JP2023108212A - Steel strip joining method and steel strip joining device - Google Patents

Steel strip joining method and steel strip joining device Download PDF

Info

Publication number
JP2023108212A
JP2023108212A JP2022009213A JP2022009213A JP2023108212A JP 2023108212 A JP2023108212 A JP 2023108212A JP 2022009213 A JP2022009213 A JP 2022009213A JP 2022009213 A JP2022009213 A JP 2022009213A JP 2023108212 A JP2023108212 A JP 2023108212A
Authority
JP
Japan
Prior art keywords
steel strip
temperature
heating
post
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022009213A
Other languages
Japanese (ja)
Inventor
祐治 村田
Yuji Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022009213A priority Critical patent/JP2023108212A/en
Publication of JP2023108212A publication Critical patent/JP2023108212A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To propose a steel strip joining method which prevents a weld zone from breaking in the middle of plate passing, and shortens processing time as much as possible.SOLUTION: Temperature of a weld zone is measured after welding a rear end of a preceding steel strip and a tip of a following steel strip, and after cooling the weld zone to a temperature in a range of (MF-5°C)-(MF-20°C) using a low MF as a reference, out of completion temperatures MF (°C) for forming a low temperature transformation composition of a weld zone, post-heating is immediately applied to the weld zone. Accordingly, in steel plate manufacturing at a steel mill, a weld zone is prevented from breaking in the middle of plate passing despite that steel strips are welded together and continuous processing such as rolling is conducted, and thus, steel strip joining time including post-heating can be considerably shortened.SELECTED DRAWING: Figure 2

Description

本発明は、鋼帯の接合方法および鋼帯の接合装置に係り、とくに鋼帯を接合した後の溶接部の破断防止に関する。 TECHNICAL FIELD The present invention relates to a steel strip joining method and a steel strip joining apparatus, and more particularly to prevention of breakage of a welded portion after joining steel strips.

製鉄所の鋼板製造ラインでは、生産性向上の観点から、圧延等の処理を連続的に行うことが一般的である。そのため、先行する鋼帯の後端部と後行する鋼帯の先端部とを溶接して連続して処理できるようにしている。しかし、溶接部が局所的に加熱され、その後、急冷されるため、溶接部にマルテンサイト等の低温変態組織が生成し、硬さが上昇するとともに、靭性が低下し、連続処理の途中で破断が生じる場合がある。 From the viewpoint of improving productivity, it is common to continuously perform processing such as rolling in a steel sheet production line of a steel plant. For this reason, the trailing end of the preceding steel strip and the leading end of the following steel strip are welded to enable continuous processing. However, since the welded part is locally heated and then rapidly cooled, a low-temperature transformation structure such as martensite is generated in the welded part, which increases hardness and decreases toughness, resulting in fracture during continuous processing. may occur.

このような問題に対し、例えば、特許文献1には、鋼帯の接合方法が提案されている。特許文献1に記載された鋼帯の接合方法では、第1の鋼帯の一端と第2の鋼帯の一端とを突き合わせてレーザー溶接し、該レーザー溶接で形成された溶接部を誘導加熱し、該誘導加熱による加熱温度を、第1の鋼帯の熱影響部、第2の鋼帯の熱影響部および溶接部の、少なくとも3点において測定し、予め求めた第1の鋼帯における加熱温度と硬度との関係と、測定された第1の鋼帯の熱影響部の加熱温度とから、第1の鋼帯の熱影響部の硬度を求め、予め求めた第2の鋼帯における加熱温度と硬度との関係と、測定された第2の鋼帯の熱影響部の加熱温度とから、第2の鋼帯の熱影響部の硬度を求め、溶接部の加熱温度と、第1の鋼帯の熱影響部と第2の鋼帯の熱影響部の硬度差とが、それぞれ所定の条件を満たすか否かを判断し、鋼帯の接合の良否を判定する、としている。 To address such problems, for example, Patent Document 1 proposes a method for joining steel strips. In the method for joining steel strips described in Patent Document 1, one end of a first steel strip and one end of a second steel strip are butted together and laser-welded, and the weld formed by the laser welding is induction-heated. , the heating temperature by the induction heating is measured at least three points of the heat affected zone of the first steel strip, the heat affected zone of the second steel strip and the welded zone, and the heating in the first steel strip obtained in advance From the relationship between temperature and hardness and the measured heating temperature of the heat affected zone of the first steel strip, the hardness of the heat affected zone of the first steel strip is obtained, and the previously determined heating of the second steel strip is performed. The hardness of the heat affected zone of the second steel strip is obtained from the relationship between temperature and hardness and the measured heating temperature of the heat affected zone of the second steel strip, and the heating temperature of the weld zone and the first It is determined whether or not the difference in hardness between the heat affected zone of the steel strip and the heat affected zone of the second steel strip satisfies a predetermined condition, and the quality of joining of the steel strips is determined.

特開2020-127947号公報Japanese Patent Application Laid-Open No. 2020-127947

しかしながら、特許文献1に記載された鋼帯の接合方法では、接合する鋼帯ごとに、溶接部、熱影響部の後熱処理加熱温度と硬度との関係を、予め求めておく必要があり、工程が複雑になるうえ、鋼帯接合後に、溶接部(接合部)に後加熱処理を行っても、後加熱処理の開始温度を把握していないため、後加熱処理の効果が十分に得られず、通板の途中で接合部が破断する場合があった。 However, in the steel strip joining method described in Patent Document 1, it is necessary to determine in advance the relationship between the post-heat treatment heating temperature of the weld zone and the heat-affected zone and the hardness for each steel strip to be joined. In addition, even if post-heat treatment is performed on the welded part (joint part) after joining the steel strips, the effect of post-heat treatment cannot be sufficiently obtained because the starting temperature of post-heat treatment is not known. , there were cases where the joint was broken during the threading.

