JP2023107388A - Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition - Google Patents

Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition Download PDF

Info

Publication number
JP2023107388A
JP2023107388A JP2022008562A JP2022008562A JP2023107388A JP 2023107388 A JP2023107388 A JP 2023107388A JP 2022008562 A JP2022008562 A JP 2022008562A JP 2022008562 A JP2022008562 A JP 2022008562A JP 2023107388 A JP2023107388 A JP 2023107388A
Authority
JP
Japan
Prior art keywords
copper
layered double
double hydroxide
containing layered
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022008562A
Other languages
Japanese (ja)
Inventor
善之 横川
Yoshiyuki Yokokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Public Corporation Osaka
Original Assignee
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Public Corporation Osaka filed Critical University Public Corporation Osaka
Priority to JP2022008562A priority Critical patent/JP2023107388A/en
Publication of JP2023107388A publication Critical patent/JP2023107388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide a layered double hydroxide with a novel function in addition to an adsorption function of a volatile sulfur compound.SOLUTION: A copper-containing layered double hydroxide represented by a formula (1) below is provided. The copper-containing layered double hydroxide is obtained by reacting an aqueous solution containing copper with an aqueous solution containing aluminum under conditions where the pH is 8 or higher. Cu1-xAlx(OH)2An-x/n mH2O (1) (in the formula (1), An- is an n-valent anion, x is a number satisfying 0<x<1, n is a number satisfying 1≤n, and m is a number satisfying 0<m).SELECTED DRAWING: None

Description

本発明は、銅含有層状複水酸化物及びその製造方法と、消臭剤組成物、抗菌剤組成物並びに紫外線吸収剤組成物に関する。 TECHNICAL FIELD The present invention relates to a copper-containing layered double hydroxide, a method for producing the same, a deodorant composition, an antibacterial agent composition, and an ultraviolet absorber composition.

近年、口臭を予防する、口腔内を清潔な状態に保つ、といった口腔衛生に対する関心が高まっている。
口臭を予防する製品として、香料や殺菌効果を有する成分を含む洗口剤、歯磨き剤、ガム等が市販されているが、これらの製品を使用することによる口臭予防の効果は一時的である。
In recent years, there has been an increasing interest in oral hygiene, such as preventing bad breath and keeping the oral cavity clean.
Mouthwashes, toothpastes, gums, and the like containing fragrances and ingredients with bactericidal effects are commercially available as products for preventing halitosis, but the effects of using these products to prevent halitosis are temporary.

そこで、口臭の原因となる揮発性硫黄化合物(VSC:Volatile Sulfur Compound)を除去できる歯科材料として、ハイドロタルサイトに代表される層状複水酸化物(LDH:Layered Double Hydroxide)が注目されている。層状複水酸化物は粘土鉱物の一種に分類され、一般式M2+ 1-x3+ (OH)n- x/n・mHOで表わされ、VSCの吸着効果が高いことが知られている。
例えば、特許文献1には、前記一般式中のM2+が亜鉛(Zn2+)であり、M3+がアルミニウム(Al3+)であり、An-が炭酸イオン(CO 2-)である層状複水酸化物や、M2+がマグネシウム(Mg2+)であり、M3+が鉄(Fe3+)であり、An-が炭酸イオン又は塩化物イオン(Cl)である層状複水酸化物を含む、揮発性硫黄化合物の吸着剤が開示されている。
Therefore, layered double hydroxides (LDHs) typified by hydrotalcite have attracted attention as dental materials capable of removing volatile sulfur compounds (VSCs) that cause bad breath. Layered double hydroxide is classified as a kind of clay minerals, represented by the general formula M 2+ 1−x M 3+ x (OH) 2 A n− x/n ·mH 2 O, and has a high VSC adsorption effect. It has been known.
For example, in Patent Document 1, M 2+ in the general formula is zinc (Zn 2+ ), M 3+ is aluminum (Al 3+ ), and A n− is carbonate ion (CO 3 2− ). Double hydroxides and layered double hydroxides in which M 2+ is magnesium (Mg 2+ ), M 3+ is iron (Fe 3+ ), and A n− is carbonate ion or chloride ion (Cl ). Adsorbents for volatile sulfur compounds are disclosed, including:

特開2015-193000号公報Japanese Patent Application Laid-Open No. 2015-193000

このような揮発性硫黄化合物の吸着機能を有する層状複水酸化物には、新たな機能が求められる。
本発明は、揮発性硫黄化合物の吸着機能に加えて、新たな機能を有する層状複水酸化物を提供することを目的とする。
A new function is required for such a layered double hydroxide having a function of adsorbing volatile sulfur compounds.
An object of the present invention is to provide a layered double hydroxide having a new function in addition to the function of adsorbing volatile sulfur compounds.

本発明は、以下の態様を有する。
[1] 下記一般式(1)で表される、銅含有層状複水酸化物。
Cu1-xAl(OH)n- x/n・mHO ・・・(1)
(式(1)中、An-はn価の陰イオンであり、xは0<x<1を満たす数であり、nは1≦nを満たす数であり、mは0<mを満たす数である。
[2] 前記[1]の銅含有層状複水酸化物を含む、消臭剤組成物。
[3] 前記[1]の銅含有層状複水酸化物を含む、抗菌剤組成物。
[4] 前記[1]の銅含有層状複水酸化物を含む、紫外線吸収剤組成物。
[5] 前記[1]の銅含有層状複水酸化物の製造方法であって、
銅を含有する水溶液と、アルミニウムを含有する水溶液とをpHが8以上となる条件で反応させる、銅含有層状複水酸化物の製造方法。
The present invention has the following aspects.
[1] A copper-containing layered double hydroxide represented by the following general formula (1).
Cu 1-x Al x (OH) 2 A n- x/n ·mH 2 O (1)
(In formula (1), A n- is an n-valent anion, x is a number that satisfies 0 < x < 1, n is a number that satisfies 1 ≤ n, and m satisfies 0 < m is a number.
[2] A deodorant composition comprising the copper-containing layered double hydroxide of [1].
[3] An antimicrobial composition comprising the copper-containing layered double hydroxide of [1].
[4] An ultraviolet absorbent composition comprising the copper-containing layered double hydroxide of [1].
[5] A method for producing the copper-containing layered double hydroxide of [1],
A method for producing a copper-containing layered double hydroxide, comprising reacting a copper-containing aqueous solution and an aluminum-containing aqueous solution under conditions where the pH is 8 or higher.

本発明によれば、揮発性硫黄化合物の吸着機能に加えて、新たな機能を有する層状複水酸化物を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, in addition to the adsorption function of a volatile sulfur compound, the layered double hydroxide which has a new function can be provided.

実施例1で得られた銅含有層状複水酸化物のエネルギー分散型X線分析スペクトルである。2 is an energy dispersive X-ray analysis spectrum of the copper-containing layered double hydroxide obtained in Example 1. FIG. 実施例1~3で得られた銅含有層状複水酸化物及び酸化銅(II)の粉末X線回折による測定結果を示す図である。FIG. 2 is a diagram showing measurement results of copper-containing layered double hydroxides and copper (II) oxide obtained in Examples 1 to 3 by powder X-ray diffraction. 実施例2、3で得られた銅含有層状複水酸化物のフーリエ変換赤外分光法による赤外吸収スペクトルである。4 shows infrared absorption spectra of the copper-containing layered double hydroxides obtained in Examples 2 and 3 by Fourier transform infrared spectroscopy. 実施例2、3で得られた銅含有層状複水酸化物を投入した後の容器中の全HS濃度の変化率を示す図である。FIG. 4 is a diagram showing the change rate of the total H 2 S concentration in the container after the copper-containing layered double hydroxides obtained in Examples 2 and 3 were charged. 実施例2で得られた銅含有層状複水酸化物を投入した後の容器中のHS水とヘッドスペースのHS濃度の経時変化を示す図である。FIG. 10 is a diagram showing temporal changes in the H 2 S concentration in the container and the H 2 S concentration in the headspace after the copper-containing layered double hydroxide obtained in Example 2 was added. 実施例3で得られた銅含有層状複水酸化物を投入した後の容器中のHS水とヘッドスペースのHS濃度の経時変化を示す図である。FIG. 10 is a graph showing changes over time in the H 2 S concentration in the container and the H 2 S concentration in the headspace after the copper-containing layered double hydroxide obtained in Example 3 was added. 実施例4で得られた銅含有層状複水酸化物の紫外-可視分光法による吸収スペクトルである。4 is an absorption spectrum of the copper-containing layered double hydroxide obtained in Example 4 by UV-visible spectroscopy.

以下、本発明の一実施形態を詳細に説明する。
なお、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
An embodiment of the present invention will be described in detail below.
In addition, "-" indicating a numerical range means that the numerical values described before and after it are included as the lower limit and the upper limit.

[銅含有層状複水酸化物]
本発明の第一の態様の銅含有層状複水酸化物は、下記一般式(1)で表される化合物である。
Cu1-xAl(OH)n- x/n・mHO ・・・(1)
(式(1)中、An-はn価の陰イオンであり、xは0<x<1を満たす数であり、nは1≦nを満たす数であり、mは0<mを満たす数である。
[Copper-containing layered double hydroxide]
The copper-containing layered double hydroxide of the first aspect of the present invention is a compound represented by the following general formula (1).
Cu 1-x Al x (OH) 2 A n- x/n ·mH 2 O (1)
(In formula (1), A n- is an n-valent anion, x is a number that satisfies 0 < x < 1, n is a number that satisfies 1 ≤ n, and m satisfies 0 < m is a number.

式(1)中、An-はn価の陰イオンである。
nは1≦nを満たす数であり、1~3が好ましく、1又は2がより好ましい。
n価の陰イオンとしては、例えば塩化物イオン(Cl)、フッ化物イオン(F)、臭化物イオン(Br)、ヨウ化物イオン(I)、硝酸イオン(NO )、水酸化物イオン(OH)、酢酸イオン(CHCOO)、酢酸以外のカルボン酸イオン(R-COO)等の1価の陰イオン;炭酸イオン(CO 2-)、硫酸イオン(SO 2-)等の2価の陰イオン;リン酸イオン(PO 3-)、ホウ酸イオン(BO 3-)等の3価の陰イオンなどが挙げられる。これらの中でも、1価又は2価の陰イオンが好ましく、その中でも塩化物イオン、硝酸イオン、炭酸イオンが特に好ましい。また、紫外線吸収能を発現する観点では、塩化物イオン、硝酸イオンが好ましい。
In formula (1), A n- is an n-valent anion.
n is a number that satisfies 1≦n, preferably 1 to 3, more preferably 1 or 2.
Examples of n-valent anions include chloride ion (Cl ), fluoride ion (F ), bromide ion (Br ), iodide ion (I ), nitrate ion (NO 3 ), hydroxide monovalent anions such as monovalent ions (OH ), acetate ions (CH 3 COO ), carboxylate ions other than acetic acid (R—COO ); carbonate ions (CO 3 2− ), sulfate ions (SO 4 2- ); and trivalent anions such as phosphate ion (PO 4 3- ) and borate ion (BO 3 3- ). Among these, monovalent or divalent anions are preferred, and chloride ions, nitrate ions, and carbonate ions are particularly preferred. Chloride ions and nitrate ions are preferable from the viewpoint of exhibiting ultraviolet absorption ability.

xは0<x<1を満たす数であり、0.1≦x≦0.8を満たす数が好ましく、0.15≦x≦0.6を満たす数がより好ましく、0.2≦x≦0.4を満たす数がさらに好ましく、0.25x≦0.35を満たす数が特に好ましい。
mは0<mを満たす数であり、1≦m≦10を満たす数が好ましく、2≦m≦6を満たす数がより好ましい。
x is a number satisfying 0<x<1, preferably a number satisfying 0.1≦x≦0.8, more preferably a number satisfying 0.15≦x≦0.6, and 0.2≦x≦ A number that satisfies 0.4 is more preferred, and a number that satisfies 0.25x≦0.35 is particularly preferred.
m is a number that satisfies 0<m, preferably a number that satisfies 1≦m≦10, and more preferably a number that satisfies 2≦m≦6.

