JP2023107674A - 車両の運転支援装置 - Google Patents

車両の運転支援装置 Download PDF

Info

Publication number
JP2023107674A
JP2023107674A JP2022008970A JP2022008970A JP2023107674A JP 2023107674 A JP2023107674 A JP 2023107674A JP 2022008970 A JP2022008970 A JP 2022008970A JP 2022008970 A JP2022008970 A JP 2022008970A JP 2023107674 A JP2023107674 A JP 2023107674A
Authority
JP
Japan
Prior art keywords
vehicle
ecu
oncoming
travel
lane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022008970A
Other languages
English (en)
Inventor
拓海 船橋
Takumi Funabashi
和明 上田
Kazuaki Ueda
卓也 岩瀬
Takuya IWASE
槙吾 宇賀神
Shingo Ugajin
利寛 林
Toshihiro Hayashi
和男 野本
Kazuo Nomoto
寛人 小林
Hiroto Kobayashi
健太 染谷
Kenta Someya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2022008970A priority Critical patent/JP2023107674A/ja
Priority to US18/150,344 priority patent/US20230234574A1/en
Publication of JP2023107674A publication Critical patent/JP2023107674A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/806Relative heading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data

Abstract

【課題】対向車等が自車両の走行車線内に急に侵入してきた場合にも十分な安全性を確保することができる車両の運転支援装置を提供する。【解決手段】走行_ECU14は、走行環境情報に基づいて対向移動体Oを認識し、対向車線を区画する区画線から対向移動体Oの側端までの距離を対区画線横位置として設定周期毎に算出し、予め設定された時間3T内において設定周期毎に算出した対区画線横位置の履歴に基づいて対向移動体Oに対するリスク度Rを算出し、リスク度Rに応じて対向移動体Oを障害物として認識し、障害物として認識した対向移動体Oに対して緊急衝突回避制御に先立つ予備衝突回避制御を行う。【選択図】図11

