JP2023117677A - Waste liquid selector valve - Google Patents

Waste liquid selector valve Download PDF

Info

Publication number
JP2023117677A
JP2023117677A JP2022020377A JP2022020377A JP2023117677A JP 2023117677 A JP2023117677 A JP 2023117677A JP 2022020377 A JP2022020377 A JP 2022020377A JP 2022020377 A JP2022020377 A JP 2022020377A JP 2023117677 A JP2023117677 A JP 2023117677A
Authority
JP
Japan
Prior art keywords
valve
flow path
waste liquid
axis
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022020377A
Other languages
Japanese (ja)
Inventor
昭博 続
Akihiro Tsuzuki
翔 若菜
Sho Wakana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Yukizai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Yukizai Corp filed Critical Asahi Yukizai Corp
Priority to JP2022020377A priority Critical patent/JP2023117677A/en
Publication of JP2023117677A publication Critical patent/JP2023117677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lift Valve (AREA)

Abstract

To provide a waste liquid selector valve which enables fluid to flow more easily.SOLUTION: A waste liquid selector valve 11 includes: a valve body 13 in which a main passage 15 extending linearly along a main passage axis L is formed; and multiple valve mechanism parts 17 provided on the main passage 15. Each valve mechanism part 17 includes: a valve chamber 21 provided on the main passage 15; and a valve body 23 which is disposed in the valve chamber and has a taper part 23b at a tip. The valve body 13 is formed with: a branch passage 27 extending in a direction of a branch passage axis M perpendicular to the main passage axis L; and a contraction part 41 which extends between the valve chamber 21 and the branch passage 27 and has a smooth inner peripheral surface which narrows from the valve chamber 21 to the branch passage 27. The valve body 23 is reciprocated in a direction of the branch passage axis M to move an outer peripheral surface of the taper part 23b of the valve body 23 close to or away from the inner peripheral surface of the contraction part 41 and thereby open or close the valve mechanism part 17.SELECTED DRAWING: Figure 1

Description

本発明は、化学工場、半導体製造、食品、バイオなどの各種産業分野における配管ラインに用いられ、廃液ラインを切り替えて流体を排出させることができる廃液切替弁に関する。 TECHNICAL FIELD The present invention relates to a waste liquid switching valve that is used in piping lines in various industrial fields such as chemical plants, semiconductor manufacturing, foodstuffs, and biotechnology, and that can discharge fluid by switching a waste liquid line.

半導体製造の洗浄工程では、複数の薬液や純水等の液体が切り替えられて洗浄槽に供給された後に、洗浄槽のタンクから排出ラインを通して排出される。使用された液体は、廃液処理の観点から、種類ごとに排出ラインを切り替えて回収されることが好ましく、このために、排出ラインに切替弁を使用することが考えられる。例えば、切替弁としては、特許文献1や特許文献2に開示されているような流路切換装置を用いることができる。また、半導体洗浄工程では、一つの洗浄槽で多数のウエハを同時に洗浄するバッチ式の洗浄装置に加えて、少量多品種に対応させて各ウエハに使用されている材料に適した洗浄液を使用できるようにするために、一つの洗浄槽で一枚のウエハごとに洗浄を行う枚葉式の洗浄装置が採用されることも多くなってきた。 In the cleaning process of semiconductor manufacturing, a plurality of liquids such as chemical solutions and pure water are switched and supplied to a cleaning tank, and then discharged from the tank of the cleaning tank through a discharge line. From the viewpoint of waste liquid treatment, the used liquid is preferably recovered by switching the discharge line for each type. For this reason, it is conceivable to use a switching valve in the discharge line. For example, as the switching valve, a channel switching device as disclosed in Patent Document 1 or Patent Document 2 can be used. In addition, in the semiconductor cleaning process, in addition to batch-type cleaning equipment that cleans multiple wafers simultaneously in a single cleaning tank, cleaning solutions suitable for the materials used for each wafer can be used to support small-lot, high-mix production. In order to do this, a single-wafer cleaning apparatus, which cleans each wafer in a single cleaning tank, has been increasingly adopted.

特許第4944049号公報Japanese Patent No. 4944049 特許第5039604号公報Japanese Patent No. 5039604

枚葉式の洗浄装置では、スループットを上げるために、洗浄槽を多段に配置して並行して処理ができるようにしている。また、洗浄装置の洗浄槽からの廃液は、廃液ラインの揚程差を利用して排出されることが一般的である。このため、装置全体の大型化を抑制しつつ多段化を行うと、各洗浄槽から切替弁までの間に確保できる各廃液ラインの揚程差が小さくなる。ところが、従来の一般的な流路切換装置は、圧力損失が大きくて、いわゆる容量係数Cvが小さく、廃液の排出流量が少なくなってしまう。このため、洗浄槽の廃液タンクがオーバーフローを起こしやすいという問題がある。 In the single-wafer type cleaning apparatus, cleaning tanks are arranged in multiple stages so that processing can be performed in parallel in order to increase the throughput. Moreover, the waste liquid from the cleaning tank of the cleaning apparatus is generally discharged by utilizing the difference in the lift of the waste liquid line. For this reason, if the number of stages is increased while suppressing an increase in the size of the entire apparatus, the difference in the lift of each waste liquid line that can be secured from each cleaning tank to the switching valve will be reduced. However, the conventional common channel switching device has a large pressure loss, a small so-called capacity coefficient Cv, and a small discharge flow rate of the waste liquid. For this reason, there is a problem that the waste liquid tank of the cleaning tank tends to overflow.

よって、本発明の目的は、従来技術に存する問題を解決して、流体をより流れやすくした廃液切替弁を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the problems of the prior art and to provide a waste fluid switching valve that facilitates fluid flow.

本発明は、上記目的に鑑み、主流路軸線に沿って直線状に延びる主流路が内部に形成された弁本体と、前記主流路上に設けられた複数の弁機構部とを備える廃液切替弁であって、各弁機構部が、前記主流路上に設けられた弁室と、該弁室内に配置され且つ先端部にテーパ部を有した弁体とを備え、前記弁本体に、前記主流路軸線と垂直な分岐流路軸線の方向に延びる分岐流路と、前記弁室と前記分岐流路との間に延び且つ前記弁室から前記分岐流路へ向かって細くなる平滑な内周面を有した絞り部とが形成され、前記分岐流路軸線の方向に前記弁体を往復動作させて前記絞り部の前記内周面に前記弁体の前記テーパ部の外周面を接離させることによって前記弁機構部の開閉を行うようになっている廃液切替弁を提供する。 In view of the above objects, the present invention provides a waste liquid switching valve that includes a valve body in which a main flow path extending linearly along the axis of the main flow path is formed, and a plurality of valve mechanisms provided on the main flow path. wherein each valve mechanism includes a valve chamber provided on the main flow passage, and a valve element disposed in the valve chamber and having a tapered portion at a distal end thereof; and a smooth inner peripheral surface extending between the valve chamber and the branch channel and tapering from the valve chamber toward the branch channel. A narrowed portion is formed, and the valve body is reciprocated in the direction of the branch flow path axis to bring the outer peripheral surface of the tapered portion of the valve body into contact with and separate from the inner peripheral surface of the narrowed portion. A waste liquid selector valve adapted to open and close a valve mechanism is provided.