銅含有層状複水酸化物における[Cu1-xAl(OH)]はホスト層であり、[An- x/n・mHO]はゲスト層であり、銅含有層状複水酸化物は正に帯電した複数のホスト層と、その電荷を補うために中間層、すなわちホスト層とホスト層の層間にゲスト層とを保有する積層構造をとっている。 [Cu 1-x Al x (OH) 2 ] in the copper-containing layered double hydroxide is the host layer, [A n- x/n ·mH 2 O] is the guest layer, and the copper-containing layered double hydroxide The article has a layered structure having multiple positively charged host layers and intermediate layers, ie, guest layers between host layers, to compensate for the charge.

銅含有層状複水酸化物は、例えば銅を含有する水溶液(S1)と、アルミニウムを含有する水溶液(S2)とをpHが8以上となる条件で反応させることで得られる。
水溶液(S1)は、例えば塩化銅、硫酸銅及びそれらの水和物等の銅化合物を水に溶解することで得られる。銅化合物としては、塩化銅が好ましい。
銅化合物は、1種を単独で用いてもよいし、2種以上を併用してよい。
銅化合物は無水物であってもよいし、水和物であってもよい。
The copper-containing layered double hydroxide can be obtained, for example, by reacting a copper-containing aqueous solution (S1) and an aluminum-containing aqueous solution (S2) under conditions where the pH is 8 or higher.
The aqueous solution (S1) is obtained, for example, by dissolving copper compounds such as copper chloride, copper sulfate and their hydrates in water. Copper chloride is preferred as the copper compound.
A copper compound may be used individually by 1 type, and may use 2 or more types together.
The copper compound may be an anhydride or a hydrate.

水溶液(S2)は、例えば硝酸アルミニウム、硫酸アルミニウム、リン酸アルミニウム、塩化アルミニウム及びそれらの水和物等のアルミニウム化合物を水に溶解することで得られる。アルミニウム化合物としては、塩化銅が好ましい。
アルミニウム化合物は、1種を単独で用いてもよいし、2種以上を併用してよい。
アルミニウム化合物は無水物であってもよいし、水和物であってもよい。
The aqueous solution (S2) is obtained by dissolving aluminum compounds such as aluminum nitrate, aluminum sulfate, aluminum phosphate, aluminum chloride and hydrates thereof in water. Copper chloride is preferred as the aluminum compound.
An aluminum compound may be used individually by 1 type, and may use 2 or more types together.
The aluminum compound may be either an anhydride or a hydrate.

水溶液(S1)と水溶液(S2)との割合は、銅化合物1molに対してアルミニウム化合物が0.2~0.5molとなる量が好ましく、より好ましくは0.25~0.35molとなる量である。
なお、上述した銅化合物及びアルミニウム化合物を、これらの混合割合が好ましくは上記範囲内となるように水に溶解して、銅及びアルミニウムを含有する水溶液(S12)を調製し、この水溶液(S12)を反応させてもよい。
The ratio of the aqueous solution (S1) and the aqueous solution (S2) is preferably such that the aluminum compound is 0.2 to 0.5 mol, more preferably 0.25 to 0.35 mol, per 1 mol of the copper compound. be.
The above copper compound and aluminum compound are dissolved in water so that the mixing ratio thereof is preferably within the above range to prepare an aqueous solution (S12) containing copper and aluminum, and this aqueous solution (S12) may be reacted.

反応は、陰イオン存在下で行うことが好ましい。具体的には、An-の塩の水溶液(S3)に、水溶液(S1)及び水溶液(S2)を滴下するか、水溶液(S12)を滴下して反応することが好ましい。
例えば、An-が炭酸イオンである銅含有層状複水酸化物を製造する場合、水溶液(S3)は、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム等の炭酸塩を水に溶解することでも得ることができる。炭酸塩としては、炭酸ナトリウム、炭酸カルシウムが好ましい。
炭酸塩は、1種を単独で用いてもよいし、2種以上を併用してよい。
水溶液(S3)中の炭酸塩の濃度は、銅化合物1molに対して炭酸塩が1~5molとなる量が好ましく、より好ましくは1~3molとなる量である。
The reaction is preferably carried out in the presence of an anion. Specifically, it is preferable to drop the aqueous solution (S1) and the aqueous solution (S2) or drop the aqueous solution (S12) into the aqueous solution (S3) of the salt of A n- to react.
For example, when producing a copper-containing layered double hydroxide in which A n- is a carbonate ion, the aqueous solution (S3) is sodium carbonate, calcium carbonate, potassium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, or the like. It can also be obtained by dissolving a carbonate in water. Sodium carbonate and calcium carbonate are preferable as the carbonate.
A carbonate may be used individually by 1 type, and may use 2 or more types together.
The concentration of the carbonate in the aqueous solution (S3) is preferably such that the carbonate is 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the copper compound.

n-が塩化物イオンである銅含有層状複水酸化物を製造する場合、水溶液(S3)は、塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化バリウム、塩化マグネシウム等の金属の塩化物を水に溶解することで得られる。金属の塩化物としては、塩化ナトリウムが好ましい。
金属の塩化物は、1種を単独で用いてもよいし、2種以上を併用してよい。
水溶液(S3)中の金属の塩化物の濃度は、銅化合物1molに対して金属の塩化物が1~5molとなる量が好ましく、より好ましくは1~3molとなる量である。
When producing a copper-containing layered double hydroxide in which A n- is a chloride ion, the aqueous solution (S3) is prepared by adding metal chlorides such as sodium chloride, calcium chloride, potassium chloride, barium chloride, and magnesium chloride to water. Obtained by dissolving. Sodium chloride is preferred as the metal chloride.
The metal chlorides may be used singly or in combination of two or more.
The concentration of the metal chloride in the aqueous solution (S3) is preferably such that the metal chloride is 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the copper compound.

n-が硝酸イオンである銅含有層状複水酸化物を製造する場合、水溶液(S3)は、硝酸ナトリウム、硝酸カルシウム、硝酸カリウム、硝酸バリウム、硝酸マグネシウム等の硝酸塩を水に溶解することで得られる。硝酸塩としては、硝酸ナトリウムが好ましい。
硝酸塩は、1種を単独で用いてもよいし、2種以上を併用してよい。
水溶液(S3)中の硝酸塩の濃度は、銅化合物1molに対して硝酸塩が1~5molとなる量が好ましく、より好ましくは1~3molとなる量である。
When producing a copper-containing layered double hydroxide in which A n- is a nitrate ion, the aqueous solution (S3) is obtained by dissolving a nitrate such as sodium nitrate, calcium nitrate, potassium nitrate, barium nitrate or magnesium nitrate in water. be done. Sodium nitrate is preferred as the nitrate.
One kind of nitrate may be used alone, or two or more kinds may be used in combination.
The concentration of the nitrate in the aqueous solution (S3) is preferably such that the nitrate is 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the copper compound.

なお、An-が炭酸イオン以外の陰イオンである銅含有層状複水酸化物を製造する場合、水溶液(S1)、水溶液(S2)、水溶液(S12)及び水溶液(S3)の調製に用いる水、又は反応液を窒素ガス等の不活性ガスで曝気することが好ましい。これにより、水に炭酸イオンが含まれていても曝気により炭酸イオンを除去でき、ゲスト層に炭酸イオン以外の陰イオンを容易に導入できる。 In the case of producing a copper-containing layered double hydroxide in which A n- is an anion other than carbonate ion, Alternatively, it is preferable to aerate the reaction solution with an inert gas such as nitrogen gas. As a result, even if carbonate ions are contained in water, the carbonate ions can be removed by aeration, and anions other than carbonate ions can be easily introduced into the guest layer.

反応は、反応液の20℃におけるpHが8以上となる条件で行われる。反応液の20℃におけるpHは8.5以上が好ましく、9以上がより好ましく、9.5以上がさらに好ましく、10以上が特に好ましい。また、反応液の20℃におけるpHは12以下が好ましい。反応液のpHが上記下限値以上であれば、反応が進行しやすい。
ここで、反応液とは、水溶液(S1)と水溶液(S2)との混合溶液、水溶液(S1)と水溶液(S2)と水溶液(S3)との混合溶液、水溶液(S12)又は水溶液(S12)と水溶液(S3)との混合溶液のことである。
The reaction is carried out under the condition that the reaction solution has a pH of 8 or higher at 20°C. The pH of the reaction solution at 20°C is preferably 8.5 or higher, more preferably 9 or higher, still more preferably 9.5 or higher, and particularly preferably 10 or higher. Further, the pH of the reaction solution at 20°C is preferably 12 or less. When the pH of the reaction solution is equal to or higher than the above lower limit, the reaction proceeds easily.
Here, the reaction liquid is a mixed solution of the aqueous solution (S1) and the aqueous solution (S2), a mixed solution of the aqueous solution (S1), the aqueous solution (S2) and the aqueous solution (S3), the aqueous solution (S12) or the aqueous solution (S12) and the aqueous solution (S3).

反応液のpHは、例えば反応液にpH調整剤又はその水溶液を添加することで調整できる。
pH調整剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属塩;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン;硫酸、塩酸、リン酸等の無機酸;クエン酸、パラトルエンスルホン酸、クメンスルホン酸等の有機酸などが挙げられる。
pH調整剤は、1種を単独で用いてもよいし、2種以上を併用してよい。
The pH of the reaction solution can be adjusted, for example, by adding a pH adjuster or an aqueous solution thereof to the reaction solution.
Examples of pH adjusters include alkali metal salts such as sodium hydroxide and potassium hydroxide; alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; inorganic acids such as sulfuric acid, hydrochloric acid and phosphoric acid; citric acid and paratoluene. Examples include organic acids such as sulfonic acid and cumenesulfonic acid.
One type of pH adjuster may be used alone, or two or more types may be used in combination.

反応液の温度は60℃以下が好ましく、60℃未満がより好ましく、55℃以下がさらに好ましく、50℃以下がよりさらに好ましく、45℃以下が特に好ましく、40℃以下が最も好ましい。また、反応液の温度は、20℃以上が好ましく、25℃以上がより好ましく、30℃以上がさらに好ましい。反応液の温度が上記下限値以上であれば、反応が進行しやすい。反応液の温度が上記上限値以下であれば、酸化銅等の副生成物の生成を抑制できる。反応液の温度が低いほど副生成物の生成は抑制される傾向にあることから、特に、口臭を除去する目的で銅含有層状複水酸化物を使用する場合、反応液の温度は60℃未満が好ましい。 The temperature of the reaction solution is preferably 60° C. or lower, more preferably lower than 60° C., still more preferably 55° C. or lower, even more preferably 50° C. or lower, particularly preferably 45° C. or lower, most preferably 40° C. or lower. Moreover, the temperature of the reaction solution is preferably 20° C. or higher, more preferably 25° C. or higher, and even more preferably 30° C. or higher. When the temperature of the reaction solution is equal to or higher than the above lower limit, the reaction proceeds easily. If the temperature of the reaction solution is equal to or lower than the above upper limit, the formation of by-products such as copper oxide can be suppressed. Since the formation of by-products tends to be suppressed as the temperature of the reaction solution is lower, the temperature of the reaction solution is lower than 60° C., especially when the copper-containing layered double hydroxide is used for the purpose of removing bad breath. is preferred.

