置されている。 Between the inner cylinder 231 and the outer cylinder 232, a spirally bent round bar like a coil spring is arranged in order to spirally flow the raw material gas containing hydrocarbons and water. ing.

内筒231と燃焼筒230との間で螺旋状の丸棒が配置された箇所は、炭化水素を含む原料ガスと水とが内筒231から伝わる熱で加熱されながら通過する蒸発部221となっている。 The place where the spiral round bar is arranged between the inner cylinder 231 and the combustion cylinder 230 serves as an evaporator 221 through which the raw material gas containing hydrocarbons and water pass while being heated by the heat transferred from the inner cylinder 231 . ing.

内筒231は、燃焼筒230との間に燃焼排ガス流路240を形成する。内筒231の下端近傍部において下方に向かうに従って内筒231の径が小さくなるように外周面が傾斜した部分は、燃焼排ガス流路240を、内筒231よりも下側に延長するように、加熱部収納筒233の上端近傍部において上方に向かうに従って加熱部収納筒233の径が大きくなるように内周面が傾斜した部分と密着している。 The inner cylinder 231 forms a flue gas flow path 240 with the combustion cylinder 230 . In the vicinity of the lower end of the inner cylinder 231 , the portion where the outer peripheral surface is inclined so that the diameter of the inner cylinder 231 decreases as it goes downward extends the combustion exhaust gas flow path 240 below the inner cylinder 231 . In the vicinity of the upper end of the heating unit storage cylinder 233, the inner peripheral surface is in close contact with the inclined portion so that the diameter of the heating unit storage cylinder 233 increases upward.

加熱部収納筒233は、内径が燃焼筒230の外径よりも大きく、上端部が外筒232の下端部に接合され、外筒232の鉛直方向の下方で燃焼筒230の外周面を囲み、燃焼筒230と同軸となるように配置され、燃焼筒230を収納するように構成されている。 The heating unit storage cylinder 233 has an inner diameter larger than the outer diameter of the combustion cylinder 230, and its upper end is joined to the lower end of the outer cylinder 232, and surrounds the outer peripheral surface of the combustion cylinder 230 below the outer cylinder 232 in the vertical direction, It is arranged so as to be coaxial with the combustion tube 230 and configured to accommodate the combustion tube 230 .

加熱部収納筒233は、鉛直方向に中心軸を有し、外筒232と一体で構成される有底円筒形の金属部材であり、燃焼筒230を囲む円筒形の側面部と、内周端が側面部の上端部と接続され外周端が外筒232の下端部と接合される傾斜したドーナツ盤形状の上面部と、外周端が側面部の下端部と接続される底部とを有する。 The heating unit housing cylinder 233 is a bottomed cylindrical metal member that has a central axis in the vertical direction and is integrally formed with the outer cylinder 232. is connected to the upper end of the side portion and the outer peripheral end is joined to the lower end of the outer cylinder 232, and the bottom portion is connected to the lower end of the side portion.

加熱部収納筒233の底部と燃焼筒230の下端部との間には、燃焼筒230の内周側を下方に流れた燃焼排ガスが、燃焼筒230の外周側へと通流する隙間がある。 Between the bottom portion of the heating unit housing tube 233 and the lower end portion of the combustion tube 230, there is a gap through which the combustion exhaust gas that has flowed downward on the inner peripheral side of the combustion tube 230 flows to the outer peripheral side of the combustion tube 230. .

外筒232は、鉛直方向に中心軸を有する円筒形の金属部材であり、内筒231の外周面を囲み内筒231と同軸になるように配置されている。外筒232と内筒231との間には、螺旋状の流路が形成される。 The outer cylinder 232 is a cylindrical metal member having a central axis in the vertical direction, and is arranged so as to surround the outer peripheral surface of the inner cylinder 231 and be coaxial with the inner cylinder 231 . A spiral flow path is formed between the outer cylinder 232 and the inner cylinder 231 .

第2隔壁235は、内径が外筒232の外径よりも大きく、外筒232と同軸となるように配置され外筒232を囲む円筒形の側面部と、外周端が側面部の上端部に接続され内周端が外筒232の外周面に接合されるドーナツ盤形状の上面部と、を有する金属部材である。 The second partition wall 235 has a cylindrical side surface that has an inner diameter larger than the outer diameter of the outer cylinder 232 and is arranged coaxially with the outer cylinder 232 to surround the outer cylinder 232. and a donut disk-shaped upper surface portion that is connected and whose inner peripheral end is joined to the outer peripheral surface of the outer cylinder 232 .

第2隔壁235は、その側面部の下端部が、燃焼筒230の下端部と略同じ高さ、もしくは改質器222の下端部よりも鉛直方向の下方に位置し、そのドーナツ盤形状の上面部が連通口250よりも鉛直方向の上方に位置し、且つCO低減器223の下端よりも鉛直方向の下方に位置する。 The second partition wall 235 has a lower end portion of the side surface portion positioned substantially at the same height as the lower end portion of the combustion cylinder 230 or vertically lower than the lower end portion of the reformer 222, and has a doughnut-shaped upper surface. is located above the communication port 250 in the vertical direction and below the lower end of the CO reducer 223 in the vertical direction.

加熱部収納筒233と第2隔壁235との間は、原料ガスと水蒸気との混合ガスから改質反応で一次水素含有ガス(一酸化炭素を含む水素含有ガス)を生成する改質触媒が充填されている。 A reforming catalyst that generates a primary hydrogen-containing gas (a hydrogen-containing gas containing carbon monoxide) by a reforming reaction from a mixed gas of raw material gas and steam is filled between the heating unit housing cylinder 233 and the second partition wall 235. It is

内筒231と外筒232との間で、螺旋状の流路が形成された箇所は、炭化水素を含む原料ガスと水とが内筒231を介して高温の燃焼排ガスから伝わる熱で加熱されながら通過する蒸発部221となっている。 Between the inner cylinder 231 and the outer cylinder 232, the portion where the helical flow path is formed is heated by the heat transmitted from the high-temperature combustion exhaust gas through the inner cylinder 231 to the raw material gas containing hydrocarbons and water. It is an evaporator 221 through which the light passes through.

蒸発部221の下方で、加熱部収納筒233と第2隔壁235との間は、原料ガスと水蒸気との混合ガスから改質反応で一次水素含有ガス(一酸化炭素を含む水素含有ガス)を生成する改質触媒が充填されて、改質器222となっている。 A primary hydrogen-containing gas (a hydrogen-containing gas containing carbon monoxide) is produced by a reforming reaction from a mixed gas of raw material gas and water vapor below the evaporating unit 221 and between the heating unit storage cylinder 233 and the second partition wall 235 . A reformer 222 is filled with the reforming catalyst to be produced.

蒸発部221の螺旋状の流路は、内筒231と外筒232との間に螺旋状の丸棒を配置して形成される。螺旋状の丸棒は、例えば、弦巻ばね(コイルばね)のように螺旋形状に曲げた丸棒を用いてもよい。弦巻ばね(コイルばね)のように螺旋形状に曲げた丸棒を、内筒231の外周面と外筒232の内周面とに密着するように設置することによって、蒸発部221の螺旋状の流路を形成することができる。 The helical flow path of the evaporating section 221 is formed by arranging a helical round bar between the inner cylinder 231 and the outer cylinder 232 . As the spiral round bar, for example, a round bar bent into a spiral shape such as a coiled spring (coil spring) may be used. By installing a round bar bent in a helical shape like a coil spring (coil spring) so as to be in close contact with the outer peripheral surface of the inner cylinder 231 and the inner peripheral surface of the outer cylinder 232, the helical shape of the evaporating part 221 is formed. A channel can be formed.

蒸発部221の下部では、内筒231の下端近傍部分の拡管によって、内筒231の内周面に全周にわたって外周方向に凹んだ環状の溝(凹部)が形成されるとともに、内筒231の外周面における内周面の環状の溝(凹部)に対応する部分には全周にわたって外周方向に突出した環状の凸部が形成されて、その内筒231の外周面における環状の凸部が外筒232の内周面と全周にわたって密着して、蒸発部221の下部を閉塞している。 In the lower part of the evaporating part 221 , an annular groove (recess) recessed in the outer peripheral direction is formed on the inner peripheral surface of the inner cylinder 231 over the entire circumference by expanding the portion near the lower end of the inner cylinder 231 . An annular protrusion projecting in the outer peripheral direction is formed over the entire circumference in a portion of the outer peripheral surface corresponding to the annular groove (recess) on the inner peripheral surface, and the annular protrusion on the outer peripheral surface of the inner cylinder 231 extends outward. It is in close contact with the inner peripheral surface of the cylinder 232 over the entire circumference to close the lower portion of the evaporating section 221 .

内筒231の下端近傍部分の内周面の環状の溝(凹部)は、溝の鉛直方向の中央部が溝の最深部になっており、溝の最深部に向かうほど溝の鉛直方向の幅が狭くなっている。 The annular groove (recess) on the inner peripheral surface of the portion near the lower end of the inner cylinder 231 has the deepest portion at the center in the vertical direction of the groove, and the width of the groove in the vertical direction increases toward the deepest portion of the groove. is narrowed.

内筒231の下端近傍部分の内周面の環状の溝(凹部)は、溝の最深部から上方に向かうに従って内筒231の内径が小さくなり、溝の最深部から下方に向かうに従って内筒231の内径が小さくなる形状である。 In the annular groove (recess) on the inner peripheral surface of the inner cylinder 231 near the lower end, the inner diameter of the inner cylinder 231 decreases upward from the deepest part of the groove, and the inner cylinder 231 decreases downward from the deepest part of the groove. It is a shape with a smaller inner diameter.