上記廃液切替弁では、弁室と分岐流路との間に弁室から分岐流路へ向かって細くなるように設けられた絞り部の平滑な内周面に、弁体の先端部のテーパ部の外周面を接離させることによって、弁機構部の開閉を行うようになっている。ここで、「平滑」とは、内周面上に突起部や角部などが設けられていないことを意味する。絞り部がなく、主流路軸線と垂直な分岐流路軸線方向に延びる分岐流路と弁室との境界に形成された角部に弁体のテーパ部を接離させる場合には、弁機構部の開弁状態のときに弁体のテーパ部と角部との間の流路面積が急激に絞られた後に急激に広がるので、流体の流速の急激な変化により流体の圧力損失が大きくなるのに対して、上記廃液切替弁の弁機構部の開弁状態では、絞り部の内周面と弁体のテーパ部の外周面との間を流体が流通して流路面積が緩やかに変化するので、流体の流速の変化も緩やかになり圧力損失も小さくなる。また、弁体のテーパ部が絞り部の平滑な内周面に接離するので、絞り部とテーパ部との間における流体の流通が突起物等により妨げられない。この結果、弁室から分岐流路への流体の圧力損失を小さくでき、弁室から分岐流路へ流体が流れやすくなる。さらに、弁機構部が閉弁状態のときに絞り部内で弁体のテーパ部の外周面と絞り部の内周面とが当接する。したがって、絞り部内に収容される弁体の体積が増加し、弁室内において主流路の延長上に突出している弁体の部分の体積を少なくすることができる。この結果、主流路を流れる流体が閉弁状態になった弁機構部を通過するときに弁体が流体の流通を妨げることを抑制して、流体が廃液切替弁を経て分岐流路へ流通しやすくなる。 In the waste liquid switching valve, the tapered portion at the tip of the valve body is provided on the smooth inner peripheral surface of the narrowed portion provided between the valve chamber and the branch flow path so as to taper from the valve chamber toward the branch flow path. The valve mechanism is opened and closed by bringing the outer peripheral surfaces of the valves into contact with each other. Here, "smooth" means that the inner peripheral surface is not provided with protrusions, corners, or the like. When the tapered portion of the valve body is brought into contact with and separated from the corner formed at the boundary between the valve chamber and the branch flow path extending in the direction of the axis of the branch flow path perpendicular to the axis of the main flow path, the valve mechanism section When the valve is open, the flow passage area between the tapered portion and the corner portion of the valve body is rapidly narrowed and then widened rapidly. On the other hand, when the valve mechanism portion of the waste liquid switching valve is open, the fluid flows between the inner peripheral surface of the throttle portion and the outer peripheral surface of the tapered portion of the valve body, and the flow path area changes gradually. Therefore, the change in the flow velocity of the fluid becomes gentle, and the pressure loss becomes small. Further, since the tapered portion of the valve body contacts and separates from the smooth inner peripheral surface of the throttle portion, the flow of fluid between the throttle portion and the tapered portion is not hindered by projections or the like. As a result, the pressure loss of the fluid from the valve chamber to the branch channel can be reduced, and the fluid can easily flow from the valve chamber to the branch channel. Furthermore, when the valve mechanism is in the closed state, the outer peripheral surface of the tapered portion of the valve body and the inner peripheral surface of the throttle portion abut within the throttle portion. Therefore, the volume of the valve body accommodated in the throttle portion is increased, and the volume of the portion of the valve body protruding on the extension of the main flow path in the valve chamber can be reduced. As a result, when the fluid flowing through the main channel passes through the closed valve mechanism, the valve element prevents the fluid from interfering with the flow of the fluid, allowing the fluid to flow through the waste liquid switching valve and into the branch flow channel. easier.

上記廃液切替弁では、前記絞り部の前記内周面が凸状に湾曲する平滑な湾曲面であることが好ましい。 In the above waste liquid switching valve, it is preferable that the inner peripheral surface of the throttle portion is a smooth curved surface curved in a convex shape.

また、前記弁室が前記主流路軸線及び前記分岐流路軸線と垂直な幅軸線の方向に前記主流路よりも拡張されているように形成されており、前記主流路の断面における前記幅軸線の方向の長さが前記分岐流路軸線の方向の長さよりも大きいことが好ましく、前記主流路の断面が前記分岐流路軸線の方向よりも前記幅軸線の方向に長い長方形状を有していることがさらに好ましい。 In addition, the valve chamber is formed so as to extend further than the main flow path in a direction of a width axis perpendicular to the main flow path axis and the branch flow path axis. The length in the direction is preferably greater than the length in the direction of the branch channel axis, and the cross section of the main channel has a rectangular shape that is longer in the direction of the width axis than in the direction of the branch channel axis. is more preferred.

さらに、前記主流路が接続路を介して外部流路に接続されており、前記主流路の断面が前記幅軸線の方向に前記接続路の断面よりも大きくなっていることが好ましく、前記接続路が、前記外部流路から前記主流路へ向かって前記幅軸線の方向にテーパ状に拡大されている拡径部を含んでいることがさらに好ましい。 Furthermore, it is preferable that the main flow path is connected to an external flow path via a connection path, and that the cross section of the main flow path is larger than the cross section of the connection path in the direction of the width axis. However, it is more preferable to include an enlarged diameter portion that is tapered and expanded in the direction of the width axis from the external flow channel toward the main flow channel.

上記廃液切替弁では、前記主流路と前記弁室との接続部に面取りが施されているようにしてもよい。 In the waste liquid switching valve, a connecting portion between the main flow path and the valve chamber may be chamfered.

また、上記廃液切替弁では、前記弁体のテーパ部の外周面が、先端部側に位置する前部側傾斜面と該前部側傾斜面よりも前記分岐流路から遠い側に位置し且つ前記分岐流路軸線に対してなす角度が該前部側傾斜面よりも大きい後部側傾斜面とを含み、前記後部側傾斜面が前記絞り部の内周面に接離するようにしてもよい。 Further, in the waste liquid switching valve, the outer peripheral surface of the tapered portion of the valve body is positioned farther from the branch flow path than the front inclined surface located on the tip side and the front inclined surface, and and a rear-side inclined surface forming an angle with respect to the branch channel axis that is larger than the front-side inclined surface, and the rear-side inclined surface may contact and separate from the inner peripheral surface of the narrowed portion. .

一つの実施形態として、前記主流路が、第1の端部と前記接続路に接続される第2の端部との間に延びており、前記複数の弁室が、少なくとも、前記第1の端部と、前記第2の端部とに設けられているようにすることができる。 As one embodiment, the main flow path extends between a first end and a second end connected to the connection path, and the plurality of valve chambers are at least in the first It can be provided at the end and the second end.

本発明によれば、弁室と分岐流路との間の圧力損失を小さくでき、弁室と分岐流路との間で流体が流れやすくなる。また、主流路を流れる流体が弁閉状態になった弁機構部を通過するときに流体の流通を妨げることを抑制することができ、流体が廃液切替弁を通して分岐流路へ流通しやすくなる。したがって、流体が廃液切替弁を通過しやすくなる。この結果、小さい揚程差の廃液ラインに廃液切替弁を使用した場合でも、流量の低下を抑制して、十分な廃液流量を確保することが可能となる。 According to the present invention, the pressure loss between the valve chamber and the branch channel can be reduced, and the fluid can easily flow between the valve chamber and the branch channel. In addition, when the fluid flowing through the main flow path passes through the valve mechanism in the closed state, it is possible to prevent the flow of the fluid from being obstructed, and the fluid can easily flow to the branch flow path through the waste liquid switching valve. Therefore, it becomes easier for the fluid to pass through the waste liquid switching valve. As a result, even when a waste liquid switching valve is used in a waste liquid line with a small head difference, it is possible to suppress a decrease in the flow rate and ensure a sufficient waste liquid flow rate.

本発明による廃液切替弁の全体構成を示す縦断面図である。1 is a longitudinal sectional view showing the overall configuration of a waste liquid switching valve according to the present invention; FIG. 図1に示されている廃液切替弁の弁本体を切断した状態で示す斜視図である。FIG. 2 is a perspective view showing a state in which a valve body of the waste liquid switching valve shown in FIG. 1 is cut; 図1に示されている廃液切替弁の弁本体を図1の上方から見たときの横断面図である。2 is a cross-sectional view of the valve body of the waste liquid switching valve shown in FIG. 1 as viewed from above in FIG. 1; FIG. 図3の線A-Aに沿った廃液切替弁の弁本体の矢視断面図である。FIG. 4 is a cross-sectional view of the valve body of the waste liquid switching valve taken along line AA in FIG. 3; 本発明による廃液切替弁の変形形態における弁本体の弁室部分を拡大して示した拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing an enlarged valve chamber portion of a valve body in a modified form of the waste liquid switching valve according to the present invention;

以下、図面を参照して、本発明による廃液切替弁の実施の形態を説明する。
最初に、図1を参照して、廃液切替弁11の全体構成を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a waste liquid switching valve according to the present invention will be described with reference to the drawings.
First, referring to FIG. 1, the overall configuration of the waste liquid switching valve 11 will be described.