反応時間は特に制限されないが、例えば1~48時間が好ましく、6~24時間がより好ましい。 Although the reaction time is not particularly limited, it is preferably 1 to 48 hours, more preferably 6 to 24 hours.

反応生成物は沈殿物として得られることから、必要に応じて沈殿物を熟成した後に濾過し、濾過物を必要に応じて洗浄した後に乾燥して、銅含有層状複水酸化物を得る。 Since the reaction product is obtained as a precipitate, the precipitate is filtered after aging as necessary, and the filtered product is washed as necessary and then dried to obtain a copper-containing layered double hydroxide.

以上説明した本発明の第一の態様の銅含有層状複水酸化物は、ゲスト層のAn-が主に硫化水素イオン(HS)と置換し、ゲスト層のHOが主に硫化水素(HS)、メチルメルカプタン(CHSH)、ジメチルスルフィド((CHS)と置換することで、ゲスト層に揮発性硫黄化合物を吸着し、除去できる。
ところで、銅は、菌の発育を阻止するのに最低限必要とされる最小の濃度である最小発育阻止濃度(MIC:Minimum Inhibitory Concentration)の値が小さい。MICの値が小さいほど、抗菌性に優れることを意味する。本発明の第一の態様の銅含有層状複水酸化物は、MICの値が小さい銅を含有するので、揮発性硫黄化合物を吸着・除去できるだけでなく、抗菌性にも優れ、菌の繁殖を防止できる。
なお、本発明の第一の態様の銅含有層状複水酸化物は、例えば虫歯発生時、歯のエナメル質が溶解する酸性の環境下で溶解し、銅イオンが生成する。具体的には、pHが5.5の環境下で、24時間で銅含有層状複水酸化物の総質量に対して25質量%程度溶解する。銅イオンが生成すると、抗菌性がより高まり、菌の増殖を抑制できる。よって、本発明の第一の態様の銅含有層状複水酸化物を用いれば、虫歯の予防効果も期待できる。
In the copper-containing layered double hydroxide of the first aspect of the present invention described above, A n− in the guest layer is mainly substituted with hydrogen sulfide ions (HS ), and H 2 O in the guest layer is mainly sulfurized. By replacing with hydrogen (H 2 S), methyl mercaptan (CH 3 SH), or dimethyl sulfide ((CH 3 ) 2 S), volatile sulfur compounds can be adsorbed and removed from the guest layer.
By the way, copper has a small MIC (Minimum Inhibitory Concentration), which is the minimum concentration required to inhibit the growth of bacteria. A smaller MIC value means more excellent antibacterial properties. The copper-containing layered double hydroxide of the first aspect of the present invention contains copper with a small MIC value, so it can not only adsorb and remove volatile sulfur compounds, but also has excellent antibacterial properties and prevents the growth of bacteria. can be prevented.
The copper-containing layered double hydroxide of the first aspect of the present invention dissolves in an acidic environment in which tooth enamel dissolves, for example, when tooth decay occurs, and copper ions are generated. Specifically, in an environment of pH 5.5, about 25% by mass of the total mass of the copper-containing layered double hydroxide is dissolved in 24 hours. When copper ions are generated, the antibacterial properties are enhanced and the growth of bacteria can be suppressed. Therefore, the use of the copper-containing layered double hydroxide of the first aspect of the present invention can be expected to have a caries-preventing effect.

このように本発明の第一の態様の銅含有層状複水酸化物は、揮発性硫黄化合物の吸着機能、すなわち消臭機能に加えて、抗菌性を有する。
特に、ゲスト層のAn-が塩化物イオン又は硝酸イオンである場合、紫外線吸収能をも有する。
Thus, the copper-containing layered double hydroxide of the first aspect of the present invention has an antibacterial property in addition to the function of adsorbing volatile sulfur compounds, that is, the function of deodorizing.
In particular, when the A n- of the guest layer is chloride ion or nitrate ion, it also has ultraviolet absorption capability.

本発明の第一の態様の銅含有層状複水酸化物は、揮発性硫黄化合物を吸着・除去でき、抗菌性にも優れることから、消臭剤、抗菌剤又はこれらの有効成分として好適に使用できる。ゲスト層のAn-が塩化物イオン又は硝酸イオンである場合、本発明の第一の態様の銅含有層状複水酸化物は、紫外線吸収剤又はこれらの有効成分としても好適に使用できる。
本発明の第一の態様の銅含有層状複水酸化物を消臭剤、抗菌剤、紫外線吸収剤又はこれらの有効成分として使用する場合、通常使用し得る適当な添加剤を適宜併用することもできる。
Since the copper-containing layered double hydroxide of the first aspect of the present invention can adsorb and remove volatile sulfur compounds and has excellent antibacterial properties, it is suitably used as a deodorant, an antibacterial agent, or an active ingredient thereof. can. When A n- in the guest layer is chloride ion or nitrate ion, the copper-containing layered double hydroxide of the first aspect of the present invention can be suitably used as an ultraviolet absorber or an active ingredient thereof.
When the copper-containing layered double hydroxide of the first aspect of the present invention is used as a deodorant, an antibacterial agent, an ultraviolet absorber, or an active ingredient thereof, it is also possible to use appropriate additives that can be normally used in combination as appropriate. can.

例えば、口臭を除去する目的で銅含有層状複水酸化物を使用する場合、洗口剤、歯磨き剤、ガム等に銅含有層状複水酸化物を添加剤として配合してもよい。また、歯ブラシ、舌ブラシ、歯磨き用の指サック、歯磨きシート等の樹脂材料に銅含有層状複水酸化物を添加剤として配合してもよい。さらに、入れ歯や差し歯の樹脂材料又は金属材料に銅含有層状複水酸化物を添加剤として配合してもよい。 For example, when a copper-containing layered double hydroxide is used for the purpose of removing bad breath, the copper-containing layered double hydroxide may be blended as an additive in a mouthwash, toothpaste, gum, or the like. In addition, the copper-containing layered double hydroxide may be added as an additive to resin materials such as toothbrushes, tongue brushes, finger sacks for toothbrushing, and toothpaste sheets. Furthermore, a copper-containing layered double hydroxide may be added as an additive to the resin material or metal material of the dentures or false teeth.

また、例えば、体臭を除去する場合は身体に銅含有層状複水酸化物をスプレーしてもよいし、生ごみ、トイレ、排水溝等の臭いを除去する場合はこれらに銅含有層状複水酸化物をスプレーしてもよい。
さらに、上述した以外にも、例えば下水、汚泥等に銅含有層状複水酸化物を添加したり、マスク、カーテン、枕カバー、シーツ、下着、靴下等の繊維製品に銅含有層状複水酸化物を染み込ませたりして、不快な臭いを除去することもできる。
Further, for example, when removing body odor, the copper-containing layered double hydroxide may be sprayed on the body, and when removing the odor of garbage, toilets, drains, etc., the copper-containing layered double hydroxide may be sprayed on these. You can spray things.
Furthermore, in addition to the above, for example, the copper-containing layered double hydroxide is added to sewage, sludge, etc., and the copper-containing layered double hydroxide is added to textile products such as masks, curtains, pillowcases, sheets, underwear, and socks. can also be used to remove unpleasant odors.

また、ゲスト層のAn-が塩化物イオン又は硝酸イオンである場合、例えば樹脂材料に銅含有層状複水酸化物を添加して成形した成形品は、黄変等の変色を防止できる。また、日焼け止め剤に銅含有層状複水酸化物を添加してもよい。 Further, when A n− in the guest layer is chloride ion or nitrate ion, for example, a molded product obtained by adding a copper-containing layered double hydroxide to a resin material can be prevented from discoloration such as yellowing. Also, a copper-containing layered double hydroxide may be added to the sunscreen.

[消臭剤組成物]
本発明の第二の態様の消臭剤組成物は、上述した本発明の第一の態様の銅含有層状複水酸化物を含む。
消臭剤組成物は、本発明の第一の態様の銅含有層状複水酸化物以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。
他の成分としては、消臭剤組成物に通常、用いられる公知の成分であれば特に限定されない。
[Deodorant composition]
The deodorant composition of the second aspect of the present invention contains the copper-containing layered double hydroxide of the first aspect of the present invention described above.
The deodorant composition may contain components other than the copper-containing layered double hydroxide of the first aspect of the present invention (hereinafter also referred to as "other components").
Other components are not particularly limited as long as they are known components that are commonly used in deodorant compositions.

[抗菌剤組成物]
本発明の第三の態様の抗菌剤組成物は、上述した本発明の第一の態様の銅含有層状複水酸化物を含む。
抗菌剤組成物は、他の成分を含んでいてもよい。
他の成分としては、抗菌剤組成物に通常、用いられる公知の成分であれば特に限定されない。
[Antibacterial agent composition]
The antibacterial agent composition of the third aspect of the present invention contains the copper-containing layered double hydroxide of the first aspect of the present invention described above.
The antimicrobial composition may contain other ingredients.
Other components are not particularly limited as long as they are known components that are commonly used in antimicrobial compositions.

[紫外線吸収剤組成物]
本発明の第四の態様の紫外線吸収剤組成物は、上述した本発明の第一の態様の銅含有層状複水酸化物を含む。
紫外線吸収剤組成物は、他の成分を含んでいてもよい。
他の成分としては、紫外線吸収剤組成物に通常、用いられる公知の成分であれば特に限定されない。
[Ultraviolet absorber composition]
The ultraviolet absorbent composition of the fourth aspect of the present invention contains the copper-containing layered double hydroxide of the first aspect of the present invention described above.
The ultraviolet absorber composition may contain other components.
Other components are not particularly limited as long as they are known components that are usually used in ultraviolet absorbent compositions.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。本発明の実施の形態は、本発明の要旨を変更しない限り、種々の変形が可能である。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these. The embodiments of the present invention can be modified in various ways without changing the gist of the present invention.

[測定・評価方法]
<エネルギー分散型X線分析>
銅含有層状複水酸化物について、エネルギー分散型X線分析(EDX(又はEDS):Energy Dispersive X-ray spectroscopy)法により、以下の測定条件により測定を行った。測定は、電界放射型走査電子顕微鏡(FE-SEM)(日本電子株式会社製、製品名「JSM6500FS」)を使用し、元素分析はEDS(日本電子株式会社製、製品名「JSM-6460LA」)を用い、簡易定量分析(ZAF法)で、加速電圧25kV、真空度5.00×10-4Pa以下、照射電流10A、照射時間200sの条件で行った。測定試料はアルミニウム板(10mm×10mm)に導電テープ(日新EM株式会社製、製品名「7321」)で固定し、24時間、室温(20℃)で真空乾燥機(アズワン株式会社製、製品名「KVO-300」)を用いて乾燥させた。その後、オスミウム・プラズマコーター(フィルジェン株式会社製、製品名「OPC60A」)を用い、オスミウムを12nmコーティングした。
[Measurement/evaluation method]
<Energy dispersive X-ray analysis>
The copper-containing layered double hydroxide was measured by energy dispersive X-ray spectroscopy (EDX (or EDS)) under the following measurement conditions. A field emission scanning electron microscope (FE-SEM) (manufactured by JEOL Ltd., product name "JSM6500FS") is used for measurement, and elemental analysis is performed by EDS (manufactured by JEOL Ltd., product name "JSM-6460LA"). was used, and a simple quantitative analysis (ZAF method) was performed under the conditions of an acceleration voltage of 25 kV, a degree of vacuum of 5.00×10 −4 Pa or less, an irradiation current of 10 A, and an irradiation time of 200 s. The measurement sample was fixed to an aluminum plate (10 mm × 10 mm) with a conductive tape (manufactured by Nisshin EM Co., Ltd., product name "7321"), and dried at room temperature (20 ° C.) for 24 hours in a vacuum dryer (manufactured by AS ONE Corporation, product dried under the name "KVO-300"). After that, using an osmium plasma coater (manufactured by Filgen, product name “OPC60A”), osmium was coated to a thickness of 12 nm.