Description

本発明は、障害物に対して衝突回避制御を行う機能を備えた車両の運転支援装置に関する。
従来、自動車等の車両においては、ドライバの運転操作の負担を軽減するとともに、安全性向上を実現することを目的として、ドライバの運転操作を支援するための運転支援装置が実用化されている。この種の運転支援装置には、運転モードとして、例えば、ドライバの主体的な運転操作に従って操舵や加減速が行われる手動運転モード、ドライバによる主体的な運転操作を前提として操舵支援制御や加減速制御を行う運転支援モード、及び、ドライバの運転操作を必要とすることなく車両を走行させるための運転支援モード(所謂、自動運転モード)等が設定されている。
各運転支援モードにおける運転支援制御は、基本的には、追従車間距離制御(ACC:Adaptive Cruise Control)機能と車線中央維持制御(ALKC:Active Lane Keep Centering)機能等とを備えることによって実現される。そして、このような運転支援制御により、先行車との車間を維持しつつ走行車線に沿って車両を走行させることができる。
また、運転支援装置のアクティブセーフティに関する技術として、自車両の進行路の前方に存在する障害物との衝突回避制御を行うための技術が種々提案されている(例えば、特許文献1参照)。特許文献1の技術において、衝突予測部は、自車両の走行軌道(目標進行路)及び障害物の位置、形状、移動方向等から、障害物における衝突想定領域を特定する。また、衝突予測部は、衝突想定領域における障害物との衝突確率値を積算する。そして、複数時点において特定された1以上の衝突想定領域の何れかにおいて衝突確率値の積算値が大きくなると、衝突判定部が、警戒信号を発生させる。
特開2016-224501号公報
しかしながら、自車走行車線に隣接する対向車線を走行する対向車等は、基本的には、自車両の目標進行路に対して車幅方向に離れた位置に存在する。従って、対向車等は、衝突回避制御の対象とはなり得ない場合がある。この場合、例えば、対向車等を運転するドライバの不注意等により、対向車等が自車両の走行車線内に急に侵入してきた場合、当該対向車に対する十分な衝突回避制御を実現することが困難となる虞がある。
本発明は、対向車等が自車両の走行車線内に急に侵入してきた場合にも十分な安全性を確保することができる車両の運転支援装置を提供することを目的とする。
本発明の一態様による車両の運転支援装置は、車外の走行環境情報を認識する走行環境認識部と、前記走行環境情報に基づいて、自車両の走行路上に存在する障害物を認識する障害物認識部と、前記自車両が前記障害物と衝突する可能性が高いと判定したとき、前記障害物との衝突を回避するための緊急衝突回避制御を行う緊急衝突回避制御部と、前記走行環境情報に基づいて、前記自車両の走行車線に併設された対向車線上を、前記自車両の進行方向と反対方向の速度成分を有して移動する対向移動体を認識する対向移動体認識部と、前記対向車線を区画する区画線から前記対向移動体の基準位置までの距離を対区画線横位置として設定周期毎に算出する横位置算出部と、予め設定された時間内における前記対区画線横位置の履歴に基づいて前記対向移動体に対するリスク度を算出するリスク度算出部と、前記リスク度に応じて前記対向移動体を前記障害物として認識し、前記障害物として認識した前記対向移動体に対して前記緊急衝突回避制御に先立つ予備衝突回避制御を行う予備衝突回避制御部と、を備えたものである。
本発明の車両の運転支援装置によれば、対向車等が自車両の走行車線内に急に侵入してきた場合にも十分な安全性を確保することができる。
運転支援装置の概略構成図 ステレオカメラ及びレーダの監視領域を示す説明図 自車両の走行路前方に存在する障害物を示す説明図 対向車線上に存在する対向移動体を示す説明図 対向移動体の対区画線横位置を示す説明図 対向移動体の挙動パターンを示す説明図 対向移動体の挙動パターンを示す説明図 対向移動体の挙動パターンを示す説明図 リスク判定マップを示す説明図 予備衝突回避制御ルーチンを示すフローチャート リスク度算出サブルーチンを示すフローチャート リスク度上限処理サブルーチンを示すフローチャート リスク度ダウン処理サブルーチンを示すフローチャート 強制制御介入判定サブルーチンを示すフローチャート 対向移動体のリスク度がふらつき以外の要因によって大きくなるケースを例示する説明図 対向移動体のリスク度がふらつき以外の要因によって大きくなるケースを例示する説明図 対向移動体のリスク度がふらつき以外の要因によって大きくなるケースを例示する説明図 予備衝突回避制御の制御内容を示す説明図
以下に図面を参照しながら、本発明の一態様の実施形態について詳細に説明する。なお、以下の説明に用いる図においては、各構成要素を図面上で認識可能な程度の大きさとするため、構成要素毎に縮尺を異ならせてあるものである。従って、本発明は、これらの図に記載された構成要素の数量、構成要素の形状、構成要素の大きさの比率、および各構成要素の相対的な位置関係のみに限定されるものではない。
図1,2に示すように、運転支援装置1は、例えば、車両(自車両)Mの車室内の前部且つ上部の中央に固定されたカメラユニット10を有して構成されている。
このカメラユニット10は、ステレオカメラ11と、画像処理ユニット(IPU)12と、画像認識ユニット(画像認識_ECU)13と、走行制御ユニット(走行_ECU)14と、を有して構成されている。
ステレオカメラ11は、メインカメラ11aと、サブカメラ11bと、を有する。メインカメラ11a及びサブカメラ11bは、例えば、CMOS等によって構成されている。これら、メインカメラ11a及びサブカメラ11bは、車幅方向の中央を挟んで左右対称な位置に配置されている。
メインカメラ11a及びサブカメラ11bは、車外前方の領域Af(図2参照)の走行環境を異なる視点からステレオ撮像する。これらメインカメラ11a及びサブカメラ11bの撮像周期は、互いに同期されている。
IPU12は、ステレオカメラ11によって撮像した走行環境画像を所定に画像処理する。これにより、IPU12は、画像上に表された立体物や路面上の区画線等の各種対象のエッジを検出する。そして、IPU12は、左右の画像上において対応するエッジの位置ズレ量から距離情報を求める。これにより、IPU12は、距離情報を含む画像情報(距離画像情報)を生成する。
画像認識_ECU13は、IPU12から受信した距離画像情報などに基づき、自車両Mが走行する車線(自車進行路)の左右を区画する区画線の道路曲率〔1/m〕、及び左右区画線間の幅(車線幅)を求める。また、画像認識_ECU13は、自車両Mが走行する車線に隣接する車線等の左右を区画する区画線の道路曲率及び左右区画線間の幅についても求める。これらの道路曲率及び車線幅の求め方は種々知られている。例えば、画像認識_ECU13は、距離画像上の各画素に対して輝度に基づく二値化処理を行う。これにより、画像認識_ECU13は、道路上の区画線候補点を抽出する。また、画像認識_ECU13は、抽出した区画線候補点の点列に対し、最小二乗法等を用いた曲線近似を行う。これにより、画像認識_ECU13は、左右区画線の曲率を所定区間毎に求める。さらに、画像認識_ECU13は、左右両区画線の曲率の差分から車線幅を算出する。
そして、画像認識_ECU13は、左右区画線の曲率と車線幅とに基づき、車線中央、及び、自車横位置偏差等を算出する。ここで、自車横位置偏差とは、車線中央から自車両Mの車幅方向中央までの距離である。
また、画像認識_ECU13は、距離画像情報に対して所定のパターンマッチングなどを行う。これにより、画像認識_ECU13は、道路に沿って延在するガードレール、縁石、中央分離帯、及び、周辺車両等の立体物の認識を行う。ここで、画像認識_ECU13における立体物の認識では、例えば、立体物の種別、立体物までの距離、立体物の速度、立体物と自車両Mとの相対速度などの認識が行われる。
これら画像認識_ECU13において認識された各種情報は、走行環境情報として走行_ECU14に出力される。
このように、本実施形態において、画像認識_ECU13は、ステレオカメラ11及びIPU12とともに、車外の走行環境情報を認識する走行環境認識部としての一具体例に相当する。
走行_ECU14は、運転支援装置1を統括制御するための制御ユニットである。
この走行_ECU14には、各種の制御ユニットとして、コックピット制御ユニット(CP_ECU)21、と、エンジン制御ユニット(E/G_ECU)22と、トランスミッション制御ユニット(T/M_ECU)23と、ブレーキ制御ユニット(BK_ECU)24と、パワーステアリング制御ユニット(PS_ECU)25と、がCAN(Controller Area Network)等の車内通信回線を介して接続されている。
さらに、走行_ECU14には、各種のセンサ類として、ロケータユニット36と、左前側方センサ37lfと、右前側方センサ37rfと、左後側方センサ37lfと、右後側方センサ37rrと、が接続されている。
CP_ECU21には、運転席の周辺に配設されたヒューマン・マシーン・インターフェース(HMI)31が接続されている。HMI31には、例えば、各種の運転支援制御の設定及び実行等を行うための操作スイッチ、運転支援モードの切り換えを行うためのモード切換スイッチ、ドライバの保舵状態を検出するステアリングタッチセンサ、ターンシグナルスイッチ、ドライバの顔認証や視線検出等を行うドライバモニタリングシステム(DMS)、タッチパネル式のディスプレイ、コンビネーションメータ、及び、スピーカ等が含まれる。
CP_ECU21は、走行_ECU14からの制御信号を受信すると、先行車等に対する各種警報、運転支援制御の実施状況、及び、自車両Mの走行環境等に関する各種情報を、HMI31を通じた表示や音声等により、ドライバに適宜報知する。
また、CP_ECU25は、HMI31を通じてドライバにより入力された各種運転支援制御に対するオンまたはオフ操作状態、自車両Mに対する設定車速(セット車速)Vs、ターンシグナルスイッチの操作状態等の各種入力情報を、走行_ECU14に出力する。
E/G_ECU22の出力側には、電子制御スロットルのスロットルアクチュエータ32等が接続されている。また、E/G_ECU22の入力側には、図示しないアクセルセンサ等の各種センサ類が接続されている。
E/G_ECU22は、走行_ECU14からの制御信号或いは各種センサ類からの検出信号等に基づき、スロットルアクチュエータ32に対する駆動制御を行う。これにより、E/G_ECU22は、エンジンの吸入空気量を調整し、所望のエンジン出力を発生させる。また、E/G_ECU22は、各種センサ類において検出されたアクセル開度等の信号を、走行_ECU14に出力する。
T/M_ECU23の出力側には、油圧制御回路33が接続されている。また、T/M_ECU23の入力側には、図示しないシフトポジションセンサ等の各種センサ類が接続されている。T/M_ECU23は、E/G_ECU22において推定されたエンジントルク信号や各種センサ類からの検出信号等に基づき、油圧制御回路33に対する油圧制御を行う。これにより、T/M_ECU23は、自動変速機に設けられている摩擦係合要素やプーリ等を動作させ、エンジン出力を所望の変速比にて変速する。また、T/M_ECU23は、各種センサ類において検出されたシフトポジション等の信号を、走行_ECU14に出力する。
BK_ECU24の出力側には、ブレーキアクチュエータ34が接続されている。ブレーキアクチュエータ34は、各車輪に設けられているブレーキホイールシリンダに出力するブレーキ液圧を各々調整する。また、BK_ECU24の入力側には、図示しないブレーキペダルセンサ、ヨーレートセンサ、前後加速度センサ、及び、車速センサ等の各種センサ類が接続されている。
BK_ECU24は、走行_ECU14からの制御信号或いは各種センサ類からの検出信号に基づき、ブレーキアクチュエータ34に対する駆動制御を行う。これにより、BK_ECU24は、自車両Mに対する強制的な制動制御やヨーレート制御等を行うためのブレーキ力を各車輪に適宜発生させる。また、BK_ECU24は、各種センサにおいて検出されたブレーキ操作状態、ヨーレート、前後加速度、及び、車速(自車速)等の信号を、走行_ECU14に出力する。
