JP2023114201A - Solar power generation system in agricultural greenhouse - Google Patents
Solar power generation system in agricultural greenhouse Download PDFInfo
- Publication number
- JP2023114201A JP2023114201A JP2022016426A JP2022016426A JP2023114201A JP 2023114201 A JP2023114201 A JP 2023114201A JP 2022016426 A JP2022016426 A JP 2022016426A JP 2022016426 A JP2022016426 A JP 2022016426A JP 2023114201 A JP2023114201 A JP 2023114201A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- house
- photovoltaic
- solar power
- floor concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 89
- 238000010438 heat treatment Methods 0.000 claims abstract description 40
- 230000005540 biological transmission Effects 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 45
- 238000009434 installation Methods 0.000 claims description 11
- 239000011810 insulating material Substances 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 244000233513 Brassica perviridis Species 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 235000021012 strawberries Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/12—Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
Landscapes
- Photovoltaic Devices (AREA)
- Greenhouses (AREA)
Abstract
Description
本発明は、農業用ハウス内太陽光発電システムに関し、特に年間を通して農作物の高い収穫率と、グリーン電力の高い発電効率を両立可能な農業用ハウス内太陽光発電システムに関する。 TECHNICAL FIELD The present invention relates to an in-house photovoltaic power generation system for agriculture, and more particularly to an in-house photovoltaic power generation system for agriculture capable of achieving both a high harvest rate of crops throughout the year and high power generation efficiency of green power.
2015年9月の国連サミットで採択されたSDGsでは、温室効果ガス等の影響による気候変動への具体的対策が求められている。こうした世界的趨勢に対応して、日本政府は、2050年までに実質的な二酸化炭素排出量を50%削減するとの数値目標を設定した。
具体的な数値目標の設定に伴い、民間企業でも二酸化炭素排出量の削減に向けた積極的な取り組みが始まっている。これらの取り組みの1つに、太陽光発電や風力発電に代表されるカーボンフリーのグリーン電力の利用がある。
この内、太陽光発電では2012年の再生可能エネルギーの固定価格買取制度(FIT)の拡充を契機に、全国に大規模な太陽光発電施設であるメガソーラーが建設され、全国の発電量が急速に伸びた。しかし、大規模な開発の連続により土地が不足し、全国的に太陽光発電パネルを設置可能な場所が不足している。
このような現状に対し、最近では比較的敷地面積の広い農地の上空を利用して太陽光発電を行う営農型太陽光発電(ソーラーシェアリング)が普及してきている。
引用文献1~3には、農地に所定の間隔で支柱を立設し、支柱の上部に太陽光発電パネルを架設して構成するソーラーシェアリングタイプの太陽光発電施設が開示されている。
The SDGs adopted at the United Nations Summit in September 2015 call for concrete measures against climate change caused by the effects of greenhouse gases. In response to these global trends, the Japanese government has set a numerical target of reducing real carbon dioxide emissions by 50% by 2050.
Along with the setting of specific numerical targets, private companies have also begun to take proactive measures to reduce carbon dioxide emissions. One of these efforts is the use of carbon-free, green power such as solar power and wind power.
Among these, in photovoltaic power generation, with the expansion of the feed-in tariff (FIT) system for renewable energy in 2012, large-scale megasolar photovoltaic power generation facilities were built across the country, and the amount of power generated nationwide is rapidly increasing. stretched to However, due to the continuous large-scale development, there is a shortage of land, and there is a nationwide shortage of places where solar panels can be installed.
In response to this situation, farming-type photovoltaic power generation (solar sharing), in which photovoltaic power generation is performed using the sky above agricultural land with a relatively large site area, has recently become widespread.
Cited Documents 1 to 3 disclose a solar-sharing type photovoltaic power generation facility configured by erecting pillars at predetermined intervals in farmland and installing photovoltaic panels on top of the pillars.
従来技術には以下の課題がある。
<1>太陽光発電パネルが農作物の上空を覆うため、農作物への日照が遮られ、農作物の生長を妨げることで収穫量を減少させるおそれがある。反対に農作物の生長に十分な日照を確保しようとすると、太陽光発電パネルの受光面積が小さくなるため、満足な発電量を得ることができなくなる。すなわち、農作物の収穫量と太陽光発電パネルによる発電量とがトレードオフの関係になり、両立することができない。このため、「グリーン電力」の名目のために農作物の収穫量を損なうという本末転倒な結果が生じている。
<2>農作物と太陽光発電パネルが露天に晒されるため、台風、積雪、火山灰、黄砂等の自然現象の影響を直接受ける。これによって、農作物が損害を受けたり、太陽光発電パネルや架台が破損するなどの被害が生じるおそれがある。
The prior art has the following problems.