<粉末X線回折>
銅含有層状複水酸化物及び酸化銅について、粉末X線回折(XRD:Power X-ray Diffraction)により、以下の測定条件により測定を行った。測定は、X線回折装置(リガク株式会社製、製品名「RINT2200」)を使用し、ターゲットはCo、モノクロメータを使用し、分析ソフト(リガク株式会社製、製品名「JADE6」)で結晶相の同定を行った。測定試料は、めのう乳鉢で微細に粉砕し、深さ0.5mmのくぼみをつけたガラス板製(20×18mm)の試料ホルダ(リガク株式会社製)に測定試料を充填し、回折面が出るようにX線回折装置に取り付けて測定を行った。
(測定条件)
・スキャン範囲:10~60°、
・サンプリング幅:0.02°、
・スキャンスピード:2.0°/min、
・印加電圧:40kV、
・印加電流:20mA、
・発散スリット:1°、
・散乱スリット:0.05mm、
・受光スリット:0.3mm。
<Powder X-ray diffraction>
Copper-containing layered double hydroxide and copper oxide were measured by powder X-ray diffraction (XRD: Power X-ray Diffraction) under the following measurement conditions. For the measurement, an X-ray diffractometer (manufactured by Rigaku Co., Ltd., product name "RINT2200") is used, the target is Co, a monochromator is used, and the crystal phase is determined with analysis software (manufactured by Rigaku Co., Ltd., product name "JADE6"). was identified. The measurement sample was finely pulverized in an agate mortar, filled in a sample holder (manufactured by Rigaku Corporation) made of a glass plate (20 × 18 mm 2 ) with a 0.5 mm deep recess, and the diffraction surface was Measurement was carried out by attaching it to an X-ray diffraction device so that it would come out.
(Measurement condition)
・Scan range: 10 to 60 degrees,
・Sampling width: 0.02°,
・Scan speed: 2.0°/min,
・Applied voltage: 40 kV,
・Applied current: 20 mA,
・Divergence slit: 1°,
Scattering slit: 0.05 mm,
- Light-receiving slit: 0.3 mm.

<フーリエ変換赤外分光法>
銅含有層状複水酸化物について、フーリエ変換赤外分光法(FT-IR:Fourier Transform Infrared Spectroscopy)により、以下の測定条件により測定を行った。測定は、フーリエ変換赤外分光装置(日本分光株式会社製、製品名「FT/IR-430」)を使用し、分析ソフト(日本分光株式会社製、製品名「Spectra Manager」)を用いてスペクトル解析を行った。測定試料はKBr剤法で作製した。KBr(特級、富士フイルム和光純薬株式会社製)微粉末に対し0.1質量%の割合で測定試料を加えてめのう乳鉢で粉砕し、よく混合した後、錠剤成形器に入れ、油圧成形器(日本分光株式会社製、製品名「MP-1」)で加圧した。
(測定条件)
・測定範囲:400~4000cm-1
・積算回数:100回、
・分解能:4cm-1
<Fourier transform infrared spectroscopy>
The copper-containing layered double hydroxide was measured by Fourier transform infrared spectroscopy (FT-IR) under the following measurement conditions. Measurement is performed using a Fourier transform infrared spectrometer (manufactured by JASCO Corporation, product name "FT/IR-430"), and analysis software (manufactured by JASCO Corporation, product name "Spectra Manager"). I did the analysis. A measurement sample was prepared by the KBr agent method. KBr (special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) fine powder is added to the measurement sample at a rate of 0.1% by mass, pulverized with an agate mortar, mixed well, placed in a tablet press, and then placed in a hydraulic press. (manufactured by JASCO Corporation, product name "MP-1").
(Measurement condition)
・Measurement range: 400 to 4000 cm -1 ,
・The number of accumulated times: 100 times,
・Resolution: 4 cm −1 .

<誘導結合プラズマによる組成分析>
(検量線の作成)
超純水(Milli-Q水)500mLに硝酸(HNO、分子量63.01、一級、富士フイルム和光純薬株式会社製)40mLをゆっくり滴下し、1M硝酸を調製した。
Cu標準液は、以下の通り調製した。銅標準液(Cu 1000)(Copper Standard Solution(Cu 1000)、1003mg/L、富士フイルム和光純薬株式会社製)を5mLのホールピペット(JIS規格、±0.015mL、柴田化学株式会社製)で5mLはかりとり、50mLのメスフラスコ(JIS規格、±0.06mL、アズワン株式会社製)に入れ、全量が50mLになるまで1M硝酸を加えてこれを100ppmのCu標準液とした。100ppmのCu標準液を同様に10倍希釈し、10ppmのCu標準液とした。100ppmのCu標準液をホールピペットで5mLはかりとり、100mLのメスフラスコ(JIS規格、±0.10mL、アズワン株式会社製)に入れ、全量が100mLになるまで1M硝酸を加えてこれを5ppmのCu標準液とした。
Al標準液についてもCu標準液と同様の手順で、100ppm、10ppm、5ppmの標準液を調製した。
誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分析装置(株式会社日立ハイテクサイエンス製、製品名「VISTA-MPX」)でこれらのCu標準液及びAl標準液とブランク(1M硝酸)の定量分析をし、Cu及びAlの検量線をそれぞれ作成した。
<Composition analysis by inductively coupled plasma>
(Preparation of calibration curve)
To 500 mL of ultrapure water (Milli-Q water), 40 mL of nitric acid (HNO 3 , molecular weight 63.01, first grade, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was slowly added dropwise to prepare 1M nitric acid.
A Cu standard solution was prepared as follows. Copper standard solution (Cu 1000) (Copper Standard Solution (Cu 1000), 1003 mg / L, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with a 5 mL whole pipette (JIS standard, ± 0.015 mL, manufactured by Shibata Chemical Co., Ltd.) 5 mL was weighed out and placed in a 50 mL volumetric flask (JIS standard, ±0.06 mL, manufactured by AS ONE Corporation), and 1 M nitric acid was added until the total volume reached 50 mL to prepare a 100 ppm Cu standard solution. A 100 ppm Cu standard solution was similarly diluted 10-fold to obtain a 10 ppm Cu standard solution. Weigh 5 mL of a 100 ppm Cu standard solution with a whole pipette, place it in a 100 mL volumetric flask (JIS standard, ±0.10 mL, manufactured by AS ONE Corporation), add 1 M nitric acid until the total amount reaches 100 mL, and add 5 ppm Cu. It was used as a standard solution.
As for the Al standard solution, standard solutions of 100 ppm, 10 ppm and 5 ppm were prepared in the same manner as the Cu standard solution.
Quantitative analysis of these Cu standard solutions and Al standard solutions and blanks (1M nitric acid) was performed using an inductively coupled plasma (ICP) emission spectrometer (manufactured by Hitachi High-Tech Science Co., Ltd., product name “VISTA-MPX”). , Cu and Al were prepared respectively.

(測定試料の調製)
1M硝酸10mLに銅含有層状複水酸化物0.002gを入れ、完全に溶けるまで撹拌させた溶液について、ICP発光分析装置で定量分析し、先に作成した検量線から組成分析を行った。
(Preparation of measurement sample)
0.002 g of copper-containing layered double hydroxide was added to 10 mL of 1 M nitric acid, and the solution was stirred until completely dissolved. The solution was subjected to quantitative analysis using an ICP emission spectrometer, and composition analysis was performed using the previously prepared calibration curve.

<硫化水素の吸着試験>
(硫化水素の調製)
500mL四つ口フラスコの2つの側管にそれぞれシリコン栓を取り付け、1つの側管にガラス管付きシリコン栓を取り付けた。
別途、200mLの三角フラスコに超純水(Milli-Q水)を150mL入れ、ガラス管及びバブリング管をシリコン栓に通して取り付けた。
四つ口フラスコに取り付けたガラス管と、三角フラスコに取り付けたバブリング管とをシリコンチューブと二方コックを介して接続した。また、三角フラスコに取り付けたガラス管には、シリコンチューブを介して1mol/Lの水酸化ナトリウム水溶液を満たしたガス洗浄瓶を接続した。このガス洗浄瓶には、シリコンチューブを介して塩化カルシウム管を取り付けた。
四つ口フラスコに硫化鉄(1級、富士フイルム和光純薬株式会社製)を分析天秤で3g秤量して入れた。また、分液漏斗から1mol/Lの希硫酸を15mL加え、硫化水素を発生させた。発生させた硫化水素を三角フラスコ内の超純水(Milli-Q水)に通し、約15分間バブリングした。
なお、1mol/Lの希硫酸は硫酸(特級、富士フイルム和光純薬株式会社製)をメスシリンダーで秤量し、36倍に希釈した。また、これらの操作はドラフトチャンバー内で、ゴム手袋、保護メガネ、ガスマスクを装着して行った。
<Hydrogen sulfide adsorption test>
(Preparation of hydrogen sulfide)
Two side tubes of a 500 mL four-necked flask were each fitted with a silicon stopper, and one side tube was fitted with a silicon stopper with a glass tube.
Separately, 150 mL of ultrapure water (Milli-Q water) was placed in a 200 mL Erlenmeyer flask, and a glass tube and a bubbling tube were attached through a silicon stopper.
A glass tube attached to a four-necked flask and a bubbling tube attached to an Erlenmeyer flask were connected via a silicon tube and a two-way cock. A gas washing bottle filled with a 1 mol/L sodium hydroxide aqueous solution was connected through a silicon tube to the glass tube attached to the Erlenmeyer flask. A calcium chloride tube was attached to the gas washing bottle via a silicon tube.
3 g of iron sulfide (class 1, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was weighed using an analytical balance and placed in a four-necked flask. Further, 15 mL of 1 mol/L diluted sulfuric acid was added from a separatory funnel to generate hydrogen sulfide. The generated hydrogen sulfide was passed through ultrapure water (Milli-Q water) in an Erlenmeyer flask and bubbled for about 15 minutes.
1 mol/L dilute sulfuric acid was obtained by weighing sulfuric acid (special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with a graduated cylinder and diluting it 36 times. These operations were performed in a draft chamber with rubber gloves, protective glasses, and a gas mask on.