PS_ECU25の出力側には、電動パワステモータ35が接続されている。電動パワステモータ35は、モータの回転力による操舵トルクをステアリング機構に付与する。また、PS_ECU25の入力側には、操舵トルクセンサや舵角センサ等の各種センサ類が接続されている。
PS_ECU25は、走行_ECU14からの制御信号或いは各種センサ類からの検出信号に基づき、電動パワステモータ35に対する駆動制御を行う。これにより、PS_ECU25は、ステアリング機構に対する操舵トルクを発生させる。また、PS_ECU25は、各種センサにおいて検出された操舵トルク、及び、舵角等の信号を、走行_ECU14に出力する。
ロケータユニット36は、GNSSセンサ36aと、高精度道路地図データベース(道路地図DB)36bと、を有して構成されている。
GNSSセンサ36aは、複数の測位衛星から発信される測位信号を受信することにより、自車両Mの位置(緯度、経度、高度等)を測位する。
道路地図DB36bは、HDDなどの大容量記憶媒体である。この道路地図DB36bには、高精度な道路地図情報(ダイナミックマップ)が記憶されている。道路地図情報には、例えば、自動運転を行う際に必要とする車線データとして、車線幅データ、車線中央位置座標データ、車線の進行方位角データ、制限速度データなどが含まれる。車線データは、道路地図上の各車線に、数メートル間隔で格納されている。道路地図DB36bは、例えば、走行_ECU14からの要求信号に基づき、GNSSセンサ36aにおいて測位された自車位置を基準とする設定範囲の道路地図情報を、走行環境情報として走行_ECU14に出力する。
このように、本実施形態において、道路地図DB36bは、GNSSセンサ36aとともに、車外の走行環境情報を認識する走行環境認識部として一具体例に相当する。
左前側方センサ37lf及び右前側方センサ37rfは、例えば、ミリ波レーダによって構成されている。これら左前側方センサ37lf及び右前側方センサ37rfは、例えば、フロントバンパの左右側部にそれぞれ配設されている。左前側方センサ37lf及び右前側方センサ37rfは、ステレオカメラ11の画像では認識することが困難な自車両Mの左右斜め前方及び側方の領域Alf、Arf(図2参照)に存在する立体物を走行環境情報として検出する。
左後側方センサ37lr及び右後側方センサ37rrは、例えば、ミリ波レーダによって構成されている。これら左後側方センサ37lr及び右後側方センサ37rrは、例えば、リアバンパの左右側部にそれぞれ配設されている。左後側方センサ37lf及び右後側方センサ37rfは、左前側方センサ37lf及び右前側方センサ37rfでは認識することが困難な自車両Mの左右斜め側方及び後方の領域Alr、Arr(図2参照)に存在する立体物を走行環境情報として検出する。
ここで、各レーダがミリ波レーダにより構成されている場合、ミリ波レーダは、出力した電波に対し、物体からの反射波を解析することにより、主として併走車及び後続車等の立体物を検出する。具体的には、各レーダは、立体物に関する情報として、立体物の横幅、立体物の代表点の位置(自車両Mとの相対位置)、及び、速度等を検出する。
このように、本実施形態において、左前側方センサ37lf、右前側方センサ37rf、左後側方センサ37lr、及び、右後側方センサ37rrは、車外の走行環境情報を認識する走行環境認識部の一具体例に相当する。
なお、画像認識_ECU13、ロケータユニット36、左前側方センサ37lf、右前側方センサ37rf、左後側方センサ37lf、及び、右後側方センサ37rrにおいてそれぞれ認識された走行環境情報に含まれる車外の各対象の座標は、何れも、走行_ECU14において、例えば、自車両Mの中心を原点とする三次元座標系(図2参照)の座標に変換される。
走行_ECU14には、運転モードとして、手動運転モードと、走行制御のためのモードである第1の走行制御モード及び第2の走行制御モードと、退避モードと、が設定されている。これらの各運転モードは、例えば、HMI31に設けられているモード切換スイッチに対する操作状況等に基づき、走行_ECU14において選択的に切換可能となっている。
ここで、手動運転モードとは、ドライバによる保舵を必要とする運転モードである。すなわち、手動運転モードは、例えば、ドライバによるステアリング操作、アクセル操作およびブレーキ操作などの運転操作に従って、自車両Mを走行させる運転モードである。
第1の走行制御モードも同様に、ドライバによる保舵を必要とする運転モードである。すなわち、第1の走行制御モードは、ドライバによる運転操作を反映しつつ、自車両Mを走行させる、いわば半自動運転モードである。この第1の走行制御モードは、例えば、走行_ECU14が、E/G_ECU22、BK_ECU24、及び、PS_ECU25に対して各種制御信号を出力することにより実現される。第1の走行制御モードでは、主として、追従車間距離制御(ACC:Adaptive Cruise Control)、車線中央維持制御(ALKC:Active Lane Keep Centering)、車線逸脱抑制制御(ALKB:Active Lane Keep Bouncing)、及び、車線変更制御等が適宜組み合わせて行われる。これにより、自車両Mは、目標走行経路に沿って走行することが可能となっている。さらに、第1の走行制御モードでは、ドライバによってターンシグナルスイッチが操作された際に、車線変更制御を行うことも可能である。
ここで、追従車間距離制御は、基本的には、画像認識_ECU13等から入力される走行環境情報に基づいて行われる。
具体的に説明すると、走行_ECU14は、例えば、画像認識_ECU13等において自車両Mの前方に先行車が認識されている場合には、追従車間距離制御の一環として追従走行制御を行う。この追従走行制御において、走行_ECU14は、先行車の車速Vl等に基づいて、目標車間距離Lt及び目標車速Vtを設定する。そして、走行_ECU14は、目標車間距離Lt及び目標車速Vtに基づいて、自車両Mに対する加減速制御を行う。これにより、走行_ECU14は、基本的には、車間距離Lを目標車間距離Ltに維持しつつ、車速Vを目標車速Vtに維持した状態にて、自車両Mを先行車に追従して走行させる。
一方、走行_ECU14は、例えば、画像認識_ECU14等において自車両Mの前方に先行車が認識されていない場合には、追従車間距離制御の一環として定速走行制御を行う。この定速走行制御において、走行_ECU14は、ドライバにより入力された設定車速Vsを目標車速Vtとして設定する。そして、走行_ECU14は、目標車速Vtに基づいて、自車両Mに対する加減速制御を行う。これにより、走行_ECU14は、自車両Mの車速Vを設定車速Vsに維持する。
また、車線中央維持制御および車線逸脱抑制制御は、基本的には、画像認識_ECU13及びはロケータユニット36のうちの少なくとも何れか一方から入力される走行環境情報に基づいて行われる。すなわち、走行_ECU14は、例えば、走行環境情報に含まれる車線区画線情報等に基づき、自車走行車線の中央に、左右の車線区画線に沿った目標進行路Rmを設定する。そして、走行_ECU14は、目標進行路Rmに基づき、操舵に対するフィードフォワード制御及びフィードバック制御等を行うことにより、自車両Mを車線中央に維持する。また、走行_ECU14は、横風や道路のカント等の影響により、自車両Mが自車走行車線を逸脱する可能性が高いと判断したとき、強制的な操舵制御により車線逸脱を抑制する。
また、車線変更制御は、基本的には、画像認識_ECU13、左前側方センサ37lf、右前側方センサ37rf、左後側方センサ37lr、及び、右後側方センサ37rrから入力される走行環境情報に基づいて行われる。この車線変更制御は、例えば、ドライバによってターンシグナルスイッチが操作されたときに実行される。すなわち、走行_ECU14は、走行環境情報に基づいて、ターンシグナルスイッチの操作方向に存在する隣接車線を認識する。また、走行_ECU14は、隣接車線上に、車線変更を阻害する車両等が存在するか否かを認識する。そして、走行_ECU14は、隣接車線上に、車線変更可能なスペースが存在すると判定したとき、隣接車線への車線変更を行う。この車線変更制御は、追従車間距離制御と協調して行われる。
第2の走行制御モードとは、ドライバによる保舵、アクセル操作およびブレーキ操作を必要とすることなく、自車両Mを走行させる運転モードである。すなわち、第2の走行制御モードは、ドライバによる運転操作を必要とすることなく、自車両Mを自律走行させる、いわば自動運転モードである。この第2の走行制御モードは、例えば、走行_ECU14が、E/G_ECU22、BK_ECU24、及び、PS_ECU25に対して各種制御信号を出力することにより実現される。第2の走行制御モードでは、主として、先行車追従制御と、車線中央維持制御および車線逸脱抑制制御等が適宜組み合わせて行われる。これにより、自車両Mは、目標ルート(ルート地図情報)に従って走行することが可能となっている。さらに、第2の走行制御モードでは、車線変更制御を行うことも可能である。なお、第2の走行制御モードにおいて、車線変更制御は、ドライバによってターンシグナルスイッチが操作されたとき以外にも、自車両Mに設定された目的地までの走行ルートや走行環境情報等に応じて、適宜、自動で行われる。
退避モードは、自車両Mを路側帯などに自動的に停止させるためのモードである。この退避モードは、例えば、第2の走行制御モードによる走行中に、当該モードによる走行が継続不能となり、且つ、ドライバに運転操作を引き継ぐことができなかった場合(すなわち、手動運転モード、または、第1の走行制御モードに遷移できなかった場合)に実行される。
また、走行_ECU14は、上述の各運転モードにおいて、自車両Mと衝突する可能性の高い車両等の障害物に対し、適宜、緊急衝突回避制御を行う。この緊急衝突回避制御には、例えば、緊急ブレーキ制御(衝突被害軽減ブレーキ(AEB:Autonomous Emergency Braking))と、緊急操舵制御と、が含まれる。
緊急ブレーキ制御は、基本的には、自車両Mの目標進行路Rm上の前方に存在する障害物との衝突を、制動によって回避するための制御である。緊急ブレーキ制御に際し、走行_ECU14は、例えば、図3に示すように、自車両Mの前方に、目標進行領域Amを設定する。この目標進行領域Amは、目標進行路Rmを中心とする所定幅(例えば、自車両Mの車幅以上)を有する。また、走行_ECU14は、走行環境情報に基づき、目標進行領域Am上に存在する先行車や停止車両等の障害物を検出する。さらに、走行_ECU14は、障害物に対する衝突予測時間として、自車両Mの前後方向の衝突予測時間(縦衝突予測時間)TTCzを算出する。この縦衝突予測時間TTCzは、自車両Mと障害物との相対速度及び相対距離に基づいて算出される。
そして、走行_ECU14は、縦衝突予測時間TTCzが予め設定された第1の閾値Tth1よりも小さくなったとき、一次ブレーキ制御を実行する。一次ブレーキ制御が開始されると、走行_ECU14は、予め設定された第1の目標減速度a1(例えば、0.4G)を用いて自車両Mを減速させる。
さらに、走行_ECU14は、縦衝突予測時間TTCzが予め設定された第2の閾値Tth2(但し、Tth2<Tth1)よりも小さくなったとき、二次ブレーキ制御を実行する。二次ブレーキ制御が開始されると、走行_ECU14は、予め設定された第2の目標減速度a2(例えば、1G)を用いて、障害物との相対速度が「0」となるまで自車両Mを減速させる。
緊急操舵制御は、自車両Mの走行路上の前方に存在する障害物との衝突を、操舵によって回避するための制御である。走行_ECU14は、例えば、二次ブレーキ制御によって障害物との衝突を回避できないと判断されたとき、緊急ブレーキ制御に代えて或いは緊急ブレーキ制御と併用して緊急操舵制御を実行する。