そこで、本発明は、後加熱処理の効果を確実に発現させて通板途中での溶接部(接合部)の破断を防止し、かつ処理時間を可能な限り短縮できる鋼帯の接合方法を提案することを目的とする。 Therefore, the present invention proposes a method for joining steel strips that can reliably exert the effect of the post-heat treatment, prevent breakage of the welded portion (joint portion) during strip threading, and shorten the processing time as much as possible. intended to

上記した目的を達成するため、本発明者は、まず、後加熱処理の効果を確実に発現させる手段について鋭意検討した。後加熱処理の効果が確実に発現しないのは、鋼帯同士を溶接した後の冷却時に、溶接部の変態が完了しないうちに、後加熱処理を行ったためであると考え、溶接部の冷却過程で溶接部(接合部)の温度を測定し、得られた溶接部の温度が、低温変態組織の生成が完了する「所定の温度」以下となったことを確認して、後加熱処理を開始する必要があることに思い至った。なお、ここで「溶接部」とは「溶融部」と「熱影響部」をいうものとする。 In order to achieve the above-described object, the present inventor first made earnest studies on a means for reliably exhibiting the effect of the post-heating treatment. The reason why the effect of the post-heating treatment does not appear reliably is that the post-heating treatment was performed before the transformation of the weld was completed when the steel strips were welded together. Measure the temperature of the welded part (joint part), and confirm that the obtained temperature of the welded part is below the "predetermined temperature" at which the formation of the low-temperature transformation structure is completed, and then start the post-heating process. I came to the realization that I needed to. It should be noted that the term "welded zone" as used herein refers to a "melted zone" and a "heat-affected zone".

すなわち、本発明では、溶接後の冷却過程で溶接部の温度を測定し、溶接部の温度が低温変態組織の生成が完了する「所定の温度」以下に冷却されたのち、直ちに後加熱処理を開始する、ことにした。これにより、溶接部の冷却の待ち時間を短縮しつつ後加熱処理の効果を確実に発現でき、さらに鋼帯の溶接処理を短縮できることを知見した。なお、ここでいう「所定の温度」は、マルテンサイト、ベイナイトなどの低温変態組織生成終了温度MF(℃)またはMFに基づく温度とする。低温変態組織の生成が終了していれば、後加熱処理により、生成した低温変態組織が十分に軟化され、靭性化して、後加熱処理の効果を確実に発現できる。しかし、冷却時に変態が終了しない時点で後加熱処理を開始すれば、後加熱処理の効果が不十分となる。 That is, in the present invention, the temperature of the welded portion is measured in the cooling process after welding, and after the temperature of the welded portion is cooled to a “predetermined temperature” or lower at which the formation of the low-temperature transformed structure is completed, the post-heating treatment is immediately performed. decided to start. As a result, the inventors have found that the effect of the post-heat treatment can be reliably exhibited while shortening the waiting time for cooling of the weld zone, and furthermore, the welding process of the steel strip can be shortened. Here, the "predetermined temperature" is defined as the formation end temperature MF (°C) of the low-temperature transformation structure of martensite, bainite, or the like, or a temperature based on MF. If the generation of the low-temperature transformed structure has been completed, the post-heating treatment sufficiently softens the generated low-temperature transformed structure and makes it tough, so that the effect of the post-heating treatment can be reliably exhibited. However, if the post-heating treatment is started before the transformation is completed during cooling, the effect of the post-heating treatment will be insufficient.

つぎに、本発明の基礎となった実験結果について説明する。
第1の鋼帯と第2の鋼帯を用意した。第1の鋼帯および第2の鋼帯はともに、1.5GPa級高張力冷延鋼帯(板厚:2.0mm)とした。なお、これらの鋼帯は、次(1)式
Ceq=C+Si/50+Mn/25+Cr/50+P/2 …(1)
ここで、C、Si、Mn、Cr、P:各元素の含有量(質量%)
で定義される炭素当量Ceqが0.3%の組成を有する鋼帯であり、鋼帯同士の溶接に際し、通常、放冷後に溶接部に低温変態組織を生成する。
Next, the experimental results that form the basis of the present invention will be described.
A first steel strip and a second steel strip were prepared. Both the first steel strip and the second steel strip were 1.5 GPa class high-strength cold-rolled steel strips (thickness: 2.0 mm). In addition, these steel strips are obtained by the following formula (1)
Ceq = C + Si/50 + Mn/25 + Cr/50 + P/2 (1)
Where, C, Si, Mn, Cr, P: content of each element (% by mass)
It is a steel strip having a composition with a carbon equivalent Ceq of 0.3% defined by .

端面をシャーで切断された第1の鋼帯の後端部と第2の鋼帯の先端部とを重ね合わせ、マッシュシーム溶接機を用いて溶接したのち、冷却した。冷却は放冷とした。なお、冷却(放冷)過程の溶接部の表面温度を放射温度計で測定し、溶接部の最高温度を求めた。そして、放冷途中の、各種温度(冷却停止温度)で冷却を停止したのち、直ちに誘導加熱装置により所定の温度(600℃)まで加熱する後加熱処理を行った。後加熱処理後、室温まで冷却(放冷)したのち、溶接部から試験片を採取し溶接部の硬さ分布を測定した。得られた溶接部の硬さ分布から最高硬さHVをもとめた。溶接部最高硬さHVと冷却停止温度との関係を図1に示す。 The rear end of the first steel strip whose end face was cut with a shear and the front end of the second steel strip were overlapped, welded using a mash seam welder, and then cooled. Cooling was allowed to cool. The surface temperature of the weld during the cooling (cooling) process was measured with a radiation thermometer to determine the maximum temperature of the weld. Then, after cooling was stopped at various temperatures (cooling stop temperature) in the middle of cooling, a post-heating treatment was immediately performed by heating to a predetermined temperature (600° C.) with an induction heating device. After the post-heating treatment, after cooling (standing to cool) to room temperature, a test piece was taken from the welded portion and the hardness distribution of the welded portion was measured. The maximum hardness HV was obtained from the hardness distribution of the obtained weld zone. Fig. 1 shows the relationship between maximum weld hardness HV and cooling stop temperature.

図1から、冷却停止温度を400℃以下とすることにより、後加熱処理後の溶接部硬さが顕著に低下している。冷却停止温度が上記した温度(400℃)より低くなると、冷却過程で変態が完了し、生成したマルテンサイト等の低温変態組織が後加熱処理により十分に焼戻されて溶接部の硬さが低下したものと考えられる。本発明では、この温度(冷却停止温度:400℃)を当該鋼帯における「溶接部の低温変態組織生成終了温度MF」と称することとした。 From FIG. 1, by setting the cooling stop temperature to 400° C. or less, the hardness of the weld zone after the post-heat treatment is significantly reduced. When the cooling stop temperature is lower than the above temperature (400°C), the transformation is completed in the cooling process, and the low-temperature transformed structure such as martensite that is generated is sufficiently tempered by the post-heat treatment, and the hardness of the weld is reduced. It is considered that In the present invention, this temperature (cooling stop temperature: 400° C.) is referred to as the "finish temperature MF of formation of low-temperature transformation structure of the weld zone" in the steel strip.

