JP2023106702A - Scaly boehmite aggregate and manufacturing method thereof - Google Patents

Scaly boehmite aggregate and manufacturing method thereof Download PDF

Info

Publication number
JP2023106702A
JP2023106702A JP2022007592A JP2022007592A JP2023106702A JP 2023106702 A JP2023106702 A JP 2023106702A JP 2022007592 A JP2022007592 A JP 2022007592A JP 2022007592 A JP2022007592 A JP 2022007592A JP 2023106702 A JP2023106702 A JP 2023106702A
Authority
JP
Japan
Prior art keywords
boehmite
scale
aggregate
aggregates
scaly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022007592A
Other languages
Japanese (ja)
Inventor
紀彦 三木
Norihiko Miki
翔 横関
Sho Yokozeki
康博 太田
Yasuhiro Ota
健二 木戸
Kenji Kido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2022007592A priority Critical patent/JP2023106702A/en
Publication of JP2023106702A publication Critical patent/JP2023106702A/en
Pending legal-status Critical Current

Links

Abstract

To provide a scaly boehmite aggregate of a microsize having a bulky card house structure in which highly crystalline scaly boehmite crystals are aggregated and a manufacturing method thereof.SOLUTION: A scaly boehmite aggregate of the present invention is a scaly boehmite aggregate having a bulky card house structure in which crystals of scaly boehmite aggregate with each other, wherein the oil absorption amount of refined linseed oil measured according to pure linseed oil method of JIS K5101-13-1 (2004) is 190 g/100 g or more, and the cumulative pore volume at a pore diameter of 0.05 to 2.00 μm is 0.40 mL/g or more, as measured by a mercury porosimeter. In the method for manufacturing scaly boehmite aggregates of the present invention, hydrothermal treatment is applied while stirring a water suspension containing any one additive of aluminum hydroxide having an average particle size (based on volume) of 4 to 20 μm measured by laser diffraction/scattering method, sodium carbonate or sodium aluminate.SELECTED DRAWING: Figure 1

Description

本発明は、鱗片状ベーマイトの結晶同士が凝集した嵩高いカードハウス構造を有するマイクロサイズの鱗片状ベーマイト凝集体及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a micro-sized scaly boehmite aggregate having a bulky card house structure in which scaly boehmite crystals are aggregated together, and a method for producing the same.

アルミナ一水和物(AlOOH)のベーマイトは、汎用性が高く、充填剤として補強材、難燃剤、光輝材、耐火材、増粘剤などに利用され、また、触媒担体、電気伝導フィラー母材、耐火物、高純度アルミナ用の原料、易焼結性アルミナ用の原料、蛍光材料用の原料などに利用されている。ベーマイトは、形態を制御して製造することができるため、ベーマイトの結晶は立方体状、板状、六角板状、円盤状、針状、鱗片状など種々の形態がある。また、ベーマイトは、製造方法によってベーマイトの結晶の凝集体が得られることがあり、ベーマイトの凝集体はベーマイトの結晶が分散したベーマイト粒子と同様に種々の用途に利用することができる。 Alumina monohydrate (AlOOH) boehmite is highly versatile and is used as a filler for reinforcing materials, flame retardants, luster materials, fireproof materials, thickeners, etc. It is also used as a catalyst carrier and an electrically conductive filler base material. , refractories, raw materials for high-purity alumina, raw materials for easily sinterable alumina, and raw materials for fluorescent materials. Since boehmite can be produced by controlling its shape, boehmite crystals have various shapes such as cubic, plate-like, hexagonal plate-like, disk-like, needle-like, and scale-like. Boehmite crystal aggregates can be obtained depending on the production method, and the boehmite aggregates can be used for various purposes in the same manner as boehmite particles in which boehmite crystals are dispersed.