具体的には、走行_ECU14は、縦衝突予測時間TTCzが予め設定された第3の閾値Tth3(但し、Tth3<Tth2)よりも小さくなったとき、緊急操舵制御を実行する(例えば、図3中の自車両M'参照)。
この緊急操舵制御に際し、走行_ECU14は、障害物の側方に目標横位置を設定する。また、走行_ECU14は、自車両Mを目標横位置に到達させるまでの新たな目標進行路Ravoを設定する。この新たな目標進行路Ravoは、例えば、自車両Mを障害物の側方に回避させるための切り増し区間と、自車両Mの姿勢を自車走行路に沿う方向に回復させるための切り戻し区間と、に分割して設定される。そして、走行_ECU14は、新たな目標進行路Ravoに沿った操舵制御を実行する。
なお、走行_ECU14は、自車両Mに対する障害物の車幅方向のラップ率に応じて、第1~第3の閾値Tth1~Tth3を、それぞれ可変に設定することも可能である。このラップ率Rrは、例えば、目標進行領域Amに対する障害物の侵入量に基づいて算出される。そして、走行_ECU14は、例えば、予め設定されたマップ等を用いて、ラップ率Rrが高くなるほど、第1~第3の閾値Tth1~Tth3が大きくなるように設定する。
ところで、自車両Mが中央分離帯の存在しない道路を走行している場合、対向車線上に存在する対向移動体Oが、自車両Mの走行車線内に急に侵入してくるケースが想定される。ここで、本実施形態において、対向移動体Oとは、自車両Mの移動方向と反対方向の速度成分を有して移動する対向車(二輪車を含む)や歩行者等をいう。このような対向移動体Oとの衝突回避を実現するため、本実施形態の走行_ECU14は、中央分離帯の存在しない道路の対向車線から自車両Mの走行車線に侵入してくる対向移動体Oに対しても、緊急衝突回避制御を拡張して適用する。
この対向移動体Oを対象とした緊急衝突回避制御に先立ち、走行_ECU14は、予備的な衝突回避制御(予備衝突回避制御)を必要に応じて適宜行う。この予備衝突回避制御は、自車両Mに対する対向移動体Oの衝突リスクを、事前に抑制するための制御である。
予備衝突回避制御を実行するため、走行_ECU14は、走行環境情報に基づいて、道路上に、自車両Mの走行車線と対向車線とを区画する中央分離帯が存在するか否かを判定する。そして、自車両Mが走行する道路上に中央分離帯が存在しない場合、走行_ECU14は、例えば、対向車線上を移動する対向移動体Oの検出を行う(図4参照)。対向移動体Oを検出すると、走行_ECU14は、対向移動体Oの速度Voに基づき、自車両Mの前後方向及び車幅方向に対応する縦方向速度成分Voz及び横方向速度成分Voxを算出する。
また、走行_ECU14は、対向移動体Oに対する衝突予測時間として、自車両Mの前後方向の衝突予測時間(縦衝突予測時間)TTCz、及び、自車両Mの車幅方向の衝突予測時間(横衝突予測時間)TTCxを算出する。
すなわち、走行_ECU14は、例えば、自車両Mの車速Vと対向移動体Oの縦方向速度成分Vozから算出される縦方向の相対速度を、自車両Mと対向移動体Oとの縦方向の相対距離によって除算することにより、縦衝突予測時間TTCzを算出する。
また、走行_ECU14は、例えば、対向移動体Oの横方向速度成分Vxを、対向移動体Oから目標進行領域Amまでの距離によって除算することにより、横衝突予測時間TTCxを算出する。この横衝突予測時間TTVxの算出に際し、対向移動体Oから目標進行領域Amまでの距離は、対向移動体Oの幅、及び、目標進行領域Amに対する移動体Oの進入角度(予測衝突角度)に基づいて補正されることが望ましい。
さらに、走行_ECU14は、対向移動体Oが自車両Mと衝突する可能性(リスク)を示すパラメータとして、リスク度Rを算出する。
このリスク度Rの算出に際し、走行_ECU14は、対向車線を区画する区画線から対向移動体Oの基準位置である側端までの距離を対区画線横位置として算出する。この対区画線横位置の算出は、予め設定された演算周期毎に行われる。そして、走行_ECU14は、予め設定された時間内において設定周期毎に算出した対区画線横位置の履歴に基づいてリスク度Rを算出する。
具体的に説明すると、走行_ECU14は、対向車線を区画する左右の区画線から対向移動体Oの左右の側端までの距離を、それぞれ、左右の対区画線横位置a,bとして算出する(図5参照)。そして、走行_ECU14は、算出した左右の対区画線横位置a,bを、予め設定された時間3T(秒)の間、履歴として保持する。なお、対区画線横位置a,bを算出するための基準位置としては、対向移動体Oの側端に限定されるものではない。例えば、対向移動体の幅方向の中心、左右どちらかのタイヤ中心、或いは、トレッド中心などを基準位置として設定することも可能である。
また、走行_ECU14は、予め設定された区間毎の左右の対区画線横位置a,bの履歴に基づいて、対向移動体Oに対するリスク度中間値をそれぞれ算出する。
本実施形態において、リスク度中間値は、例えば、対向移動体OがT秒間移動する毎の左右の対区画線横位置a,bの履歴に基づいて、それぞれ算出される。
このリスク度中間値の算出に際し、走行_ECU14は、過去T秒間毎の左側の対区画線横位置aの平均値a_ave及び右側の対区画線横位置bの平均値b_aveを、それぞれ算出する。
また、走行_ECU14は、過去T秒間毎の左右の対区画線横位置の各平均値の差分Δx(=a_ave-b_ave)を算出する。これにより、走行_ECU14は、過去T秒間毎の対向移動体Oの道路幅方向における移動方向を判定する。すなわち、走行_ECU14は、例えば、各平均値の差分Δxが負の値であるとき、対向移動体Oの移動方向は左側であると判定する。一方、走行_ECU14は、例えば、各平均値の差分Δxが正の値であるとき、対向移動体Oの移動方向は右側であると判定する。
そして、走行_ECU14は、各平均値の差分の絶対値|Δx|(=|a_ave-b_ave|)が予め設定された閾値Δxthよりも大きいとき、対向移動体Oが上述の判定方向に移動していると判定する。一方、走行_ECU14は、各平均値の差分の絶対値|Δx|(=|a_ave-b_ave|)が予め設定された閾値Δxthよりも以下であるとき、対向移動体Oが道路幅方向に移動していないと判定する。
これにより、走行_ECU14は、対向移動体Oが過去3T秒から過去2T秒までに移動した間(タイミングt-2)における移動方向、対向移動体Oが過去2T秒から過去T秒までに移動した移動した間(タイミングt-1)における移動方向、及び、対向移動体Oが過去T秒から現在までの間(タイミングt)における移動方向を順次認識する。
これらタイミングt-2、タイミングt-1、及び、タイミングtにおける対向移動体Oの挙動の組み合わせは、例えば、図6~図8に示す27パターンの何れかに分類される。走行_ECU14は、分類された対向移動体Oの挙動のパターンに基づいて、各タイミングにおけるリスク度中間値Rt-2.Rt-1,Rtを算出する。これら各リスク度中間値Rt-2.Rt-1,Rtは、例えば、図9に示すマップを参照して算出することが可能である。そして、走行_ECU14は、算出した各リスク度中間値Rt-2.Rt-1,Rtを合算することにより、対向移動体Oに対する最終的なリスク度Rを算出する。
このように算出したリスク度Rに基づいて、走行_ECU14は、対向移動体Oが自車両Mと衝突する可能性のある障害物であるか否かの判断を行う。そして、対向移動体Oが障害物であると認識されると、走行_ECU14は、当該対向移動体Oに対して、緊急衝突回避制御に先立つ予備衝突回避制御を適宜実行する。
このように、本実施形態において、走行_ECU14は、障害物認識部、緊急衝突回避制御部、対向移動体認識部、リスク判定領域設定部、リスク度算出部、及び、予備衝突回避制御部としての一具体例に相当する。
次に、予備衝突回避制御の詳細について、図10に示す予備衝突回避制御ルーチンのフローチャートに従って説明する。この予備衝突回避制御ルーチンは、自車両Mが中央分離帯の存在しない道路を走行しているときに、走行_ECU14において設定時間毎に繰り返し実行されるものである。
ルーチンがスタートすると、走行_ECU14は、ステップS101において、対向車線上に対向移動体Oが存在するか否かを調べる。
そして、ステップS101において、対向車線上に対向移動体Oが存在しないと判定した場合(ステップS101:NO)、走行_ECU14は、そのままルーチンを抜ける。
一方、ステップS101において、対向車線上に対向移動体Oが存在すると判定した場合(ステップS101:YES)、走行_ECU14は、ステップS102に進む。
ステップS102において、走行_ECU14は、対向移動体Oに対する縦衝突予測時間TTCz及び横衝突予測時間TTCxを算出する。
続くステップS103において、走行_ECU14は、対向移動体Oに対するリスク度R(累積値)を算出する。このリスク度Rの算出は、例えば、図11に示すリスク度算出サブルーチンのフローチャートに従って行われる。
サブルーチンがスタートすると、走行_ECU14は、ステップS201において、対向移動体Oが四輪車或いは二輪車等である場合に、当該対向移動体Oの前輪を認識する。
続くステップS202において、走行_ECU14は、対向移動体Oの中心を判定する。すなわち、例えば、対向移動体Oが四輪車である場合、走行_ECU14は、ステップS201において認識した前輪のトレッド中心を対向移動体Oの中心として判定する。また、例えば、対向移動体Oが二輪車である場合、走行_ECU14は、ステップS201において認識した前輪の位置を対向移動体Oの中心として判定する。
続くステップS203において、走行_ECU14は、対向移動体Oの幅を認識する。
続くステップS204において、走行_ECU14は、対向車線を区画する左右の区画線から対向移動体Oの側端までの距離を対区画線横位置a,bとして算出する。そして、走行_ECU14は、算出した対区画線横位置a,bを対向移動体Oの移動履歴として記憶する。
続くステップS205において、走行_ECU14は、記憶した対区画線横位置a,bのうち、過去3Tよりも以前の対区画線横位置a,bをクリアする。
続くステップS206において、走行_ECU14は、対向移動体Oの過去3T秒間の移動履歴を読み出し、過去T秒間毎の左右の対区画線横位置a,bの各平均値a_ave,b_aveを算出する。
続くステップS207において、走行_ECU14は、過去T秒間毎の左右の対区画線横位置a,bの各平均値a_ave,b_aveに基づいて、各タイミングt-2,t-1,tにおける対向移動体Oの挙動を判定する。すなわち、走行_ECU14は、過去T秒間の区間毎に、各平均値a_ave,b_aveの差分Δxを算出し、この差分Δxの正負及び絶対値に基づいて、各タイミングt-2,t-1,tにおける対向移動体Oの挙動を認識する。
続くステップS208において、走行_ECU14は、予め設定されたマップ等を参照して、各タイミングt-2,t-1,tにおける対向移動体Oに対するリスク度中間値Rt-2,Rt-1,Rtを順次算出する。
そして、ステップS209において、走行_ECU14は、算出したリスク度中間値Rt-2,Rt-1,Rtを加算した値を、現在の対向移動体Oに対するリスク度Rとして算出した後、サブルーチンを抜ける。
図10のメインルーチンにおいて、ステップS103からステップS104に進むと、走行_ECU14は、リスク度Rに対する上限処理を行う。この上限処理は、対向移動体Oのふらつき以外の要因によってリスク度Rが不必要に大きくなることを防止するための処理である。
この上限処理において、走行_ECU14は、対向移動体Oのふらつき以外の要因によってリスク度Rが大きくなることが想定される場合に、リスク度Rを例えば「4」以下に制限する。
このリスク度Rに対する上限処理は、例えば、図12に示すリスク度上限処理サブルーチンのフローチャートに従って実行される。
サブルーチンがスタートすると、走行_ECU14は、ステップS301において、自車両Mに対して設定されている目標進行路Rmを取得する。