このようなことから、本発明では、鋼帯同士を溶接(接合)したのち、溶接部の温度(表面温度)を測定して、溶接部の最高温度が上記した温度MF(あるいは温度MF以下)に冷却されたのち、後加熱処理を行うこととした。これにより、溶接部が十分に焼戻されて硬さが低下し、通板途中での破断を防止できることを知見した。 For this reason, in the present invention, after welding (joining) the steel strips together, the temperature (surface temperature) of the welded portion is measured, and the maximum temperature of the welded portion is the above-described temperature MF (or below the temperature MF). After being cooled to 100°C, a post-heating treatment was performed. As a result, the welded portion is sufficiently tempered, the hardness is lowered, and breakage during sheet threading can be prevented.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1]先行する鋼帯の後端部と後行する鋼帯の先端部とを溶接して前記先行する鋼帯と前記後行する鋼帯を接合するに当たり、前記溶接を終了したのち、該溶接により形成された溶接部の温度を測定し、該溶接部が所定の温度T(℃)に冷却されたのち直ちに、前記溶接部に後加熱処理を行うことを特徴とする鋼帯の接合方法。
[2]前記所定の温度T(℃)が、前記先行する鋼帯また前記後行する鋼帯の溶接部の低温変態組織生成終了温度MF(℃)のうち、低いMFを基準として、(MF-5℃)~(MF-20℃)の範囲の温度であることを特徴とする[1]に記載の鋼帯の接合方法。
[3]前記溶接が、マッシュシーム溶接であることを特徴とする[1]または[2]に記載の鋼帯の接合方法。
[4]前記溶接部の温度の測定が、放射温度計を用いた測定であることを特徴とする[1]ないし[3]のいずれかに記載の鋼帯の接合方法。
[5]前記後加熱処理が、誘導加熱を用いた加熱処理であることを特徴とする[1]ないし[4]のいずれかに記載の鋼帯の接合方法。
[6]前記第1の鋼帯および前記第2の鋼帯のいずれかが、次(1)式
Ceq=C+Si/50+Mn/25+Cr/50+P/2 …(1)
ここで、C、Si、Mn、Cr、P:各元素の含有量(質量%)
で定義される炭素当量Ceqが0.1%以上の組成を有する鋼帯であることを特徴とする[1]ないし[5]のいずれかに記載の鋼帯の接合方法。
[7]鋼帯の接合装置であって、先行する鋼帯の後端部と後行する鋼帯の先端部とを切断する切断手段と、前記切断手段で端部を切断された前記先行する鋼帯の後端部と前記後行する鋼帯の先端部とを溶接する溶接手段と、前記溶接により形成された溶接部の温度を測定する温度測定手段と、前記溶接部を所定の後加熱処理温度に加熱する後加熱処理手段と、
前記温度測定手段で測定された前記溶接部の冷却時の温度に基づき、前記後加熱処理手段に前記加熱の指示を行う制御手段と、を有することを特徴とする鋼帯の接合装置。
[8]前記溶接手段が、マッシュシーム溶接機であることを特徴とする[7]に記載の鋼帯の接合装置。
[9]前記温度測定手段が放射温度計であることを特徴とする[7]または[8]に記載の鋼帯の接合装置。
[10]前記後加熱処理手段が誘導加熱装置であることを特徴とする[7]ないし[9]のいずれかに記載の鋼帯の接合装置。
[11]前記制御手段が、前記測定した前記溶接部の温度を所定の温度であると判断する判断手段と、前記判断の結果に基づき、前記後熱処理手段に前記加熱の指示を行う指示手段とを有することを特徴とする[7]に記載の鋼帯の接合装置。
The present invention has been completed based on these findings and further studies. That is, the gist of the present invention is as follows.
[1] In joining the leading steel strip and the trailing steel strip by welding the trailing end portion of the leading steel strip and the leading end portion of the trailing steel strip, after completing the welding, A method for joining steel strips, characterized by measuring the temperature of a welded portion formed by welding, and subjecting the welded portion to a post-heating treatment immediately after the welded portion is cooled to a predetermined temperature T (°C). .
[2] The predetermined temperature T (°C) is such that, of the low-temperature transformation structure generation finish temperature MF (°C) of the weld zone of the preceding steel strip and the following steel strip, the lower MF is used as a standard, (MF The method for joining steel strips according to [1], wherein the temperature is in the range of -5°C) to (MF -20°C).
[3] The method for joining steel strips according to [1] or [2], wherein the welding is mash seam welding.
[4] The method for joining steel strips according to any one of [1] to [3], wherein the temperature of the weld is measured using a radiation thermometer.
[5] The method for joining steel strips according to any one of [1] to [4], wherein the post-heat treatment is a heat treatment using induction heating.
[6] Either the first steel strip or the second steel strip has the following formula (1)
Ceq = C + Si/50 + Mn/25 + Cr/50 + P/2 (1)
Where, C, Si, Mn, Cr, P: content of each element (% by mass)
The method for joining steel strips according to any one of [1] to [5], wherein the steel strip has a composition having a carbon equivalent Ceq of 0.1% or more.
[7] A steel strip joining apparatus comprising: a cutting means for cutting a trailing end portion of a preceding steel strip and a leading end portion of a following steel strip; Welding means for welding the rear end portion of the steel strip and the leading end portion of the following steel strip, temperature measuring means for measuring the temperature of the welded portion formed by the welding, and post-heating the welded portion for a predetermined amount. a post-heating means for heating to a treatment temperature;
and a control means for instructing the post-heating means to perform the heating based on the temperature of the weld zone during cooling measured by the temperature measuring means.
[8] The steel strip joining apparatus according to [7], wherein the welding means is a mash seam welder.
[9] The steel strip joining apparatus according to [7] or [8], wherein the temperature measuring means is a radiation thermometer.
[10] The steel strip joining apparatus according to any one of [7] to [9], wherein the post-heat treatment means is an induction heating device.
[11] Judging means for judging that the measured temperature of the weld zone is a predetermined temperature, and instructing means for instructing the post-heat treatment means to perform the heating based on the result of the judgment. The steel strip joining apparatus according to [7], characterized by having

本発明によれば、製鉄所の鋼板製造において、鋼帯同士を溶接接合して圧延等の連続処理を行っても、溶接接合後の後加熱処理の効果が確実に発現されて、連続通板途中での溶接部(接合部)の破断が防止され、生産性が向上し、産業上格段の効果を奏する。また、本発明によれば、溶接接合とその後の後加熱処理を含めた処理時間を大幅に短縮できるという効果もある。 According to the present invention, even when steel strips are welded to each other and subjected to continuous processing such as rolling in steel sheet production at a steel mill, the effect of the post-heating treatment after welding and joining is reliably exhibited, and continuous strip threading is performed. Breakage of the welded portion (joint portion) in the middle is prevented, productivity is improved, and there is a marked industrial effect. Moreover, according to the present invention, there is also the effect that the processing time including welding and subsequent post-heating can be greatly shortened.