内筒231の下端近傍部分の外周面の環状の凸部は、外筒232の内周面と全周にわたって密着する部分から上方に向かうに従って内筒231の外径が小さくなり、外筒232の内周面と全周にわたって密着する部分から下方に向かうに従って内筒231の外径が小さくなる形状である。 The annular convex portion on the outer peripheral surface of the portion near the lower end of the inner cylinder 231 has an outer diameter of the inner cylinder 231 that decreases upward from a portion that is in close contact with the inner peripheral surface of the outer cylinder 232 over the entire circumference. The inner cylinder 231 has a shape in which the outer diameter of the inner cylinder 231 decreases as it goes downward from the part that is in close contact with the inner peripheral surface over the entire circumference.

蒸発部221の下部は、内筒231の内周面と外周面とに、全周にわたって凸部と凹部とが表裏一体に形成されるように加工して、凹凸における外周方向に突出した凸部が外筒232の内周面と全周にわたって密着するようにして閉塞されるため、未蒸発の液水は蒸発部221の下部に滞留する。 The lower part of the evaporating part 221 is processed so that the inner peripheral surface and the outer peripheral surface of the inner cylinder 231 are integrally formed with a convex part and a concave part over the entire circumference, and the convex part protrudes in the outer peripheral direction of the unevenness. is closed so as to be in close contact with the entire circumference of the inner peripheral surface of the outer cylinder 232 , unevaporated liquid water stays in the lower part of the evaporating section 221 .

内筒231の下端近傍部分は、内周面に全周にわたって外周方向に凹んだ環状の凹部が形成され外周面に全周にわたって外周方向に突出した環状の凸部が形成されるように、内筒231の筒壁が全周にわたって外周方向に曲がっている。 A portion near the lower end of the inner cylinder 231 is formed with an annular recess that is recessed in the outer peripheral direction along the entire circumference of the inner peripheral surface, and an annular convex portion that protrudes in the outer peripheral direction is formed on the outer peripheral surface along the entire circumference. A cylinder wall of the cylinder 231 is bent in the outer peripheral direction over the entire circumference.

蒸発部221から原料ガスと水蒸気とを改質器222へ流出させるため、蒸発部221の下部に滞留する液水の水位よりも高い位置において外筒232の円周方向に複数の連通口250が設けられている。 In order to allow the raw material gas and steam to flow out from the evaporator 221 to the reformer 222, a plurality of communication ports 250 are formed in the circumferential direction of the outer cylinder 232 at positions higher than the water level of the liquid water staying in the lower part of the evaporator 221. is provided.

連通口が設けられる位置は、滞留する液水の水位を考慮し、内筒231の外周面の凸部が外筒232の内周面と全周にわたって密着し蒸発部221の下部を閉塞する位置から鉛直方向の上方に5mmの位置となるようにする。内筒231の外周面の凸部が外筒232の内周面と全周にわたって密着し蒸発部221の下部を閉塞する箇所は、気密に接合されている。 The position where the communication port is provided is the position where the convex portion on the outer peripheral surface of the inner cylinder 231 is in close contact with the inner peripheral surface of the outer cylinder 232 over the entire circumference and closes the lower portion of the evaporating section 221 in consideration of the level of the liquid water that remains. 5 mm above the vertical direction. A convex portion on the outer peripheral surface of the inner cylinder 231 is in close contact with the inner peripheral surface of the outer cylinder 232 over the entire circumference, and the portion where the lower portion of the evaporating section 221 is blocked is airtightly joined.

蒸発部221の螺旋状の流路は、内筒231と外筒232との間に螺旋状の丸棒を配置する代わりに、内筒231の内周面と外周面とを、軸心方向(鉛直方向)に向かって螺旋状の凸部と凹部とが表裏一体に形成されるように加工して(内筒231の外周面に雄ネジのような凹凸を形成するとともに、内筒231の内周面に雌ネジのような凹凸を形成して)外周面の凹凸における外周方向に突出した凸部が外筒232の内周面に密着するように構成することによって、蒸発部221の螺旋状の流路を形成することができる。 Instead of arranging a spiral round bar between the inner cylinder 231 and the outer cylinder 232, the spiral flow path of the evaporating part 221 is arranged such that the inner and outer peripheral surfaces of the inner cylinder 231 are arranged in the axial direction ( In the vertical direction), the inner cylinder 231 is processed so that a spiral convex portion and a concave portion are integrally formed (the outer peripheral surface of the inner cylinder 231 is formed with unevenness like a male screw, and the inner cylinder 231 is The helical shape of the evaporating section 221 is formed by forming protrusions and recesses such as female threads on the peripheral surface so that the protrusions protruding in the outer peripheral direction of the protrusions and recesses on the outer peripheral surface are in close contact with the inner peripheral surface of the outer cylinder 232 . can be formed.

改質器222は、加熱部収納筒233と第2隔壁235との間に改質触媒を充填して形成され、加熱部収納筒233を介して伝わる熱で、原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成されている。改質器222に充填される改質触媒は、直径が2~3mmの粒状の白金系の触媒である。 The reformer 222 is formed by filling a reforming catalyst between the heating unit housing cylinder 233 and the second partition wall 235, and the heat transmitted through the heating unit housing cylinder 233 converts the mixed gas of the raw material gas and steam into a mixed gas. from the reforming reaction to produce a primary hydrogen-containing gas containing carbon monoxide. The reforming catalyst filled in the reformer 222 is a granular platinum-based catalyst with a diameter of 2 to 3 mm.

本実施の形態では、改質触媒に白金系の触媒を用いたが、改質触媒は白金系の触媒に限らず、改質器222に充填される改質触媒に、ロジウム系、ルテニウム系、ニッケル系の触媒を用いてもよい。 In the present embodiment, a platinum-based catalyst is used as the reforming catalyst, but the reforming catalyst is not limited to a platinum-based catalyst. A nickel-based catalyst may also be used.

改質触媒が充填された部分の直下には、充填された改質触媒が落下しないように、改質触媒を下から支持する改質触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、加熱部収納筒233と第2隔壁235との間に配置されている。 Directly below the portion filled with the reforming catalyst, a vent hole with a diameter of 1 mm, which is smaller than the particle size of the reforming catalyst that supports the reforming catalyst from below, is formed so that the reforming catalyst does not fall. A doughnut board-shaped plate having an air-permeable structure is arranged between the heating unit storage cylinder 233 and the second partition wall 235 .

改質触媒が充填された部分の直上には、水素生成装置200の製造時に、製造途中の水素生成装置200の上下を逆にしても(水素生成装置200の使用時の重力方向の上下を反転させても)改質触媒が蒸発部221の方へ移動しないように、改質触媒を上から覆う改質触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、加熱部収納筒233と第2隔壁235との間に配置されている。 Immediately above the portion filled with the reforming catalyst, even if the hydrogen generator 200 is turned upside down during manufacture (the direction of gravity when the hydrogen generator 200 is used is reversed) In order to prevent the reforming catalyst from moving toward the evaporating part 221, the reforming catalyst is covered from above with a donut disk structure in which a vent hole having a diameter of 1 mm, which is smaller than the particle diameter of the reforming catalyst, is formed. A shaped plate is arranged between the heating unit storage cylinder 233 and the second partition wall 235 .

外筒232における螺旋状の流路が配置された箇所よりも上部には、蒸発部221に原料ガスと水とを供給する供給管が接続されている。 A supply pipe for supplying the raw material gas and water to the evaporator 221 is connected to a portion of the outer cylinder 232 above the location where the spiral flow path is arranged.

第1隔壁234は、内径が第2隔壁235の外径よりも大きく、外筒232と第2隔壁235と同軸になるように配置され、外筒232と第2隔壁235との外周面を囲む有底円筒形の側面部と、外周端が側面部の上端部に接続され内周端が外筒232の外周面に接合されるドーナツ盤形状の上面部とを有する金属部材である。 The first partition 234 has an inner diameter larger than the outer diameter of the second partition 235, is arranged coaxially with the outer cylinder 232 and the second partition 235, and surrounds the outer peripheral surfaces of the outer cylinder 232 and the second partition 235. It is a metal member having a bottomed cylindrical side surface and a doughnut-shaped upper surface whose outer peripheral end is connected to the upper end of the side surface and whose inner peripheral end is joined to the outer peripheral surface of the outer cylinder 232 .

第1隔壁234は、第2隔壁235との間にリターン流路241を形成し、第2隔壁235よりも上方に位置する外筒232との間に一酸化炭素低減触媒が充填されたCO低減器223を構成する。第1隔壁234の底部と第2隔壁235の下端部との間に一次水素含有ガスが通流する隙間がある。 The first partition 234 forms a return flow path 241 with the second partition 235, and between the outer cylinder 232 positioned above the second partition 235 is a CO reduction filled with a carbon monoxide reduction catalyst. A device 223 is constructed. Between the bottom of the first partition 234 and the lower end of the second partition 235 there is a gap through which the primary hydrogen-containing gas flows.

第1隔壁234の底部は加熱部収納筒233の底部よりも大きく、第1隔壁234は外筒232と第2隔壁235と加熱部収納筒233とを収納するように構成されている。 The bottom of the first partition 234 is larger than the bottom of the heating unit storage tube 233 , and the first partition 234 is configured to accommodate the outer tube 232 , the second partition 235 and the heating unit storage tube 233 .