<1> Since the photovoltaic panels cover the crops, the sunshine on the crops is blocked, which may hinder the growth of the crops and reduce the yield. Conversely, if an attempt is made to ensure sufficient sunshine for the growth of crops, the light-receiving area of the photovoltaic power generation panel will become smaller, making it impossible to obtain a satisfactory amount of power generation. In other words, there is a trade-off relationship between the yield of crops and the amount of power generated by the photovoltaic power generation panel, and both cannot be achieved at the same time. This has had the opposite effect of damaging crop yields in the name of "green power."
<2> Since crops and solar power generation panels are exposed to the open air, they are directly affected by natural phenomena such as typhoons, snowfall, volcanic ash, and yellow sand. As a result, crops may be damaged, and damage such as damage to solar power generation panels and mounts may occur.
本発明は、以上の従来技術の課題を解決するための農業用ハウス内太陽光発電システムを提供することを目的とする。 An object of the present invention is to provide a photovoltaic power generation system in an agricultural house for solving the above-described problems of the conventional technology.
本発明の農業用ハウス内太陽光発電システムは、地上に架設したフレームと、フレームを被覆してハウス空間を画設する透光性の被膜と、を有するハウス本体と、ハウス空間の床面に設置した土間コンクリートと、ハウス空間内に設置可能な栽培設備と、土間コンクリートの上面に接面して配置した太陽光発電面材と、太陽光発電面材が発電する直流電力を交流変換可能な変電手段と、ハウス空間内の空気を加温可能な暖房手段と、太陽光発電面材と変電手段、変電手段と暖房手段、変電手段と外部送電網、をそれぞれ電気的に接続した複数の送電手段と、を備え、総発電量の少なくとも一部を選択的に外部送電網へ送電可能に構成したことを特徴とする。 The in-house photovoltaic power generation system for agricultural use of the present invention comprises a house body having a frame erected on the ground and a translucent film covering the frame to define a house space, and a floor surface of the house space. Installed dirt floor concrete, cultivation equipment that can be installed in the greenhouse space, solar power generation surface material placed in contact with the top surface of the earth floor concrete, and DC power generated by the solar power generation surface material can be converted to AC. A plurality of power transmission systems that electrically connect the transforming means, the heating means capable of heating the air in the house space, the photovoltaic surface material and the transforming means, the transforming means and the heating means, and the transforming means and the external power grid, respectively. means for selectively transmitting at least part of the total power generation to an external power grid.
本発明の農業用ハウス内太陽光発電システムは、土間コンクリートが設置溝を備え、太陽光発電面材を設置溝内に設置し、土間コンクリートの表面と太陽光発電面材の表面を面一に構成してもよい。 In the solar power generation system in an agricultural house of the present invention, the earth floor concrete has an installation groove, the solar power generation face material is installed in the installation groove, and the surface of the earth floor concrete and the surface of the solar power generation face material are flush. may be configured.
本発明の農業用ハウス内太陽光発電システムは、暖房手段が、熱媒体を加熱し、土間コンクリート内に配設した送熱管内に熱媒体を循環させることで土間コンクリートを加熱する床暖房設備であってもよい。 The solar power generation system in an agricultural house of the present invention is a floor heating facility in which the heating means heats a heat medium and circulates the heat medium in a heat transfer pipe arranged in the concrete floor to heat the concrete floor. There may be.
本発明の農業用ハウス内太陽光発電システムは、複数の栽培設備をハウス本体の長手方向に沿って配置して栽培設備アレイを構成し、複数の太陽光発電面材を栽培設備アレイに沿って配置して太陽光発電面材アレイを構成し、隣り合う太陽光発電面材アレイの間に、栽培設備アレイを挟んで設置してもよい。 In the in-house photovoltaic power generation system for agricultural use of the present invention, a plurality of cultivation facilities are arranged along the longitudinal direction of the house body to form a cultivation facility array, and a plurality of photovoltaic surface materials are arranged along the cultivation facility array. They may be arranged to constitute a photovoltaic panel array, and the cultivation facility array may be sandwiched between adjacent photovoltaic panel arrays.
本発明の農業用ハウス内太陽光発電システムは、土間コンクリートの下面に設置した断熱材と、断熱材の下面に敷設した防湿フィルムと、を備えていてもよい。 The in-house photovoltaic power generation system for agricultural use of the present invention may include a heat insulating material placed on the bottom surface of the earth floor concrete and a moisture-proof film laid on the bottom surface of the heat insulating material.
本発明の農業用ハウス内太陽光発電システムは、次の効果の少なくともひとつを備える。
<1>太陽光発電面材をハウス空間の床面に配置した構造であるため、太陽光発電面材によって農作物への日照が遮られることがない。また、太陽光発電面材が農作物の陰になっても、太陽光発電面材がハウス本体内の被膜の乱反射を介して間接的に受光して発電することができる。このため、農作物の高い収穫率と、グリーン電力の高い発電効率を両立することができる。
<2>暖房手段によって、ハウス空間内を一定の温度に維持できるため、気候や季節の影響を受けにくい。また、日中は太陽光によって土間コンクリート内に蓄熱し、夜間これを輻射熱として放出することで、昼夜の寒暖差を縮小することができる。これによって、農作物を、年間を通して安定的に栽培することができる。
<3>太陽光発電面材の熱を土間コンクリート内に伝達することで、太陽光発電面材の高熱化による発電ロスを抑止して、高い発電効率を維持することができる。
<4>グリーン電力の供給と農作物の収穫を両立させることで、SDGsの目標の内「2.飢餓をゼロに」「7.エネルギーをみんなに そしてクリーンに」「12.つくる責任 つかう責任」「13.気候変動に具体的な対策を」「15.陸の豊かさも守ろう」等の達成に貢献することができる。
The in-house photovoltaic power generation system for agricultural use of the present invention has at least one of the following effects.