後加熱処理後の溶接部の硬さと冷却停止温度との関係を示すグラフである。4 is a graph showing the relationship between the hardness of the weld zone after post-heat treatment and the cooling stop temperature. 本発明の実施に好適な鋼帯の接合装置を模式的に示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows typically the joining apparatus of the steel strip suitable for implementation of this invention. (a)マッシュシーム溶接および(b)レーザー溶接、の概要を模式的に示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows typically the outline|summary of (a) mash seam welding and (b) laser welding. 実施例における溶接部の加熱冷却パターンを模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing a heating and cooling pattern of a welded portion in an example;

本発明は、先行する鋼帯の後端部と後行する鋼帯の先端部とを溶接して溶接部を形成して鋼帯同士を接合したのち、溶接部の後加熱処理を行う鋼帯の接合方法であり、圧延等での連続処理を可能にする。本発明が対象とする鋼帯は、溶接接合に際し、溶接部にマルテンサイト、ベイナイト等の低温変態組織を形成しやすい鋼帯とする。このような鋼帯としては、例えば、次(1)式
Ceq=C+Si/50+Mn/25+Cr/50+P/2 …(1)
ここで、C、Si、Mn、Cr、P:各元素の含有量(質量%)
で定義される炭素当量Ceqが0.1%以上である材料が例示できる。なお、上記(1)式における計算は、当該元素を含有しない場合には零とする。
The present invention is a steel strip in which the rear end portion of the preceding steel strip and the leading end portion of the following steel strip are welded to form a welded portion, the steel strips are joined together, and then the welded portion is post-heated. This joining method enables continuous processing such as rolling. The steel strip targeted by the present invention is a steel strip in which a low-temperature transformation structure such as martensite or bainite is likely to be formed in the weld zone during welding. As such a steel strip, for example, the following formula (1)
Ceq = C + Si/50 + Mn/25 + Cr/50 + P/2 (1)
Where, C, Si, Mn, Cr, P: content of each element (% by mass)
A material having a carbon equivalent Ceq of 0.1% or more can be exemplified. In addition, the calculation in the above formula (1) is assumed to be zero when the element is not contained.

このような材料(鋼帯)としては、例えば、炭素鋼、TRIP鋼(変態誘起塑性鋼)、DP鋼(Dual Phase鋼)などが例示される。また、強度レベルで分類すれば、自動車車体用のTS1.0GPa~1.5GPa級高張力鋼板(鋼帯)等の各種鋼板や、各種高強度表面処理鋼板が例示できる。 Examples of such materials (steel strips) include carbon steel, TRIP steel (transformation-induced plasticity steel), DP steel (Dual Phase steel), and the like. Classified by strength level, various steel sheets such as TS 1.0 GPa to 1.5 GPa grade high-strength steel sheets (steel strips) for automobile bodies and various high-strength surface-treated steel sheets can be exemplified.

本発明では、上記した鋼帯同士を接合する際に、第1の鋼帯の後端部と第2の鋼帯の先端部を、溶接する。第1の鋼帯と第2の鋼帯とは、同種の鋼帯としても、また、異種の鋼帯としてもよい。 In the present invention, when joining the steel strips, the rear end of the first steel strip and the front end of the second steel strip are welded. The first steel strip and the second steel strip may be steel strips of the same type or steel strips of different types.

鋼帯の溶接方法は、とくに限定する必要はないがマッシュシーム溶接、あるいは、レーザー溶接とすることが好ましい。 The method of welding the steel strips is not particularly limited, but mash seam welding or laser welding is preferred.

マッシュシーム溶接では、第1の鋼帯の後端部と、第2の鋼帯の先端部を、シャーで切断し、平行に重ね合わせ、その重ね合わせ部を、マッシュシーム溶接機の電極輪で加圧、通電することで、溶接部を形成し押しつぶしながら、さらに、スェージングロールSWRで平担化しながら、幅方向に走行させて接合する。 In mash seam welding, the rear end of the first steel strip and the front end of the second steel strip are cut with a shear, overlapped in parallel, and the overlapped portion is welded with an electrode wheel of a mash seam welder. By pressing and energizing, the welded portion is formed and crushed, and while being flattened by the swaging roll SWR, it is run in the width direction and joined.

また、レーザー溶接では、第1の鋼帯の後端部と、第2の鋼帯の先端部を、シャーで切断し、突き合わせし、突合せ部にレーザー溶接機のレーザー溶接ヘッドを幅方向に走査し、連続的に溶接部を形成する。 In laser welding, the rear end of the first steel strip and the front end of the second steel strip are cut with a shear and butted together, and the laser welding head of the laser welding machine is scanned in the width direction at the butted portion. to form a continuous weld.

本発明では、形成された溶接部の温度(表面温度)を測定する。溶接部の温度(表面温度)の測定は、溶接完了直後から冷却に伴い、連続的または間欠的に行うことが好ましい。そして、本発明では、溶接部の温度が、所定の温度T(℃)に到達した時点で直ちに、後加熱処理を開始する。なお、ここでいう「所定の温度T(℃)」とは、溶接部の低温変態組織生成終了温度MF(℃)、または(MF-5℃)~(MF-20℃)の範囲の温度とすることが好ましい。 In the present invention, the temperature of the formed weld (surface temperature) is measured. It is preferable to measure the temperature (surface temperature) of the weld zone continuously or intermittently following the cooling immediately after the completion of welding. Then, in the present invention, the post-heating process is started immediately after the temperature of the weld reaches a predetermined temperature T (°C). The "predetermined temperature T (°C)" referred to here is the final temperature MF (°C) of formation of the low-temperature transformation structure of the weld zone, or a temperature in the range of (MF - 5°C) to (MF - 20°C). preferably.