(吸着・採取装置)
市販の200mL三角フラスコに撹拌子を入れ、平栓を取り付けた。この三角フラスコにネジ付側管を取り付けて二口フラスコとした。取り付けた側管にセプタム付ホールキャップを取り付けた。
先に調製した硫化水素水をホールピペットにて1mL秤量し、超純水(Milli-Q水)を加えて10倍に希釈し、全容量150mLの硫化水素水(HS水)を調製した。調製直後はHS水が気相と液相で平衡状態になろうとするため、気相・液相共に逐一、硫化水素濃度が変化する。そのため平衡状態に早く移行させるためにホットスターラーを用いて室温(20℃)、300rpmで60分撹拌した。
銅含有層状複水酸化物0.1gを分析天秤で秤量し、二口フラスコ中のHS水へ投下した。HS水を撹拌し、投下直後(0時間経過後)、1時間経過後、2時間経過後、3時間経過後、4時間経過後、5時間経過後、24時間経過後フラスコ中のHS水溶液から、マイクロシリンジ(ハミルトン社製、製品名「701N標準型PT-2 10μL」)により、2μLのHS水溶液を採取し、採取した気体及びHS水の濃度は炎光光度検出器付ガスクロマトグラフで測定した。
なお、HS水の採取にはソルベントフラッシュ注入法を用いた。ソルベントフラッシュ注入法とは、超純水(Milli-Q水)1μL、空気、測定溶液(HS水)2μL、空気をこの順にシリンジ内に導入することで、針中の残存試料などを回避し、測定の誤差を抑えることができる方法である。
(adsorption/sampling device)
A commercially available 200 mL Erlenmeyer flask was equipped with a stirrer and fitted with a flat stopper. A side tube with a screw was attached to this Erlenmeyer flask to make a two-necked flask. A hole cap with a septum was attached to the attached side tube.
1 mL of the previously prepared hydrogen sulfide water was weighed with a whole pipette, and ultrapure water (Milli-Q water) was added to dilute 10-fold to prepare hydrogen sulfide water (H 2 S water) with a total volume of 150 mL. . Immediately after preparation, the H 2 S water tries to reach an equilibrium state between the gas phase and the liquid phase, so the hydrogen sulfide concentration changes one by one in both the gas phase and the liquid phase. Therefore, a hot stirrer was used to stir at room temperature (20° C.) and 300 rpm for 60 minutes in order to rapidly shift to an equilibrium state.
0.1 g of copper-containing layered double hydroxide was weighed with an analytical balance and dropped into H 2 S water in a two-necked flask. Stir H 2 S water, immediately after dropping (after 0 hours), after 1 hour, after 2 hours, after 3 hours, after 4 hours, after 5 hours, after 24 hours H in the flask 2 μL of H 2 S aqueous solution was sampled from the 2 S aqueous solution using a microsyringe (manufactured by Hamilton, product name “701N standard type PT-2 10 μL”), and the concentration of the sampled gas and H 2 S water was determined by flame photometry. Measured with a gas chromatograph with a detector.
A solvent flash injection method was used to collect the H 2 S water. In the solvent flash injection method, 1 μL of ultrapure water (Milli-Q water), air, 2 μL of the measurement solution (H 2 S water), and air are introduced into the syringe in this order to avoid residual sample in the needle. It is a method that can suppress measurement errors.

(検量線の作成)
以下の方法で検量線を作成した。
容器には5.0L丸型セパラブルフラスコに四口セパラブルカバーを取り付けたものを使用した。
セパラブルカバーの主管には分液漏斗を取り付け、2つの側管にはセプタム付ホールキャップを取り付けて、1つの側管には二方コックを取り付けて気体の出入が可能な状態にした。
まず、硫化水素吸着に対して影響し得る分子を取り除くため、以下の処理を施した。容器にシリコンチューブを介して、真空計(株式会社イチネン TASCO製、製品名「TA142BH」)と二方コックをつないだ。二方コックにつないだシリコンチューブを介してダイヤフラムポンプ(株式会社アルバック製、製品名「200Pa DAU-20」)へ接続し、容器内を脱気した。その後、ダイヤフラムポンプを高純度硫化水素ボンベにつなぎかえ、容器内が常圧になるまで高純度硫化水素ガス(48.5ppm)を導入した。発生した硫化水素を含む気体をガスタイトシリンジ(株式会社伊藤製作所製、製品名「MS-GAN025」)を用いて、セパラブルフラスコからセプタム付ホールキャップを介して、0.10mL、0.15mL採取し、炎光光度検出器付ガスクロマトグラフ(株式会社島津製作所製、製品名「FPD-GC、GC-14B」)に導入した。
測定値と0mLのデータを加えた3点で検量線を作成した。
(Preparation of calibration curve)
A calibration curve was created by the following method.
A 5.0 L round separable flask with a four-necked separable cover was used as the container.
A separating funnel was attached to the main tube of the separable cover, a hole cap with a septum was attached to two side tubes, and a two-way cock was attached to one side tube to allow gas to enter and exit.
First, the following treatment was performed to remove molecules that could affect hydrogen sulfide adsorption. A vacuum gauge (manufactured by Ichinen TASCO Co., Ltd., product name "TA142BH") and a two-way cock were connected to the container via a silicon tube. A diaphragm pump (manufactured by ULVAC, Inc., product name “200 Pa DAU-20”) was connected via a silicon tube connected to a two-way cock to deaerate the inside of the container. After that, the diaphragm pump was replaced with a high-purity hydrogen sulfide cylinder, and high-purity hydrogen sulfide gas (48.5 ppm) was introduced until the pressure in the vessel reached normal pressure. Using a gas-tight syringe (manufactured by Ito Seisakusho Co., Ltd., product name “MS-GAN025”), 0.10 mL and 0.15 mL of the generated gas containing hydrogen sulfide was collected from a separable flask through a hole cap with a septum. and introduced into a gas chromatograph with a flame photometric detector (manufactured by Shimadzu Corporation, product name "FPD-GC, GC-14B").
A calibration curve was created at 3 points including measured values and 0 mL data.

<紫外-可視分光法>
銅含有層状複水酸化物について、紫外-可視分光法(UV-VIS:Ultraviolet-Visible Absorption Spectroscopy)により、以下の測定条件により測定を行った。測定は、紫外可視近赤外(UV-Vis-NIR)分光光度計(株式会社島津製作所製、製品名「Solid Spec3700」)を使用し、積分球を用いて全光線反射の測定を行った。
(測定条件)
・測定波長:240~2500nm、
・スキャンスピード:中速、
・スリット幅:20nm、
・サンプリングピッチ:1.0nm、
・標準白板:標準反射板スペクトラロン(Labsphere社製)。
<Ultraviolet-visible spectroscopy>
The copper-containing layered double hydroxide was measured by UV-VIS (Ultraviolet-Visible Absorption Spectroscopy) under the following measurement conditions. For the measurement, an ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrophotometer (manufactured by Shimadzu Corporation, product name “Solid Spec 3700”) was used, and total light reflection was measured using an integrating sphere.
(Measurement condition)
・Measurement wavelength: 240 to 2500 nm,
・Scan speed: medium speed,
・Slit width: 20 nm,
・ Sampling pitch: 1.0 nm,
- Standard white plate: Standard reflector Spectralon (manufactured by Labsphere).

[実施例1]
分析天秤(株式会社島津製作所製、製品名「ATX224」)で炭酸ナトリウム(NaCO、分子量105.99、特級、富士フイルム和光純薬株式会社製)を3.18g(0.03mol)秤量し、メスシリンダーで採取した超純水(Milli-Q水)300mLに長さ2cmの撹拌子とホットスターラー(アズワン株式会社製、製品名「REXIM RSH-10)を用いて、室温(20℃)、700rpmで10分撹拌して溶解させ、水溶液(S3)として0.1Mの炭酸ナトリウム水溶液を調製した。以下同様にして試薬を超純水に溶解した。
超純水(Milli-Q水)100mLに硝酸アルミニウム九水和物(Al(NO・9HO、分子量375.13、特級、富士フイルム和光純薬株式会社製)1.88g(0.005mol)と塩化銅(II)二水和物(CuCl・2HO、分子量170.48、特級、富士フイルム和光純薬株式会社製)2.56g(0.015mol)を溶解させ、水溶液(S12)としてアルミニウムと銅の混合溶液(0.05MのAl(NO・9HO+0.15MのCuCl・2HO)を調製した。
また、超純水(Milli-Q水)100mLに水酸化ナトリウム(NaOH、分子量40.00、特級、富士フイルム和光純薬株式会社)8.00gを溶解させ、2Mの水酸化ナトリウム水溶液を調製した。
[Example 1]
3.18 g (0.03 mol) of sodium carbonate (Na 2 CO 3 , molecular weight 105.99, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was weighed using an analytical balance (manufactured by Shimadzu Corporation, product name “ATX224”). Then, 300 mL of ultrapure water (Milli-Q water) collected with a measuring cylinder was stirred at room temperature (20 ° C.) using a stirrer with a length of 2 cm and a hot stirrer (manufactured by AS ONE Co., Ltd., product name “REXIM RSH-10”). , and 700 rpm for 10 minutes to prepare a 0.1 M aqueous solution of sodium carbonate as an aqueous solution (S3).
1.88 g ( 0 .005 mol) and 2.56 g (0.015 mol) of copper (II) chloride dihydrate (CuCl 2 2H 2 O, molecular weight 170.48, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), and an aqueous solution A mixed solution of aluminum and copper (0.05M Al(NO 3 ) 3.9H 2 O+0.15M CuCl 2.2H 2 O) was prepared as (S12).
Further, 8.00 g of sodium hydroxide (NaOH, molecular weight 40.00, special grade, Fujifilm Wako Pure Chemical Industries, Ltd.) was dissolved in 100 mL of ultrapure water (Milli-Q water) to prepare a 2 M sodium hydroxide aqueous solution. .

炭酸ナトリウム水溶液を長さ2cmの撹拌子とホットスターラーを用いて、室温(20℃)、700rpmで撹拌しながら、アルミニウムと銅の混合溶液をビュレットにて、10±0.5mL/minの速度で滴下した。混合溶液の滴下中、20℃におけるpHが10.0±0.2となるように適宜、水酸化ナトリウム水溶液を加えた。混合溶液の滴下終了後、反応液の温度が65℃を保持するように、ホットスターラーを温度90℃、回転数700rpmに設定し、20時間撹拌し、沈殿物を得た。反応液の色は、20時間の撹拌前は白く濁った水色であったが、20時間の撹拌後は黒色であった。また、20時間の撹拌後の反応液の温度は63.8℃であった。
黒色の沈殿物を漏斗及び吸引鐘を備えたアスピレーター(東京理化器械株式会社製、製品名「A-3S、EYELA」)を用い、ろ紙(5C、アズワン株式会社製)で吸引ろ過により固液分離し,超純水(Milli-Q水)200mLで3回洗浄した。得られた反応生成物をプログラム定温乾燥機(アズワン株式会社製、製品名「DO-300PC」)中で80℃、38時間乾燥させた後、めのう乳鉢で解砕し、銅含有層状複水酸化物(A)を得た。
なお、本実施例においてpH測定には、pHメーター(株式会社堀場製作所製、製品名「D-51」)を用いた。超純水(Milli-Q水)は、超純水製造装置(メルク株式会社製、製品名「Direct-Q」)から採取したものを用いた。
Using a stirrer with a length of 2 cm and a hot stirrer, the sodium carbonate aqueous solution is stirred at room temperature (20° C.) and 700 rpm, while the mixed solution of aluminum and copper is stirred with a burette at a rate of 10 ± 0.5 mL / min. Dripped. During the dropwise addition of the mixed solution, an aqueous sodium hydroxide solution was appropriately added so that the pH at 20° C. was 10.0±0.2. After the dropwise addition of the mixed solution was completed, the hot stirrer was set at a temperature of 90°C and a rotation speed of 700 rpm so as to maintain the temperature of the reaction solution at 65°C, and the mixture was stirred for 20 hours to obtain a precipitate. The color of the reaction solution was white and cloudy light blue before stirring for 20 hours, but was black after stirring for 20 hours. Moreover, the temperature of the reaction solution after stirring for 20 hours was 63.8°C.
Using an aspirator equipped with a funnel and a suction bell (manufactured by Tokyo Rikakikai Co., Ltd., product name "A-3S, EYELA"), the black precipitate is solid-liquid separated by suction filtration with filter paper (5C, manufactured by AS ONE Co., Ltd.). and washed three times with 200 mL of ultrapure water (Milli-Q water). The obtained reaction product was dried at 80° C. for 38 hours in a programmed constant temperature dryer (manufactured by AS ONE Corporation, product name “DO-300PC”), and then pulverized with an agate mortar to obtain a copper-containing layered double hydroxide. A product (A) was obtained.
In this example, a pH meter (manufactured by Horiba Ltd., product name “D-51”) was used for pH measurement. Ultrapure water (Milli-Q water) was collected from an ultrapure water production apparatus (manufactured by Merck Ltd., product name “Direct-Q”).