第1隔壁234と外筒232との間で蒸発部221の外周側に隣接する部分は、改質器222から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を化学反応で低減して二次水素含有ガスを生成する一酸化炭素低減触媒が充填されたCO低減器223となっている。 The portion adjacent to the outer peripheral side of the evaporating section 221 between the first partition 234 and the outer cylinder 232 reduces the concentration of carbon monoxide contained in the primary hydrogen-containing gas flowing out of the reformer 222 by a chemical reaction. The CO reducer 223 is filled with a carbon monoxide reduction catalyst that generates secondary hydrogen-containing gas.

CO低減器223に充填される一酸化炭素低減触媒は、直径が2~3mmの粒状のCu-Zn系の触媒である。本実施の形態では、一酸化炭素低減触媒にCu-Zn系の触媒を用いたが、一酸化炭素低減触媒はCu-Zn系の触媒に限らず、CO低減器223に充填される一酸化炭素低減触媒に、Ru系の触媒を用いてもよい。 The carbon monoxide reduction catalyst filled in the CO reducer 223 is a granular Cu—Zn catalyst with a diameter of 2 to 3 mm. In the present embodiment, a Cu—Zn-based catalyst is used as the carbon monoxide reduction catalyst, but the carbon monoxide reduction catalyst is not limited to the Cu—Zn-based catalyst. A Ru-based catalyst may be used as the reducing catalyst.

一酸化炭素低減触媒が充填された部分の直下には、充填された一酸化炭素低減触媒が落下しないように、一酸化炭素低減触媒を下から支持する一酸化炭素低減触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、外筒232と第1隔壁234との間に配置されている。 Immediately below the portion filled with the carbon monoxide reduction catalyst, a particle size smaller than the carbon monoxide reduction catalyst that supports the carbon monoxide reduction catalyst from below so that the filled carbon monoxide reduction catalyst does not fall. A donut disk-shaped plate having a ventilation structure with a 1 mm diameter ventilation hole is disposed between the outer cylinder 232 and the first partition wall 234 .

一酸化炭素低減触媒が充填された部分の直上には、水素生成装置200の製造時に、製造途中の水素生成装置200の上下を逆にしても(水素生成装置200の使用時の重力方向の上下を反転させても)一酸化炭素低減触媒が流出しないように、一酸化炭素低減触媒を上から覆う一酸化炭素低減触媒の粒子径よりも小さい直径が1mmの通気孔が形成され
た通気構造でドーナツ盤形状の板が、外筒232と第1隔壁234との間に配置されている。
Immediately above the portion filled with the carbon monoxide reduction catalyst, even if the hydrogen generator 200 is turned upside down during manufacture (up and down in the direction of gravity when the hydrogen generator 200 is in use) In order to prevent the carbon monoxide reduction catalyst from flowing out even if the carbon monoxide reduction catalyst is turned upside down, a ventilation structure in which a vent hole having a diameter of 1 mm smaller than the particle diameter of the carbon monoxide reduction catalyst covering the carbon monoxide reduction catalyst is formed. A doughnut-shaped plate is arranged between the outer cylinder 232 and the first partition wall 234 .

リターン流路241は、第1隔壁234と第2隔壁235との間、且つCO低減器223よりも鉛直方向の下方に形成され、改質器222から流出した一次水素含有ガスを上方に流すように構成されている。 The return channel 241 is formed between the first partition 234 and the second partition 235 and below the CO reducer 223 in the vertical direction so that the primary hydrogen-containing gas that has flowed out of the reformer 222 flows upward. is configured to

水素含有ガス排出管236は、第1隔壁234の側面部におけるCO低減器223よりも鉛直方向の上方に設けられ、CO低減器223から流出した二次水素含有ガスを外部へ排出するように構成されている。 The hydrogen-containing gas discharge pipe 236 is provided vertically above the CO reducer 223 on the side surface of the first partition 234, and is configured to discharge the secondary hydrogen-containing gas that has flowed out of the CO reducer 223 to the outside. It is

[2-2.動作]
以上のように構成された水素生成装置200において、以下、その動作、作用を説明する。
[2-2. motion]
The operation and function of the hydrogen generator 200 configured as described above will be described below.

加熱部220は、可燃性ガスを燃焼して燃焼排ガスを排出する。加熱部220が可燃性ガスを燃焼することで、その熱が改質器222に伝搬する。これにより、改質器222を所望の温度に引き上げることができる。 The heating unit 220 burns the combustible gas and discharges flue gas. Heat is transferred to the reformer 222 by burning the combustible gas in the heating unit 220 . Thereby, the reformer 222 can be raised to a desired temperature.

蒸発部221には都市ガスなどの原料ガスと液体の水とが供給され、螺旋状の流路を通過する過程で内筒231を介して伝わる熱で水が蒸発し、原料ガスと水蒸気との混合ガスとなる。 Raw material gas such as city gas and liquid water are supplied to the evaporating part 221, and in the process of passing through the spiral flow path, the water is evaporated by the heat transmitted through the inner cylinder 231, and the raw material gas and water vapor are produced. It becomes a mixed gas.

このとき、蒸発部221に供給される原料ガスの量と水の量とが、螺旋状の流路で蒸発する水の量に対して、多いために、未蒸発の液水が残る場合でも、液水は蒸発部221の下部に滞留し、原料ガスと水蒸気とのみが連通口250を経由し蒸発部221から流出するため、液水の改質器222への浸入は抑制される。 At this time, since the amount of raw material gas and the amount of water supplied to the evaporator 221 are larger than the amount of water evaporated in the spiral flow path, even if unevaporated liquid water remains, Since the liquid water stays in the lower part of the evaporator 221 and only the source gas and water vapor flow out of the evaporator 221 through the communication port 250, the liquid water is prevented from entering the reformer 222. FIG.

また、蒸発部221の下部に滞留する液水は、液水の側面の内筒231に加え、鉛直方向の下に位置する凸部を介して燃焼排ガス流路と隣接するため、高温の燃焼排ガスから液水への伝熱面積を大きくすることができ、滞留する液水を十分に蒸発させ、滞留する液水の水位を低くすることができる。 In addition to the inner cylinder 231 on the side of the liquid water, the liquid water remaining in the lower part of the evaporating part 221 is adjacent to the combustion exhaust gas flow path via the convex part located vertically below, so that the high temperature combustion exhaust gas It is possible to increase the heat transfer area from the to the liquid water, sufficiently evaporate the remaining liquid water, and lower the level of the remaining liquid water.

これにより、蒸発部221の全長が短くとも、滞留する液水の水位は連通口250の高さまで上昇せず、液水の連通口250からの流出は抑制される。 As a result, even if the total length of the evaporating section 221 is short, the level of the stagnant liquid water does not rise to the height of the communication port 250, and the outflow of the liquid water from the communication port 250 is suppressed.

本実施の形態では、原料ガスとして、脱硫後のメタンを主成分とする都市ガスを使用する。また、蒸発部221へ供給する水の量については、原料ガス平均組成の炭素原子の3倍量となる酸素分子を含むように、水の量を設定する。 In the present embodiment, city gas containing desulfurized methane as a main component is used as the raw material gas. Also, the amount of water supplied to the evaporator 221 is set so that the amount of oxygen molecules that is three times the amount of carbon atoms in the average composition of the source gas is included.

本実施の形態では、メタンを主成分とする都市ガスを原料ガスとして用いる構成とするため、供給する1モルのメタンに対して3モルの水蒸気が存在するために必要な水の量を蒸発部221に供給する。すなわち、スチームカーボン比(S/C比)が3となる水の量を蒸発部221に供給する。 In the present embodiment, since city gas containing methane as a main component is used as the raw material gas, the amount of water required for the presence of 3 moles of water vapor per 1 mole of methane to be supplied is 221. That is, the amount of water that makes the steam carbon ratio (S/C ratio) 3 is supplied to the evaporator 221 .

水素生成装置200は、多重円筒構造であるため、改質器222も略ドーナツ状の形状(中心に孔が空いた円柱形状)をしており、その上面の全周から原料ガスと水蒸気との混合ガスが改質器222に流入する。 Since the hydrogen generator 200 has a multi-cylindrical structure, the reformer 222 also has a substantially donut shape (cylindrical shape with a hole in the center), and the raw material gas and water vapor are mixed from the entire upper surface of the reformer 222 . The mixed gas flows into reformer 222 .

改質器222に流入した原料ガスと水蒸気との混合ガスは、加熱部220の熱によって
600℃に温められ、且つ改質触媒によって一酸化炭素を含む一次水素含有ガスに改質される。このとき、(化1)に示すようにメタンと水から水素と二酸化炭素を生成する反応と、(化2)に示すようにメタンと水から水素と一酸化炭素を生成する反応が起こっている。
The mixed gas of the raw material gas and steam that has flowed into the reformer 222 is heated to 600° C. by the heat of the heating unit 220 and reformed into a primary hydrogen-containing gas containing carbon monoxide by the reforming catalyst. At this time, a reaction to produce hydrogen and carbon dioxide from methane and water as shown in (Chem. 1) and a reaction to produce hydrogen and carbon monoxide from methane and water as shown in (Chem. 2) are taking place. .

ただし、600℃は典型的な温度であって、反応による改質器222内の温度は、改質器222の構造や材質、大きさにも依存して変わる。例えば、400℃~650℃の範囲で変動し得る。 However, 600.degree. For example, it can range from 400°C to 650°C.