<1> Since the photovoltaic panel is placed on the floor of the greenhouse, the solar panel does not block sunlight on the crops. In addition, even if the photovoltaic face material is shaded by crops, the photovoltaic face material can indirectly receive light and generate power through diffused reflection of the film in the house body. Therefore, it is possible to achieve both a high yield of agricultural products and high power generation efficiency of green power.
<2> Since the inside of the house space can be maintained at a constant temperature by the heating means, it is less susceptible to climate and seasons. In addition, by accumulating heat in the earthen floor concrete from sunlight during the day and releasing it as radiant heat at night, the temperature difference between day and night can be reduced. As a result, crops can be grown stably throughout the year.
<3> By transmitting the heat of the photovoltaic face material to the earthen floor concrete, power generation loss due to high heat of the photovoltaic face material can be suppressed, and high power generation efficiency can be maintained.
<4> By achieving both the supply of green power and the harvest of agricultural products, we will achieve the goals of the SDGs: "2. Zero hunger,""7. Affordable and clean energy," and "12. Responsible consumption and production." 13. We can contribute to the achievement of concrete measures against climate change and 15. Let's protect the richness of the land.
以下、図面を参照しながら本発明の農業用ハウス内太陽光発電システムについて詳細に説明する。なお、図面の視認性及び一覧性を確保するため、図面上、栽培設備等の規模を縮小すると共にハウス本体等の構造を簡略化して表示している。 Hereinafter, the in-house photovoltaic power generation system for agricultural use of the present invention will be described in detail with reference to the drawings. In addition, in order to ensure the visibility and comprehensibility of the drawing, the scale of the cultivation equipment and the like is reduced and the structure of the greenhouse body and the like is simplified and displayed on the drawing.
[農業用ハウス内太陽光発電システム]
<1>全体の構成(図1)
農業用ハウス内太陽光発電システム1は、内部にハウス空間Sを有するハウス本体10と、ハウス空間Sの床面に設置した土間コンクリート20と、ハウス空間S内に設置した栽培設備30と、土間コンクリート20の上面に設置した太陽光発電面材40と、変電手段50と、暖房手段60と、送電手段70と、を少なくとも備える。
送電手段70は、太陽光発電面材40と変電手段50、変電手段50と暖房手段60、変電手段50と外部送電網G、をそれぞれ電気的に接続する。なお、設計に応じて、変電手段50と外部送電網Gの間に受変電設備を設置することもできる。
農業用ハウス内太陽光発電システム1は、太陽光発電面材40による総発電量の少なくとも一部を、外部送電網Gへ送電可能な構成に1つの特徴を有する。
外部送電網Gへ送電した電力は、カーボンフリーのグリーン電力として、契約に基づき第三者へ売電したり、自己の所有する工場や事務所に自己託送することで、SDGsの達成に貢献することができる。
[Photovoltaic power generation system for agricultural greenhouses]
<1> Overall configuration (Fig. 1)
An agricultural house interior solar power generation system 1 includes a house body 10 having a house space S therein, a dirt floor concrete 20 installed on the floor surface of the house space S, a cultivation facility 30 installed in the house space S, and a dirt floor. At least a photovoltaic panel 40 installed on the upper surface of the concrete 20, a transformer means 50, a heating means 60, and a power transmission means 70 are provided.
The power transmission means 70 electrically connects the photovoltaic power generation surface material 40 and the power transformation means 50, the power transformation means 50 and the heating means 60, and the power transformation means 50 and the external power grid G, respectively. Depending on the design, a power receiving and transforming facility may be installed between the power transforming means 50 and the external power grid G.
The in-house photovoltaic power generation system 1 for agricultural use has one feature in that at least part of the total amount of power generated by the photovoltaic surface material 40 can be transmitted to the external power grid G. As shown in FIG.
The power transmitted to the external power grid G will contribute to the achievement of SDGs by selling it to third parties based on contracts as carbon-free green power, or by self-consignment to factories and offices owned by the company. be able to.