なお、溶接部の低温変態組織生成終了温度MFは、予め当該鋼帯と同じ組成の鋼帯について実験により求めておくものとする。鋼帯を、溶接到達温度まで加熱したのち、冷却し、加熱された溶接部(溶接相当部位)を、冷却途中の各温度(冷却停止温度)で冷却を停止し、直ちに所定の温度まで加熱する後加熱処理を行い、室温まで冷却したのち、溶接部(溶接相当部位)の硬さを測定し、冷却停止温度と後加熱処理後の硬さとの関係を求め、該冷却停止温度と後加熱処理後の硬さとの関係から決定するものとする。本発明では、後加熱処理後の硬さが母材硬さ程度となる冷却停止温度の最も高い温度を、溶接部の低温変態組織生成終了温度MF(℃)とする。なお、異なる組成の鋼帯を接合する場合は、予め求めておいた各鋼帯の溶接部の低温変態組織生成終了温度MFのうち、低いMFを用いるものとする。 The temperature MF at which the formation of the low-temperature transformation structure of the weld zone ends is obtained in advance by experiments for a steel strip having the same composition as that of the steel strip. After the steel strip is heated to the welding temperature, it is cooled, and the heated welded portion (the portion corresponding to welding) stops cooling at each temperature (cooling stop temperature) during cooling, and is immediately heated to the predetermined temperature. After post-heating treatment and cooling to room temperature, the hardness of the welded portion (the portion corresponding to welding) is measured, the relationship between the cooling stop temperature and the hardness after post-heating treatment is obtained, and the cooling-stop temperature and post-heating treatment are obtained. It shall be determined from the relationship with hardness later. In the present invention, the highest cooling stop temperature at which the hardness after the post-heat treatment is about the same as the hardness of the base material is defined as the completion temperature MF (°C) of formation of the low-temperature transformation structure of the weld zone. When steel strips having different compositions are to be joined, the lower MF is used among the temperatures MF at which the formation of low-temperature transformation structures of the welded portions of the respective steel strips is completed in advance.

また、溶接部の温度(表面温度)の測定は、温度測定手段で行う。温度測定手段としては、とくに限定する必要はないが、例えば、放射温度計などの、非接触式の温度測定装置を用いることが好ましい。温度測定装置としては、ファイバー式放射温度計のように特定の点を測定できる装置としても、あるいは、サーモグラフィーカメラやアレイ型放射温度計のように二次元的に温度分布を測定できる装置としてもよい。 The temperature of the weld (surface temperature) is measured by temperature measuring means. The temperature measuring means is not particularly limited, but it is preferable to use, for example, a non-contact temperature measuring device such as a radiation thermometer. The temperature measurement device may be a device that can measure a specific point such as a fiber-type radiation thermometer, or a device that can measure temperature distribution two-dimensionally such as a thermography camera or an array-type radiation thermometer. .

本発明では、溶接完了後の冷却時に、溶接部の温度が、溶接部の低温変態組織生成終了温度MFに到達したら、直ちに後加熱処理を行う。なお、後加熱処理の効果を確実にするという観点から、後加熱処理を開始する温度は、溶接部の温度ばらつき等を考慮して、溶接部の温度が、(MF-5℃)~(MF-20℃)の範囲の温度となった時点とすることが好ましい。 In the present invention, when the temperature of the weld zone reaches the low-temperature transformation structure generation finish temperature MF of the weld zone during cooling after the completion of welding, the post-heat treatment is immediately performed. In addition, from the viewpoint of ensuring the effect of the post-heating treatment, the temperature at which the post-heating treatment is started should be between (MF-5°C) and (MF -20°C) is preferable.

後加熱処理は、溶接部を加熱し、焼き戻しして、硬さを低下させ、通板時の破断を防止するために行う。後加熱処理の加熱温度は、当該鋼帯の組成に応じて適宜決定されるが、当該鋼帯の450℃以上Ac1変態点未満、好ましくは450~650℃の範囲の温度、より好ましくは500~600℃の範囲の温度、さらに好ましくは550~590℃である。 The post-heating treatment heats and tempers the welded portion to reduce hardness and prevent breakage during threading. The heating temperature of the post-heating treatment is appropriately determined according to the composition of the steel strip, but the temperature in the range of 450 ° C. or higher and lower than the Ac 1 transformation point of the steel strip is preferably 450 to 650 ° C., more preferably 500 ° C. The temperature is in the range of -600°C, more preferably 550-590°C.

後加熱処理手段は、とくに限定する必要はないが、バーナー加熱装置、又は誘導加熱装置とすることが好ましい。とくに、誘導加熱を用いれば、加熱速度が大きく、処理時間の短縮が図れる。なお、後加熱処理後は、室温まで放冷する。 The post-heating means is not particularly limited, but is preferably a burner heating device or an induction heating device. In particular, if induction heating is used, the heating rate is high and the processing time can be shortened. In addition, after the post-heating treatment, it is allowed to cool to room temperature.

なお、上記した鋼帯の接合に好適な鋼帯の接合装置1は、図2に示すように、鋼帯端部を切断する切断手段2と、溶接手段3と、温度測定手段4と、後加熱処理手段5と、制御手段6(図示せず)と、を有する。図2では、切断手段2と、溶接手段3と、温度測定手段4と、後加熱処理手段5とを、キャリッジ10に搭載し、鋼帯の幅方向に、一体として移動可能としている。 As shown in FIG. 2, the steel strip joining apparatus 1 suitable for joining the steel strips described above includes a cutting means 2 for cutting the ends of the steel strips, a welding means 3, a temperature measuring means 4, a rear It has heat treatment means 5 and control means 6 (not shown). In FIG. 2, the cutting means 2, the welding means 3, the temperature measuring means 4, and the post-heating means 5 are mounted on a carriage 10 so that they can be moved integrally in the width direction of the steel strip.

切断手段2としては、先行する鋼帯11の後端部と後行する鋼帯12の先端部とを切断する、シャー21が例示される。また、溶接手段3としては、マッシュシーム溶接機、レーザー溶接機が例示でき、切断手段2で端部を切断された先行する鋼帯11の後端部と後行する鋼帯12の先端部とを溶接する。図2では、溶接手段3として、マッシュシーム溶接機を示しているが、本発明ではこれに限定されない。 An example of the cutting means 2 is a shear 21 that cuts the trailing edge of the preceding steel strip 11 and the leading edge of the trailing steel strip 12 . As the welding means 3, a mash seam welder and a laser welder can be exemplified. to weld. Although FIG. 2 shows a mash seam welder as the welding means 3, the present invention is not limited to this.