従来、ベーマイトの凝集体についての報告がある(非特許文献1)。すなわち、非特許文献1には、アルミン酸ナトリウム液(バイヤー液)に界面活性剤のグルコースが加えられた液を70℃で60分撹拌しながら(熟成)、1M硫酸を用いてpHを11.9から9.5まで中和させることによりベーマイトの花様凝集体が得られることが開示されている。(Abstract、第168頁右欄下段) Conventionally, there is a report on aggregates of boehmite (Non-Patent Document 1). That is, in Non-Patent Document 1, a sodium aluminate solution (Bayer's solution) and glucose as a surfactant were stirred at 70° C. for 60 minutes (aging), and the pH was adjusted to 11.0 using 1M sulfuric acid. It is disclosed that neutralization from 9 to 9.5 yields boehmite flower-like aggregates. (Abstract, page 168, right column, bottom row)

Processing and Application of Ceramics 14〔2〕(2020)168-172Processing and Application of Ceramics 14〔2〕(2020) 168-172

しかし、上記の非特許文献1に開示のベーマイトの花様凝集体は、大きさが約100nm~200nm(第170頁左欄)、比表面積が293.6~331.5m/g、細孔径が3.5~3.9nm及び細孔容積が0.258~0.308m/g(第171頁のTable2.)のナノサイズでかつ結晶性の低いベーマイトの凝集体である。そのため、ベーマイトの花様凝集体は、熱伝導率が低いという問題、吸湿性が高いという問題及び結晶性の高いベーマイトに比べ脱水温度が低く、難燃剤としての利用性に問題がある。また、非特許文献1には、ベーマイトの花様凝集体が嵩高いカードハウス構造を有することについては記載も示唆もない。 However, the boehmite flower-like aggregates disclosed in Non-Patent Document 1 have a size of about 100 nm to 200 nm (left column on page 170), a specific surface area of 293.6 to 331.5 m 2 /g, and a pore size of 3.5 to 3.9 nm and a pore volume of 0.258 to 0.308 m 3 /g (Table 2 on page 171). Therefore, the flower-like aggregates of boehmite have problems of low thermal conductivity, high hygroscopicity, and a low dehydration temperature compared to boehmite with high crystallinity, resulting in a problem of usability as a flame retardant. In addition, Non-Patent Document 1 does not describe or suggest that the boehmite flower-like aggregates have a bulky card house structure.

本発明は上記の事情に鑑みなされたもので、結晶性の高い鱗片状ベーマイトの結晶同士が凝集した嵩高いカードハウス構造を有するマイクロサイズの鱗片状ベーマイト凝集体及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and aims to provide a micro-sized scaly boehmite aggregate having a bulky card house structure in which highly crystalline scaly boehmite crystals are aggregated together, and a method for producing the same. Make it an issue.

上記の課題を解決するために、本発明の発明者等は鋭意検討し、本発明に想到した。
すなわち、請求項1に記載の発明は、鱗片状ベーマイトの結晶同士が凝集した嵩高いカードハウス構造を有する鱗片状ベーマイト凝集体であって、JIS K5101-13-1(2004)の精製あまに油法に準じて測定した、精製あまに油の吸油量が190g/100g以上であり、かつ水銀ポロシメータによって測定した、細孔直径0.05~2.00μmにおける積算細孔容積が0.40mL/g以上であることを特徴とする鱗片状ベーマイト凝集体に関する。
In order to solve the above-described problems, the inventors of the present invention have made intensive studies and arrived at the present invention.
That is, the invention according to claim 1 is a scale-like boehmite aggregate having a bulky card house structure in which crystals of scale-like boehmite are aggregated with each other, and is purified linseed oil according to JIS K5101-13-1 (2004). The refined linseed oil has an oil absorption of 190 g/100 g or more, measured according to the law, and an accumulated pore volume of 0.40 mL/g at a pore diameter of 0.05 to 2.00 μm, measured with a mercury porosimeter. It relates to scale-like boehmite aggregates characterized by the above.