<2>ハウス本体(図2)
ハウス本体10は、農作物32を温度変化や風雨から保護する構造である。
ハウス本体10は、地上に架設したフレーム11と、フレーム11を被覆してハウス空間Sを画設する透光性の被膜12と、を少なくとも備える。
本例ではハウス本体10として、単管パイプを主材として組んだフレーム11を、ポリオレフィンフィルムの被膜12で被覆したパイプハウスを採用し、フレーム11の内部長手方向に沿って、所定の間隔で複数の照明具13を設置する。
ただし、ハウス本体10の構造は上記に限らず、例えば被膜12にポリ塩化ビニルフィルムを用いたビニールハウスや、被膜12にガラスを用いたガラス温室等であってもよい。要は被膜12が透光性を有し、かつ農作物32を保護可能な構成を備えていればよい。
<2> House body (Fig. 2)
The house body 10 has a structure that protects the crops 32 from temperature changes, wind and rain.
The house body 10 includes at least a frame 11 erected on the ground and a translucent coating 12 covering the frame 11 to define a house space S.
In this example, as the house body 10, a pipe house is adopted in which a frame 11 composed mainly of single pipe pipes is covered with a coating 12 of a polyolefin film. is installed.
However, the structure of the house body 10 is not limited to the above. The point is that the film 12 should be translucent and have a structure capable of protecting the crops 32 .
<3>土間コンクリート(図3)
土間コンクリート20は、農業用ハウスの床面を構成する構造である。
土間コンクリート20は、ハウス空間S内の床面全面にわたって設置することが望ましい。
本例では土間コンクリート20が太陽光発電面材40を収納するための設置溝21を備える。設置溝21の深さは、太陽光発電面材40の厚みに対応する。
これによって、太陽光発電面材40を設置溝21内に設置した状態において、土間コンクリート20の表面と太陽光発電面材40の表面が面一になるため、ハウス空間S内の歩行や作業が容易になると共に、太陽光発電面材40の破損を防ぐことができる。
また、本例では、土間コンクリート20の下面に断熱材80を配置し、断熱材80の下に防湿フィルム90を敷設する。
これによって、防湿フィルム90下の地面からの寒気や湿気を遮断して、暖房手段60によるハウス空間S内の暖房効率を高めることができる。
<3> Dirt floor concrete (Fig. 3)
The dirt floor concrete 20 is a structure that constitutes the floor surface of the agricultural house.
The dirt floor concrete 20 is desirably installed over the entire floor surface in the house space S.
In this example, the dirt floor concrete 20 is provided with installation grooves 21 for accommodating the photovoltaic panel 40 . The depth of the installation groove 21 corresponds to the thickness of the photovoltaic panel 40 .
As a result, when the photovoltaic panel 40 is installed in the installation groove 21, the surface of the dirt floor concrete 20 and the surface of the photovoltaic panel 40 are flush with each other. It becomes easy and damage of the photovoltaic power generation surface material 40 can be prevented.
Also, in this example, a heat insulating material 80 is placed on the lower surface of the dirt floor concrete 20, and a moisture-proof film 90 is laid under the heat insulating material 80. As shown in FIG.
As a result, cold air and moisture from the ground under the moisture-proof film 90 can be blocked, and the efficiency of heating the house space S by the heating means 60 can be enhanced.
<3.1>土間コンクリートの構築
土間コンクリート20は例えば以下の工程で構築する。
農地に砂利地業を行い、砂利地業上に防湿フィルム90を敷設する。
防湿フィルム90上に断熱材80を設置し、断熱材80の外周に型枠を設置する。
断熱材80上にラス金網などの引張材22を配置する。引張材22は、スペーサに載せて断熱材80との間に空間を設け、コンクリートの被り厚を確保する。
型枠内にコンクリートを打設して養生し、土間コンクリート20を構築する。
<3.1> Construction of earth floor concrete The earth floor concrete 20 is constructed, for example, by the following steps.
A gravel work is performed on farmland, and a moisture-proof film 90 is laid on the gravel work.
A heat insulating material 80 is placed on the moisture-proof film 90, and a formwork is placed around the outer periphery of the heat insulating material 80. - 特許庁
A tensile member 22 such as a lath wire mesh is placed on the heat insulating material 80 . The tensile member 22 is placed on the spacer to provide a space between it and the heat insulating member 80 to secure the thickness of the concrete covering.
Concrete is placed in the formwork and cured to build the earth floor concrete 20. - 特許庁
<3.2>蓄熱機能
土間コンクリート20は、太陽光による蓄熱機能を備える。
コンクリートは蓄熱性が高いため、日中に土間コンクリート20の表面が太陽光を受光することで、コンクリートの内部に蓄熱し、輻射熱として長時間にわたってハウス空間S内に放熱することで、ハウス空間Sの暖房効率を高めることができる。
また、本例では、太陽光発電面材40の底面が土間コンクリート20の設置溝21の底に接面しているため、受光による太陽光発電面材40の加熱を土間コンクリート20内に伝達することで、太陽光発電面材40の高温化を防ぎ、発電効率の低下を防止することができる。
<3.2> Heat Storage Function The dirt floor concrete 20 has a heat storage function due to sunlight.