マッシュシーム溶接機では、シャー21で端部を切断された、第1の鋼帯11の後端部と、第2の鋼帯12の先端部を、それぞれクランプ等で把持し、平行に重ね合わせ、その重ね合わせ部を、電極輪31,31で加圧、通電することで、溶接部を形成し押しつぶしながら、スェージングロールSWR32,32でさらに平坦化しながら、幅方向に走行して連続的に溶接し、鋼帯同士を接合する(図3(a)参照)。また、レーザー溶接機では、シャー21で端部を切断された、第1の鋼帯11の後端部と、第2の鋼帯12の先端部とを、突き合わせし、突合せ部に沿ってレーザー溶接ヘッド33を走査し、連続的にレーザー照射して溶接し、溶接部を形成して、鋼帯同士を接合する(図3(b)参照)。 In the mash seam welder, the rear end of the first steel strip 11 and the front end of the second steel strip 12, which are cut off by the shear 21, are held by clamps or the like and overlapped in parallel. , the overlapped portion is pressurized and energized by the electrode wheels 31, 31 to form and crush the welded portion, and while further flattened by the swaging rolls SWR 32, 32, it travels in the width direction and continuously The steel strips are joined together by welding (see FIG. 3(a)). Further, in the laser welding machine, the rear end portion of the first steel strip 11 and the front end portion of the second steel strip 12, the ends of which have been cut by the shear 21, are butted against each other, and a laser beam is welded along the butted portion. The welding head 33 is scanned to continuously irradiate and weld the steel strips to form a weld zone and join the steel strips together (see FIG. 3(b)).

温度測定手段4としては、溶接部の温度(表面温度)を測定できる、例えば、放射温度計などの非接触式の温度測定装置が例示できる。温度測定手段4は、図2、図3では、鋼帯の下側(裏面側)に配置されているが、本発明では、これに限定されないことは言うまでもない。温度測定手段4は、後加熱処理直前の溶接部温度を測定できるように、後加熱処理手段5のすぐ前に設けられ、キャリッジ等に搭載され溶接線に沿って移動可能なように配設されることが好ましい。なお、温度測定手段4で測定された溶接部の温度は、
制御手段6に送られる。
As the temperature measuring means 4, for example, a non-contact temperature measuring device such as a radiation thermometer that can measure the temperature (surface temperature) of the weld zone can be exemplified. Although the temperature measuring means 4 is arranged on the lower side (rear side) of the steel strip in FIGS. 2 and 3, it goes without saying that the present invention is not limited to this. The temperature measuring means 4 is provided immediately in front of the post-heating means 5 so as to measure the temperature of the weld zone immediately before the post-heating process, and is mounted on a carriage or the like so as to be movable along the weld line. preferably. The temperature of the weld measured by the temperature measuring means 4 is
It is sent to the control means 6 .

後加熱処理手段5としては、バーナー加熱、誘導加熱等、溶接部を所定の後加熱処理温度まで安定して加熱できるものであればよく、とくに限定する必要はないが、加熱速度や、取り扱いの簡便性などの観点から、誘導加熱装置とすることが好ましい。後加熱処理手段5は、図2では、鋼帯の下側(裏面側)に配置されているが、本発明では、これに限定されないことは言うまでもない。なお、後加熱処理手段5は、溶接線に沿って移動可能なように配設されることが好ましい。 The post-heating means 5 is not particularly limited as long as it can stably heat the welded portion to a predetermined post-heating temperature, such as burner heating or induction heating. From the viewpoint of convenience, etc., it is preferable to use an induction heating device. Although the post-heating means 5 is arranged on the lower side (back side) of the steel strip in FIG. 2, it goes without saying that the present invention is not limited to this. The post-heating means 5 is preferably arranged so as to be movable along the weld line.

制御手段6では、温度測定手段4で測定された当該溶接部の温度と、予め求めておいた所定の温度(溶接部の低温変態組織生成終了温度MF)とを対比し、後加熱処理の実施の要否を判断する判断手段と、後加熱処理手段5へ加熱(後加熱処理)の指示を行う指示手段とを有する。 The control means 6 compares the temperature of the weld zone measured by the temperature measuring means 4 with a predetermined temperature obtained in advance (low-temperature transformation structure generation end temperature MF of the weld zone), and performs post-heating. and an instruction means for instructing the post-heating treatment means 5 to perform heating (post-heating treatment).

以下、さらに、実施例に基づき、本発明について説明する。 The present invention will be further described below based on examples.

第1の鋼帯と第2の鋼帯を準備した。第1の鋼帯と第2の鋼帯はともに、板厚:2.0mmの自動車車体用1.5GPa級の高張力鋼帯(鋼板)で、(1)式で定義される炭素当量Ceqが0.3%であった。なお、予め、実験で当該鋼帯の溶接部(溶接相当部位)の低温変態組織生成終了温度MFを求めておいた。MFは400℃であった。 A first steel strip and a second steel strip were prepared. Both the first steel strip and the second steel strip are 1.5 GPa class high-strength steel strips (steel plates) for automobile bodies with a thickness of 2.0 mm, and the carbon equivalent Ceq defined by the formula (1) is 0.3%. Met. In addition, the temperature MF at which the low-temperature transformation structure formation end temperature MF of the welded portion (the portion corresponding to the weld) of the steel strip was obtained in advance by experiment. MF was 400°C.