一次水素含有ガスは、改質器222からリターン流路241に流入する。リターン流路241はドーナツ状の形状をしており、リターン流路241の全周を伝って、一次水素含有ガスが軸心方向の上方に流れ、CO低減器223に供給される。CO低減器223もドーナツ状の形状をしており、その下面の全周から一次水素含有ガスがCO低減器223に流入する。 The primary hydrogen-containing gas flows from reformer 222 into return channel 241 . The return channel 241 has a donut shape, and the primary hydrogen-containing gas flows upward in the axial direction along the entire circumference of the return channel 241 and is supplied to the CO reducer 223 . The CO reducer 223 also has a donut shape, and the primary hydrogen-containing gas flows into the CO reducer 223 from the entire circumference of the lower surface.

CO低減器223は、一次水素含有ガスに含まれる一酸化炭素を低減して二次水素含有ガスとして排出する。詳細には、一酸化炭素低減触媒で起こる(化3)に示す変成反応によって、一次水素含有ガスに含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素を生成し、一酸化炭素の濃度が0.1~0.2%程度となるまで一酸化炭素を低減している。 The CO reducer 223 reduces carbon monoxide contained in the primary hydrogen-containing gas and discharges it as a secondary hydrogen-containing gas. Specifically, the carbon monoxide and water vapor contained in the primary hydrogen-containing gas are reacted with each other to produce carbon dioxide and hydrogen by the transformation reaction shown in (Chemical 3) occurring in the carbon monoxide reduction catalyst, and the concentration of carbon monoxide is carbon monoxide is reduced to about 0.1 to 0.2%.

このとき変成反応によって発生する熱の一部は、外筒232を介して蒸発部221へ移動することで、CO低減器223は化学反応に適した温度である250℃が維持される。 At this time, part of the heat generated by the shift reaction is transferred to the evaporator 221 via the outer cylinder 232, so that the CO reducer 223 is maintained at 250° C., which is suitable for chemical reaction.

ただし、250℃は典型的な温度であって、反応によるCO低減器223内の温度は、CO低減器223の構造や材質、大きさにも依存して変わる。例えば200℃~300℃の範囲で変動し得る。 However, 250° C. is a typical temperature, and the temperature inside the CO reducer 223 due to the reaction varies depending on the structure, material, and size of the CO reducer 223 . For example, it can vary from 200°C to 300°C.

CO低減器223から排出された二次水素含有ガスは、水素含有ガス排出管236から水素生成装置200の外部に排出された後に、燃料電池発電装置などの水素利用機器に供給される。 The secondary hydrogen-containing gas discharged from the CO reducer 223 is discharged from the hydrogen-containing gas discharge pipe 236 to the outside of the hydrogen generator 200, and then supplied to a hydrogen utilization device such as a fuel cell power generator.

加熱部220のバーナの燃焼で発生した燃焼排ガスは、燃焼筒230の内周面に沿って燃焼筒230の内周側を下方に流れた後に、加熱部収納筒233の底部と燃焼筒230の下端部との隙間を通って燃焼筒230の外周側に出た後に上方に折り返して、燃焼筒230と加熱部収納筒233との間の燃焼排ガス流路240を通流するときに、改質器222と熱交換し、その後、燃焼筒230と内筒231との間の燃焼排ガス流路240を通流するときに、蒸発部221と熱交換して、内筒231における上部に設けられた燃焼排ガス出口管から水素生成装置200の外部に排出される。 The combustion exhaust gas generated by the combustion of the burner of the heating unit 220 flows downward along the inner peripheral surface of the combustion tube 230, and then flows downward along the inner peripheral side of the combustion tube 230, and then reaches the bottom of the heating unit storage tube 233 and the combustion tube 230. After coming out to the outer peripheral side of the combustion cylinder 230 through the gap with the lower end, it is folded back upward and flows through the combustion exhaust gas flow path 240 between the combustion cylinder 230 and the heating unit storage cylinder 233. 222, and then heat-exchanged with the evaporator 221 when passing through the flue gas flow path 240 between the combustion cylinder 230 and the inner cylinder 231. It is discharged to the outside of the hydrogen generator 200 from the combustion exhaust gas outlet pipe.

[2-3.効果]
以上のように、本実施の形態における水素生成装置200は、加熱部220と、蒸発部221と、改質器222と、燃焼筒230と、内筒231と、外筒232と、加熱部収納筒233と、第1隔壁234と、燃焼排ガス流路240と、連通口250と、を有している。
[2-3. effect]
As described above, the hydrogen generator 200 according to the present embodiment includes the heating unit 220, the evaporating unit 221, the reformer 222, the combustion cylinder 230, the inner cylinder 231, the outer cylinder 232, and the heating unit housing. It has a cylinder 233 , a first partition 234 , a flue gas flow path 240 and a communication port 250 .

加熱部220は、可燃性ガスを燃焼して燃焼排ガスを排出するように構成されている。燃焼筒230は、鉛直方向に中心軸を有し、加熱部220の外周を囲むように構成されている。内筒231は、鉛直方向に中心軸を有する筒形で、燃焼筒230の外周を囲むように構成されている。外筒232は、鉛直方向に中心軸を有する筒形で、内筒231の外周
を囲むように構成されている。
The heating unit 220 is configured to burn combustible gas and discharge flue gas. Combustion cylinder 230 has a central axis in the vertical direction and is configured to surround the outer circumference of heating section 220 . The inner cylinder 231 has a cylindrical shape with a central axis in the vertical direction, and is configured to surround the outer circumference of the combustion cylinder 230 . The outer cylinder 232 has a cylindrical shape having a central axis in the vertical direction, and is configured to surround the outer circumference of the inner cylinder 231 .

加熱部収納筒233は、鉛直方向に中心軸を有する有底筒形で、上端部が外筒232の下端部に接合され、燃焼筒230を収納するように構成されている。第1隔壁234は、鉛直方向に中心軸を有する有底筒形で、内筒231と外筒232と加熱部収納筒233とを収納するように構成されている。 The heating unit housing cylinder 233 has a bottomed cylindrical shape with a vertical center axis, and is configured such that the upper end is joined to the lower end of the outer cylinder 232 and the combustion cylinder 230 is housed therein. The first partition wall 234 has a bottomed cylindrical shape with a central axis in the vertical direction, and is configured to accommodate the inner cylinder 231 , the outer cylinder 232 , and the heating unit housing cylinder 233 .

燃焼排ガス流路240は、内筒231および加熱部収納筒233とで構成される筒と、燃焼筒230との間に形成され、上方に燃焼排ガスを流すように構成されている。 The combustion exhaust gas flow path 240 is formed between the combustion cylinder 230 and the cylinder composed of the inner cylinder 231 and the heating unit housing cylinder 233, and is configured to flow the combustion exhaust gas upward.

蒸発部221は、内筒231と外筒232との間に形成され、内筒231を介して伝わる熱で、原料ガスと水とを加熱して、水を蒸発させ、且つ未蒸発の液水が下部で滞留するように構成されている。 The evaporator 221 is formed between the inner cylinder 231 and the outer cylinder 232, heats the raw material gas and water with heat transmitted through the inner cylinder 231, evaporates the water, and converts the unevaporated liquid water into is configured to stay at the bottom.

改質器222は、蒸発部221の下方に改質触媒を充填して形成され、加熱部収納筒233を介して伝わる熱で、原料ガスと水蒸気との混合ガスから、改質反応で一酸化炭素を含む一次水素含有ガスを、生成するように構成されている。 The reformer 222 is formed by filling a reforming catalyst below the evaporator 221, and the heat transmitted through the heating unit storage cylinder 233 converts the mixed gas of the raw material gas and water vapor into monoxide through a reforming reaction. It is configured to produce a primary hydrogen-containing gas containing carbon.

連通口250は、蒸発部221の下部で蒸発せずに滞留する液水の水位よりも高い位置において、外筒232の円周方向に複数形成され、蒸発部221から原料ガスと水蒸気とを、改質器222へ流出させるように構成されている。 A plurality of communication ports 250 are formed in the circumferential direction of the outer cylinder 232 at a position higher than the water level of the liquid water remaining in the lower portion of the evaporating section 221 without evaporating. It is configured to flow out to the reformer 222 .

内筒231の下端近傍部分は、内周面に全周にわたって外周方向に凹んだ環状の凹部が形成され外周面に全周にわたって外周方向に突出した環状の凸部が形成されるように、内筒231の筒壁が全周にわたって外周方向に曲がっており、未蒸発の液水が蒸発部221の下部で滞留するように、内筒231の外周面の凸部が外筒232の内周面と全周にわたって密着している。 A portion near the lower end of the inner cylinder 231 is formed with an annular recess that is recessed in the outer peripheral direction along the entire circumference of the inner peripheral surface, and an annular convex portion that protrudes in the outer peripheral direction is formed on the outer peripheral surface along the entire circumference. The cylinder wall of the cylinder 231 is bent in the outer peripheral direction over the entire circumference, and the protrusions on the outer peripheral surface of the inner cylinder 231 are curved on the inner peripheral surface of the outer cylinder 232 so that the unevaporated liquid water stays in the lower part of the evaporating part 221 . and adheres all around.

上記構成において、蒸発部221の下部に滞留する液水が、内筒231における鉛直方向に平行な液水の内周側に隣接する側壁部に加え、鉛直方向に対して傾斜して液水の下側に隣接する凸部を介して燃焼排ガス流路240と隣接する構造とすることで、断面がL字状で且つ環状の部材を内筒の外周面に設けた従来の構成と比較して、液水の滞留量に対して高温の燃焼排ガスから液水への伝熱面積が広くなっているので、従来よりも液水の蒸発が促進されて、蒸発部221の全長(鉛直方向の長さ)を従来よりも短くしても液水を十分に蒸発させることができる。 In the above configuration, the liquid water remaining in the lower part of the evaporating part 221 is distributed to the side wall part adjacent to the inner peripheral side of the liquid water parallel to the vertical direction in the inner cylinder 231, and to the liquid water inclined with respect to the vertical direction. By adopting a structure adjacent to the combustion exhaust gas flow path 240 via the convex portion adjacent to the lower side, compared to the conventional configuration in which an annular member having an L-shaped cross section is provided on the outer peripheral surface of the inner cylinder Since the heat transfer area from the high-temperature flue gas to the liquid water is larger than the liquid water retention amount, the evaporation of the liquid water is promoted more than before, and the total length (length in the vertical direction) of the evaporator 221 is increased. ) can be made shorter than before, the liquid water can be sufficiently evaporated.