Since concrete has a high heat storage property, the surface of the dirt floor concrete 20 receives sunlight during the day, and heat is stored inside the concrete and radiated into the house space S as radiant heat over a long period of time. heating efficiency can be increased.
In addition, in this example, since the bottom surface of the photovoltaic panel 40 is in contact with the bottom of the installation groove 21 of the earth floor concrete 20, the heating of the photovoltaic panel 40 due to light reception is transferred to the earth floor concrete 20. As a result, it is possible to prevent the temperature of the photovoltaic power generation surface material 40 from rising, and prevent a decrease in power generation efficiency.
<4>栽培設備(図3)
栽培設備30は、農作物32を栽培するための設備である。
栽培設備30は、本例では栽培設備30として、農作物32を植設した高置式のプランタ31による土壌栽培設備を採用する。ただし栽培設備30はこれに限らず、例えば水耕栽培設備であってもよい。
本例では農作物32はトマトである。ただしこれに限らず、キュウリ、ナス、イチゴなどの他の果菜類や、小松菜、ホウレンソウ、レタスなどの葉菜類等を採用することができる。
農業用ハウスにおける栽培設備30の構造は公知なのでここでは詳述しない。
本例では、複数の栽培設備をハウス本体の長手方向に沿って配置して栽培設備アレイを構成する(図4)。
<4> Cultivation equipment (Fig. 3)
Cultivation equipment 30 is equipment for cultivating crops 32 .
In this example, the cultivation facility 30 employs a soil cultivation facility using an elevated planter 31 in which crops 32 are planted. However, the cultivation facility 30 is not limited to this, and may be, for example, a hydroponic cultivation facility.
In this example, the crop 32 is a tomato. However, other fruit vegetables such as cucumbers, eggplants, and strawberries, and leafy vegetables such as Japanese mustard spinach, spinach, and lettuce can also be used.
Since the structure of the cultivation equipment 30 in the agricultural house is known, it will not be described in detail here.
In this example, a plurality of cultivation facilities are arranged along the longitudinal direction of the house body to form a cultivation facility array (FIG. 4).
<5>太陽光発電面材(図3)
太陽光発電面材40は、太陽光から電力を発電する装置である。
本例では、太陽光発電面材40として、路面敷設用の高強度結晶シリコン型太陽光発電パネルを採用する。ただし太陽光発電面材40は、太陽光発電パネルに限らず、可撓性を有する太陽光発電シートであってもよい。
太陽光発電面材40は、受光面を上に向けて土間コンクリート20の設置溝21内に配置する。
本例では、複数の太陽光発電面材40を栽培設備アレイ30aに沿って配置して太陽光発電面材アレイ40aを構成し、隣り合う太陽光発電面材アレイ40aの間に、栽培設備アレイ30aを挟む(図4)。
本発明の農業用ハウス内太陽光発電システム1は、太陽光発電面材40をハウス空間S内の床面に配置する構造であるため、従来技術のソーラーシェアリングのように、農作物32への日照が太陽光発電面材40に遮られることがない。
また、農作物32の陰になって、太陽光発電面材40が太陽光を直接受光できない場合であっても、透光性の被膜12内の乱反射を介して、太陽光発電面材40が間接的に受光して発電することができる。
<5> Photovoltaic surface material (Fig. 3)
The photovoltaic panel 40 is a device that generates power from sunlight.
In this example, as the photovoltaic panel 40, a high-strength crystalline silicon type photovoltaic panel for road installation is adopted. However, the photovoltaic panel 40 is not limited to a photovoltaic panel, and may be a flexible photovoltaic sheet.
The photovoltaic panel 40 is arranged in the installation groove 21 of the dirt floor concrete 20 with the light receiving surface facing upward.
In this example, a plurality of photovoltaic panel members 40 are arranged along the cultivation facility array 30a to form the photovoltaic panel array 40a. 30a (Fig. 4).
The in-house solar power generation system 1 for agricultural use of the present invention has a structure in which the solar power generation surface material 40 is arranged on the floor surface in the house space S. Sunlight is not blocked by the photovoltaic panel 40. - 特許庁
In addition, even if the solar power generation surface material 40 cannot directly receive sunlight due to the shade of the crops 32, the solar power generation surface material 40 can indirectly receive the sunlight through the irregular reflection in the translucent coating 12 can receive light and generate electricity.
<6>変電手段
変電手段50は、太陽光発電面材40が発電した電力を交流変化するための構成要素である。
本例では変電手段50として、MPPT(最大電力点追従制御)機能や系統連系保護機能を備えたパワーコンディショナーを採用する。
変電手段50は、太陽光発電面材40が発電した直流電力(DC)を、交流電力(AC)に変換して暖房手段60や照明具13等に送電すると共に、余剰電力を外部送電網Gへ送電する。
<6> Transforming Means The transforming means 50 is a component for converting the electric power generated by the photovoltaic panel 40 into alternating current.
In this example, as the transformer means 50, a power conditioner having an MPPT (maximum power point tracking control) function and a grid connection protection function is adopted.