溶接手段3をマッシュシーム溶接機とする、図2に示す鋼帯の接合装置を用いて、第1の鋼帯11の後端部と第2の鋼帯12の先端部とを溶接した。溶接に際しては、先行する第1の鋼帯11の後端部の端部および後行する第2の鋼帯12の先端部の端部を切断手段2(シャー21)で切断し、第1の鋼帯11の後端部と第2の鋼帯12の先端部を重ね合わせた。そして、その重ね合わせ部を、鋼帯の幅方向にキャリッジ10を走行させて、マッシュシーム溶接機の電極輪31,31で加圧、通電し、溶接部を形成し押しつぶしながら、さらに、スェージングロールSWR32,32で平坦化する、マッシュシーム溶接を行って、鋼帯11と鋼帯12とを連続する鋼帯とした。また、得られた溶接部の温度(表面温度)を、溶接線上に配置した放射温度計(温度測定手段4)で測定し、溶接部における最高温度を求めた。得られた溶接部に、後加熱処理を行ったのち、連続通板した。
(比較例1)
溶接終了後、放冷し、得られた溶接部の温度を、溶接線上に配置した放射温度計(温度測定手段4)で面状に測定し、溶接部の温度(最高温度)が室温(25℃)となったのち、誘導加熱装置(後加熱処理手段5)により、所定の温度(600℃)に加熱する後加熱処理を行い、室温まで放冷した。なお、連続通板中に溶接部での破断は発生しなかった。
(比較例2)
溶接終了後、得られた溶接部の温度を、溶接線上に配置した放射温度計(温度測定手段4)で面状に測定しながら、直ちに、誘導加熱装置(後加熱処理手段5)により、所定の温度(600℃)に加熱する後加熱処理を行い、室温まで放冷した。なお、後加熱処理の開始時の溶接部の温度(最高温度)は550℃であった。溶接開始から後加熱処理の放冷終了まで処理時間は、比較例1の処理時間を100%としたときの50%であった。なお、連続通板による冷間圧延中に、溶接部で破断した。
(本発明例1)
溶接終了後、放冷し、得られた溶接部の温度(最高温度)を、溶接線上に配置した放射温度計(温度測定手段4)で面状に測定し、溶接部の温度(最高温度)が、予め求めておいた溶接部の低温変態組織生成終了温度MF(℃)を基準として、(MF-5℃)に低下したのち、誘導加熱装置(後加熱処理手段5)により、所定の温度(600℃)に加熱する後加熱処理を行い、後加熱処理終了後、室温まで放冷した。溶接開始から後加熱処理の放冷終了まで処理時間は比較例1の70%であり、処理時間の短縮が図れた。なお、連続通板による冷間圧延中に溶接部での破断は発生しなかった。
The rear end portion of the first steel strip 11 and the front end portion of the second steel strip 12 were welded using the steel strip joining apparatus shown in FIG. During welding, the end of the trailing end of the preceding first steel strip 11 and the end of the leading end of the following second steel strip 12 are cut by the cutting means 2 (shear 21), and the first The rear end of the steel strip 11 and the front end of the second steel strip 12 were overlapped. Then, the carriage 10 is caused to travel in the width direction of the steel strip at the overlapped portion, and the electrode wheels 31, 31 of the mash seam welder pressurize and energize the welded portion, forming and crushing the welded portion, and further swaging. Flattening with roll SWRs 32, 32 and mash seam welding were performed to form the steel strip 11 and the steel strip 12 into a continuous steel strip. Further, the temperature (surface temperature) of the obtained welded portion was measured with a radiation thermometer (temperature measuring means 4) arranged on the weld line to determine the maximum temperature at the welded portion. The obtained welded portion was subjected to a post-heating treatment, and then continuously threaded.
(Comparative example 1)
After the welding is finished, the temperature of the weld is allowed to cool, and the temperature of the obtained weld is measured by a radiation thermometer (temperature measurement means 4) placed on the weld line. ° C.), a post-heating treatment was performed by heating to a predetermined temperature (600° C.) with an induction heating device (post-heating means 5), and the mixture was allowed to cool to room temperature. No breakage occurred at the welded portion during continuous sheet threading.
(Comparative example 2)
After the welding is completed, the temperature of the obtained weld zone is measured planarly by a radiation thermometer (temperature measuring means 4) placed on the weld line, and is immediately heated to a predetermined temperature by an induction heating device (post-heating means 5). (600°C), followed by heat treatment and cooling to room temperature. The temperature of the weld zone (maximum temperature) at the start of the post-heat treatment was 550°C. The treatment time from the start of welding to the end of cooling in the post-heat treatment was 50% of the treatment time in Comparative Example 1, which was 100%. It should be noted that the weld was broken during cold rolling by continuous sheet threading.
(Invention Example 1)
After the welding is finished, the temperature of the weld is allowed to cool, and the obtained temperature of the weld (maximum temperature) is measured planarly with a radiation thermometer (temperature measuring means 4) placed on the weld line, and the temperature of the weld (maximum temperature) However, after decreasing to (MF-5°C) based on the pre-obtained low-temperature transformation structure formation end temperature MF (°C) of the weld, the induction heating device (post-heating means 5) is used to heat the material to a predetermined temperature. A post-heating treatment was performed by heating to (600° C.), and after the post-heating treatment was completed, it was allowed to cool to room temperature. The processing time from the start of welding to the end of cooling in the post-heating treatment was 70% of that of Comparative Example 1, and the processing time was shortened. No breakage occurred at the weld zone during cold rolling by continuous sheet threading.

10 キャリッジ
11 第1の鋼帯
12 第2の鋼帯
2 切断手段
21 シャー
3 溶接手段
31 電極輪
32 スウェージングロール
33 レーザー溶接ヘッド
4 温度測定手段(放射温度計)
5 後加熱処理手段(誘導加熱装置)
10 Carriage 11 First Steel Strip 12 Second Steel Strip 2 Cutting Means 21 Shear 3 Welding Means 31 Electrode Wheel 32 Swaging Roll 33 Laser Welding Head 4 Temperature Measuring Means (Radiation Thermometer)
5 post-heating means (induction heating device)

Claims (11)

先行する鋼帯の後端部と後行する鋼帯の先端部とを溶接して前記先行する鋼帯と前記後行する鋼帯を接合するに当たり、前記溶接を終了したのち、該溶接により形成された溶接部の温度を測定し、該溶接部が所定の温度T(℃)に冷却されたのち直ちに、前記溶接部に後加熱処理を行うことを特徴とする鋼帯の接合方法。 In joining the leading steel strip and the trailing steel strip by welding the trailing end portion of the leading steel strip and the leading end portion of the trailing steel strip, after the welding is completed, the welding is performed to form A method for joining steel strips, characterized in that the temperature of the welded portion is measured, and after the welded portion is cooled to a predetermined temperature T (°C), the welded portion is immediately subjected to a post-heating treatment. 前記所定の温度T(℃)が、前記先行する鋼帯また前記後行する鋼帯の溶接部の低温変態組織生成終了温度MF(℃)のうち、低いMFを基準として、(MF-5℃)~(MF-20℃)の範囲の温度であることを特徴とする請求項1に記載の鋼帯の接合方法。 Of the temperatures MF (°C) at which the formation of the low-temperature transformation structure ends in the weld zone of the preceding steel strip and the following steel strip, the predetermined temperature T (°C) is determined by taking the lower MF as a reference (MF-5°C ) to (MF-20°C). 前記溶接が、マッシュシーム溶接であることを特徴とする請求項1または2に記載の鋼帯の接合方法。 The method for joining steel strips according to claim 1 or 2, wherein the welding is mash seam welding. 前記溶接部の温度の測定が、放射温度計を用いた測定であることを特徴とする請求項1ないし3のいずれかに記載の鋼帯の接合方法。 The method for joining steel strips according to any one of claims 1 to 3, wherein the temperature of the welded portion is measured using a radiation thermometer. 前記後加熱処理が、誘導加熱を用いた加熱処理であることを特徴とする請求項1ないし4のいずれかに記載の鋼帯の接合方法。 The method for joining steel strips according to any one of claims 1 to 4, wherein the post-heat treatment is a heat treatment using induction heating. 前記第1の鋼帯および前記第2の鋼帯のいずれかが、下記(1)式
で定義される炭素当量Ceqが0.1%以上の組成を有する鋼帯であることを特徴とする請求項1ないし5のいずれかに記載の鋼帯の接合方法。