廃液切替弁11は、主流路軸線Lに沿って直線状に延びる主流路15が内部に形成された弁本体13と、主流路15上に設けられた複数の弁機構部17とを備えており、主流路軸線Lの方向の主流路15の一方の端部が接続路19を介して外部の流路に接続される。図示されている実施形態では、廃液切替弁11は、三つの弁機構部17A,17B,17Cを備えているが、二つ又は四つ以上の弁機構部17を備えていてもよい。 The waste liquid switching valve 11 includes a valve body 13 in which a main flow path 15 extending linearly along the main flow path axis L is formed, and a plurality of valve mechanisms 17 provided on the main flow path 15 . , one end of the main flow passage 15 in the direction of the main flow passage axis L is connected to the external flow passage via a connecting passage 19 . In the illustrated embodiment, the waste liquid switching valve 11 has three valve mechanism portions 17A, 17B, and 17C, but may have two or four or more valve mechanism portions 17. FIG.

弁機構部17A,17B,17Cは基本的に同じ構成であり、図中では各弁機構部17A,17B,17Cに共通の構成に共通の参照符号を付しているが、以下の説明では、各弁機構部17A,17B,17Cのうちの特定のものの構成を指すときには対応して参照符号にA,B,Cの記号を付し、特定の弁機構部17A,17B,17Cではなく各弁機構部17に共通の構成として指すときには、A,B,Cの記号を付さないものとする。 The valve mechanism sections 17A, 17B, and 17C basically have the same configuration, and in the drawing, common reference numerals are given to configurations common to the respective valve mechanism sections 17A, 17B, and 17C. When referring to the configuration of a particular one of the valve mechanisms 17A, 17B and 17C, the reference numerals are denoted by A, B and C correspondingly, and each valve rather than the specific valve mechanisms 17A, 17B and 17C The symbols A, B, and C are not attached when referring to the configuration common to the mechanism section 17 .

各弁機構部17は、主流路15上に設けられた弁室21と、該弁室21内に配置された弁体23と、弁体23を駆動するための駆動部25によって構成されている。各弁室21は、概略円筒形状の内周面を有して主流路軸線Lと垂直な分岐流路軸線Mの方向に延びており、複数の弁室21が主流路軸線Lの方向に等間隔で設けられている。図示されている実施形態では、主流路軸線Lの方向において接続路19に接続される主流路15の一方の端部に弁機構部17Cの弁室21Cが設けられ、主流路15の他方の端部に弁機構部17Aの弁室21Aが設けられ、弁室21Aと弁室21Cの間の主流路15上に弁機構部17Bの弁室21Bが設けられている。 Each valve mechanism portion 17 is composed of a valve chamber 21 provided on the main flow passage 15, a valve body 23 arranged in the valve chamber 21, and a driving portion 25 for driving the valve body 23. . Each valve chamber 21 has a substantially cylindrical inner peripheral surface and extends in the direction of the branch flow channel axis M perpendicular to the main flow channel axis L. provided at intervals. In the illustrated embodiment, the valve chamber 21C of the valve mechanism portion 17C is provided at one end of the main flow path 15 connected to the connection path 19 in the direction of the main flow path axis L, and the other end of the main flow path 15 is provided. A valve chamber 21A of the valve mechanism portion 17A is provided in the portion, and a valve chamber 21B of the valve mechanism portion 17B is provided on the main flow path 15 between the valve chambers 21A and 21C.

弁室21には、分岐流路軸線Mの方向に延びる分岐流路27が連通しており、分岐流路27から弁室21への開口部に弁座が形成されている。また、分岐流路軸線Mの方向に弁室21を挟んで分岐流路27と対向するように、駆動部25が弁本体13に取り付けられており、駆動部25を用いて分岐流路軸線Mの方向に弁体23を往復動させて弁体23を弁座に接離させることによって、弁機構部17を開閉させ、主流路15と分岐流路27との間の流通と遮断とを切り替えられるようになっている。 A branch flow path 27 extending in the direction of the branch flow path axis M communicates with the valve chamber 21 , and a valve seat is formed at an opening from the branch flow path 27 to the valve chamber 21 . Further, a driving portion 25 is attached to the valve main body 13 so as to face the branch flow path 27 across the valve chamber 21 in the direction of the branch flow path axis M. By reciprocating the valve body 23 in the direction of to bring the valve body 23 into contact with and away from the valve seat, the valve mechanism 17 is opened and closed to switch between flow and blockage between the main flow path 15 and the branch flow path 27. It is designed to be

図示されている実施形態では、弁体23は、弁体23の上端部の外周部から半径方向外方に延び且つ外周部が概略円形状を有したダイヤフラム部29を備えている。また、駆動部25は、内部に収容空間であるシリンダ部が形成されている駆動部筐体31と、シリンダ部内に摺動可能に収容されているピストン33と、ピストン33から弁室21へ向かって延び且つ弁体23に連結されるステム35と、ダイヤフラム押さえ37と、ピストンを付勢する付勢部材39とによって構成されている。 In the illustrated embodiment, the valve body 23 includes a diaphragm portion 29 extending radially outwardly from the outer periphery of the upper end of the valve body 23 and having a generally circular outer periphery. The drive unit 25 includes a drive unit housing 31 in which a cylinder portion as an accommodation space is formed, a piston 33 slidably accommodated in the cylinder portion, and a piston 33 extending from the piston 33 toward the valve chamber 21 . It is composed of a stem 35 extending along the length and connected to the valve body 23, a diaphragm presser 37, and an urging member 39 for urging the piston.

弁本体13には、分岐流路軸線Mの方向に分岐流路27と対向する位置に、各弁室21まで延びる開口部が形成されており、この開口部を覆うようにダイヤフラム部29が配置される。駆動部筐体31の底部には、シリンダ部の開口部を覆うようにダイヤフラム押さえ37が取り付けられている。ダイヤフラム部29の外周縁部は、弁本体13にボルト等で固定された駆動部筐体31によって、ダイヤフラム押さえ37と弁本体13との間に挟持されている。このように、弁室21と駆動部25との間がダイヤフラム部29によって区画され、弁体23がダイヤフラム部29を介して弁本体13に支持された状態で弁室21内に配置されている。ダイヤフラム部29によって支持される弁体23には、ピストン33からダイヤフラム押さえ37を貫通して延びるステム35が連結されている。 The valve body 13 is formed with an opening extending to each valve chamber 21 at a position facing the branch flow path 27 in the direction of the branch flow path axis M, and a diaphragm portion 29 is arranged so as to cover the opening. be done. A diaphragm retainer 37 is attached to the bottom of the drive unit housing 31 so as to cover the opening of the cylinder unit. An outer peripheral edge of the diaphragm portion 29 is sandwiched between a diaphragm retainer 37 and the valve body 13 by a driving portion housing 31 fixed to the valve body 13 with bolts or the like. In this manner, the diaphragm portion 29 partitions the valve chamber 21 and the driving portion 25 , and the valve body 23 is arranged in the valve chamber 21 while being supported by the valve main body 13 via the diaphragm portion 29 . . A stem 35 extending from the piston 33 through a diaphragm retainer 37 is connected to the valve body 23 supported by the diaphragm portion 29 .