The power transformation means 50 converts the direct current power (DC) generated by the photovoltaic power generation surface material 40 into alternating current power (AC) and transmits it to the heating means 60, the lighting equipment 13, etc., and transmits surplus power to the external power transmission network G send power to
<7>暖房手段
暖房手段60は、ハウス空間S内の空気を加温するための構成要素である。
本例では暖房手段60として、蓄電池61と、ヒートポンプ給湯器62と、送熱管63の組み合わせによって、土間コンクリート20を介してハウス空間S内を加熱する、床暖房設備を採用する。
詳細には、土間コンクリート20の成型時、型枠内全体に送熱管63を折り返して配置しておくことで、土間コンクリート20内に送熱管63をループ状に配管する。送熱管63内には水等の熱媒体64を充填する。
変電手段50から送電した電気を蓄電池61に蓄え、この電力を用いてヒートポンプ給湯器62で熱媒体64を加熱し、この熱媒体64を送熱管63内に循環させることで土間コンクリート20を加熱して、土間コンクリート20の表面からハウス空間S内の空気を加温する。
ただし暖房手段60は、床暖房設備に限らず、例えばヒートポンプ式エアコン等であってもよい。また、床暖房設備も熱媒体64の循環によらず、土間コンクリート20内に配置した面状発熱体を加熱する方式等であってもよい。
<7> Heating Means The heating means 60 is a component for heating the air in the house space S. As shown in FIG.
In this example, as the heating means 60, a floor heating system is employed that heats the inside of the house space S through the dirt floor concrete 20 by a combination of a storage battery 61, a heat pump water heater 62, and a heat transfer pipe 63.
Specifically, when the earth floor concrete 20 is molded, the heat transfer pipe 63 is arranged in a loop in the earth floor concrete 20 by folding back the heat transfer pipe 63 throughout the mold. The heat transfer pipe 63 is filled with a heat medium 64 such as water.
Electricity transmitted from the transformer means 50 is stored in the storage battery 61, and the electric power is used to heat the heat medium 64 with the heat pump water heater 62, and the earth floor concrete 20 is heated by circulating the heat medium 64 in the heat transfer pipe 63. to heat the air in the house space S from the surface of the dirt floor concrete 20 .
However, the heating means 60 is not limited to floor heating equipment, and may be, for example, a heat pump air conditioner. Also, the floor heating equipment may be a method of heating a planar heating element arranged in the dirt floor concrete 20 without relying on the circulation of the heat medium 64 .
<8>農業用ハウス内太陽光発電システムの運用方法
本発明の農業用ハウス内太陽光発電システム1は、土間コンクリート20、太陽光発電面材40、及び暖房手段60の組み合わせにより、年間を通して高い収穫率と高い発電効率を両立させることができる。
農業用ハウス内太陽光発電システム1は、例えば以下のように運用する。
<8> Operation method of the solar power generation system in the agricultural house The solar power generation system 1 in the agricultural house of the present invention is a combination of the dirt floor concrete 20, the solar power generation surface material 40, and the heating means 60. It is possible to achieve both yield and high power generation efficiency.
The in-house photovoltaic power generation system 1 for agriculture is operated, for example, as follows.
<8.1>寒冷期(図5A)
冬の寒冷期には、太陽光発電面材40による発電量の総量又は大部分を、暖房手段60の稼働に使用し、暖房手段60及び土間コンクリート20の輻射熱により、ハウス空間S内の気温を、農作物32の栽培に適した15~20℃に維持する。
なお、太陽光発電面材40の発電量が十分でない場合には、太陽光発電面材40の発電量に加え、外部から電力を追加供給してもよい。
寒冷期には、日照時間の短縮により農作物32の生長が抑制されるため、農作物32の葉面積が小さくなる。このため、農作物32の葉によって受光を遮られる面積が減ることで、太陽光発電面材40の受光量が増え、日照時間の短縮による発電量の減少を補うことができる。
また、降雪がある場合であっても、暖房手段60及び土間コンクリート20の輻射熱によって、ハウス空間S内の気温が常に15~20℃度程度に維持されることにより、ハウス本体10の被膜12上に付着した雪がすぐに溶解することで、ハウス本体10上に雪が積もることを防ぐことができる。これによって、積雪地域であっても、太陽光発電面材40が常に太陽光を確保でき、発電量の低減を回避することができる。
<8.1> Cold period (Fig. 5A)
In the cold season of winter, the total amount or most of the power generated by the solar power generation surface material 40 is used to operate the heating means 60, and the temperature in the house space S is increased by the radiant heat of the heating means 60 and the dirt floor concrete 20. , and maintained at 15-20° C. suitable for growing the crop 32 .
In addition, when the power generation amount of the solar power generation surface material 40 is not sufficient, in addition to the power generation amount of the solar power generation surface material 40, electric power may be additionally supplied from the outside.