続くステップS302において、走行_ECU14は、現在の対向移動体Oの速度及び移動方向に基づいて、対向移動体Oの予測進行路Roを算出する。
続くステップS303において、走行_ECU14は、自車両Mと対向移動体Oとの予測衝突点Pc及び衝突角度θcを算出する。例えば、走行_ECU14は、例えば、対向移動体Oが予測進行路Ro上を移動したと仮定した場合に(図4中のO'参照)、縦衝突予測時間TTCz及び横衝突予測時間TTCxが共に「0」以下となる地点を、自車両Mと対向移動体Oとの衝突予測点Pcとして算出する(図4参照)。また、走行_ECU14は、対向移動体Oが衝突予測点Pcまで移動したと仮定した場合に、移動後の対向移動体O'と自車両Mとの相対角度に基づいて衝突角度θcを算出する。
続くステップS304において、走行_ECU14は、対向移動体Oのウインカが点滅しているか否かを調べる。
そして、ステップS304において、対向移動体Oのウインカが点滅していると判定した場合(ステップS304:YES)、走行_ECU14は、ステップS308に進む。
ステップS308において、走行_ECU14は、例えば、リスク度Rを「4」以下とする上限処理を行った後、サブルーチンを抜ける。
すなわち、例えば、図15に示すように、対向移動体Oのリスク度Rがふらつき以外の要因によって大きくなるケースとしては、対向移動体Oがウインカを点滅させながら自車両Mの走行車線側に旋回するケースが想定される。このようなケースでは、対向移動体Oを運転するドライバの意図が明確であり、しかも、当該ドライバが自車両Mを十分に認識していると想定される。従って、このようなケースでは、自車両Mと衝突する可能性が高いタイミングにおいて、対向移動体Oが自車両Mの走行車線側に急に侵入してくることは想定しにくいため、上限処理によって制御内容が制限される。
一方、ステップS304において、対向移動体Oのウインカが点滅していないと判定した場合(ステップS304:NO)、走行_ECU14は、ステップS305に進む。
ステップS305において、走行_ECU14は、対向移動体Oの挙動が前回に比べ、自車両Mとの衝突を回避可能な有利な方向に変化しているか否かを調べる。すなわち、走行_ECU14は、ステップS302において算出した対向移動体Oの予測進行路Ro、及び、ステップS303において算出した対向移動体Oとの予測衝突点Pc並びに衝突角度θcが、有利な方向に変化しているか否かを調べる。ここで、例えば、対向移動体Oの横方向速度成分Voxが減少側に転じた場合、一般に、対向移動体Oの予測進行路Roは自車両M側に傾く。また、例えば、対向移動体Oの横方向成分Voxが減少側に転じた場合、一般に、対向移動体Oの衝突予測点Pcは、自車両M側に移動する。また、例えば、対向移動体Oの横方向速度成分Voxが減少側に転じた場合、衝突角度θcは増加側に変化する。そこで、走行_ECU14は、予測進行路Roが自車両M側に傾いた場合、衝突予測点Pcが自車両M側に移動した場合、及び、衝突角度θcが増加側に変化した場合のうちの少なくとも何れか1つが成立しているとき、対向移動体Oの挙動が有利側に変化したと判定する。
そして、走行_ECU14は、対向移動体Oの挙動が有利側に変化したと判定した場合(ステップS305:YES)、ステップS308に進む。
ステップS308に進むと、走行_ECU14は、例えば、リスク度Rを「4」以下とする上限処理を行った後、サブルーチンを抜ける。
一方、ステップS305において、対向移動体Oの挙動が不利側に変化したと判定した場合(ステップS305:NO)、走行_ECU14は、ステップS306に進む。
ステップS306において、走行_ECU14は、対向車線上における対向移動体Oの近傍に、駐車車両等の静止物が存在するか否かを調べる。
そして、ステップS306において、対向車線上に駐車車両等が存在すると判定した場合(ステップS306:YES)、走行_ECU14は、ステップS308に進む。
ステップS308に進むと、走行_ECU14は、例えば、リスク度Rを「4」以下とする上限処理を行った後、サブルーチンを抜ける。
すなわち、例えば、図16に示すように、対向移動体Oのリスク度Rがふらつき以外の要因によって大きくなるケースとしては、対向移動体Oが対向車線上に存在する駐車車両等の静止物を回避するケースが想定される。このようなケースでは、対向移動体Oを運転するドライバの意図が明確であり、しかも、当該ドライバが自車両Mを十分に認識していることが想定される。加えて、このようなケースでは、リスク判定領域に基づいて算出されるリスク度Rが一旦増加した後に、速やかに減少側に転じることが想定される。従って、このようなケースでは、自車両Mと衝突する可能性が高いタイミングにおいて、対向移動体Oが自車両Mの走行車線側に急に侵入してくることは想定しにくいため、上限処理によって制御内容が制限される。
一方、ステップS306において、対向車線上に駐車車両等が存在しないと判定した場合(ステップS306:NO)、走行_ECU14は、ステップS307に進む。
ステップS307において、走行_ECU14は、対向移動体Oが分岐路から対向車線に合流中であるか否かを調べる。
そして、ステップS307において、対向移動体Oが分岐路から合流中であると判定した場合(ステップS307:YES)、走行_ECU14は、ステップS308に進む。
ステップS308に進むと、走行_ECU14は、例えば、リスク度Rを「4」以下とする上限処理を行った後、サブルーチンを抜ける。
すなわち、例えば、図17に示すように、対向移動体Oのリスク度Rがふらつき以外の要因によって大きくなるケースとしては、対向移動体Oが分岐路等から対向車線内に侵入してくるケースが想定される。このようなケースでは、対向移動体Oを運転するドライバの意図が明確であり、しかも、当該ドライバが自車両Mを十分に認識していることが想定される。加えて、このようなケースでは、リスク判定領域に基づいて算出されるリスク度Rが一旦増加した後に、速やかに減少側に転じることが想定される。従って、このようなケースでは、自車両Mと衝突するタイミングにおいて、対向移動体Oが自車両Mの走行車線側に急に侵入してくることは想定しにくいため、上限処理によって制御内容が制限される。
一方、ステップS307において、対向移動体Oが分岐路から合流中でないと判定した場合(ステップS307:NO)、走行_ECU14は、そのままサブルーチンを抜ける。
図10のメインルーチンにおいて、ステップS104からステップS105に進むと、走行_ECU14は、リスク度Rに対するダウン処理を行う。このダウン処理は、リスク度Rに応じて許容される予備衝突回避制御(後述する)のリスクレベルLVを、自車両Mと対向移動体Oとの相対関係に基づいて、適宜下げるための処理である。例えば、対向移動体Oのふらつきが大きく、対向移動体Oが自車両Mの走行車線に侵入するリスク度Rが高い場合であっても、対向移動体Oが遠方に存在する場合、自車両Mが対向移動体Oと衝突する可能性は低い。そこで、このような場合、走行_ECU14は、過剰な予備衝突回避制御が実行されることを防止すべく、リスク度Rに応じて許容される予備衝突回避制御のリスクレベルLVを下げる。
このダウン処理は、例えば、図13に示すダウン処理サブルーチンのフローチャートに従って実行される。
サブルーチンがスタートすると、ステップS401において、走行_ECU14は、対向移動体Oに対する縦衝突予測時間TTCzが予め設定された第4の閾値Tth4(但し、Tth1<Tth4)よりも小さいか否かを調べる。
そして、ステップS401において、縦衝突予測時間TTCzが第4の閾値Tth4以上であると判定した場合(ステップS401:NO)、走行_ECU14は、ステップS402に進む。
ステップS402において、走行_ECU14は、リスク度Rが「2」以下のときに対応する予備衝突回避制御を許可した後、サブルーチンを抜ける。これにより、走行_ECU14は、例えば、現在のリスク度Rが「9」であっても、リスク度Rが「2」のときに対応する予備衝突回避制御までを許可する。また、走行_ECU14は、例えば、現在のリスク度Rが「2」である場合には、リスク度Rが「2」のときに対応する予備衝突回避制御を許可する。なお、本実施形態において、リスク度Rが「2」以下のときに対応する予備衝突回避制御は、リスク判定領域における「注意領域」に対応付けたリスクレベルLV=1の衝突回避制御である。
一方、ステップS401において、縦衝突予測時間TTCzが第4の閾値Tth4よりも小さいと判定した場合(ステップS401:YES)、走行_ECU14は、ステップS403に進む。
ステップS403において、走行_ECU14は、縦衝突予測時間TTCzが予め設定された第5の閾値Tth5(但し、Tth1≦Tth5<Tth4)よりも小さいか否かを調べる。
そして、ステップS403において、縦衝突予測時間TTCzが第5の閾値Tth5以上である判定した場合(ステップS403:NO)、走行_ECU14は、ステップS404に進む。
ステップS404において、走行_ECU14は、リスク度Rが「4」以下のときに対応する予備衝突回避制御を許可した後、サブルーチンを抜ける。これにより、走行_ECU14は、例えば、現在のリスク度Rが「9」であっても、リスク度Rが「4」のときに対応する予備衝突回避制御までを許可する。また、走行_ECU14は、例えば、現在のリスク度Rが「4」である場合には、リスク度Rが「4」のときに対応する予備衝突回避制御を許可する。なお、本実施形態において、リスク度Rが「2」よりも大きく且つリスク度Rが「4」以下のときに対応する予備衝突回避制御は、リスク判定領域における「警戒領域」に対応付けたリスクレベルLV=2の衝突回避制御である。
一方、ステップS403において、縦衝突予測時間TTCzが第5の閾値Tth5よりも小さいと判定した場合(ステップS403:YES)、走行_ECU14は、ステップS405に進む。
ステップS405において、走行_ECU14は、リスク度Rが「9」以下のときに対応する予備衝突回避制御を許可した後、サブルーチンを抜ける。これにより、走行_ECU14は、例えば、全てのリスク度Rに対応する予備衝突回避制御を許可する。すなわち、走行_ECU14は、例えば、現在のリスク度Rが「9」である場合には、リスク度Rが「9」のときに対応する予備衝突回避制御を許可する。また、走行_ECU14は、例えば、現在のリスク度Rが「4」である場合には、リスク度Rが「4」のときに対応する予備衝突回避制御を許可する。なお、本実施形態において、リスク度Rが「4」よりも大きく且つリスク度Rが「9」以下のときに対応する予備衝突回避制御は、リスク判定領域における「危険領域」に対応付けたリスクレベルLV=3の衝突回避制御である。
図10のメインルーチンにおいて、ステップS105からステップS106に進むと、走行_ECU14は、対向移動体Oに対する強制制御介入判定を行う。この強制制御介入とは、例えば、対向移動体Oが自車両Mの方向に直接向かってくる状態が継続された場合のような緊急時に、強制的にリスクレベルLV=3の予備衝突回避制御を実行させるための判定である。
この強制制御介入判定は、例えば、図14に示す強制制御介入判定サブルーチンに従って実行される。
サブルーチンがスタートすると、ステップS501において、走行_ECU14は、対向移動体Oが自車両Mの方向に直接向かってくる状態が設定時間(例えば、所定フレーム)継続したか否かを調べる。
そして、ステップS501において、対向移動体Oが自車両Mの方向に直接向かって来ない状態にあると判定した場合(ステップS501:NO)、走行_ECU14は、そのままサブルーチンを抜ける。
一方、ステップS501において、対向移動体Oが自車両Mの方向に直接向かってくる状態にあると判定した場合(ステップS501:YES)、走行_ECU14は、ステップS502に進む。
ステップS502において、走行_ECU14は、例えば、対向移動体Oに対するリスク度Rを「9」に補正すると共に、対向移動体Oに許容するリスクレベルLVを「3」に補正した後、サブルーチンを抜ける。