シリンダ部内の空間は、ピストン33によって二つの空間に区画されており、その一方に付勢部材39が配置され、他方の空間に対して駆動流体の供給及び排出を行うことによってピストン33を分岐流路軸線Mの方向に往復動させて、ステム35を介して弁体23を弁座に対して接離させる。詳細には、弁機構部17Aでは、ピストン33Aを弁室21Aから離れさせる向きへ付勢力を作用させるように、図1においてシリンダ部内のピストン33Aよりも下側の空間に付勢部材39Aが配置されている。したがって、シリンダ部内のピストン33Aよりも上側の空間に駆動流体を供給することによって、付勢部材39Aの付勢力に抗して分岐流路軸線Mの方向に弁室21Aに近づける向きへピストン33Aを移動させ、分岐流路軸線Mの方向に弁座から離間した状態から弁座に接近させる向きへステム35Aを介して弁体23を移動させ、弁座に当接させることができる。また、シリンダ部内のピストン33Aよりも上側の空間から駆動流体を排出することによって、付勢部材39Aの付勢力により分岐流路軸線Mの方向に弁室21Aから離れさせる向きへピストン33Aを移動させ、分岐流路軸線Mの方向に弁座から離れさせる向きへステム35Aを介して弁体23を移動させ、弁座から離間させることができる。 The space in the cylinder portion is divided into two spaces by the piston 33, one of which is provided with a biasing member 39, and the other space is supplied with and discharged with the driving fluid, thereby branching the piston 33. By reciprocating in the direction of the road axis M, the valve body 23 is brought into contact with and separated from the valve seat via the stem 35 . Specifically, in the valve mechanism portion 17A, a biasing member 39A is arranged in a space below the piston 33A in the cylinder portion in FIG. It is Therefore, by supplying the driving fluid to the space above the piston 33A in the cylinder portion, the piston 33A is moved in the direction of the branch flow path axis M against the biasing force of the biasing member 39A so as to approach the valve chamber 21A. The valve body 23 can be moved in the direction of the branch flow path axis M from a state away from the valve seat to a direction approaching the valve seat via the stem 35A, and brought into contact with the valve seat. Further, by discharging the driving fluid from the space above the piston 33A in the cylinder portion, the piston 33A is moved in the direction of the branch flow path axis M in the direction away from the valve chamber 21A by the biasing force of the biasing member 39A. , the valve body 23 can be moved away from the valve seat in the direction of the branch flow path axis M via the stem 35A to move away from the valve seat.

一方、弁機構部17B及び弁機構部17Cでは、ピストン33B,33Cを弁室21B,21Cに接近させる向きへ付勢力を作用させるように、シリンダ部内のピストン33B,33Cよりも上側の空間に付勢部材39B,39Cが配置されている。したがって、シリンダ部内のピストン33B,33Cよりも下側の空間に駆動流体を供給することによって、付勢部材39B,39Cの付勢力に抗して分岐流路軸線Mの方向に弁室21B,21Cから離れさせる向きへピストン33B,33Cを移動させ、分岐流路軸線Mの方向に弁座から離れさせる向きへステム35B,35Cを介して弁体23を移動させ、弁座から離間させることができる。また、シリンダ部内のピストン33B,33Cよりも下側の空間から駆動流体を排出することによって、付勢部材39B,39Cの付勢力により分岐流路軸線Mの方向に弁室21B,21Cに接近させる向きへピストン33B,33Cを移動させ、分岐流路軸線Mの方向に弁座に接近させる向きへステム35Aを介して弁体23を移動させ、弁座に当接させることができる。 On the other hand, in the valve mechanism portion 17B and the valve mechanism portion 17C, the space above the pistons 33B and 33C in the cylinder portion is urged so as to apply an urging force in a direction to bring the pistons 33B and 33C closer to the valve chambers 21B and 21C. Force members 39B and 39C are arranged. Therefore, by supplying the driving fluid to the space below the pistons 33B and 33C in the cylinder portion, the valve chambers 21B and 21C are moved in the direction of the branch flow path axis M against the biasing force of the biasing members 39B and 39C. By moving the pistons 33B and 33C away from the valve seat, the valve body 23 can be moved away from the valve seat in the direction of the branch flow path axis M via the stems 35B and 35C. . Further, by discharging the driving fluid from the space below the pistons 33B and 33C in the cylinder portion, the valve chambers 21B and 21C are approached in the direction of the branch flow path axis M by the biasing forces of the biasing members 39B and 39C. By moving the pistons 33B and 33C in the direction of the branch flow channel axis M, the valve body 23 can be moved via the stem 35A in the direction of approaching the valve seat and brought into contact with the valve seat.

このように、弁機構部17Aと弁機構部17B,17Cをその挙動が異なるように構成することによって、万一、弁機構部17A,17B,17Cに対する駆動流体の供給が行われなくても、弁機構部17Aが開いて廃液切替弁11を通して廃液を排出することが可能となるようになっている。 By configuring the valve mechanism portion 17A and the valve mechanism portions 17B and 17C so that their behaviors are different in this way, even if the driving fluid is not supplied to the valve mechanism portions 17A, 17B and 17C, The valve mechanism portion 17A is opened to allow the waste liquid to be discharged through the waste liquid switching valve 11. FIG.

図1に示されているように、弁体23は、円柱状の中央部23aと、中央部23aから先端部(分岐流路27に近い側の端部)へ向かって細くなる前部テーパ部23bと、中央部23aから駆動部25へ向かって細くなる後部テーパ部23cとを含んでおり、概略独楽形状を有している。前部テーパ部23bの外周面は、先端部側に位置する前部側傾斜面と、前部側傾斜面よりも分岐流路27から遠い側に位置し且つ分岐流路軸線Mに対して前部側傾斜面よりも大きい角度をなして延びる後部側傾斜面とを含むことが好ましい。また、図2によく示されているように、弁室21と分岐流路27との間には、弁室21から分岐流路27へ向かって細くなる平滑な筒状の内周面を有した概略漏斗形状の絞り部41が設けられている。絞り部41の内周面は、凸状に湾曲する平滑な湾曲面であることが好ましいが、平面状の傾斜面であってもよい。なお、本明細書中において、「平滑」とは、内周面上に突起部や角部などが設けられていないことを意味する。弁機構部17では、このような構成の絞り部41の平滑な内周面上に、弁体23の前部テーパ部23bのテーパ状の外周面が接離し、弁室21と分岐流路27との間の開閉が行われるようになっている。すなわち、絞り部41の内周面が弁座として機能するようになっている。 As shown in FIG. 1, the valve body 23 includes a cylindrical central portion 23a and a front tapered portion that tapers from the central portion 23a toward the tip portion (the end portion on the side closer to the branch flow path 27). 23b and a rear tapered portion 23c that tapers from the central portion 23a toward the driving portion 25, and has an approximately top shape. The outer peripheral surface of the front tapered portion 23b includes a front inclined surface located on the tip side, and a front inclined surface located farther from the branch flow path 27 than the front inclined surface and forward of the branch flow path axis M. and a rear sloping surface extending at a greater angle than the side sloping surface. 2, between the valve chamber 21 and the branch flow passage 27, there is a smooth cylindrical inner peripheral surface that narrows from the valve chamber 21 toward the branch flow passage 27. An approximately funnel-shaped narrowed portion 41 is provided. The inner peripheral surface of the narrowed portion 41 is preferably a smooth curved surface curved in a convex shape, but may be a planar inclined surface. In this specification, the term "smooth" means that no projections, corners, or the like are provided on the inner peripheral surface. In the valve mechanism portion 17, the tapered outer peripheral surface of the front tapered portion 23b of the valve body 23 contacts and separates from the smooth inner peripheral surface of the throttle portion 41 having such a configuration, so that the valve chamber 21 and the branch flow path 27 are separated. Opening and closing between is performed. That is, the inner peripheral surface of the throttle portion 41 functions as a valve seat.