請求項2に記載の発明は、請求項1に記載の発明において、下記の式を用いて算出した変動係数CVが35%以下でもよい。
標準偏差SD=(D84-D16)/2 (式1)
変動係数CV=(標準偏差SD/D50)×100 (式2)
The invention according to claim 2 is the invention according to claim 1, wherein the coefficient of variation CV calculated using the following formula may be 35% or less.
Standard deviation SD = (D84-D16) / 2 (Formula 1)
Coefficient of variation CV = (standard deviation SD / D50) × 100 (Formula 2)

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、熱重量分析で100℃における重量減少率を0wt%とし、30℃/minの昇温速度で加熱した際に1wt%の重量減少が確認された温度である1%重量減少温度が420℃以上でもよい。 The invention according to claim 3 is the invention according to claim 1 or claim 2, in which the weight reduction rate at 100 ° C. is set to 0 wt% by thermogravimetric analysis, and when heated at a temperature increase rate of 30 ° C./min. The 1% weight loss temperature, which is the temperature at which 1 wt% weight loss is confirmed, may be 420° C. or higher.

請求項4に記載の発明は、レーザー回折・散乱法で測定した平均粒径(体積基準)が4~20μmの水酸化アルミニウムと、炭酸ナトリウム又はアルミン酸ナトリウムのいずれか1種の添加剤と、を含む水懸濁液を撹拌しながら水熱処理することを特徴とする請求項1~請求項3のいずれか1項に記載の鱗片状ベーマイト凝集体の製造方法に関する。 In the invention according to claim 4, aluminum hydroxide having an average particle size (volume basis) of 4 to 20 μm as measured by a laser diffraction/scattering method, an additive of either sodium carbonate or sodium aluminate, The method for producing scale-like boehmite aggregates according to any one of claims 1 to 3, wherein the aqueous suspension containing is hydrothermally treated while stirring.

請求項5に記載の発明は、請求項4に記載の発明において、水酸化アルミニウムの水に対する濃度が1~20wt%で、添加剤の水に対する濃度が0.05~2.00mol/Lであり、水熱処理の定温が150~250℃でもよい。 The invention according to claim 5 is the invention according to claim 4, wherein the concentration of aluminum hydroxide in water is 1 to 20 wt%, and the concentration of the additive in water is 0.05 to 2.00 mol/L. , the constant temperature of the hydrothermal treatment may be 150 to 250°C.

本発明の鱗片状ベーマイト凝集体は、嵩高いカードハウス構造を有するため、樹脂などの被充填物への充填時に高い増粘性を付与できる。また、嵩高いカードハウス構造を有するため多孔性であり、触媒担体の原料や多孔質セラミックの原料として有用である。 Since the scale-like boehmite aggregates of the present invention have a bulky card house structure, they can impart high viscosity when filled into a filling material such as a resin. In addition, since it has a bulky card house structure, it is porous and useful as a raw material for catalyst carriers and porous ceramics.

本発明の鱗片状ベーマイト凝集体は、粒度のばらつきが少なく粒子サイズが揃っているため、粒子サイズのばらつきに起因する最終製品の特性のばらつきを抑えることができる。例えばフィラー用途の場合、樹脂などの被充填物における特性のばらつきを減らすことが可能となり、また、塗料用途の場合、塗工液中の特性のばらつきを減らすことが可能となり、さらに、セラミックスの原材料として用いる場合、粒子サイズの不揃いに起因した焼結不良による特性のばらつきを防ぐことが可能となる。 Since the scale-like boehmite aggregates of the present invention have a uniform particle size with little variation in particle size, it is possible to suppress variations in the properties of the final product due to variations in particle size. For example, in the case of filler applications, it is possible to reduce the variation in the properties of the material to be filled, such as resin, and in the case of coating applications, it is possible to reduce the variation in the properties of the coating liquid. , it is possible to prevent variations in properties due to poor sintering due to non-uniform particle sizes.