図10のメインルーチンにおいて、ステップS106からステップS107に進むと、走行_ECU14は、対向移動体Oに対してどのような予備衝突回避行動を行うべきかの判断を行う。この予備衝突回避行動は、例えば、対向移動体Oに対して現在許容されているリスクレベルLVと、対向移動体Oに対して現在設定されている現在のリスク度Rとに基づいて判断される。
ここで、例えば、図18に示すように、現在の対向移動体Oに対するリスク度Rが「0」である場合、対向移動体Oに対するリスクレベルとして「0」が設定される。リスクレベルLV=0であるとき、走行_ECU14は、対向移動体Oの存在をドライバに報知するための警報等の出力を禁止する。また、リスクレベルLV=0であるとき、走行_ECU14は、対向移動体Oに対する縦方向(自車両Mの前後方向)の回避制御を禁止する。さらに、リスクレベルLV=0であるとき、走行_ECU14は、対向移動体Oに対する横方向(自車両Mの車幅方向)の回避制御を禁止する。
また、例えば、図18に示すように、リスク度Rが「0」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=1までの制御が許容されている場合、走行_ECU14は、対向移動体Oの存在をドライバに報知するための警報等の出力を禁止する。
また、リスク度Rが「0」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=1までの制御が許容されている場合、走行_ECU14は、対向移動体Oに対する縦方向(自車両Mの前後方向)の回避制御として、例えば、ブレーキ制御に代えて、第1の加速抑制制御を許可する。この第1の加速抑制制御では、例えば、自車両Mが加速している場合(これから加速しようする場合を含む)に限り、第1の加速抑制量が適宜設定される。第1の加速抑制量は、例えば、予め設定されたマップ等に基づき、縦衝突予測時間TTCzが小さくなるほど、大きくなるように設定される。
また、リスク度Rが「0」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=1までの制御が許容されている場合、走行_ECU14は、対向移動体Oに対する横方向(自車両Mの車幅方向)の回避制御として、例えば、自車両Mが走行する走行車線を逸脱しない範囲での操舵制御を許可する。この操舵制御では、操舵による回避量が適宜設定される。回避量は、例えば、予め設定されたマップ等に基づき、横衝突予測時間TTCxが小さくなるほど、大きくなるように設定される。なお、この操舵制御に対して許容されるハンドル舵速は、例えば、10deg/s程度を限度とすることが望ましい。
また、例えば、図18に示すように、リスク度Rが「2」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=2までの制御が許容されている場合、走行_ECU14は、対向移動体Oの存在をドライバに報知するための警報等を設定する。
また、リスク度Rが「2」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=2までの制御が許容されている場合、走行_ECU14は、対向移動体Oに対する縦方向の回避制御として、ブレーキ制御に代えて、第2の加速抑制制御を許可する。この第2の加速抑制制御では、例えば、自車両Mが加速している場合(これから加速しようとする場合を含む)に限り第2の加速抑制量が適宜設定される。第2の加速抑制量は、例えば、予め設定されたマップ等に基づき、縦衝突予測時間TTCzが小さくなるほど、大きくなるように設定される。なお、第2の加速抑制量は、第1の加速抑制量よりも大きく設定される。例えば、第2の加速抑制制量は、ドライバがアクセルをオフしたときに得られる減速度(抑制量)が上限として設けられている。
また、リスク度Rが「2」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=2までの制御が許容されている場合、走行_ECU14は、対向移動体Oに対する横方向の回避制御として、例えば、自車両Mが車線区画線を跨ぐ位置までの操舵制御を許可する。この操舵制御では、操舵による回避量が適宜設定される。回避量は、例えば、予め設定されたマップ等に基づき、横衝突予測時間TTCxが小さくなるほど、大きくなるように設定される。なお、この操舵制御に対して許容されるハンドル舵速は、例えば、80deg/s程度を限度とすることが望ましい。
また、例えば、図18に示すように、リスク度Rが「4」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=3までの制御が許容されている場合、走行_ECU14は、対向移動体Oの存在をドライバに報知するための警報等を設定する。
また、リスク度Rが「4」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=3までの制御が許容されている場合、走行_ECU14は、対向移動体Oに対する縦方向の回避制御として、ブレーキ制御を許可する。このブレーキ制御では、例えば、ブレーキ量が適宜設定される。ブレーキ量は、予め設定されたマップ等に基づき、衝突予測時間TTCzが小さくなるほど、大きくなるように設定される。なお、このブレーキ量は、例えば、上述の緊急衝突回避制御における第1の目標減速度a1(例えば、0.4G)を限度として設定されることが望ましい。
また、リスク度Rが「4」よりも大きく、且つ、対向移動体Oに対してリスクレベルLV=3までの制御が許容されている場合、走行_ECU14は、対向移動体Oに対する横方向の回避制御として、例えば、自車両Mが車線区画線を超える位置までの操舵制御を許可する。この操舵制御では、例えば、操舵による回避量が適宜設定される。回避量は、例えば、予め設定されたマップ等に基づき、横衝突予測時間TTCxが小さくなるほど、大きくなるように設定される。なお、この操舵制御に対して許容されるハンドル舵速は、例えば、240deg/s程度を限度とすることが望ましい。
ステップS107からステップS108に進むと、走行_ECU14は、対向移動体Oに対して制御介入が必要であるか否か、すなわち、上述のステップS107において所定の制御量が設定されているか否かを調べる。
そして、ステップS108において、制御介入が不要であると判定した場合(ステップS108:NO)、走行_ECU14は、そのままルーチンを抜ける。
一方、ステップS108において、制御介入が必要であると判定した場合(ステップS108:YES)、走行_ECU14は、ステップS109に進む。
ステップS109において、走行_ECU14は、対向移動体Oが自車両Mの目標進行領域Am内に侵入したか否かを調べる。
そして、ステップS109において、対向移動体Oが自車両Mの目標進行領域Am外に存在すると判定した場合(ステップS109:NO)、走行_ECU14は、ステップS110に進む。
ステップS110において、走行_ECU14は、予備衝突回避制御を実行した後、ルーチンを抜ける。すなわち、走行_ECU14は、ステップS107において設定した制御量に基づいて、予備衝突回避制御を実行する。
一方、ステップS109において、対向移動体Oが自車両Mの目標進行領域Am内に存在すると判定した場合(ステップS109:YES)、走行_ECU14は、ステップS111に進む。
ステップS111において、走行_ECU14は、対向移動体Oに対する制御を、予備衝突回避制御から緊急衝突回避制御に移行させた後、ルーチンを抜ける。
このような実施形態によれば、走行_ECU14は、走行環境情報に基づいて対向移動体Oを認識する。また、走行_ECU14は、対向車線を区画する区画線から対向移動体Oの側端までの距離を対区画線横位置として設定周期毎に算出する。また、走行_ECU14は、予め設定された時間3T内において、設定周期毎に算出した対区画線横位置の履歴に基づいて、対向移動体Oに対するリスク度Rを算出する。そして、走行_ECU14は、リスク度Rに応じて対向移動体Oを障害物として認識し、障害物として認識した対向移動体Oに対して緊急衝突回避制御に先立つ予備衝突回避制御を行う。
これにより、対向車等の対向移動体Oが自車両Mの走行車線内に急に侵入してきた場合にも、十分な安全性を確保することができる。すなわち、走行_ECU14は、対向移動体Oが自車両Mの目標走行領域Am内に侵入する以前から、対向移動体Oに対し、リスク度Rに応じた予備的な衝突回避制御を行う。従って、対向移動体Oが車線区画線を越えて自車両Mの前方に急に侵入してきた場合にも、余裕を持って緊急衝突回避制御を行うことができる。
この場合において、走行_ECU14は、予め設定された区間毎(例えば、過去の時間T毎)に算出した対区画線横位置の履歴に基づいて、タイミングt-2,t-1,t毎の対向移動体Oに対するリスク度中間値Rt-2,Rt-1,Rtをそれぞれ算出する。そして、走行_ECU14は、リスク度中間値Rt-2,Rt-1,Rtの合算値をリスク度Rとして算出する。これにより、対向移動体Oのふらつき等の挙動によるリスク度Rを精度良く算出することができる。
その際、走行_ECU14は、対向車線を区画する左右の区画線に対する対向移動体Oの対区画線横位置a,bをそれぞれ算出する。そして、走行_ECU14は、予め設定された区間毎に算出した各対区画線横位置a,bの平均値a_ave,b_aveの差分Δxに基づいて、各タイミングt-2,t-1,tにおけるリスク度中間値Rt-2,Tt-1,Rtを算出する。従って、対向移動体Oの大きさによらず、対向移動体Oの対向車線の中央に対するふらつきを精度良く認識することができる。
加えて、走行_ECU14は、リスク度Rに対して上限処理を行う。これにより、不要な予備衝突回避制御が行われることを抑制することができる。
また、走行_ECU14は、縦衝突予測時間TTCzの値に応じて、予備衝突回避制御に許容する制御レベル(リスクレベル)を異ならせる。これにより、対向移動体Oに対して適切な予備衝突回避制御を実現することができる。
ここで、上述の実施形態において、画像認識_ECU13、走行_ECU14、CP_ECU21、E/G_ECU22、T/M_ECU23、BK_ECU24、及び、PS_ECU25等は、CPU,RAM,ROM、不揮発性記憶部等を備える周知のマイクロコンピュータ、及びその周辺機器で構成されている。ROMには、CPUで実行するプログラムやデータテーブル等の固定データ等が予め記憶されている。なお、プロセッサの全部若しくは一部の機能は、論理回路あるいはアナログ回路で構成してもよい。また、各種プログラムの処理を、FPGAなどの電子回路により実現するようにしてもよい。
以上の実施の形態に記載した発明は、それらの形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上述の形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得るものである。
例えば、上述の形態に示される全構成要件から幾つかの構成要件が削除されても、述べられている課題が解決でき、述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得るものである。
1 … 運転支援装置
10 … カメラユニット
11 … ステレオカメラ
11a … メインカメラ
11b … サブカメラ
12 … IPU
13 … 画像認識_ECU
14 … 走行_ECU
21 … CP_ECU
22 … E/G_ECU
23 … T/M_ECU
24 … BK_ECU
25 … PS_ECU
31 … HMI
32 … スロットルアクチュエータ
33 … 油圧制御回路
34 … ブレーキアクチュエータ
35 … 電動パワステモータ
36 … ロケータユニット
36a … GNSSセンサ
36b … 道路地図DB
37lf … 左前側方センサ
37lr … 左後側方センサ
37rf … 右前側方センサ
37rr … 右後側方センサ
M … 車両(自車両)
O … 対向移動体