従来の切替弁のように分岐流路27が弁室21に直接開口している場合、分岐流路27の内周面と弁室21の壁面との接続部に概略直角の角部が形成され、この角部が弁座として機能し、弁体23の前部テーパ部23bの外周面が角部に対して接離することになる。すると、弁体23の前部テーパ部23bが角部から離間して開弁状態になったとき、弁体23の前部テーパ部23bと角部との間の流路面積が急激に絞られた後に急激に広がるので、弁室21から分岐流路27へ流れる流体の流速が急激に変化する。この結果、流体の圧力損失が大きくなって、弁室21から分岐流路27への流量が減少しやすくなる。これに対して、廃液切替弁11では、弁機構部17が開弁状態になって絞り部41の内周面から弁体23の前部テーパ部23bの外周面が離間しているとき、弁体23の前部テーパ部23bの外周面と絞り部41の内周面との間の流路面積が相対的に緩やかに変化するので、流体の流速の変化も相対的に緩やかになる。この結果、流体の圧力損失も小さくなって、弁室21から分岐流路27へ流体が流れやすくなり、圧力損失による弁室21から分岐流路27への流量の減少を抑制することが可能となる。 When the branch flow path 27 directly opens into the valve chamber 21 as in the conventional switching valve, a substantially right-angled corner is formed at the connecting portion between the inner peripheral surface of the branch flow path 27 and the wall surface of the valve chamber 21 . , this corner functions as a valve seat, and the outer peripheral surface of the front tapered portion 23b of the valve body 23 comes into contact with and separates from the corner. Then, when the front taper portion 23b of the valve body 23 is separated from the corner portion and the valve is opened, the flow passage area between the front taper portion 23b of the valve body 23 and the corner portion is rapidly narrowed. Since it expands rapidly after being closed, the flow velocity of the fluid flowing from the valve chamber 21 to the branch flow path 27 changes rapidly. As a result, the pressure loss of the fluid increases, and the flow rate from the valve chamber 21 to the branch flow path 27 tends to decrease. On the other hand, in the waste liquid switching valve 11, when the valve mechanism portion 17 is in the open state and the outer peripheral surface of the front taper portion 23b of the valve body 23 is separated from the inner peripheral surface of the throttle portion 41, the valve Since the flow passage area between the outer peripheral surface of the front tapered portion 23b of the body 23 and the inner peripheral surface of the narrowed portion 41 changes relatively slowly, the change in the flow velocity of the fluid also becomes relatively moderate. As a result, the pressure loss of the fluid is also reduced, making it easier for the fluid to flow from the valve chamber 21 to the branch flow path 27, making it possible to suppress the decrease in flow rate from the valve chamber 21 to the branch flow path 27 due to pressure loss. Become.

また、廃液切替弁11では、絞り部41の内周面が平滑で、内周面上に突起部等が設けられておらず、弁体23の前部テーパ部23bの外周面が直接的に絞り部41の内周面に当接するようになっている。したがって、弁体23の前部テーパ部23bの外周面と絞り部41の内周面との間を流体が流れるときの流速の変化を小さくでき、圧力損失が小さくなるので、弁室21から分岐流路27への流量の減少をさらに抑制しやすくなる。また、弁座部に突起部がある場合、スラリーなどが弁座部に残り、次に流す洗浄剤などに混ざって、洗浄剤を再利用できなくなることがある。廃液切替弁11では、絞り部41の内周面上に突起部が設けられていないので、スラリーなどの残留を防ぐことができる。さらに、上述のような構成の廃液切替弁11では、弁機構部17が閉弁状態のときに、弁体23の前部テーパ部23bの外周面と弁座(すなわち絞り部41の内周面)との当接が絞り部41内で行われる。したがって、弁室21の壁面と分岐流路27の内周面との接続部に形成される角部が弁座となる場合と比較して、弁室21内において主流路15の延長上に突出している弁体23の部分の体積を少なくすることができる。この結果、主流路15を流れる流体が閉弁状態になった弁機構部(例えば弁機構部17Bや弁機構部17C)を通過して下流側に通過するときに、弁体23が流体の流通を妨げることを抑制して、流体が主流路15を下流側に流れやすくすることが可能となる。弁体23が後部テーパ部23cを含んでいることも、弁室21内において主流路15の延長上に突出している弁体23の部分の体積を少なくする効果に寄与している。また、同様の観点で、弁体23の中央部23aは、分岐流路軸線Mに垂直な方向の断面の直径が最も大きい部位であるので、必要な強度を維持できる範囲で分岐流路軸線Mの方向の厚さを薄くすることが好ましい。中央部23aを設けることなく、前部テーパ部23bと後部テーパ部23cのみによって弁体23を構成してもよい。 In addition, in the waste liquid switching valve 11, the inner peripheral surface of the throttle portion 41 is smooth, and no protrusions or the like are provided on the inner peripheral surface, so that the outer peripheral surface of the front tapered portion 23b of the valve body 23 is directly connected to the inner peripheral surface. It abuts on the inner peripheral surface of the diaphragm portion 41 . Therefore, when the fluid flows between the outer peripheral surface of the front taper portion 23b of the valve body 23 and the inner peripheral surface of the throttle portion 41, the change in flow velocity can be reduced, and the pressure loss is reduced. It becomes easier to suppress the decrease in the flow rate to the flow path 27 . In addition, when the valve seat portion has a projection, slurry or the like remains on the valve seat portion and mixes with the cleaning agent or the like to be poured next, making it impossible to reuse the cleaning agent. In the waste liquid switching valve 11, since no protrusion is provided on the inner peripheral surface of the throttle portion 41, slurry or the like can be prevented from remaining. Furthermore, in the waste liquid switching valve 11 configured as described above, when the valve mechanism portion 17 is in the closed state, the outer peripheral surface of the front tapered portion 23b of the valve body 23 and the valve seat (that is, the inner peripheral surface of the throttle portion 41) ) is made in the throttle portion 41 . Therefore, compared to the case where the corner formed at the connection portion between the wall surface of the valve chamber 21 and the inner peripheral surface of the branch flow path 27 serves as the valve seat, it protrudes along the extension of the main flow path 15 within the valve chamber 21 . It is possible to reduce the volume of the portion of the valve body 23 that is in contact. As a result, when the fluid flowing through the main flow passage 15 passes through the closed valve mechanism portion (eg, the valve mechanism portion 17B or the valve mechanism portion 17C) to the downstream side, the valve body 23 prevents the fluid from flowing. , and the fluid can easily flow downstream in the main flow path 15 . The fact that the valve body 23 includes the rear tapered portion 23 c also contributes to the effect of reducing the volume of the portion of the valve body 23 protruding along the extension of the main flow path 15 in the valve chamber 21 . From a similar point of view, since the central portion 23a of the valve body 23 has the largest diameter in the cross section in the direction perpendicular to the branch flow path axis M, the branch flow path axis M can be adjusted to the extent that the required strength can be maintained. It is preferable to reduce the thickness in the direction of . The valve body 23 may be composed only of the front tapered portion 23b and the rear tapered portion 23c without providing the central portion 23a.

前部テーパ部23bの外周面が前部側傾斜面と後部側傾斜面とを含んでいる場合、図1において弁機構部17Bや弁機構部17Cに示されているように、後部側傾斜面が絞り部41の内周面に接離するように弁体23が構成されているが好ましい。このような構成にすることによって、弁体23の前部テーパ部23bの外周面と絞り部41の内周面との間を通過した流体が乱流を発生しにくくなると共に、流体の滞留を抑制することができ、弁体23への気泡の付着を抑制することができる。 When the outer peripheral surface of the front tapered portion 23b includes a front inclined surface and a rear inclined surface, the rear inclined surface is formed as shown in the valve mechanism portion 17B and the valve mechanism portion 17C in FIG. It is preferable that the valve body 23 is configured so that the . By adopting such a configuration, the fluid passing between the outer peripheral surface of the front tapered portion 23b of the valve body 23 and the inner peripheral surface of the throttle portion 41 is less likely to generate turbulence, and the retention of the fluid is prevented. can be suppressed, and adhesion of air bubbles to the valve body 23 can be suppressed.

また、絞り部41の内周面が凸状に湾曲する平滑な湾曲面によって構成されていれば、弁体23の前部テーパ部23bの外周面と絞り部41の内周面とが線接触となって、接触面積が小さくなるので、シール圧が増加し、シール性能を向上させることができる。 Further, if the inner peripheral surface of the throttle portion 41 is configured by a smooth curved surface that curves in a convex shape, the outer peripheral surface of the front tapered portion 23b of the valve body 23 and the inner peripheral surface of the throttle portion 41 are in line contact. As a result, the contact area becomes smaller, so that the sealing pressure increases and the sealing performance can be improved.

次に、図2から図4を参照して、廃液切替弁11の構造の詳細をさらに説明する。 Next, the details of the structure of the waste liquid switching valve 11 will be further described with reference to FIGS. 2 to 4. FIG.