これにより、改質器222へ液水が浸入することで発生する改質触媒の劣化を抑制しつつ、水素生成装置200の鉛直方向の全長を短縮することができる。そして、水素生成装置200の全長を短くすると、水素生成装置200の外周面を覆う断熱材や水素生成装置200を収納する筐体が小さくなるので、水素生成装置200の材料費を低減できる。 As a result, deterioration of the reforming catalyst caused by liquid water entering the reformer 222 can be suppressed, and the overall length of the hydrogen generator 200 in the vertical direction can be shortened. If the overall length of the hydrogen generator 200 is shortened, the heat insulating material that covers the outer peripheral surface of the hydrogen generator 200 and the housing that houses the hydrogen generator 200 become smaller, so the material cost of the hydrogen generator 200 can be reduced.

また、本実施の形態において、水素生成装置200は、CO低減器223と、第2隔壁235と、水素含有ガス排出管236と、リターン流路241と、を備えるようにしてもよい。 In addition, in the present embodiment, hydrogen generator 200 may include CO reducer 223 , second partition 235 , hydrogen-containing gas discharge pipe 236 , and return channel 241 .

CO低減器223は、第1隔壁234と外筒232との間で、蒸発部221の外周側に隣接する部分に一酸化炭素低減触媒を充填して形成され、改質器222から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を化学反応で低減して二次水素含有ガスとして排出するように構成されている。 The CO reducer 223 is formed by filling a portion adjacent to the outer peripheral side of the evaporating section 221 with a carbon monoxide reducing catalyst between the first partition 234 and the outer cylinder 232 . It is configured to reduce the concentration of carbon monoxide contained in the hydrogen-containing gas through a chemical reaction and discharge it as a secondary hydrogen-containing gas.

第2隔壁235は、外筒232の外径より大きい内径を有する側面部と、外周端が側面部の上端部に接続され内周端が外筒232の外周面に接合されるドーナツ盤形状の上面部と、を有し、改質器222は、加熱部収納筒233と第2隔壁235との間に、改質触媒を充填して形成される。 The second partition wall 235 has a donut-shaped side portion having an inner diameter larger than the outer diameter of the outer cylinder 232 , an outer peripheral end connected to the upper end of the side portion, and an inner peripheral end joined to the outer peripheral surface of the outer cylinder 232 . The reformer 222 is formed by filling a reforming catalyst between the heating unit storage cylinder 233 and the second partition wall 235 .

リターン流路241は、第1隔壁234と第2隔壁235との間に形成され、改質器222から流出した一次水素含有ガスを上方に(CO低減器223に)流すように構成されている。 The return flow path 241 is formed between the first partition 234 and the second partition 235, and configured to flow the primary hydrogen-containing gas that has flowed out of the reformer 222 upward (to the CO reducer 223). .

水素含有ガス排出管236は、第1隔壁234に設けられ、二次水素含有ガスを外部へ排出するように構成されている。 The hydrogen-containing gas discharge pipe 236 is provided in the first partition wall 234 and configured to discharge the secondary hydrogen-containing gas to the outside.

これにより、改質器222は加熱部220から周方向均一に伝熱され、効率よく改質反応を行わせることができる。さらに、改質器222において生成された一次水素含有ガスに含まれる一酸化炭素の濃度を、CO低減器223において化学反応(変成反応)で低減できる。 As a result, the reformer 222 can receive heat from the heating unit 220 uniformly in the circumferential direction, and the reforming reaction can be efficiently performed. Furthermore, the concentration of carbon monoxide contained in the primary hydrogen-containing gas generated in the reformer 222 can be reduced by a chemical reaction (transformation reaction) in the CO reducer 223 .

そのため、水素生成装置200が燃料電池発電装置へ燃料ガスを供給する場合は、CO低減器223によって一酸化炭素濃度が低減された水素含有ガスを燃料電池発電装置へ燃料ガスとして供給できるため、一酸化炭素による燃料電池発電装置の性能低下を抑制できる。 Therefore, when the hydrogen generator 200 supplies fuel gas to the fuel cell power generation device, the hydrogen-containing gas whose carbon monoxide concentration is reduced by the CO reducer 223 can be supplied to the fuel cell power generation device as the fuel gas. It is possible to suppress deterioration in the performance of the fuel cell power generation device due to carbon oxide.

また、水素生成装置200の鉛直方向の全長を長くすることなく、改質器222の改質触媒を改質触媒に適した温度にするとともに、CO低減器223の一酸化炭素低減触媒を化学反応(変成反応)に適した温度にすることが可能になる。 In addition, without increasing the total length of the vertical direction of the hydrogen generator 200, the reforming catalyst of the reformer 222 is set to a temperature suitable for the reforming catalyst, and the carbon monoxide reduction catalyst of the CO reducer 223 is chemically reacted. It becomes possible to set the temperature suitable for (modification reaction).

また、本実施の形態において、水素生成装置200は、外筒232と加熱部収納筒233とを一体で構成してもよい。 Further, in the present embodiment, the hydrogen generator 200 may be configured by integrating the outer cylinder 232 and the heating unit storage cylinder 233 .

これにより、蒸発部221の下部に滞留する液水が、内筒231の外周面の凸部と外筒232の内周面とが全周にわたって密着する箇所を通り抜けて、蒸発部221から流出したとしても、その密着する箇所を通り抜ける液水の量は、蒸発部221の下部に滞留して蒸発する液水の量に比べて僅かであり、その密着する箇所を通り抜けた液水は、燃焼排ガス流路240に浸入して蒸発する。 As a result, the liquid water remaining in the lower portion of the evaporating portion 221 passes through the portion where the convex portion of the outer peripheral surface of the inner cylinder 231 and the inner peripheral surface of the outer cylinder 232 are in close contact over the entire circumference, and flows out of the evaporating portion 221. However, the amount of liquid water that passes through the contact portion is small compared to the amount of liquid water that evaporates after staying in the lower portion of the evaporator 221, and the liquid water that passes through the contact portion is the combustion exhaust gas. It enters the channel 240 and evaporates.

そのため、蒸発部221の下部に滞留する液水が、内筒231の外周面の凸部と外筒232の内周面とが全周にわたって密着する箇所を通り抜けて、改質器222へ浸入することを抑制できる。そのため、改質器222へ液水が浸入することで発生する改質触媒の劣化を抑制できる。 Therefore, the liquid water remaining in the lower portion of the evaporating section 221 passes through the portion where the convex portion on the outer peripheral surface of the inner cylinder 231 and the inner peripheral surface of the outer cylinder 232 are in close contact over the entire circumference, and enters the reformer 222. can be suppressed. Therefore, deterioration of the reforming catalyst caused by liquid water entering the reformer 222 can be suppressed.

(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1および実施の形態2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1および実施の形態2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiment 1 and Embodiment 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Also, it is possible to combine the components described in the first and second embodiments to form a new embodiment.

そこで、以下、図3を用いて、他の実施の形態を例示する。 Therefore, another embodiment will be illustrated below with reference to FIG.

実施の形態1および実施の形態2では、一酸化炭素の濃度を低減する手段の一例として
CO低減器123,223を備える構成を説明した。
In Embodiments 1 and 2, a configuration including CO reducers 123 and 223 has been described as an example of means for reducing the concentration of carbon monoxide.

図3のように、水素生成装置300は、一酸化炭素の濃度をさらに低減する手段の一例として、CO除去器360と、空気混合筒362と、空気供給管363と、区画部材364と、第1流路365と、第2流路366と、ヘッダー流路367と、第2流路入口368と、吹き出し穴369と、水素含有ガス排出管336とを設けてもよい。 As shown in FIG. 3, the hydrogen generator 300 includes a CO remover 360, an air mixing cylinder 362, an air supply pipe 363, a partition member 364, and a second A first flow path 365, a second flow path 366, a header flow path 367, a second flow path inlet 368, a blowout hole 369, and a hydrogen-containing gas discharge pipe 336 may be provided.

CO除去器360は、第1隔壁134と外筒132との間で、CO低減器123の上方で、一酸化炭素除去触媒を充填して形成され、CO低減器123から流出した二次水素含有ガスに含まれる一酸化炭素の濃度を化学反応でさらに低減して、三次水素含有ガスとして排出するように構成されている。 The CO remover 360 is formed between the first partition 134 and the outer cylinder 132 and above the CO reducer 123 by filling a carbon monoxide removal catalyst, which contains secondary hydrogen flowing out of the CO reducer 123. It is configured to further reduce the concentration of carbon monoxide contained in the gas through a chemical reaction and discharge it as a tertiary hydrogen-containing gas.

CO除去器360に充填される一酸化炭素除去触媒は、直径が2~3mmの粒状のRu系の触媒である。 The carbon monoxide removing catalyst packed in the CO remover 360 is a granular Ru-based catalyst with a diameter of 2 to 3 mm.