Claims (4)

  1. 車外の走行環境情報を認識する走行環境認識部と、
    前記走行環境情報に基づいて、自車両の走行路上に存在する障害物を認識する障害物認識部と、
    前記自車両が前記障害物と衝突する可能性が高いと判定したとき、前記障害物との衝突を回避するための緊急衝突回避制御を行う緊急衝突回避制御部と、
    前記走行環境情報に基づいて、前記自車両の走行車線に併設された対向車線上を、前記自車両の進行方向と反対方向の速度成分を有して移動する対向移動体を認識する対向移動体認識部と、
    前記対向車線を区画する区画線から前記対向移動体の基準位置までの距離を対区画線横位置として設定周期毎に算出する横位置算出部と、
    予め設定された時間内における前記対区画線横位置の履歴に基づいて前記対向移動体に対するリスク度を算出するリスク度算出部と、
    前記リスク度に応じて前記対向移動体を前記障害物として認識し、前記障害物として認識した前記対向移動体に対して前記緊急衝突回避制御に先立つ予備衝突回避制御を行う予備衝突回避制御部と、を備えたことを特徴とする車両の運転支援装置。
  2. 前記リスク度算出部は、予め設定された区間毎の前記対区画線横位置の履歴に基づいて前記対向移動体に対するリスク度中間値をそれぞれ算出し、前記リスク度中間値の合算値を前記リスク度として算出することを特徴とする請求項1に記載の車両の運転支援装置。
  3. 前記リスク度算出部は、前記リスク度に対して、予め設定された値を上限とする上限処理を行うことを特徴とする請求項2に記載の車両の運転支援装置。
  4. 前記予備衝突回避制御部は、前記自車両と前記対向移動体の前後方向の相対距離及び相対速度に基づいて前記予備衝突回避制御に許容する制御レベルを異ならせることを特徴とする請求項1乃至請求項3の何れか1項に記載の車両の運転支援装置。
JP2022008970A 2022-01-24 2022-01-24 車両の運転支援装置 Pending JP2023107674A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022008970A JP2023107674A (ja) 2022-01-24 2022-01-24 車両の運転支援装置
US18/150,344 US20230234574A1 (en) 2022-01-24 2023-01-05 Vehicle driving assist device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022008970A JP2023107674A (ja) 2022-01-24 2022-01-24 車両の運転支援装置