図2に示されているように、廃液切替弁11の弁本体13には、外部流路(図示せず)と主流路15とを連通させるために接続路19が設けられている。接続路19は、外部流路に接続される直管部19aと、直管部19aと主流路15との間に設けられる拡径部19bとを含んでいる。 As shown in FIG. 2 , the valve body 13 of the waste liquid switching valve 11 is provided with a connection path 19 for communicating an external flow path (not shown) and the main flow path 15 . The connection path 19 includes a straight tube portion 19 a connected to the external flow path, and an enlarged diameter portion 19 b provided between the straight tube portion 19 a and the main flow path 15 .

また、図2及び図3を参照するとよく分かるように、弁室21は、弁体23が内部で分岐流路軸線Mの方向に往復動できるように、分岐流路軸線Mと垂直な断面における直径が接続路19や分岐流路27の直径よりも大きくなっている。このため、弁室21は、主流路軸線L及び分岐流路軸線Mと垂直な幅軸線Nの方向に接続路19や主流路15よりも太く、弁室21の一部が接続路19や主流路15に対して幅軸線Nの方向に凸状に拡張された形態となっている。 2 and 3, the valve chamber 21 has a cross section perpendicular to the branch channel axis M so that the valve body 23 can reciprocate in the direction of the branch channel axis M. The diameter is larger than the diameters of the connection path 19 and the branch flow path 27 . For this reason, the valve chamber 21 is thicker than the connection passage 19 and the main passage 15 in the direction of the width axis N perpendicular to the main passage axis L and the branch passage axis M, and a part of the valve chamber 21 extends from the connection passage 19 and the main passage. It has a shape expanded in the direction of the width axis N with respect to the path 15 in a convex shape.

多段の洗浄槽を備える枚葉式の洗浄装置に廃液切替弁11を使用する場合、廃液切替弁11が占有する領域の上下幅を小さくする必要があり、分岐流路軸線Mが概略水平になるように廃液切替弁11が配置される。詳細には、例えば、廃液切替弁11の駆動部25側が分岐流路27側よりも僅かに高い位置に配置されるように、廃液切替弁11が配置される。このような配置で廃液切替弁11が使用されると、外部流路から流入する流体中に含まれる気泡が、弁室21において接続路19や主流路15に対して幅軸線Nの方向に凸状に拡張された部分(以下、単に「拡張部43」と記載する。)の特に上側に位置する領域に捕捉されて滞留しやすくなる。拡張部43に滞留した気泡は、主流路15を流通する流体が閉弁状態の弁機構部17の弁室21を円滑に下流側に通過する妨げとなり、廃液流量の低下の要因となり得る。特に、外部流路に近い側に設けられた弁機構部17Cの弁室21Cの拡張部43Cに気泡が滞留すると、流量低下への影響が大きくなる。 When the waste liquid switching valve 11 is used in a single-wafer cleaning apparatus equipped with multi-stage cleaning tanks, the vertical width of the area occupied by the waste liquid switching valve 11 must be reduced, and the branch channel axis M becomes substantially horizontal. The waste liquid switching valve 11 is arranged as follows. Specifically, for example, the waste liquid switching valve 11 is arranged such that the drive unit 25 side of the waste liquid switching valve 11 is arranged at a position slightly higher than the branch flow path 27 side. When the waste liquid switching valve 11 is used in such an arrangement, air bubbles contained in the fluid flowing in from the external channel project in the direction of the width axis N with respect to the connection channel 19 and the main channel 15 in the valve chamber 21. It is likely to be captured and retained in the upper region of the portion (hereinafter simply referred to as “expansion portion 43”) that is expanded in a shape. The air bubbles remaining in the expanded portion 43 hinder the fluid flowing through the main flow passage 15 from smoothly passing downstream through the valve chamber 21 of the valve mechanism portion 17 in the closed state, and can be a factor in reducing the waste liquid flow rate. In particular, if the air bubbles remain in the expanded portion 43C of the valve chamber 21C of the valve mechanism portion 17C provided on the side closer to the external flow path, the effect on the decrease in the flow rate becomes greater.

このような拡張部43への気泡の滞留を抑制するために、廃液切替弁11では、主流路15及び接続路19に対して幅軸線Nの方向に突出する弁室21の拡張部43の突出量を減少させる、すなわち幅軸線Nの方向における主流路15及び接続路19の最大寸法と弁室21の最大寸法の差を減少させるようにしている。具体的には、接続路19が、円形状の断面(主流路軸線Lに垂直な断面)を有する直管部19aと、外部流路に接続される直管部19aから主流路15へ向かって幅軸線Nの方向にテーパ状に拡大された拡径部19bとを含むようになっている。図示されている実施形態では、接続路19の拡径部19bが、主流路15の一方の端部に設けられた弁機構部17Cの弁室21Cに接続されている。また、主流路15の断面が幅軸線Nの方向に拡張され、主流路15の断面における幅軸線Nの方向の長さが分岐流路軸線Mの方向の長さよりも大きくなっている。一つの実施形態として、主流路15の断面形状は、図4に示されているように、幅軸線Nの方向の長さが分岐流路軸線Mの方向の長さよりも大きい概略長方形状とすることができる。しかしながら、主流路15に対して幅軸線Nの方向に突出する弁室21の拡張部43の突出量を減少させることができていれば、主流路15は、他の断面形状を有していてもよく、例えば、分岐流路軸線Mの方向が短軸になっており且つ幅軸線Nの方向が長軸になっている楕円形状の断面を有するようにすることも可能である。また、主流路15の断面が幅軸線Nの方向に接続路19の拡径部19bの断面よりも大きくなっていることが好ましい。 In order to suppress the retention of air bubbles in such an expanded portion 43, in the waste liquid switching valve 11, the expanded portion 43 of the valve chamber 21 protrudes in the direction of the width axis N with respect to the main flow path 15 and the connection path 19. ie, the difference between the maximum dimension of the main passage 15 and the connecting passage 19 and the maximum dimension of the valve chamber 21 in the direction of the width axis N is reduced. Specifically, the connection path 19 includes a straight pipe portion 19a having a circular cross section (a cross section perpendicular to the main flow channel axis L) and a straight pipe portion 19a connected to the external flow channel toward the main flow channel 15. and an enlarged diameter portion 19b that is tapered in the direction of the width axis N and expanded. In the illustrated embodiment, the enlarged diameter portion 19b of the connection passage 19 is connected to the valve chamber 21C of the valve mechanism portion 17C provided at one end of the main flow passage 15 . Further, the cross section of the main channel 15 is expanded in the direction of the width axis N, and the length in the direction of the width axis N in the cross section of the main channel 15 is larger than the length in the direction of the branch channel axis M. As one embodiment, as shown in FIG. 4, the cross-sectional shape of the main channel 15 is a substantially rectangular shape whose length in the direction of the width axis N is greater than the length in the direction of the branch channel axis M. be able to. However, if the amount of protrusion of the expanded portion 43 of the valve chamber 21 that protrudes in the direction of the width axis N with respect to the main flow passage 15 can be reduced, the main flow passage 15 can have another cross-sectional shape. Alternatively, for example, it is possible to have an elliptical cross-section with a short axis in the direction of the branch channel axis M and a long axis in the direction of the width axis N. Moreover, it is preferable that the cross section of the main flow path 15 is larger in the direction of the width axis N than the cross section of the enlarged diameter portion 19 b of the connection path 19 .

なお、図2に示されているように、主流路15を流れる流体の抵抗を低下させるために、分岐流路軸線Mの方向において、主流路15の長さ(断面における最大部分の長さ)及び接続路19の拡径部19bの長さ(断面における最大部分の長さ)が接続路19の直管部19aの長さと等しくなっていることが好ましく、弁室21の長さも接続路19の直管部19aの長さと等しくなっていることがさらに好ましい。 In addition, as shown in FIG. 2, in order to reduce the resistance of the fluid flowing through the main flow path 15, the length of the main flow path 15 (the length of the maximum part in the cross section) in the direction of the branch flow path axis M And the length of the enlarged diameter portion 19b of the connection passage 19 (the length of the maximum portion in the cross section) is preferably equal to the length of the straight pipe portion 19a of the connection passage 19, and the length of the valve chamber 21 is also more preferably equal to the length of the straight tube portion 19a.