In the cold season, the growth of crops 32 is suppressed due to shortened sunshine hours, so the leaf area of crops 32 is reduced. Therefore, the amount of light received by the photovoltaic power generation surface material 40 increases by reducing the area where the leaves of the crops 32 block the light, thereby making it possible to compensate for the decrease in the amount of power generated due to the shortened sunshine hours.
In addition, even if there is snowfall, the temperature in the house space S is always maintained at about 15 to 20 ° C. by the radiant heat of the heating means 60 and the earth floor concrete 20, so that the coating 12 of the house body 10 Snow adhering to the house body 10 can be prevented from accumulating on the house body 10 by immediately melting the snow adhering to the house body 10.例文帳に追加As a result, even in a snowy area, the photovoltaic surface material 40 can always secure sunlight, and a reduction in the amount of power generated can be avoided.
<8.2>温暖期(図5B)
春と秋を含む温暖期には、太陽光発電面材40による発電量の一部を、暖房手段60の稼働に使用して、暖房手段60及び土間コンクリート20の輻射熱により、ハウス空間S内の気温を、農作物32の栽培に適した15~20℃に維持する。
温暖期には、寒冷期に比べ日照時間が長くなり、太陽光発電面材40による発電量が増える反面、外気温が高くなるため、暖房手段60に係る必要電力量が減少する。
このため、太陽光発電面材40による発電量の内、暖房手段60に使用しない残量を、送電手段70を介して外部送電網Gに送電して、売電又は自己託送に利用することができる。
<8.2> Warm period (Fig. 5B)
During the warm season including spring and autumn, part of the power generated by the solar power generation surface material 40 is used to operate the heating means 60, and the radiant heat of the heating means 60 and the dirt floor concrete 20 heats the inside of the house space S. The air temperature is maintained at 15-20° C. suitable for growing crops 32 .
During the warm season, the hours of sunshine are longer than in the cold season, and the amount of power generated by the photovoltaic power generation surface material 40 is increased.
Therefore, of the amount of power generated by the photovoltaic power generation surface material 40, the remaining amount that is not used for the heating means 60 can be transmitted to the external power grid G via the power transmission means 70 and used for selling power or self-consignment. can.
<8.3>暑熱期(図5C)
7月~8月の暑熱期には、日照時間が最も長くなり、外気温が高くなると共に、ハウス空間S内の気温が極めて高温になる。
従って、この期間はハウス空間S内から栽培設備30を撤去して、農業用ハウス全体を完全な発電施設として使用し、発電量の総量を外部送電網Gに送電して、売電又は自己託送に利用することができる。
暑熱期には、太陽光発電面材40に強い日差しが直射するが、熱を太陽光発電面材40の下面から土間コンクリート20の内部に伝達することで、太陽光発電面材40の温度上昇による発電効率の低下を回避することができる。
この他、栽培設備30用の給水管を利用して、加熱した太陽光発電面材40及び土間コンクリート20の表面に散水する方法や、暖房手段60の送熱管63内に水を循環させて土間コンクリート20内の熱を回収する方法によって、太陽光発電面材40の表面温度を低下させて発電効率を維持することができる。
<8.3> Hot season (Fig. 5C)
In the hot season from July to August, the sunshine hours are the longest, the outside temperature rises, and the temperature inside the house space S becomes extremely high.
Therefore, during this period, the cultivation facility 30 is removed from the greenhouse space S, the entire agricultural greenhouse is used as a complete power generation facility, and the total amount of power generated is transmitted to the external power transmission network G and sold or self-consigned. can be used for
In the hot season, strong sunlight directly hits the photovoltaic power generation surface material 40, but the temperature of the photovoltaic power generation surface material 40 rises by transferring heat from the lower surface of the photovoltaic power generation surface material 40 to the inside of the dirt floor concrete 20. It is possible to avoid a decrease in power generation efficiency due to
In addition, a method of using a water supply pipe for the cultivation facility 30 to sprinkle water on the surface of the heated photovoltaic power generation surface material 40 and the earth floor concrete 20, and a method of circulating water in the heat transfer pipe 63 of the heating means 60 By the method of recovering the heat in the concrete 20, the surface temperature of the photovoltaic power generation surface material 40 can be lowered to maintain the power generation efficiency.