本発明の鱗片状ベーマイト凝集体の製造方法は、有機系バインダーを使用することなく、鱗片状ベーマイト凝集体を直接合成するため、凝集体に有機系バインダーが残存することがない。一般的な有機系バインダーは、耐候性が高くなく劣化することが課題としてあり、長期的に凝集体を維持できない可能性があるが、本発明により鱗片状ベーマイトから構成される耐候性の高い凝集体を製造できる。 The method for producing scaly boehmite aggregates of the present invention directly synthesizes scaly boehmite aggregates without using an organic binder, so that no organic binder remains in the aggregates. The problem with general organic binders is that they do not have high weather resistance and deteriorate, and they may not be able to maintain aggregates for a long period of time. Aggregates can be manufactured.

実施例1の鱗片状ベーマイト凝集体のSEM写真である。1 is an SEM photograph of scale-like boehmite aggregates of Example 1. FIG. 比較例1の鱗片状ベーマイト粒子のSEM写真である。4 is an SEM photograph of scale-like boehmite particles of Comparative Example 1. FIG. 実施例2の鱗片状ベーマイト凝集体のSEM写真である。4 is an SEM photograph of scale-like boehmite aggregates of Example 2. FIG. 比較例2の鱗片状ベーマイト粒子のSEM写真である。4 is an SEM photograph of scale-like boehmite particles of Comparative Example 2. FIG. 実施例3の鱗片状ベーマイト凝集体のSEM写真である。4 is a SEM photograph of scale-like boehmite aggregates of Example 3. FIG. 実施例4の鱗片状ベーマイト凝集体のSEM写真である。4 is an SEM photograph of scale-like boehmite aggregates of Example 4. FIG. 比較例3の鱗片状ベーマイト凝集体のSEM写真である。4 is an SEM photograph of scale-like boehmite aggregates of Comparative Example 3. FIG. 実施例4の鱗片状ベーマイト凝集体の断面を示すSEM写真である。4 is an SEM photograph showing a cross section of the scale-like boehmite aggregates of Example 4. FIG. 比較例3の鱗片状ベーマイト凝集体の断面を示すSEM写真である。4 is an SEM photograph showing a cross section of a scale-like boehmite aggregate of Comparative Example 3. FIG.

本発明の鱗片状ベーマイト凝集体は、鱗片状ベーマイトの結晶同士が凝集した嵩高いカードハウス構造を有し、カードハウス構造の空隙の容積を反映する、JIS K5101-13-1(2004)の精製あまに油法に準じて測定した、精製あまに油の吸油量は190g/100g以上が好ましく、200g/100g以上がより好ましい。精製あまに油の吸油量の上限は、好ましくは300g/100g、より好ましくは290g/100gでもよい。 The scale-like boehmite aggregates of the present invention have a bulky card house structure in which crystals of scale-like boehmite aggregate with each other, and reflect the volume of voids in the card house structure. The oil absorption of the refined linseed oil measured according to the linseed oil method is preferably 190 g/100 g or more, more preferably 200 g/100 g or more. The upper limit of the oil absorption of refined linseed oil may be preferably 300 g/100 g, more preferably 290 g/100 g.

本発明の鱗片状ベーマイト凝集体は、カードハウス構造が嵩高い構成で空隙の容積が大きいため、上記の吸油量は鱗片状ベーマイトの結晶が分散した空隙が少ない鱗片状ベーマイト粒子に比べて高く、また、鱗片状ベーマイトの結晶同士が凝集した密なカードハウス構造を有する鱗片状ベーマイト凝集体に比べても高い。 Since the scaly boehmite aggregates of the present invention have a bulky card house structure and a large void volume, the oil absorption is higher than that of scaly boehmite particles with few voids in which scaly boehmite crystals are dispersed. It is also higher than scale-like boehmite aggregates having a dense card house structure in which crystals of scale-like boehmite are aggregated together.