得られた銅含有層状複水酸化物(A)について、エネルギー分散型X線分析(EDX)を行った。図1にEDXスペクトルを示す。
また、銅含有層状複水酸化物(A)について、粉末X線回折(XRD)による測定を行った。結果を図2に示す。
また、酸化銅(II)について、粉末X線回折(XRD)による測定を行った。結果を図2に示す。
The obtained copper-containing layered double hydroxide (A) was subjected to energy dispersive X-ray analysis (EDX). FIG. 1 shows the EDX spectrum.
Moreover, the copper-containing layered double hydroxide (A) was measured by powder X-ray diffraction (XRD). The results are shown in FIG.
Further, copper (II) oxide was measured by powder X-ray diffraction (XRD). The results are shown in FIG.

[実施例2]
分析天秤(株式会社島津製作所製、製品名「ATX224」)で炭酸ナトリウム(NaCO、分子量105.99、特級、富士フイルム和光純薬株式会社製)を1.59g(0.015mol)秤量し、メスシリンダーで採取した超純水(Milli-Q水)150mLに長さ2cmの撹拌子とホットスターラー(アズワン株式会社製、製品名「REXIM RSH-10)を用いて、室温(20℃)、700rpmで10分撹拌して溶解させ、水溶液(S3)として0.1Mの炭酸ナトリウム水溶液を調製した。以下同様にして試薬を超純水に溶解した。
超純水(Milli-Q水)50mLに硝酸アルミニウム九水和物(Al(NO・9HO、分子量375.13、特級、富士フイルム和光純薬株式会社製)1.88g(0.005mol)と塩化銅(II)二水和物(CuCl・2HO、分子量170.48、特級、富士フイルム和光純薬株式会社製)1.71g(0.01mol)を溶解させ、水溶液(S12)としてアルミニウムと銅の混合溶液(0.1MのAl(NO・9HO+0.2MのCuCl・2HO)を調製した。
また、超純水(Milli-Q水)50mLに水酸化ナトリウム(NaOH、分子量40.00、特級、富士フイルム和光純薬株式会社)4.01gを溶解させ、2Mの水酸化ナトリウム水溶液を調製した。
[Example 2]
1.59 g (0.015 mol) of sodium carbonate (Na 2 CO 3 , molecular weight 105.99, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was weighed using an analytical balance (manufactured by Shimadzu Corporation, product name “ATX224”). Then, 150 mL of ultrapure water (Milli-Q water) collected with a graduated cylinder was stirred at room temperature (20 ° C.) using a stirrer with a length of 2 cm and a hot stirrer (manufactured by AS ONE Co., Ltd., product name “REXIM RSH-10”). , and 700 rpm for 10 minutes to prepare a 0.1 M aqueous solution of sodium carbonate as an aqueous solution (S3).
1.88 g ( 0 .005 mol) and copper (II) chloride dihydrate (CuCl 2 2H 2 O, molecular weight 170.48, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) 1.71 g (0.01 mol) are dissolved, and an aqueous solution is prepared. A mixed solution of aluminum and copper (0.1M Al( NO 3 ) 3.9H 2 O+0.2M CuCl 2.2H 2 O) was prepared as (S12).
Further, 4.01 g of sodium hydroxide (NaOH, molecular weight 40.00, special grade, Fujifilm Wako Pure Chemical Industries, Ltd.) was dissolved in 50 mL of ultrapure water (Milli-Q water) to prepare a 2 M sodium hydroxide aqueous solution. .

炭酸ナトリウム水溶液を長さ2cmの撹拌子とホットスターラーを用いて、室温(20℃)、700rpmで撹拌しながら、アルミニウムと銅の混合溶液をビュレットにて、10±0.5mL/minの速度で滴下した。混合溶液の滴下中、20℃におけるpHが10.0±0.2となるように適宜、水酸化ナトリウム水溶液を加えた。混合溶液の滴下終了後、反応液の温度が40℃を保持するように、ホットスターラーを温度46℃、回転数700rpmに設定し、22時間撹拌し、沈殿物を得た。反応液の色は、22時間の撹拌の前後で変化はなく、白く濁った水色であった。また、22時間の撹拌後の反応液の温度は39.9℃であった。
白く濁った水色の沈殿物を漏斗及び吸引鐘を備えたアスピレーター(東京理化器械株式会社製、製品名「A-3S、EYELA」)を用い、ろ紙(5C、アズワン株式会社製)で吸引ろ過により固液分離し,超純水(Milli-Q水)200mLで3回洗浄した。得られた反応生成物をプログラム定温乾燥機(アズワン株式会社製、製品名「DO-300PC」)中で50℃、26時間乾燥させた後、めのう乳鉢で解砕し、銅含有層状複水酸化物(B)を得た。
Using a stirrer with a length of 2 cm and a hot stirrer, the sodium carbonate aqueous solution is stirred at room temperature (20° C.) and 700 rpm, while the mixed solution of aluminum and copper is stirred with a burette at a rate of 10 ± 0.5 mL / min. Dripped. During the dropwise addition of the mixed solution, an aqueous sodium hydroxide solution was appropriately added so that the pH at 20° C. was 10.0±0.2. After the dropwise addition of the mixed solution was completed, the hot stirrer was set at a temperature of 46°C and a rotation speed of 700 rpm so as to maintain the temperature of the reaction solution at 40°C, and the mixture was stirred for 22 hours to obtain a precipitate. The color of the reaction solution did not change before and after stirring for 22 hours, and was a cloudy white light blue. Moreover, the temperature of the reaction solution after stirring for 22 hours was 39.9°C.
Using an aspirator (manufactured by Tokyo Rikakikai Co., Ltd., product name "A-3S, EYELA") equipped with a funnel and a suction bell, a white cloudy light blue precipitate was filtered by suction with filter paper (5C, manufactured by AS ONE Co., Ltd.). Solid-liquid separation was performed, and washing was performed three times with 200 mL of ultrapure water (Milli-Q water). The resulting reaction product was dried in a programmed constant temperature dryer (manufactured by AS ONE Corporation, product name “DO-300PC”) at 50 ° C. for 26 hours, and then pulverized with an agate mortar to obtain a copper-containing layered double hydroxide. A product (B) was obtained.

得られた銅含有層状複水酸化物(B)について、粉末X線回折(XRD)による測定を行った。結果を図2に示す。
また、銅含有層状複水酸化物(B)について、フーリエ変換赤外分光法(FT-IR)による測定を行った。結果を図3に示す。
また、銅含有層状複水酸化物(B)について、組成分析を行った。結果を表1に示す。
また、銅含有層状複水酸化物(B)について、硫化水素の吸着試験を行った。15倍希釈のHS水に銅含有層状複水酸化物(B)を投入した後の密閉容器中のHS水とヘッドスペースの全HS濃度の経時変化を表2に示す。また、銅含有層状複水酸化物(B)を投入する前の密閉容器中の全HS濃度を100%とし、銅含有層状複水酸化物(B)を投入した後の容器中の全HS濃度の変化率を図4に示す。また、銅含有層状複水酸化物(B)を投入した後の密閉容器中のHS水とヘッドスペースのHS濃度の経時変化を図5に示す。
The obtained copper-containing layered double hydroxide (B) was measured by powder X-ray diffraction (XRD). The results are shown in FIG.
Further, the copper-containing layered double hydroxide (B) was measured by Fourier transform infrared spectroscopy (FT-IR). The results are shown in FIG.
Also, a composition analysis was performed on the copper-containing layered double hydroxide (B). Table 1 shows the results.
In addition, a hydrogen sulfide adsorption test was performed on the copper-containing layered double hydroxide (B). Table 2 shows changes over time in the total H 2 S concentration in the H 2 S water in the closed vessel and in the headspace after adding the copper-containing layered double hydroxide (B) to the 15-fold diluted H 2 S water. Further, the total H 2 S concentration in the sealed container before adding the copper-containing layered double hydroxide (B) was set to 100%, and the total concentration in the container after adding the copper-containing layered double hydroxide (B) was The rate of change of H 2 S concentration is shown in FIG. FIG. 5 shows changes over time in the H 2 S concentration in the closed container and the H 2 S concentration in the headspace after the copper-containing layered double hydroxide (B) was added.

[実施例3]
分析天秤(株式会社島津製作所製、製品名「ATX224」)で炭酸ナトリウム(NaCO、分子量105.99、特級、富士フイルム和光純薬株式会社製)を1.59g(0.015mol)秤量し、メスシリンダーで採取した超純水(Milli-Q水)150mLに長さ2cmの撹拌子とホットスターラー(アズワン株式会社製、製品名「REXIM RSH-10)を用いて、室温(20℃)、700rpmで10分撹拌して溶解させ、水溶液(S3)として0.1Mの炭酸ナトリウム水溶液を調製した。以下同様にして試薬を超純水に溶解した。
超純水(Milli-Q水)50mLに硝酸アルミニウム九水和物(Al(NO・9HO、分子量375.13、特級、富士フイルム和光純薬株式会社製)1.87g(0.005mol)と塩化銅(II)二水和物(CuCl・2HO、分子量170.48、特級、富士フイルム和光純薬株式会社製)1.70g(0.01mol)を溶解させ、水溶液(S12)としてアルミニウムと銅の混合溶液(0.1MのAl(NO・9HO+0.2MのCuCl・2HO)を調製した。
また、超純水(Milli-Q水)50mLに水酸化ナトリウム(NaOH、分子量40.00、特級、富士フイルム和光純薬株式会社)4.02gを溶解させ、2Mの水酸化ナトリウム水溶液を調製した。
[Example 3]
1.59 g (0.015 mol) of sodium carbonate (Na 2 CO 3 , molecular weight 105.99, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was weighed using an analytical balance (manufactured by Shimadzu Corporation, product name “ATX224”). Then, 150 mL of ultrapure water (Milli-Q water) collected with a graduated cylinder was stirred at room temperature (20 ° C.) using a stirrer with a length of 2 cm and a hot stirrer (manufactured by AS ONE Co., Ltd., product name “REXIM RSH-10”). , and 700 rpm for 10 minutes to prepare a 0.1 M aqueous solution of sodium carbonate as an aqueous solution (S3).
1.87 g ( 0 .005 mol) and copper (II) chloride dihydrate (CuCl 2 2H 2 O, molecular weight 170.48, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) 1.70 g (0.01 mol) are dissolved, and an aqueous solution is prepared. A mixed solution of aluminum and copper (0.1M Al( NO 3 ) 3.9H 2 O+0.2M CuCl 2.2H 2 O) was prepared as (S12).
In addition, 4.02 g of sodium hydroxide (NaOH, molecular weight 40.00, special grade, Fujifilm Wako Pure Chemical Industries, Ltd.) was dissolved in 50 mL of ultrapure water (Milli-Q water) to prepare a 2 M sodium hydroxide aqueous solution. .