一酸化炭素低減触媒が充填された部分の直下には、充填された一酸化炭素除去触媒が落下しないように、一酸化炭素除去触媒を下から支持する一酸化炭素除去触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、外筒132と第1隔壁134との間に配置されている。 Immediately below the portion filled with the carbon monoxide reduction catalyst, a particle size smaller than that of the carbon monoxide removal catalyst that supports the carbon monoxide removal catalyst from below so that the filled carbon monoxide removal catalyst does not fall. A donut disk-shaped plate having a ventilation structure with a 1 mm diameter ventilation hole is disposed between the outer cylinder 132 and the first partition 134 .

一酸化炭素除去触媒が充填された部分の直上には、水素生成装置300の製造時に、製造途中の水素生成装置300の上下を逆にしても(水素生成装置300の使用時の重力方向の上下を反転させても)一酸化炭素除去触媒が流出しないように、一酸化炭素除去触媒を上から覆う一酸化炭素除去触媒の粒子径よりも小さい直径が1mmの通気孔が形成された通気構造でドーナツ盤形状の板が、外筒132と第1隔壁134との間に配置されている。 Immediately above the portion filled with the carbon monoxide removal catalyst, even if the hydrogen generator 300 is turned upside down during manufacture (up and down in the direction of gravity when the hydrogen generator 300 is in use) In order to prevent the carbon monoxide removal catalyst from flowing out even if the carbon monoxide removal catalyst is turned upside down, the carbon monoxide removal catalyst is covered from above. A doughnut-shaped plate is arranged between the outer cylinder 132 and the first partition 134 .

空気混合筒362は、側面部と上面部と下面部とを有する金属部材であり、CO低減器123とCO除去器360と第1隔壁134と外筒132とで囲まれた空間を、内周側空間である第2流路366と外周側空間とに区画するように構成されている。 The air mixing cylinder 362 is a metal member having a side portion, an upper surface portion, and a lower surface portion. It is configured to be divided into a second flow path 366, which is a side space, and an outer peripheral space.

空気混合筒362の側面部は、円筒形で、内径が外筒132の外径よりも大きく、外径が第1隔壁134の内径よりも小さく、外筒132と同軸となるように配置され外筒132を囲むように構成されている。 The side portion of the air mixing cylinder 362 is cylindrical, has an inner diameter larger than the outer diameter of the outer cylinder 132 and an outer diameter smaller than the inner diameter of the first partition 134, and is arranged coaxially with the outer cylinder 132. It is configured to surround the tube 132 .

空気混合筒362の上面部は、傾斜したドーナツ盤形状で、外周端が側面部の上端部に接続され内周端が外筒132の外周面に接合されるように構成されている。 空気混合筒362の下面部は、ドーナツ盤形状で、外周端が側面部の下端部に接続され内周端が外筒132の外周面に接合されるように構成されている。 The upper surface of the air mixing cylinder 362 has an inclined doughnut-like shape, the outer peripheral end of which is connected to the upper end of the side surface, and the inner peripheral end of which is joined to the outer peripheral surface of the outer cylinder 132 . The lower surface of the air mixing cylinder 362 has a donut board shape, and is configured such that the outer peripheral end is connected to the lower end of the side surface and the inner peripheral end is joined to the outer peripheral surface of the outer cylinder 132 .

区画部材364は、内周側端部が空気混合筒362の側面部に接合され、外周側端部が第1隔壁134に接合されるドーナツ盤形状の金属部材であり、外周側空間を外周側上部空間であるヘッダー流路367と外周側下部空間である第1流路365とに区画するように構成されている。 The partitioning member 364 is a doughnut-shaped metal member whose inner peripheral side end is joined to the side surface of the air mixing cylinder 362 and whose outer peripheral side end is joined to the first partition wall 134. It is configured to be divided into a header channel 367 that is an upper space and a first channel 365 that is an outer peripheral side lower space.

空気供給管363は、第1隔壁134の側面部におけるCO低減器123よりも鉛直方向の上方、且つCO除去器360よりも鉛直方向の下方に設けられ、第1流路365に空気を供給するように構成されている。 The air supply pipe 363 is provided vertically above the CO reducer 123 and below the CO remover 360 on the side surface of the first partition 134, and supplies air to the first flow path 365. is configured as

第2流路入口368は、空気混合筒362の側面部における燃焼筒130を挟んで空気
供給管363の先端と対向する位置で第1流路365の空気と混合された二次水素含有ガスを第2流路366に流入させるように構成されている。
The secondary hydrogen-containing gas mixed with the air in the first flow path 365 is supplied from the second flow path inlet 368 at a position facing the tip of the air supply pipe 363 with the combustion tube 130 interposed in the side surface of the air mixing tube 362 . It is configured to flow into the second flow path 366 .

吹き出し穴369は、空気混合筒362の上面部に円周方向に複数設けられ第2流路366の空気と混合された二次水素含有ガスをヘッダー流路367に流出させるように構成されている。 A plurality of blowout holes 369 are provided in the upper surface of the air mixing tube 362 in the circumferential direction, and are configured to allow the secondary hydrogen-containing gas mixed with the air in the second flow path 366 to flow out to the header flow path 367. .

水素含有ガス排出管336は、第1隔壁134の側面部におけるCO除去器360よりも鉛直方向の上方に設けられ、CO除去器360から流出した三次水素含有ガスを外部へ排出するように構成されている。 The hydrogen-containing gas discharge pipe 336 is provided vertically above the CO remover 360 on the side surface of the first partition 134, and is configured to discharge the tertiary hydrogen-containing gas that has flowed out of the CO remover 360 to the outside. ing.

CO低減器123から排出された二次水素含有ガスは第1流路365に流入する。第1流路365はドーナツ状の形状をしており、空気供給管363を介して注入された空気と二次水素含有ガスとが、第1流路365の周方向に流れ混合される。 The secondary hydrogen-containing gas discharged from the CO reducer 123 flows into the first flow path 365 . The first flow path 365 has a doughnut-like shape, and the air injected through the air supply pipe 363 and the secondary hydrogen-containing gas are flowed and mixed in the circumferential direction of the first flow path 365 .

空気と混合された二次水素含有ガスは、第2流路入口368を介して第2流路366に流入する。 The secondary hydrogen-containing gas mixed with air enters second flow path 366 via second flow path inlet 368 .

第2流路366もドーナツ状の形状をしており、空気と混合された二次水素含有ガスは第2流路366の周方向に流れる。その後、第2流路366から吹き出し穴369を介してヘッダー流路367に排出される。 The second flow path 366 also has a donut shape, and the secondary hydrogen-containing gas mixed with air flows in the circumferential direction of the second flow path 366 . After that, it is discharged from the second flow path 366 to the header flow path 367 through the blowing holes 369 .

ヘッダー流路367とCO除去器360とはともにドーナツ状の形状をしており、空気と混合された二次水素含有ガスは、ヘッダー流路367の全周からCO除去器360に流入する。 Both the header channel 367 and the CO remover 360 have a donut shape, and the secondary hydrogen-containing gas mixed with air flows into the CO remover 360 from the entire periphery of the header channel 367 .

CO除去器360は、二次水素含有ガスに含まれる一酸化炭素をさらに低減して三次水素含有ガスとして排出する。詳細には、一酸化炭素除去触媒で起こる(化4)に示す選択酸化反応によって一酸化炭素と酸素から二酸化炭素が、(化5)に示すように水素と酸素から水が生成され、一酸化炭素の濃度を数ppm程度にまで低減している。 The CO remover 360 further reduces carbon monoxide contained in the secondary hydrogen-containing gas and discharges it as a tertiary hydrogen-containing gas. Specifically, the selective oxidation reaction shown in Chemical Formula 4 occurring in the carbon monoxide removal catalyst produces carbon dioxide from carbon monoxide and oxygen, and water is produced from hydrogen and oxygen as shown in Chemical Formula 5. The concentration of carbon is reduced to about several ppm.

このとき(化4)と(化5)とに示す反応によって発生する熱の一部は、外筒132を介して蒸発部121へ移動することで、CO除去器360は化学反応に適した温度である150℃が維持される。 At this time, part of the heat generated by the reactions shown in (Chem. 4) and (Chem. 5) is transferred to the evaporator 121 through the outer cylinder 132, and the CO remover 360 reaches a temperature suitable for the chemical reaction. is maintained at 150°C.

ただし、150℃は典型的な温度であって、反応によるCO除去器360内の温度は、CO除去器360の構造や材質、大きさにも依存して変わる。例えば、100℃~180℃の範囲で変動し得る。 However, 150° C. is a typical temperature, and the temperature inside the CO remover 360 due to the reaction varies depending on the structure, material, and size of the CO remover 360 . For example, it can vary from 100°C to 180°C.

Figure 2023118143000005
Figure 2023118143000005

Figure 2023118143000006
CO除去器360から排出された三次水素含有ガスは、水素含有ガス排出管336から水素生成装置300の外部に排出された後に、燃料電池発電装置などの水素利用機器に供
給される。
Figure 2023118143000006
The tertiary hydrogen-containing gas discharged from the CO remover 360 is discharged from the hydrogen-containing gas discharge pipe 336 to the outside of the hydrogen generator 300, and then supplied to a hydrogen utilization device such as a fuel cell power generator.

これにより、CO除去器360によって、水素生成装置300から供給される三次水素含有ガスに含まれる一酸化炭素の濃度を実施の形態1の水素生成装置100よりもさらに低減することができる。そのため、一酸化炭素による燃料電池発電装置の性能低下を抑制し、信頼性の高い水素生成装置300を提供することができる。 As a result, CO remover 360 can further reduce the concentration of carbon monoxide contained in the tertiary hydrogen-containing gas supplied from hydrogen generator 300 compared to hydrogen generator 100 of the first embodiment. Therefore, the deterioration of the performance of the fuel cell power generation device due to carbon monoxide can be suppressed, and the highly reliable hydrogen generation device 300 can be provided.