本発明の鱗片状ベーマイト凝集体は、水銀ポロシメータによって測定した、細孔直径0.05~2.00μmにおける積算細孔容積が0.40mL/g以上であることが好ましく、0.45mL/g以上がより好ましい。本発明の鱗片状ベーマイト凝集体は、マクロ孔の細孔が多くを占めるマイクロサイズの凝集体である。 The scale-like boehmite aggregates of the present invention preferably have a cumulative pore volume of 0.40 mL/g or more, more preferably 0.45 mL/g or more, at a pore diameter of 0.05 to 2.00 μm, as measured by a mercury porosimeter. is more preferred. The scale-like boehmite aggregates of the present invention are micro-sized aggregates that are mostly composed of macropores.

本発明の鱗片状ベーマイト凝集体は、下記の式を用い算出した変動係数CVが35%以下であることが好ましく、33%以下であることがより好ましい。
標準偏差SD=(D84-D16)/2 (式1)
変動係数CV=(標準偏差SD/D50)×100 (式2)
本発明の鱗片状ベーマイト凝集体は、粒度のばらつきが少ない、いわば“粒の揃った”粒子である。また、本発明の鱗片状ベーマイト凝集体は、鱗片状ベーマイトの結晶が分散した鱗片状ベーマイト粒子に比べて粒度のばらつきが少ない粒子である。
The scale-like boehmite aggregates of the present invention preferably have a coefficient of variation CV of 35% or less, more preferably 33% or less, calculated using the following formula.
Standard deviation SD = (D84-D16) / 2 (Formula 1)
Coefficient of variation CV = (standard deviation SD / D50) × 100 (Formula 2)
The scale-like boehmite aggregates of the present invention are particles with little variation in particle size, so to speak, "uniform" particles. In addition, the scale-like boehmite aggregates of the present invention are particles with less variation in particle size than scale-like boehmite particles in which crystals of scale-like boehmite are dispersed.

本発明の鱗片状ベーマイト凝集体を構成する鱗片状ベーマイトは、比表面積が数m/gを呈し、結晶性の高いマイクロサイズのベーマイトである。 The scale-like boehmite constituting the scale-like boehmite aggregate of the present invention is micro-sized boehmite with a specific surface area of several m 2 /g and high crystallinity.

本発明の鱗片状ベーマイト凝集体の1%重量減少温度は、420℃以上が好ましい。ここに、1%重量減少温度とは、熱重量分析において、100℃における重量減少率を0wt%とし、30℃/minの昇温速度で加熱した際に1wt%の重量減少が確認された温度と定義される。
ベーマイトは、熱を加えていくと脱水反応を起こし、γ-アルミナへ結晶相が転移するが、ベーマイトを難燃剤として用いる場合は脱水反応の開始温度は高いほど好ましく、ベーマイトの粒子が微細であるとか、結晶性が低いと低下する傾向にあり、1%重量減少温度も低下する。ナノサイズのベーマイトは、1%重量減少温度が300℃程度であり、脱水温度が低すぎるためベーマイトの主要な用途でもある難燃剤として成形加工に高温が必要なプラスチック材料などには利用できない。また、後記の本発明の鱗片状ベーマイト凝集体の製造方法は、ポリビニルアルコールなどの有機系のバインダーを用いて凝集体を形成させるものではなく、鱗片状ベーマイト凝集体を直接合成するものである。有機系のバインダーを用いると、熱分析時に、生成物に残存する有機系のバインダーが分解して重量減少するため、1%重量減少温度の低下を招く。このように、本発明の鱗片状ベーマイト凝集体は、マイクロサイズで結晶性が高く、また、製造に有機系のバインダーを使用しないため、420℃以上の1%重量減少温度を担保できる。
The 1% weight loss temperature of the scale-like boehmite aggregates of the present invention is preferably 420° C. or higher. Here, the 1% weight loss temperature is the temperature at which a weight loss of 1 wt% is confirmed when the rate of weight loss at 100° C. is assumed to be 0 wt % and the temperature is heated at a rate of 30° C./min in thermogravimetric analysis. is defined as
Boehmite undergoes a dehydration reaction when heat is applied, and the crystal phase transitions to γ-alumina. When using boehmite as a flame retardant, the higher the temperature at which the dehydration reaction starts, the better, and the finer the particles of boehmite. Or, if the crystallinity is low, it tends to decrease, and the 1% weight loss temperature also decreases. Nano-sized boehmite has a 1% weight loss temperature of about 300°C and a dehydration temperature that is too low. In addition, the method for producing scale-like boehmite aggregates of the present invention, which will be described later, does not use an organic binder such as polyvinyl alcohol to form aggregates, but directly synthesizes scale-like boehmite aggregates. When an organic binder is used, the organic binder remaining in the product is decomposed and the weight is reduced during thermal analysis, resulting in a decrease in the 1% weight loss temperature. Thus, the scale-like boehmite aggregates of the present invention are micro-sized and highly crystalline, and do not use an organic binder for production, so that a 1% weight loss temperature of 420° C. or higher can be ensured.