炭酸ナトリウム水溶液を長さ2cmの撹拌子とホットスターラーを用いて、室温(20℃)、700rpmで撹拌しながら、アルミニウムと銅の混合溶液をビュレットにて、10±0.5mL/minの速度で滴下した。混合溶液の滴下中、20℃におけるpHが10.0±0.2となるように適宜、水酸化ナトリウム水溶液を加えた。混合溶液の滴下終了後、反応液の温度が50℃を保持するように、ホットスターラーを温度71℃、回転数700rpmに設定し、22時間撹拌し、沈殿物を得た。反応液の色は、22時間の撹拌の前後で変化はなく、白く濁った水色であった。また、22時間の撹拌後の反応液の温度は49.7℃であった。
白く濁った水色の沈殿物を漏斗及び吸引鐘を備えたアスピレーター(東京理化器械株式会社製、製品名「A-3S、EYELA」)を用い、ろ紙(5C、アズワン株式会社製)で吸引ろ過により固液分離し,超純水(Milli-Q水)200mLで3回洗浄した。得られた反応生成物をプログラム定温乾燥機(アズワン株式会社製、製品名「DO-300PC」)中で50℃、5時間乾燥させた後、めのう乳鉢で解砕し、銅含有層状複水酸化物(C)を得た。
Using a stirrer with a length of 2 cm and a hot stirrer, the sodium carbonate aqueous solution is stirred at room temperature (20° C.) and 700 rpm, while the mixed solution of aluminum and copper is stirred with a burette at a rate of 10 ± 0.5 mL / min. Dripped. During the dropwise addition of the mixed solution, an aqueous sodium hydroxide solution was appropriately added so that the pH at 20° C. was 10.0±0.2. After the dropwise addition of the mixed solution was completed, a hot stirrer was set at a temperature of 71°C and a rotation speed of 700 rpm so as to maintain the temperature of the reaction solution at 50°C, and the mixture was stirred for 22 hours to obtain a precipitate. The color of the reaction solution did not change before and after stirring for 22 hours, and was a cloudy white light blue. Moreover, the temperature of the reaction solution after stirring for 22 hours was 49.7°C.
Using an aspirator (manufactured by Tokyo Rikakikai Co., Ltd., product name "A-3S, EYELA") equipped with a funnel and a suction bell, a white cloudy light blue precipitate was filtered by suction with filter paper (5C, manufactured by AS ONE Co., Ltd.). Solid-liquid separation was performed, and washing was performed three times with 200 mL of ultrapure water (Milli-Q water). The resulting reaction product was dried in a programmed constant temperature dryer (manufactured by AS ONE Corporation, product name “DO-300PC”) at 50°C for 5 hours, and then pulverized in an agate mortar to obtain a copper-containing layered double hydroxide. A product (C) was obtained.

得られた銅含有層状複水酸化物(C)について、粉末X線回折(XRD)による測定を行った。結果を図2に示す。
また、銅含有層状複水酸化物(C)について、フーリエ変換赤外分光法(FT-IR)による測定を行った。結果を図3に示す。
また、銅含有層状複水酸化物(C)について、組成分析を行った。結果を表1に示す。
また、銅含有層状複水酸化物(C)について、硫化水素の吸着試験を行った。15倍希釈のHS水に銅含有層状複水酸化物(C)を投入した後の密閉容器中のHS水とヘッドスペースの全HS濃度の経時変化を表2に示す。また、銅含有層状複水酸化物(C)を投入する前の密閉容器中の全HS濃度を100%とし、銅含有層状複水酸化物(C)を投入した後の容器中の全HS濃度の変化率を図4に示す。また、銅含有層状複水酸化物(C)を投入した後の密閉容器中のHS水とヘッドスペースのHS濃度の経時変化を図6に示す。
The obtained copper-containing layered double hydroxide (C) was measured by powder X-ray diffraction (XRD). The results are shown in FIG.
Further, the copper-containing layered double hydroxide (C) was measured by Fourier transform infrared spectroscopy (FT-IR). The results are shown in FIG.
Also, a composition analysis was performed on the copper-containing layered double hydroxide (C). Table 1 shows the results.
In addition, a hydrogen sulfide adsorption test was conducted on the copper-containing layered double hydroxide (C). Table 2 shows changes over time in the total H 2 S concentration in the H 2 S water in the closed vessel and in the headspace after adding the copper-containing layered double hydroxide (C) to the 15-fold diluted H 2 S water. In addition, the total H 2 S concentration in the sealed container before adding the copper-containing layered double hydroxide (C) was set to 100%, and the total concentration in the container after adding the copper-containing layered double hydroxide (C) was The rate of change of H 2 S concentration is shown in FIG. FIG. 6 shows changes over time in the H 2 S concentration in the closed container and the H 2 S concentration in the headspace after the copper-containing layered double hydroxide (C) was added.

[実施例4]
分析天秤(株式会社島津製作所製、製品名「ATX224」)で塩化ナトリウム(NaCl、分子量58.44、特級、富士フイルム和光純薬株式会社製)を1.7532g(0.03mol)秤量し、メスシリンダーで採取した超純水(Milli-Q水)300mLに長さ2cmの撹拌子とホットスターラー(アズワン株式会社製、製品名「REXIM RSH-10)を用いて、室温(20℃)、700rpmで10分撹拌して溶解させ、水溶液(S3)として0.1Mの塩化ナトリウム水溶液を調製した。以下同様にして試薬を超純水に溶解した。
超純水(Milli-Q水)100mLに塩化アルミニウム六水和物(AlCl・6HO、分子量241.43、特級、富士フイルム和光純薬株式会社製)1.2072g(0.005mol)と塩化銅(II)二水和物(CuCl・2HO、分子量170.48、特級、富士フイルム和光純薬株式会社製)2.5573g(0.015mol)を溶解させ、水溶液(S12)としてアルミニウムと銅の混合溶液(0.05MのAlCl・6HO+0.15MのCuCl・2HO)を調製した。
また、超純水(Milli-Q水)50mLに水酸化ナトリウム(NaOH、分子量40.00、特級、富士フイルム和光純薬株式会社)4.02gを溶解させ、2Mの水酸化ナトリウム水溶液を調製した。
[Example 4]
1.7532 g (0.03 mol) of sodium chloride (NaCl, molecular weight 58.44, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was weighed using an analytical balance (manufactured by Shimadzu Corporation, product name “ATX224”). 300 mL of ultrapure water (Milli-Q water) collected in a cylinder is stirred at room temperature (20° C.) at 700 rpm using a stirrer with a length of 2 cm and a hot stirrer (manufactured by AS ONE Corporation, product name “REXIM RSH-10”). The reagent was dissolved by stirring for 10 minutes to prepare a 0.1 M sodium chloride aqueous solution as an aqueous solution (S3), and then dissolved in ultrapure water in the same manner.
1.2072 g (0.005 mol) of aluminum chloride hexahydrate (AlCl 3.6H 2 O, molecular weight 241.43, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) in 100 mL of ultrapure water (Milli-Q water) 2.5573 g (0.015 mol) of copper (II) chloride dihydrate (CuCl 2 .2H 2 O, molecular weight 170.48, special grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was dissolved to obtain an aqueous solution (S12). A mixed solution of aluminum and copper (0.05 M AlCl 3 .6H 2 O + 0.15 M CuCl 2 .2H 2 O) was prepared.
In addition, 4.02 g of sodium hydroxide (NaOH, molecular weight 40.00, special grade, Fujifilm Wako Pure Chemical Industries, Ltd.) was dissolved in 50 mL of ultrapure water (Milli-Q water) to prepare a 2 M sodium hydroxide aqueous solution. .

塩化ナトリウム水溶液を長さ2cmの撹拌子とホットスターラーを用いて、室温(20℃)、700rpmで撹拌しながら、アルミニウムと銅の混合溶液をビュレットにて、10±0.5mL/minの速度で滴下した。混合溶液の滴下中、20℃におけるpHが10.0±0.2となるように適宜、水酸化ナトリウム水溶液を加えた。混合溶液の滴下終了後、反応液の温度が40℃を保持するように、ホットスターラーを温度46℃、回転数700rpmに設定し、20時間撹拌し、沈殿物を得た。反応液の色は、20時間の撹拌の前後で変化はなく、白く濁った水色であった。また、20時間の撹拌後の反応液の温度は39.9℃であった。
白く濁った水色の沈殿物を漏斗及び吸引鐘を備えたアスピレーター(東京理化器械株式会社製、製品名「A-3S、EYELA」)を用い、ろ紙(5C、アズワン株式会社製)で吸引ろ過により固液分離し,超純水(Milli-Q水)200mLで3回洗浄した。得られた反応生成物をプログラム定温乾燥機(アズワン株式会社製、製品名「DO-300PC」)中で50℃、26時間乾燥させた後、めのう乳鉢で解砕し、銅含有層状複水酸化物(D)を得た。
Using a stirrer with a length of 2 cm and a hot stirrer, the sodium chloride aqueous solution is stirred at room temperature (20 ° C.) and 700 rpm, while the mixed solution of aluminum and copper is stirred with a buret at a rate of 10 ± 0.5 mL / min. Dripped. During the dropwise addition of the mixed solution, an aqueous sodium hydroxide solution was appropriately added so that the pH at 20° C. was 10.0±0.2. After the dropwise addition of the mixed solution was completed, a hot stirrer was set at a temperature of 46°C and a rotation speed of 700 rpm so as to maintain the temperature of the reaction solution at 40°C, and the mixture was stirred for 20 hours to obtain a precipitate. The color of the reaction solution did not change before and after stirring for 20 hours, and was a cloudy white light blue color. Moreover, the temperature of the reaction solution after stirring for 20 hours was 39.9°C.
Using an aspirator (manufactured by Tokyo Rikakikai Co., Ltd., product name "A-3S, EYELA") equipped with a funnel and a suction bell, a white cloudy light blue precipitate was filtered by suction with filter paper (5C, manufactured by AS ONE Co., Ltd.). Solid-liquid separation was performed, and washing was performed three times with 200 mL of ultrapure water (Milli-Q water). The resulting reaction product was dried in a programmed constant temperature dryer (manufactured by AS ONE Corporation, product name “DO-300PC”) at 50 ° C. for 26 hours, and then pulverized with an agate mortar to obtain a copper-containing layered double hydroxide. A product (D) was obtained.

得られた銅含有層状複水酸化物(D)について、紫外-可視分光法による測定を行った。結果を図7に示す。 The obtained copper-containing layered double hydroxide (D) was measured by UV-visible spectroscopy. The results are shown in FIG.

Figure 2023107388000001
Figure 2023107388000001

Figure 2023107388000002
Figure 2023107388000002

図1の結果から明らかなように、Cu-Alのhydrotalciteのピークを確認できた。
なお、実施例2で得られた銅含有層状複水酸化物(B)、実施例3で得られた銅含有層状複水酸化物(C)及び実施例4で得られた銅含有層状複水酸化物(D)についても、実施例1と概ね同じ吸収ピークが認められる。
As is clear from the results of FIG. 1, a hydrotalcite peak of Cu—Al could be confirmed.
The copper-containing layered double hydroxide (B) obtained in Example 2, the copper-containing layered double hydroxide (C) obtained in Example 3, and the copper-containing layered double hydroxide obtained in Example 4 Approximately the same absorption peak as in Example 1 is also observed for the oxide (D).

また、図2の結果から明らかなように、実施例1の場合、銅含有層状複水酸化物に由来するピークに加えて、酸化銅(CuO)に由来するピークも確認できた。これは、銅含有層状複水酸化物に加えて、副生成物である酸化銅が生成したことを意味する。一方、実施例2、3の場合、酸化銅(CuO)に由来するピークはほぼ確認できなかった。これらの結果より、撹拌温度が低い方が副生成物である酸化銅の生成を抑制できることが示された。また、酸化銅は黒色固体であり、実施例1の場合は20時間の撹拌後の反応液の色が黒色に変化したことからも、反応液中に銅含有層状複水酸化物と酸化銅とが混在していることが示唆された。
なお、実施例4で得られた銅含有層状複水酸化物(D)についても、実施例2と概ね同じ吸収ピークが認められる。
Moreover, as is clear from the results of FIG. 2, in the case of Example 1, in addition to the peaks derived from the copper-containing layered double hydroxide, peaks derived from copper oxide (CuO) were also confirmed. This means that copper oxide as a by-product was produced in addition to the copper-containing layered double hydroxide. On the other hand, in Examples 2 and 3, almost no peak derived from copper oxide (CuO) was observed. From these results, it was shown that the formation of copper oxide, which is a by-product, can be suppressed when the stirring temperature is lower. In addition, copper oxide is a black solid, and in the case of Example 1, the color of the reaction solution changed to black after stirring for 20 hours. suggested to be mixed.
Note that the copper-containing layered double hydroxide (D) obtained in Example 4 also has substantially the same absorption peak as in Example 2.