Ceq=C+Si/50+Mn/25+Cr/50+P/2 …(1)
ここで、C、Si、Mn、Cr、P:各元素の含有量(質量%)
Either the first steel strip or the second steel strip is a steel strip having a composition in which the carbon equivalent Ceq defined by the following formula (1) is 0.1% or more. 6. A method for joining steel strips according to any one of 1 to 5.
Record
Ceq = C + Si/50 + Mn/25 + Cr/50 + P/2 (1)
Where, C, Si, Mn, Cr, P: content of each element (% by mass)
鋼帯の接合装置であって、先行する鋼帯の後端部と後行する鋼帯の先端部とを切断する切断手段と、前記切断手段で端部を切断された前記先行する鋼帯の後端部と前記後行する鋼帯の先端部とを溶接する溶接手段と、前記溶接により形成された溶接部の温度を測定する温度測定手段と、前記溶接部を所定の後加熱処理温度に加熱する後加熱処理手段と、
前記温度測定手段で測定された前記溶接部の冷却時の温度に基づき、前記後加熱処理手段に前記加熱の指示を行う制御手段と、を有することを特徴とする鋼帯の接合装置。
A steel strip joining apparatus comprising: a cutting means for cutting a trailing end portion of a preceding steel strip and a leading end portion of a following steel strip; Welding means for welding the rear end portion and the leading end portion of the trailing steel strip, temperature measuring means for measuring the temperature of the welded portion formed by the welding, and heating the welded portion to a predetermined post-heating temperature. post-heating means for heating;
and a control means for instructing the post-heating means to perform the heating based on the temperature of the weld zone during cooling measured by the temperature measuring means.
前記溶接手段が、マッシュシーム溶接機であることを特徴とする請求項7に記載の鋼帯の接合装置。 8. The apparatus for joining steel strips according to claim 7, wherein said welding means is a mash seam welder. 前記温度測定手段が放射温度計であることを特徴とする請求項7または8に記載の鋼帯の接合装置。 9. The apparatus for joining steel strips according to claim 7, wherein said temperature measuring means is a radiation thermometer. 前記後加熱処理手段が誘導加熱装置であることを特徴とする請求項7ないし9のいずれかに記載の鋼帯の接合装置。 10. The apparatus for joining steel strips according to claim 7, wherein said post-heat treatment means is an induction heating device. 前記制御手段が、前記測定した前記溶接部の温度を所定の温度であると判断する判断手段と、前記判断の結果に基づき、前記後熱処理手段に前記加熱の指示を行う指示手段とを有することを特徴とする請求項7に記載の鋼帯の接合装置。 The control means has a judgment means for judging that the measured temperature of the weld zone is a predetermined temperature, and an instruction means for instructing the post-heat treatment means to perform the heating based on the result of the judgment. The steel strip joining apparatus according to claim 7, characterized by:
JP2022009213A 2022-01-25 2022-01-25 Steel strip joining method and steel strip joining device Pending JP2023108212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022009213A JP2023108212A (en) 2022-01-25 2022-01-25 Steel strip joining method and steel strip joining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022009213A JP2023108212A (en) 2022-01-25 2022-01-25 Steel strip joining method and steel strip joining device

Publications (1)

Publication Number Publication Date
JP2023108212A true JP2023108212A (en) 2023-08-04

Family

ID=87475102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022009213A Pending JP2023108212A (en) 2022-01-25 2022-01-25 Steel strip joining method and steel strip joining device

Country Status (1)

Country Link
JP (1) JP2023108212A (en)

Similar Documents

Publication Publication Date Title
JP4486639B2 (en) Laser welding method for continuous production process, apparatus therefor, and rolled plate for laser welding
TWI483801B (en) Laser beam welding method and laser beam welding apparatus for steel sheet
CN107405723A (en) The friction-stir engagement device of structural steel
WO2008031210A1 (en) Method for manufacturing a welded assembly
JP2023108212A (en) Steel strip joining method and steel strip joining device
KR20070066250A (en) Laser welding method of silicon steel
KR100993986B1 (en) Mash seam welding apparatus with post heating device and method of welding using the same
JP2002263870A (en) Equipment for manufacturing butt welded steel sheet or steel strip and method of manufacturing the same
JP7006632B2 (en) Steel strip joining method and steel strip joining device
JP2650558B2 (en) Manufacturing method of high workability welded steel pipe
EP2825345A1 (en) Method of producing a continuous metal strip by laser welding using a filler wire
JP2005048271A (en) Method for welding high-carbon steel material
KR100482222B1 (en) A Method of Flash Butt Welding for High Carbon Steel
JP2000317642A (en) Flash butt welding method for high-carbon steel sheet or steel strip
JP7126097B2 (en) Steel plate butt welding method
JP3210542B2 (en) Laser tack welding method for joining billets
JP5995162B2 (en) Method of welding quench-hardening metal plate
JP3360621B2 (en) Manufacturing method of welded steel pipe by high energy beam
CN116117327A (en) Laser welding method and tubular beam forming method
JP6705249B2 (en) Method for manufacturing press-formed product made of tailored blank material
JPH0550276A (en) Coil joining welding method for high carbon steel strips
Shajan et al. Stabilizing Flash Butt Welding of Varied Chemistry Steels during End-To-End Coil Joining.
JPH0489109A (en) Method for joining billets in hot rolling
KR100393891B1 (en) Welding method of Tailored Welded Blank using Electrode Roller System
JP2011031249A (en) Laser beam welding method of high tensile steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240627