実施の形態1および実施の形態2では、改質器122,222への液水の浸入を抑制する手段の一例として、下部が閉塞された蒸発部121,222を備える構成を説明した。 In Embodiments 1 and 2, as an example of means for suppressing liquid water from entering the reformers 122 and 222, the configuration including the evaporators 121 and 222 whose lower portions are closed has been described.

図3のように、水素生成装置300は、改質器122,222への液水の浸入を抑制する手段の一例として、水受け筒361を設けてもよい。 As shown in FIG. 3 , the hydrogen generator 300 may be provided with a water receiving tube 361 as an example of means for suppressing liquid water from entering the reformers 122 and 222 .

水受け筒361は、内径が外筒132の外径よりも大きく、外径が第2隔壁135の内径よりも小さく、外筒132と同軸となるように配置され外筒132を囲む円筒形の側面部と、外周端が側面部の下端部に接続され、内周端が内筒131の外周面の凸部と外筒132の内周面とが全面にわたって密着し蒸発部121の下部を閉塞する箇所に気密に接合される傾斜したドーナツ盤形状の下面部と、を有する金属部材である。 The water receiving cylinder 361 has an inner diameter larger than the outer diameter of the outer cylinder 132 and an outer diameter smaller than the inner diameter of the second partition wall 135 , and is arranged coaxially with the outer cylinder 132 to surround the outer cylinder 132 . The side surface portion and the outer peripheral end are connected to the lower end portion of the side surface portion, and the inner peripheral end closes the lower portion of the evaporating section 121 by closely contacting the convex portion on the outer peripheral surface of the inner cylinder 131 and the inner peripheral surface of the outer cylinder 132 over the entire surface. and a slanted doughnut-shaped lower surface portion that is airtightly joined to the portion where the metal member is formed.

水受け筒361の側面部の上端部は、第2隔壁135の上面部の鉛直方向の下方、且つ連通口150の鉛直方向の上方に位置するように構成され、第2隔壁135の上面部と水受け筒361の上端部との間に原料ガスと水蒸気との混合ガスが通流する隙間がある。 The upper end of the side portion of the water receiving tube 361 is configured to be positioned vertically below the upper surface of the second partition 135 and above the communication port 150 in the vertical direction. There is a gap between the upper end of the water receiving cylinder 361 and the mixed gas of the raw material gas and water vapor.

蒸発部121に供給される原料ガスの量と水の量とが、蒸発部121で蒸発する水の量に対して、多いために、蒸発部121の下部に滞留する液水の水位が連通口150の高さまで上昇し、液水が連通口150から流出する場合においても、水受け筒361の側面部と水受け筒361の下面部と外筒132の側面とで囲まれる空間に液水が滞留する。 Since the amount of raw material gas and the amount of water supplied to the evaporator 121 are larger than the amount of water evaporated in the evaporator 121, the water level of the liquid water remaining in the lower part of the evaporator 121 is lower than that of the communication port. 150 and the liquid water flows out from the communication port 150, the liquid water remains in the space surrounded by the side surface of the water receiving tube 361, the lower surface of the water receiving tube 361, and the side surface of the outer cylinder 132. Stay.

連通口150から流出した原料ガスと水蒸気との混合ガスは、水受け筒361の側面部の内周面に沿って上方に流れた後に、第2隔壁135の上面部と水受け筒361の上端部との間の隙間を通って下方に折り返して、第2隔壁135と水受け筒361との間を流れて、改質器122に流入する。 The mixed gas of the raw material gas and water vapor that has flowed out from the communication port 150 flows upward along the inner peripheral surface of the side surface of the water receiving tube 361, and then flows upward from the upper surface of the second partition wall 135 and the upper end of the water receiving tube 361. , and flows between the second partition wall 135 and the water receiving tube 361 to flow into the reformer 122 .

これにより、蒸発部121に供給される原料ガスの量と水の量とが、蒸発部121で蒸発する水の量に対して、多いために、液水が連通口150から蒸発部121の外に流出する場合においても、連通口150から蒸発部121の外に流出した液水が、水受け筒361の側面部と水受け筒361の下面部と外筒132の側面とで囲まれる空間に滞留するため、液水の改質器122への浸入は抑制される。そのため、改質器122へ液水が浸入することで発生する改質触媒の劣化を抑制できる。 As a result, since the amount of raw material gas and the amount of water supplied to the evaporator 121 are larger than the amount of water evaporated in the evaporator 121 , liquid water flows out of the evaporator 121 from the communication port 150 . , the liquid water flowing out of the evaporating section 121 from the communication port 150 will enter the space surrounded by the side surface of the water receiving tube 361, the lower surface of the water receiving tube 361, and the side surface of the outer tube 132. Since the liquid water stays, the intrusion of the liquid water into the reformer 122 is suppressed. Therefore, deterioration of the reforming catalyst caused by intrusion of liquid water into the reformer 122 can be suppressed.

また、原料ガスと水蒸気との混合ガスが連通口150から流出した後に、改質器122に流入するまでの経路を水素生成装置100よりも長くとることができる。そのため、混合ガスが経路を通過する過程で濃度拡散による混合が促進されることで原料ガスと水蒸気とが均一に混合され改質器122に流入するので、効率よく改質反応を行わせることができる。 In addition, after the mixed gas of the raw material gas and water vapor flows out from the communication port 150 , the path to flow into the reformer 122 can be made longer than in the hydrogen generator 100 . Therefore, in the course of the mixed gas passing through the path, mixing due to concentration diffusion is promoted, and the raw material gas and water vapor are uniformly mixed and flow into the reformer 122, so that the reforming reaction can be efficiently carried out. can.

また、内筒131の外周面の凸部と外筒132の内周面とが全面にわたって密着し蒸発部121の下部を閉塞し気密に接合する工程と、水受け筒361の下面部の下端部を気密に接合する工程とを同一にできるように構成されているため、水受け筒361の接合を簡便に行うことが出来、製造コストを低減できる。 In addition, a process in which the convex portion of the outer peripheral surface of the inner cylinder 131 and the inner peripheral surface of the outer cylinder 132 are in close contact with each other over the entire surface to close the lower portion of the evaporating portion 121 and join airtightly; can be performed in the same manner as the process of airtightly joining the water receiving tube 361, the joining of the water receiving cylinder 361 can be easily performed, and the manufacturing cost can be reduced.

実施の形態1および実施の形態2では、加熱部120,220と燃焼筒130,230の形状が円筒形であったが、改質器122,222を加熱できれば、加熱部120,220と燃焼筒130,230の形状は円筒形に限定されない。ただし、加熱部120,220と燃焼筒130,230の形状を円筒形にすれば、その周の外に設けられた円筒形の改質器122,222に均等に熱を分配することができる。 In Embodiments 1 and 2, the heating units 120, 220 and the combustion cylinders 130, 230 have cylindrical shapes. The shape of 130, 230 is not limited to cylindrical. However, if the heating units 120, 220 and the combustion cylinders 130, 230 are cylindrical in shape, the heat can be distributed evenly to the cylindrical reformers 122, 222 provided outside the circumference thereof.

なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiment is for illustrating the technology in the present disclosure, and various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.

本開示は、触媒へガスのみ供給し液体の浸入を抑制する必要がある容器に適用可能である。具体的には、一酸化炭素濃度が低い水素含有ガスを生成する水素生成装置や、不純物を除いてから水素ガスを供給する燃料電池発電装置や水素精製システムなどに適用可能である。 The present disclosure is applicable to vessels in which only gas is supplied to the catalyst and liquid infiltration needs to be suppressed. Specifically, it can be applied to a hydrogen generator that generates a hydrogen-containing gas with a low carbon monoxide concentration, a fuel cell power generator that supplies hydrogen gas after removing impurities, a hydrogen refining system, and the like.

100,200,300 水素生成装置
120,220 加熱部
121,221 蒸発部
122,222 改質器
123,223 CO低減器
130,230 燃焼筒
131,231 内筒
132,232 外筒
133,233 加熱部収納筒
134,234 第1隔壁
135,235 第2隔壁
136,236,336 水素含有ガス排出管
140,240 燃焼排ガス流路
141,241 リターン流路
150,250 連通口
360 CO除去器
361 水受け筒
362 空気混合筒
363 空気供給管
365 第1流路
366 第2流路
367 ヘッダー流路
368 第2流路入口
369 吹き出し穴
Reference Signs List 100,200,300 hydrogen generator 120,220 heating unit 121,221 evaporating unit 122,222 reformer 123,223 CO reducer 130,230 combustion tube 131,231 inner tube 132,232 outer tube 133,233 heating unit Storage tube 134, 234 First partition 135, 235 Second partition 136, 236, 336 Hydrogen-containing gas discharge pipe 140, 240 Flue gas channel 141, 241 Return channel 150, 250 Communication port 360 CO remover 361 Water receiver 362 Air mixing tube 363 Air supply pipe 365 First channel 366 Second channel 367 Header channel 368 Second channel inlet 369 Blowout hole

Claims (6)