また、図3の結果から明らかなように、3420cm-1付近の吸収ピークは、水酸基の水素結合の伸縮運動および変角運動であり、2850~2950cm-1の吸収ピークは、層間水とアニオンの水素結合である。また、1360cm-1、1060cm-1、818cm-1に見られる吸収ピークは炭酸イオンによるものである。さらに、1070cm-1、1190cm-1に見られる吸収ピークはそれぞれAl-OH、Cu-OHの結合の振動であり、620cm-1、847cm-1付近に見られる吸収ピークはAl-Oの結合の振動であり、458cm-1に見られる吸収ピークはCu-Oの結合の振動である。また、753cm-1付近に見られる吸収ピークはM-O、M-O-M又はO-M-O(MはCu又はAl)によるものである。
よって、図3及び表1の結果から、実施例2で得られた銅含有層状複水酸化物(B)はCu1-xAl(OH)n- x/n・mHO(An-:炭酸イオン(CO 2-)、x:0.31)であることが示された。また、実施例3で得られた銅含有層状複水酸化物(C)はCu1-xAl(OH)n- x/n・mHO(An-:炭酸イオン(CO 2-)、x:0.33)であることが示された。また、 xの値は製造に使用したCuとAlの原子数の比とおおよそ同じであった。
なお、実施例1で得られた銅含有層状複水酸化物(A)についても、フーリエ変換赤外分光法(FT-IR)による測定を行ったところ、実施例2、3と概ね同じ吸収ピークが認められる。
Moreover, as is clear from the results of FIG. 3, the absorption peaks near 3420 cm −1 are the stretching and bending motions of the hydrogen bonds of the hydroxyl groups, and the absorption peaks at 2850 to 2950 cm −1 are the inter-layer water and the anions. hydrogen bonding. Also, the absorption peaks seen at 1360 cm -1 , 1060 cm -1 and 818 cm -1 are due to carbonate ions. Furthermore, the absorption peaks seen at 1070 cm −1 and 1190 cm −1 are vibrations of Al—OH and Cu—OH bonds, respectively, and the absorption peaks seen near 620 cm −1 and 847 cm −1 are vibrations of Al—O bonds. vibration, and the absorption peak seen at 458 cm −1 is the vibration of the Cu—O bond. Also, the absorption peak seen near 753 cm −1 is due to MO, MOM or OMO (M is Cu or Al).
Therefore, from the results of FIG. 3 and Table 1, the copper-containing layered double hydroxide (B) obtained in Example 2 has Cu 1-x Al x (OH) 2 A n- x/n ·mH 2 O ( A n− : carbonate ion (CO 3 2− ), x: 0.31). Further, the copper-containing layered double hydroxide (C) obtained in Example 3 is Cu 1-x Al x (OH) 2 A n- x/n ·mH 2 O (A n- : carbonate ion (CO 3 2- ), x: 0.33). Also, the value of x was approximately the same as the ratio of Cu and Al atoms used in the production.
The copper-containing layered double hydroxide (A) obtained in Example 1 was also measured by Fourier transform infrared spectroscopy (FT-IR), and the absorption peaks were substantially the same as in Examples 2 and 3. is allowed.

また、図4~6の結果から明らかなように、HS水に銅含有層状複水酸化物(B)又は銅含有層状複水酸化物(C)を投入すると、ヘッドスペース中のHS濃度は速やかにゼロとなった。容器中の全HS濃度は銅含有層状複水酸化物(B)及び銅含有層状複水酸化物(C)のいずれも40%程度まで低下した。このことから、銅含有層状複水酸化物(B)及び銅含有層状複水酸化物(C)はHSの減弱効果を有し、撹拌温度の違いによるHSの吸着量の差はないことが示された。
なお、実施例1で得られた銅含有層状複水酸化物(A)及び実施例4で得られた銅含有層状複水酸化物(D)についても、銅含有層状複水酸化物(B)及び銅含有層状複水酸化物(C)と同様のHSの減弱効果を有する。
Moreover, as is clear from the results of FIGS. 4 to 6, when the copper-containing layered double hydroxide (B) or the copper-containing layered double hydroxide (C) is added to H 2 S water, H 2 in the headspace The S concentration quickly became zero. The total H 2 S concentration in the container decreased to about 40% for both the copper-containing layered double hydroxide (B) and the copper-containing layered double hydroxide (C). From this, the copper-containing layered double hydroxide (B) and the copper-containing layered double hydroxide (C) have the effect of attenuating H 2 S, and the difference in the adsorption amount of H 2 S due to the difference in stirring temperature is was shown not to.
Note that the copper-containing layered double hydroxide (A) obtained in Example 1 and the copper-containing layered double hydroxide (D) obtained in Example 4 are also the copper-containing layered double hydroxide (B). and the same H 2 S attenuation effect as the copper-containing layered double hydroxide (C).

また、図7の結果から明らかなように、銅含有層状複水酸化物(D)は紫外線領域に吸収が見られたことから、紫外線吸収能を有することが示された。
また、実施例1で得られた銅含有層状複水酸化物(A)、実施例2で得られた銅含有層状複水酸化物(B)、実施例3で得られた銅含有層状複水酸化物(C)及び実施例4で得られた銅含有層状複水酸化物(D)は、抗菌性を有していた。
Moreover, as is clear from the results of FIG. 7, the copper-containing layered double hydroxide (D) showed absorption in the ultraviolet region, indicating that it has ultraviolet absorption ability.
Further, the copper-containing layered double hydroxide (A) obtained in Example 1, the copper-containing layered double hydroxide (B) obtained in Example 2, and the copper-containing layered double hydroxide obtained in Example 3 The oxide (C) and the copper-containing layered double hydroxide (D) obtained in Example 4 had antibacterial properties.

本発明の銅含有層状複水酸化物は、揮発性硫黄化合物の吸着機能に加えて、新たな機能を有し、消臭剤、抗菌剤、紫外線吸収剤又はこれらの有効成分として有用である。 The copper-containing layered double hydroxide of the present invention has a new function in addition to the function of adsorbing volatile sulfur compounds, and is useful as a deodorant, an antibacterial agent, an ultraviolet absorber, or an active ingredient thereof.

Claims (5)

下記一般式(1)で表される、銅含有層状複水酸化物。
Cu1-xAl(OH)n- x/n・mHO ・・・(1)
(式(1)中、An-はn価の陰イオンであり、xは0<x<1を満たす数であり、nは1≦nを満たす数であり、mは0<mを満たす数である。
A copper-containing layered double hydroxide represented by the following general formula (1).
Cu 1-x Al x (OH) 2 A n- x/n ·mH 2 O (1)
(In formula (1), A n- is an n-valent anion, x is a number that satisfies 0 < x < 1, n is a number that satisfies 1 ≤ n, and m satisfies 0 < m is a number.
請求項1に記載の銅含有層状複水酸化物を含む、消臭剤組成物。 A deodorant composition comprising the copper-containing layered double hydroxide according to claim 1. 請求項1に記載の銅含有層状複水酸化物を含む、抗菌剤組成物。 An antibacterial agent composition comprising the copper-containing layered double hydroxide according to claim 1. 請求項1に記載の銅含有層状複水酸化物を含む、紫外線吸収剤組成物。 An ultraviolet absorbent composition comprising the copper-containing layered double hydroxide according to claim 1. 請求項1に記載の銅含有層状複水酸化物の製造方法であって、
銅を含有する水溶液と、アルミニウムを含有する水溶液とをpHが8以上となる条件で反応させる、銅含有層状複水酸化物の製造方法。
A method for producing a copper-containing layered double hydroxide according to claim 1,
A method for producing a copper-containing layered double hydroxide, comprising reacting a copper-containing aqueous solution and an aluminum-containing aqueous solution under conditions where the pH is 8 or higher.
JP2022008562A 2022-01-24 2022-01-24 Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition Pending JP2023107388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022008562A JP2023107388A (en) 2022-01-24 2022-01-24 Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022008562A JP2023107388A (en) 2022-01-24 2022-01-24 Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition

Publications (1)

Publication Number Publication Date
JP2023107388A true JP2023107388A (en) 2023-08-03

Family

ID=87474675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022008562A Pending JP2023107388A (en) 2022-01-24 2022-01-24 Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition

Country Status (1)

Country Link
JP (1) JP2023107388A (en)

Similar Documents

Publication Publication Date Title
US11446640B2 (en) Visible-light-responsive photocatalytic-titanium- oxide-particulate dispersion liquid, manufacturing method therefor, and member having thin photocatalytic film on surface thereof
Kormann et al. Preparation and characterization of quantum-size titanium dioxide
JP5910887B2 (en) Water-swellable layered double hydroxide and production method thereof, gel-like or sol-like substance, double hydroxide nanosheet and production method thereof
US20110017209A1 (en) Apparatus and Methods of Providing Diatomic Oxygen (O2) Using Ferrate(VI)-Containing Compositions
US11059036B2 (en) Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface
JP2006281154A (en) Adsorbent for ionizable matter in aqueous solution
US20210269231A1 (en) Package including hydrogen sulfide sustained release agent and method for producing same, hydrogen sulfide sustained release agent, hydrogen sulfide sustained releasecomposite, and method for generating hydrogen sulfide using same
JP2023107388A (en) Copper-containing layered double hydroxide and method for producing the same, and deodorant composition, antimicrobial composition and ultraviolet absorber composition
US20100230360A1 (en) Anion adsorbent, water or soil cleanup agent and process for producing the same
JP5513736B2 (en) Use of metal organic silicate polymers as dispersion formers
JP2003026422A (en) Particle dispersion sol of metal oxide and/or metal peroxide and method of manufacturing the same and particulate powder
JP7479673B2 (en) Hydrotalcite nanoparticles and hydrotalcite compositions
El-Toni et al. Synthesis and silica coating of calcia-doped ceria/mica nanocomposite by seeded polymerization technique
US7981322B2 (en) Use of a metal organosilicate polymer for the protection of compounds sensitive to oxidation and/or to electromagnetic radiation
Palharim et al. Enhanced photocatalytic activity and stability of WO3-AgCl/Ag composites: Surface modulation by structure-directing agents for effective sunlight treatment of pharmaceutical wastewater
Farid et al. Simultaneous photocatalytic degradation of methylene blue and methyl orange using a green synthesized Zn 0.98 Mn 0.02 O/BiOCl nanocomposite
Lukeš et al. Complexes of nitrilotrimethylphosphonic acid with cobalt, nickel, copper and zinc
JP2023151949A (en) Hydrotalcite nanoparticle
EP2614037B1 (en) Tin tungstate-based photocatalyst and production thereof
Hoxha et al. Fluoride rechargeable layered double hydroxide powders for dental applications
Yokogawa et al. VSC sorption onto Mg-Fe-F layered double hydroxide and its fluoride release in aqueous solution
JP4043325B2 (en) Layered Titanium Alkyl Phosphate Complex, Method for Producing the Same, and Use thereof
El-Toni et al. Synthesis and silica coating of calcia-doped ceria/plate-like titanate (K0. 8Li0. 27Ti1. 73O4) nanocomposite by seeded polymerization technique
JP6654320B2 (en) Antimicrobial agent and method for producing the same
CN113797225A (en) Free radical trapping agent and application thereof