1 農業用ハウス内太陽光発電システム
10 ハウス本体
11 フレーム
12 被膜
13 照明具
20 土間コンクリート
21 設置溝
22 引張材
30 栽培設備
30a 栽培設備アレイ
31 プランタ
32 農作物
40 太陽光発電面材
40a 太陽光発電面材アレイ
50 変電手段
60 暖房手段
61 蓄電池
62 ヒートポンプ給湯器
63 送熱管
64 熱媒体
70 送電手段
80 断熱材
90 防湿フィルム
S ハウス空間
G 外部送電網
1 Photovoltaic Power Generation System in an Agricultural House 10 House Body 11 Frame 12 Coating 13 Lighting Equipment 20 Earth Floor Concrete 21 Installation Ditch 22 Tension Material 30 Cultivation Equipment 30a Cultivation Equipment Array 31 Planter 32 Crop 40 Solar Power Generation Surface Material 40a Solar Power Generation Surface Material array 50 transformer means 60 heating means 61 storage battery 62 heat pump water heater 63 heat transfer pipe 64 heat medium 70 power transmission means
80 Thermal insulation 90 Moisture-proof film S House space G External transmission network
Claims (5)
前記ハウス空間の床面に設置した土間コンクリートと、
前記ハウス空間内に設置可能な栽培設備と、
前記土間コンクリートの上面に接面して配置した太陽光発電面材と、
前記太陽光発電面材が発電する直流電力を交流変換可能な変電手段と、
前記ハウス空間内の空気を加温可能な暖房手段と、
前記太陽光発電面材と前記変電手段、前記変電手段と前記暖房手段、前記変電手段と外部送電網、をそれぞれ電気的に接続した複数の送電手段と、を備え、
総発電量の少なくとも一部を選択的に前記外部送電網へ送電可能に構成したことを特徴とする、
農業用ハウス内太陽光発電システム。 a house body having a frame erected on the ground and a translucent coating covering the frame to define a house space;
Dirt floor concrete installed on the floor surface of the greenhouse space;
a cultivation facility that can be installed in the greenhouse space;
a photovoltaic face material arranged in contact with the upper surface of the earth floor concrete;
a transformer capable of converting DC power generated by the photovoltaic face material into AC;
a heating means capable of heating the air in the house space;
a plurality of power transmission means electrically connecting the photovoltaic surface material and the power transformation means, the power transformation means and the heating means, and the power transformation means and an external power grid, respectively;
At least part of the total power generation can be selectively transmitted to the external power grid,
A solar power generation system in a greenhouse for agriculture.
5. The agricultural house indoor sun according to any one of claims 1 to 4, characterized by comprising a heat insulating material installed on the lower surface of the earth floor concrete and a moisture-proof film laid on the lower surface of the heat insulating material. photovoltaic system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022016426A JP2023114201A (en) | 2022-02-04 | 2022-02-04 | Solar power generation system in agricultural greenhouse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022016426A JP2023114201A (en) | 2022-02-04 | 2022-02-04 | Solar power generation system in agricultural greenhouse |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023114201A true JP2023114201A (en) | 2023-08-17 |
Family
ID=87569244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022016426A Pending JP2023114201A (en) | 2022-02-04 | 2022-02-04 | Solar power generation system in agricultural greenhouse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023114201A (en) |
-
2022
- 2022-02-04 JP JP2022016426A patent/JP2023114201A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gorjian et al. | Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology | |
Trypanagnostopoulos et al. | Greenhouse performance results for roof installed photovoltaics | |
Kumar et al. | Survey and evaluation of solar technologies for agricultural greenhouse application | |
Yano et al. | Electrical energy generated by photovoltaic modules mounted inside the roof of a north–south oriented greenhouse | |
Clot et al. | Submerged PV solar panel for swimming pools: SP3 | |
US11309829B2 (en) | Dynamically shifting photovoltaic panel array apparatus | |
CN101660335A (en) | Method for housetop built on stilts for nothing, heat insulation and greening by utilizing photovoltaic technology and drip irrigation technology | |
CN102400568A (en) | Ecological energy complex building | |
CN102523986A (en) | Integrated solar photothermal and photoelectric greenhouse | |
Zhang et al. | Spectral-splitting concentrator agrivoltaics for higher hybrid solar energy conversion efficiency | |
US3981151A (en) | Use of solar energy heat gathering and storing systems to increase farm crop yields | |
Köhler et al. | Photovoltaic panels on greened roofs | |
Santra | Scope of solar energy in cold arid region of India at Leh Ladakh | |
CN201332610Y (en) | Solar photovoltaic watermelon seedling growth greenhouse | |
CN109275456A (en) | A photovoltaic solar greenhouse system | |
JP2967326B2 (en) | Solar power cogeneration system installed on the slope | |
CN205105829U (en) | Green house based on solar electric system | |
JP2023114201A (en) | Solar power generation system in agricultural greenhouse | |
CN209788003U (en) | Sunlight heat storage greenhouse for high-latitude areas | |
CN105165484A (en) | Farming greenhouse based on solar generating system | |
CN101530043A (en) | Multi-functional large greenhouse for high yield of solar organic agricultural products and livestock and poultry products | |
Tiwari et al. | Optimization of packing factor for maximum electric power and crop yield in greenhouse integrated semi-transparent photo-voltaic thermal (GiSPVT) system in desert land: An experimental study | |
Leaf et al. | Improvement of electrical efficiency in a PV solar farm utilizing agriculture | |
Tiwari | Construction of Greenhouse Integrated Semi-transparent Photo-Voltaic Thermal System (GiSPVT) | |
Ntinas et al. | The influence of a hybrid solar energy saving system on the growth and the yield of tomato crop in greenhouses |