Publications (1)

Publication Number Publication Date
JP2023107674A true JP2023107674A (ja) 2023-08-03

Family

ID=87313365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022008970A Pending JP2023107674A (ja) 2022-01-24 2022-01-24 車両の運転支援装置

Country Status (2)

Country Link
US (1) US20230234574A1 (ja)
JP (1) JP2023107674A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139524A (ja) * 2021-03-12 2022-09-26 株式会社Subaru 運転支援装置及び記録媒体

Also Published As

Publication number Publication date
US20230234574A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US11021155B2 (en) Vehicle control apparatus and vehicle control method
CN109204311B (zh) 一种汽车速度控制方法和装置
US20200001867A1 (en) Vehicle control apparatus, vehicle control method, and program
US11247677B2 (en) Vehicle control device for maintaining inter-vehicle spacing including during merging
JP7247042B2 (ja) 車両制御システム、車両制御方法、及びプログラム
US11661057B2 (en) Vehicle control device, vehicle control method, and storage medium
US20200339156A1 (en) Vehicle control device, vehicle control method, and storage medium
CN112298181A (zh) 车辆控制装置、车辆控制方法及存储介质
JP2017068461A (ja) 車両の運転支援装置
US20230311864A1 (en) Drive assist apparatus for vehicle and drive assist system for vehicle
US20240051531A1 (en) Vehicle control device, vehicle control method, and storage medium
US20230234574A1 (en) Vehicle driving assist device
US20220297724A1 (en) Mobile object control system, mobile object control method, and storage medium
JP2004106588A (ja) 車両用運転支援装置
JP2023015858A (ja) 車両の運転支援装置
JP2023107673A (ja) 車両の運転支援装置
JP2023107672A (ja) 車両の運転支援装置
JP2023107671A (ja) 車両の運転支援装置
US20230234575A1 (en) Vehicle driving assist device and vehicle driving assist system
US20240042997A1 (en) Travel control apparatus for vehicle
US20240042999A1 (en) Travel control apparatus for vehicle
US20240051529A1 (en) Vehicle control device, vehicle control method, and storage medium
US20230230370A1 (en) Object recognition device
US20240051532A1 (en) Vehicle control device, vehicle control method, and storage medium
WO2023054197A1 (ja) 車両制御装置