可燃性ガスを燃焼して燃焼排ガスを排出する加熱部と、
鉛直方向に中心軸を有し前記加熱部の外周を囲む燃焼筒と、
鉛直方向に中心軸を有する筒形で前記燃焼筒の外周を囲む内筒と、
鉛直方向に中心軸を有する筒形で前記内筒の外周を囲む外筒と、
鉛直方向に中心軸を有する有底筒形で前記燃焼筒を収納し、上端部が前記内筒の下端部または前記外筒の下端部に接合される加熱部収納筒と、
鉛直方向に中心軸を有する有底筒形で前記内筒と前記外筒と加熱部収納筒とを収納する第1隔壁と、
前記内筒および前記加熱部収納筒とで構成される筒と、前記燃焼筒との間に形成され、上方に前記燃焼排ガスを流す燃焼排ガス流路と、
前記内筒と前記外筒との間に形成され、前記内筒を介して伝わる熱で原料ガスと水とを加熱して、前記水を蒸発させ、且つ未蒸発の液水が下部で滞留するように構成された蒸発部と、
前記蒸発部の下方に改質触媒を充填して形成され、前記加熱部収納筒を介して伝わる熱で、前記原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成する改質器と、
前記蒸発部の下部で蒸発せず滞留する液水の水位よりも高い位置において前記外筒の円周方向に複数形成され、前記蒸発部から前記原料ガスと前記水蒸気とを前記改質器へ流出させる連通口と、
を有する水素生成装置であって、
前記内筒の下端近傍部分は、内周面に全周にわたって外周方向に凹んだ環状の凹部が形成され外周面に全周にわたって外周方向に突出した環状の凸部が形成されるように、前記内筒の筒壁が全周にわたって外周方向に曲がっており、未蒸発の液水が前記蒸発部の下部で滞留するように、前記内筒の外周面の前記凸部が前記外筒の内周面と全周にわたって密着していることを特徴とする、水素生成装置。
a heating unit that burns combustible gas and discharges combustion exhaust gas;
a combustion cylinder having a central axis in the vertical direction and surrounding the outer periphery of the heating part;
an inner cylinder having a cylindrical shape with a center axis in a vertical direction and surrounding the outer periphery of the combustion cylinder;
an outer cylinder surrounding the outer circumference of the inner cylinder in a cylindrical shape having a central axis in the vertical direction;
a heating unit storage cylinder having a bottomed cylinder shape having a central axis in a vertical direction and containing the combustion cylinder, the upper end of which is joined to the lower end of the inner cylinder or the lower end of the outer cylinder;
a first partition having a bottomed cylindrical shape having a central axis in a vertical direction and accommodating the inner cylinder, the outer cylinder, and the heating unit housing cylinder;
a combustion exhaust gas flow path formed between a cylinder composed of the inner cylinder and the heating unit housing cylinder, and the combustion cylinder, for upwardly flowing the combustion exhaust gas;
Formed between the inner cylinder and the outer cylinder, the raw material gas and water are heated by the heat transmitted through the inner cylinder, the water is evaporated, and the unevaporated liquid water stays at the bottom. an evaporator configured to:
Formed by filling a reforming catalyst below the evaporator, the mixed gas of the raw material gas and water vapor is reformed by the heat transmitted through the heating unit storage cylinder to contain primary hydrogen containing carbon monoxide. a reformer that produces gas;
A plurality of vaporizers are formed in the circumferential direction of the outer cylinder at a position higher than the water level of the liquid water remaining without being evaporated in the lower part of the evaporator, and the source gas and the steam flow out from the evaporator to the reformer. a communication port for
A hydrogen generator having
In the portion near the lower end of the inner cylinder, an annular concave portion recessed in the outer peripheral direction is formed on the entire inner peripheral surface, and an annular convex portion protruding in the outer peripheral direction is formed on the outer peripheral surface along the entire peripheral surface. The cylindrical wall of the inner cylinder is bent in the outer peripheral direction over the entire circumference, and the convex portion on the outer peripheral surface of the inner cylinder is aligned with the inner circumference of the outer cylinder so that unevaporated liquid water stays in the lower part of the evaporating portion. A hydrogen generator characterized in that the surface and the entire circumference are in close contact with each other.
前記内筒の内周面と外周面とには、前記連通口よりも鉛直方向の上側において、軸心方向に向かって螺旋状の凸部と凹部とが表裏一体に形成され、前記内筒の外周面の前記凸部を前記外筒の内周面に密着させ、前記内筒と前記外筒との間に前記水を蒸発させる螺旋状の流路を形成することを特徴とする、請求項1に記載の水素生成装置。 On the inner peripheral surface and the outer peripheral surface of the inner cylinder, a convex portion and a recessed portion that are helical in the axial direction are integrally formed on the upper side of the communication port in the vertical direction. The convex portion of the outer peripheral surface is brought into close contact with the inner peripheral surface of the outer cylinder, and a spiral flow path for evaporating the water is formed between the inner cylinder and the outer cylinder. 2. The hydrogen generator according to 1. 前記外筒の外径より大きい内径を有する側面部と、外周端が前記側面部の上端部に接続され内周端が前記外筒の外周面に接合されるドーナツ盤形状の上面部と、を有する第2隔壁と、
前記第1隔壁と前記第2隔壁との間に形成され、前記改質器から流出した前記一次水素含有ガスを上方に流すリターン流路と、
前記第1隔壁と前記外筒との間で、前記蒸発部の外周側に隣接する部分に一酸化炭素低減触媒を充填して形成され、前記改質器から流出した前記一次水素含有ガスに含まれる一酸化炭素の濃度を化学反応で低減して二次水素含有ガスとして排出するCO低減器と、
前記第1隔壁に設けられ、前記二次水素含有ガスを外部へ排出する水素含有ガス排出管と、
を備え、
前記改質器は、前記加熱部収納筒と前記第2隔壁との間に形成される、請求項1または2に記載の水素生成装置。
a side surface portion having an inner diameter larger than the outer diameter of the outer cylinder; and a doughnut-shaped upper surface portion having an outer peripheral end connected to an upper end portion of the side surface portion and an inner peripheral end joined to the outer peripheral surface of the outer cylinder. a second partition having
a return passage formed between the first partition and the second partition for upwardly flowing the primary hydrogen-containing gas that has flowed out of the reformer;
Between the first partition wall and the outer cylinder, a portion adjacent to the outer peripheral side of the evaporating section is filled with a carbon monoxide reducing catalyst, and is contained in the primary hydrogen-containing gas that has flowed out of the reformer. a CO reducer that reduces the concentration of carbon monoxide generated by a chemical reaction and discharges it as a secondary hydrogen-containing gas;
a hydrogen-containing gas discharge pipe provided in the first partition for discharging the secondary hydrogen-containing gas to the outside;
with
3. The hydrogen generator according to claim 1, wherein the reformer is formed between the heating unit housing tube and the second partition.
未蒸発の液水が前記蒸発部の下部で滞留するように、前記内筒の外周面の前記凸部が前記外筒の内周面と全周にわたって密着している箇所は、気密に接合されていることを特徴とする、請求項1から3のいずれか1項に記載の水素生成装置。 A portion where the convex portion on the outer peripheral surface of the inner cylinder is in close contact with the inner peripheral surface of the outer cylinder over the entire circumference is airtightly joined so that the unevaporated liquid water stays in the lower portion of the evaporating portion. The hydrogen generator according to any one of claims 1 to 3, characterized in that 前記加熱部収納筒と前記内筒とが一体で構成される、請求項4に記載の水素生成装置。 5. The hydrogen generator according to claim 4, wherein the heating unit housing cylinder and the inner cylinder are integrally formed. 前記加熱部収納筒と前記外筒とが一体で構成される、請求項1から4のいずれか1項に記載の水素生成装置。 5. The hydrogen generator according to any one of claims 1 to 4, wherein the heating unit housing cylinder and the outer cylinder are integrally formed.
JP2022020912A 2022-02-15 2022-02-15 hydrogen generator Pending JP2023118143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022020912A JP2023118143A (en) 2022-02-15 2022-02-15 hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022020912A JP2023118143A (en) 2022-02-15 2022-02-15 hydrogen generator

Publications (1)

Publication Number Publication Date
JP2023118143A true JP2023118143A (en) 2023-08-25

Family

ID=87662997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022020912A Pending JP2023118143A (en) 2022-02-15 2022-02-15 hydrogen generator

Country Status (1)

Country Link
JP (1) JP2023118143A (en)

Similar Documents

Publication Publication Date Title
JP2009078954A (en) Reforming apparatus
WO2011122372A1 (en) Hydrogen production apparatus and fuel cell system
EP3136487A1 (en) Hydrogen generating apparatus and fuel cell system
US20130065144A1 (en) Hydrogen production apparatus and fuel cell system
JP5371013B2 (en) Multi-cylinder steam reformer
JP2023118143A (en) hydrogen generator
JP4852295B2 (en) Reformer and fuel cell system
JP2011136868A (en) Reforming unit and fuel cell system
JP5244488B2 (en) Fuel cell reformer
JP5677513B2 (en) Kerosene reformer
JP5534901B2 (en) Hydrogen production apparatus and fuel cell system
JP2011207726A (en) Hydrogen production apparatus and fuel cell system
JP2023157683A (en) desulfurizer
JP2011207713A (en) Hydrogen production apparatus and fuel cell system
JP2015189648A (en) fuel reformer
JP2023147445A (en) Hydrogen production device
JP2023078531A (en) Method of manufacturing hydrogen production device
JP2014009129A (en) Hydrogen production apparatus and fuel cell system
JP2024066791A (en) Hydrogen Generator
JP2011207728A (en) Hydrogen producing apparatus and fuel cell system
JP2023136558A (en) fuel cell module
JP2022106324A (en) Hydrogen generation apparatus
JP5315108B2 (en) Kerosene reformer
JP2022116414A (en) hydrogen generator
JP5513210B2 (en) Hydrogen production apparatus and fuel cell system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024