廃液切替弁11の変形形態として、図5に示されているように、主流路15の内周面と分岐流路軸線M周りの弁室21の壁面との接続部に面取りを施して面取り部45を設けてもよい。面取り部45は、R面取りで主流路15の内周面と分岐流路軸線M周りの弁室21の壁面とを湾曲面で接続するように構成してもよく、C面取りで主流路15の内周面と分岐流路軸線M周りの弁室21の壁面とを平面で接続するように構成してもよい。このような面取り部45を設けることにより、弁機構部17が閉弁状態のときに弁体23を迂回して流れやすくなり、主流路15の流れを阻害しにくくなる効果を奏する。 As a modification of the waste liquid switching valve 11, as shown in FIG. 45 may be provided. The chamfered portion 45 may be configured such that the inner peripheral surface of the main flow path 15 and the wall surface of the valve chamber 21 around the branch flow path axis M are connected with a curved surface by R chamfering, or the main flow path 15 is connected by C chamfering. The inner peripheral surface and the wall surface of the valve chamber 21 around the branch channel axis M may be connected by a plane. By providing such a chamfered portion 45, when the valve mechanism portion 17 is in the valve closed state, the flow becomes easier to bypass the valve body 23, and the flow in the main flow passage 15 is less likely to be obstructed.

次に、図1に示されている廃液切替弁11の動作を説明する。 Next, the operation of the waste liquid switching valve 11 shown in FIG. 1 will be described.

廃液切替弁11には、外部配管内に設けられた外部流路から接続路19を介して流体が流入する。廃液切替弁11に流入した流体は接続路19を経て主流路15内を流通する。主流路15に設けられた複数の弁機構部17は、外部流路から流入する廃液の種類に応じて択一的に開弁状態にされ、選択されなかった弁機構部17は閉弁状態にされる。閉弁状態の弁機構部17では、駆動部25によって弁体23が分岐流路軸線Mの方向に絞り部41へ向けて移動させられ、弁体23の前部テーパ部23bの外周面が絞り部41の内周面に当接して分岐流路27への流体の流入が阻止される。弁機構部17Bや弁機構部17Cが閉弁状態になっているときには、主流路15内の流体は、弁室21B,21C内に流入した後に弁室21B,21Cに配置される弁体23B,23Cを迂回して下流側の主流路15へ流れていく。また、廃液切替弁11では、主流路15や接続路19に対する弁室21の拡張部43の突出量が小さくなっているので、拡張部43に滞留した気泡も流体の流れに乗って拡張部43から下流側の主流路15にに排出されやすく、拡張部43に気泡が滞留して主流路15における流体の流通を阻害することが抑制される。 A fluid flows into the waste fluid switching valve 11 through a connection path 19 from an external channel provided in the external pipe. The fluid that has flowed into the waste liquid switching valve 11 flows through the main flow path 15 through the connection path 19 . A plurality of valve mechanisms 17 provided in the main flow path 15 are selectively opened according to the type of waste liquid flowing from the external flow path, and the valve mechanisms 17 not selected are closed. be done. In the valve mechanism portion 17 in the valve closed state, the driving portion 25 moves the valve body 23 toward the throttle portion 41 in the direction of the branch flow path axis M, and the outer peripheral surface of the front tapered portion 23b of the valve body 23 is throttled. It abuts against the inner peripheral surface of the portion 41 to prevent the fluid from flowing into the branch flow path 27 . When the valve mechanism portion 17B and the valve mechanism portion 17C are in the closed state, the fluid in the main flow path 15 flows into the valve chambers 21B and 21C, and then flows into the valve bodies 23B and 23B arranged in the valve chambers 21B and 21C. 23C and flows into the main flow path 15 on the downstream side. In addition, in the waste liquid switching valve 11, since the amount of protrusion of the expanded portion 43 of the valve chamber 21 with respect to the main flow path 15 and the connecting passage 19 is small, the air bubbles remaining in the expanded portion 43 are also moved by the flow of the fluid. Therefore, it is possible to prevent air bubbles from remaining in the expanded portion 43 and hindering the flow of fluid in the main flow path 15 .

一方、択一的に選択された開弁状態の弁機構部17では、駆動部25によって弁体23が分岐流路軸線Mの方向に絞り部41から離れる向きへ移動させられ、弁体23の前部テーパ部23bの外周面が絞り部41の内周面から離間して、弁体23の前部テーパ部23bの外周面と絞り部41の内周面との間を通って流体が弁室21から分岐流路27へ排出される。絞り部41の内周面は弁室21から分岐流路27へ向かって漏斗状に細くなっているので、弁体23の前部テーパ部23bの傾斜した外周面と絞り部41の内周面との間では、流路面積の変化が緩やかで圧力損失も抑制され、弁室21から分岐流路27へ流体が流通しやすくなる効果を奏する。したがって、外部流路の揚程が小さい場合でも、十分な廃液流量を確保しやすくなる。 On the other hand, in the alternatively selected valve mechanism portion 17 in the open state, the driving portion 25 moves the valve body 23 away from the throttle portion 41 in the direction of the branch flow path axis M. The outer peripheral surface of the front tapered portion 23b is separated from the inner peripheral surface of the throttle portion 41, and the fluid passes between the outer peripheral surface of the front tapered portion 23b of the valve body 23 and the inner peripheral surface of the throttle portion 41, and the fluid flows through the valve. It is discharged from the chamber 21 into the branch flow path 27 . Since the inner peripheral surface of the throttle portion 41 is tapered in a funnel shape from the valve chamber 21 toward the branch flow path 27, the inclined outer peripheral surface of the front tapered portion 23b of the valve body 23 and the inner peripheral surface of the throttle portion 41 are aligned. , the change in the flow passage area is moderate, the pressure loss is suppressed, and the fluid easily flows from the valve chamber 21 to the branch flow passage 27 . Therefore, even when the lift of the external channel is small, it becomes easy to secure a sufficient waste liquid flow rate.

以上、図示されている実施形態を参照して、本発明による廃液切替弁を説明したが、本発明は図示されている実施形態に限定されるものではない。例えば、図示されている実施形態では、三つの弁機構部17が設けられているが、二つ又は四つ以上の弁機構部17を設けてもよい。また、弁機構部17が主流路軸線Lの方向における主流路15の両端部に設けられているが、例えば接続路19側の弁機構部17を主流路軸線L方向に中央寄りに設けて、接続路19を主流路15の端部に直接接続するようにしてもよい。さらに、駆動部25として、正作動タイプ、逆作動タイプ及び復動タイプを目的に応じて適宜に選択して使用してもよい。 Although the waste liquid switching valve according to the present invention has been described above with reference to the illustrated embodiments, the present invention is not limited to the illustrated embodiments. For example, although three valve mechanisms 17 are provided in the illustrated embodiment, two or four or more valve mechanisms 17 may be provided. Further, the valve mechanism portions 17 are provided at both ends of the main flow passage 15 in the direction of the main flow passage axis L. The connection path 19 may be directly connected to the end of the main flow path 15 . Further, as the drive unit 25, a direct action type, a reverse action type, and a return action type may be appropriately selected and used according to the purpose.