本発明の鱗片状ベーマイト凝集体は、タップ密度が0.16g/cm以上が好ましく、0.18g/cm以上がより好ましい。本発明の鱗片状ベーマイト凝集体のタップ密度は、鱗片状ベーマイトの結晶が分散した鱗片状ベーマイト粒子のタップ密度より高いため、タップ密度の低い、鱗片状ベーマイトの結晶が分散した鱗片状ベーマイト粒子は飛散し易いのに対し、本発明の鱗片状ベーマイト凝集体は飛散し難く、ハンドリング牲に優れている。 The scale-like boehmite aggregates of the present invention preferably have a tap density of 0.16 g/cm 3 or more, more preferably 0.18 g/cm 3 or more. Since the tap density of the scaly boehmite aggregates of the present invention is higher than the tap density of the scaly boehmite particles in which the scaly boehmite crystals are dispersed, the scaly boehmite particles in which the scaly boehmite crystals are dispersed have a low tap density. While it is easy to scatter, the scale-like boehmite aggregates of the present invention are difficult to scatter and are excellent in handleability.

次いで、本発明の鱗片状ベーマイト凝集体の製造方法について説明する。
本発明の鱗片状ベーマイト凝集体は、原料の水酸化アルミニウムと添加剤と、を含む水懸濁液を撹拌しながら水熱処理することにより得ることができる。
Next, the method for producing scale-like boehmite aggregates of the present invention will be described.
The scale-like boehmite aggregates of the present invention can be obtained by hydrothermally treating an aqueous suspension containing aluminum hydroxide as a raw material and an additive while stirring.

原料の水酸化アルミニウムは、レーザー回折・散乱法で測定した平均粒径(体積基準)が4~20μmが好ましく、5~15μmがより好ましい。水酸化アルミニウムの平均粒径が4μmを下回ると、鱗片状ベーマイトの結晶同士が凝集した嵩高いカードハウス構造を形成できないからである。また、20μmを上回ると、反応中に沈降が起こりやすく、反応生成物で配管が詰まるなど水熱処理装置の毀損を招くおそれがある。
また、水酸化アルミニウムの水に対する濃度は、1~20wt%が好ましく、2~17wt%がより好ましい。1wt%を下回ると、ベーマイトの生成量が少なく不経済であり、20wt%を上回ると合成中に粘度が高くなり、撹拌不良が起きやすくなるためである。
Aluminum hydroxide as a raw material preferably has an average particle diameter (volume basis) of 4 to 20 μm, more preferably 5 to 15 μm, as measured by a laser diffraction/scattering method. This is because if the average particle size of aluminum hydroxide is less than 4 μm, a bulky card house structure in which scaly boehmite crystals aggregate together cannot be formed. On the other hand, if it exceeds 20 μm, sedimentation is likely to occur during the reaction, and the reaction product may clog the pipes, resulting in damage to the hydrothermal treatment apparatus.
Further, the concentration of aluminum hydroxide in water is preferably 1 to 20 wt%, more preferably 2 to 17 wt%. If the content is less than 1 wt%, the amount of boehmite produced is small, which is uneconomical.