11 廃液切替弁
13 弁本体
15 主流路
17,17A,17B,17C 弁機構部
19 接続路
19a 直管部
19b 拡径部
21,21A,21B,21C 弁室
23、23A,23B,23C 弁体
23a 前部テーパ部
27,27A,27B,27C 分岐流路
41 絞り部
43 拡張部
45 面取り部
11 waste liquid switching valve 13 valve main body 15 main flow path 17, 17A, 17B, 17C valve mechanism 19 connection path 19a straight pipe portion 19b enlarged diameter portion 21, 21A, 21B, 21C valve chamber 23, 23A, 23B, 23C valve element 23a Front tapered portion 27, 27A, 27B, 27C Branch channel 41 Constricted portion 43 Extended portion 45 Chamfered portion

Claims (9)

主流路軸線に沿って直線状に延びる主流路が内部に形成された弁本体と、前記主流路上に設けられた複数の弁機構部とを備える廃液切替弁であって、
各弁機構部が、前記主流路上に設けられた弁室と、該弁室内に配置され且つ先端部にテーパ部を有した弁体とを備え、前記弁本体に、前記主流路軸線と垂直な分岐流路軸線の方向に延びる分岐流路と、前記弁室と前記分岐流路との間に延び且つ前記弁室から前記分岐流路へ向かって細くなる平滑な筒状の内周面を有した絞り部とが形成され、前記分岐流路軸線の方向に前記弁体を往復動作させて前記絞り部の前記内周面に前記弁体の前記テーパ部の外周面を接離させることによって前記弁機構部の開閉を行うようになっていることを特徴とする廃液切替弁。
A waste liquid switching valve comprising: a valve body in which a main flow path extending linearly along a main flow path axis is formed; and a plurality of valve mechanisms provided on the main flow path,
Each valve mechanism section includes a valve chamber provided on the main flow passage, and a valve element disposed in the valve chamber and having a tapered portion at the tip thereof, and a valve main body having a valve body perpendicular to the main flow passage axis. a branch channel extending in the direction of the axis of the branch channel; and a smooth cylindrical inner peripheral surface extending between the valve chamber and the branch channel and tapering from the valve chamber toward the branch channel. A narrowed portion is formed, and the valve body is reciprocated in the direction of the branch flow path axis to bring the outer peripheral surface of the tapered portion of the valve body into contact with and separate from the inner peripheral surface of the narrowed portion. A waste liquid switching valve characterized by opening and closing a valve mechanism.
前記絞り部の前記内周面が凸状に湾曲する平滑な湾曲面である、請求項1に記載の廃液切替弁。 2. The waste liquid switching valve according to claim 1, wherein the inner peripheral surface of the throttle portion is a smooth curved surface that curves convexly. 前記弁室が前記主流路軸線及び前記分岐流路軸線と垂直な幅軸線の方向に前記主流路よりも拡張されているように形成されており、前記主流路の断面における前記幅軸線の方向の長さが前記分岐流路軸線の方向の長さよりも大きい、請求項1又は請求項2に記載の廃液切替弁。 The valve chamber is formed to be wider than the main flow path in a width axis direction perpendicular to the main flow path axis and the branch flow path axis. 3. The waste liquid switching valve according to claim 1, wherein the length is greater than the length in the direction of the branch channel axis. 前記主流路の断面が前記分岐流路軸線の方向よりも前記幅軸線の方向に長い長方形状を有している、請求項3に記載の廃液切替弁。 4. The waste liquid switching valve according to claim 3, wherein the cross section of the main channel has a rectangular shape that is longer in the direction of the width axis than in the direction of the axis of the branch channel. 前記主流路が接続路を介して外部流路に接続されており、前記主流路の断面が前記幅軸線の方向に前記接続路の断面よりも大きくなっている、請求項3又は請求項4に記載の廃液切替弁。 The main flow path is connected to an external flow path via a connection path, and the cross section of the main flow path is larger than the cross section of the connection path in the direction of the width axis. Waste liquid switching valve described. 前記接続路が、前記外部流路から前記主流路へ向かって前記幅軸線の方向にテーパ状に拡大されている拡径部を含んでいる、請求項5に記載の廃液切替弁。 6. The waste liquid switching valve according to claim 5, wherein said connection path includes an enlarged diameter portion tapered and enlarged in the direction of said width axis from said external flow path toward said main flow path. 前記主流路と前記弁室との接続部に面取りが施されている、請求項1から請求項6の何れか一項に記載の廃液切替弁。 The waste liquid switching valve according to any one of claims 1 to 6, wherein a connecting portion between the main flow path and the valve chamber is chamfered. 前記弁体のテーパ部の外周面が、先端部側に位置する前部側傾斜面と該前部側傾斜面よりも前記分岐流路から遠い側に位置し且つ前記分岐流路軸線に対して該前部側傾斜面よりも大きい角度をなして延びる後部側傾斜面とを含み、前記後部側傾斜面が前記絞り部の内周面に接離する、請求項1から請求項7の何れか一項に記載の廃液切替弁。 The outer peripheral surface of the taper portion of the valve body is positioned on the side farther from the branch flow path than the front side inclined surface located on the tip side and the front side inclined surface and is relative to the branch flow path axis. and a rear-side inclined surface extending at an angle larger than that of the front-side inclined surface, wherein the rear-side inclined surface contacts and separates from the inner peripheral surface of the throttle portion. The waste liquid switching valve according to item 1. 前記主流路が、第1の端部と前記接続路に接続される第2の端部との間に延びており、前記複数の弁室が、少なくとも、前記第1の端部と、前記第2の端部とに設けられている、請求項1から請求項8の何れか一項に記載の廃液切替弁。 The main flow path extends between a first end and a second end connected to the connection path, and the plurality of valve chambers are arranged at least at the first end and the second end. 9. The waste liquid switching valve according to any one of claims 1 to 8, which is provided at two ends.
JP2022020377A 2022-02-14 2022-02-14 Waste liquid selector valve Pending JP2023117677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022020377A JP2023117677A (en) 2022-02-14 2022-02-14 Waste liquid selector valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022020377A JP2023117677A (en) 2022-02-14 2022-02-14 Waste liquid selector valve

Publications (1)

Publication Number Publication Date
JP2023117677A true JP2023117677A (en) 2023-08-24

Family

ID=87653933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022020377A Pending JP2023117677A (en) 2022-02-14 2022-02-14 Waste liquid selector valve

Country Status (1)

Country Link
JP (1) JP2023117677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117090974A (en) * 2023-10-18 2023-11-21 海普瑞(常州)洁净系统科技有限公司 Cleaning liquid dispensing valve for manufacturing 12-inch wafer semiconductor
CN117571897A (en) * 2023-11-15 2024-02-20 青岛惠安康生物工程有限公司 Liquid chromatograph-mass spectrometer and switching device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117090974A (en) * 2023-10-18 2023-11-21 海普瑞(常州)洁净系统科技有限公司 Cleaning liquid dispensing valve for manufacturing 12-inch wafer semiconductor
CN117090974B (en) * 2023-10-18 2024-01-30 海普瑞(常州)洁净系统科技有限公司 Cleaning liquid dispensing valve for manufacturing 12-inch wafer semiconductor
CN117571897A (en) * 2023-11-15 2024-02-20 青岛惠安康生物工程有限公司 Liquid chromatograph-mass spectrometer and switching device
CN117571897B (en) * 2023-11-15 2024-04-30 青岛惠安康生物工程有限公司 Liquid chromatograph-mass spectrometer and switching device

Similar Documents

Publication Publication Date Title
JP2023117677A (en) Waste liquid selector valve
CN1280564C (en) Manifold valve
AU2009215748B2 (en) Three-way valve with flow diverter
JP4742762B2 (en) Fluid control device
WO2003048617A1 (en) Manifold valve
US6032690A (en) Fluid diverter system
US8707992B2 (en) Fluid apparatus unit structure
JP4499012B2 (en) Complex fluid control unit
JP2011220422A (en) On-off valve
US8707997B2 (en) Fluid device unit structure
JP2003185039A (en) Manifold valve
JP4902912B2 (en) Manifold valve
JP3756135B2 (en) Diaphragm valve structure
JP2008106811A (en) Fluid control unit
JP2009019765A (en) Valve device for fluid
JP2010149022A (en) Strainer apparatus
JP2003004151A (en) Manifold valve
JP5331042B2 (en) Valve and substrate processing apparatus provided with the same
KR101809071B1 (en) Bubble removing device at the fluid to move micro channel and bubble removing method thereof
JP2009257438A (en) Diaphragm valve
JP2001149844A (en) Chemical liquid valve
JP3022240B2 (en) Cage valve and method of processing cage valve
JP7450278B2 (en) valve
US20230241563A1 (en) Fluid delivery module
JP6145433B2 (en) Fluid supply device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231222