また、原料の水酸化アルミニウムの粒度は、均一牲の高いことが好ましい。すなわち、水酸化アルミニウムの粒度分布の形状は、正規分布を示すか、正規分布に近い単峰性の分布を示すものが好ましい。水酸化アルミニウムの粒度の均一性が高いほど、嵩高いカードハウス構造を有する粒度のばらつきの少ない鱗片状ベーマイト凝集体が確実に得られるからである。
さらに、原料の水酸化アルミニウムは、SEM像より測長された一次粒子の平均値が2~8μmであり、それが凝集した二次粒子であるものが好ましい。
一次粒子の平均値が2μmより小さいと鱗片状ベーマイトの結晶同士が凝集したカードハウス構造を形成しづらく、8μmより大きいとカードハウス構造の中心部が空洞となり、凝集体が脆くなるためである。
Moreover, it is preferable that the particle size of aluminum hydroxide as a raw material has high uniformity. That is, the shape of the particle size distribution of aluminum hydroxide preferably exhibits a normal distribution or a unimodal distribution close to the normal distribution. This is because the higher the uniformity of the particle size of aluminum hydroxide, the more reliably obtained is a scaly boehmite aggregate having a bulky card house structure and less variation in particle size.
Further, the raw material aluminum hydroxide preferably has an average primary particle size of 2 to 8 μm as measured by an SEM image, and is agglomerated secondary particles.
If the average value of the primary particles is less than 2 μm, it is difficult to form a card house structure in which scaly boehmite crystals aggregate with each other.

添加剤は、炭酸ナトリウム又はアルミン酸ナトリウムのいずれか1種が好ましいが、炭酸カリウムを使用することもできる。添加剤の水に対する濃度は、0.05~2.00mol/Lが好ましく、0.10~1.00mol/Lがより好ましい。0.05mol/Lを下回ると鱗片状ベーマイトの粒子の厚みが増大するため嵩高くならず、2.00mol/Lを上回るとpHが高くなることによって生成したベーマイトが溶解してしまい、回収できる量が少なくなるからである。 The additive is preferably sodium carbonate or sodium aluminate, but potassium carbonate can also be used. The concentration of the additive to water is preferably 0.05 to 2.00 mol/L, more preferably 0.10 to 1.00 mol/L. If it is less than 0.05 mol/L, the thickness of the scaly boehmite particles increases and the volume does not increase. This is because the

懸濁液の調製に用いる水は、硬水でも軟水でもよいが、マグネシウムイオンやカルシウムイオンの影響が少ない軟水が好ましい。 The water used for preparing the suspension may be either hard water or soft water, but soft water that is less affected by magnesium ions and calcium ions is preferred.

水熱処理の定温は、150~250℃が好ましく、160~230℃がより好ましい。
150℃を下回ると、水酸化アルミニウムからベーマイトへの反応が進みづらいためであり、250℃を上回ると高圧に耐えうる高価な設備が必要になるためである。
反応時間は、3時間~24時間の範囲が好ましい。3時間未満では、鱗片状ベーマイト凝集体が得られないことがある。また、24時間を超えても特に格別な効果がなく、エネルギー面でも不経済である。
また、定温までの昇温速度は、100℃/hour以下が好ましい。100℃/hour以下でないと反応容器内の温度のばらつきが生じやすく、均一な反応が進みづらくなるためである。
水熱処理の圧力は、定温における自然発生圧力が好ましく、特に加圧は要しない。
The constant temperature of the hydrothermal treatment is preferably 150-250°C, more preferably 160-230°C.
This is because if the temperature is lower than 150°C, the reaction from aluminum hydroxide to boehmite does not easily proceed, and if it exceeds 250°C, expensive equipment that can withstand high pressure is required.
The reaction time is preferably in the range of 3 hours to 24 hours. If it is less than 3 hours, scaly boehmite aggregates may not be obtained. Moreover, even if it exceeds 24 hours, there is no particular effect, and it is uneconomical in terms of energy.
Moreover, the rate of temperature increase to a constant temperature is preferably 100° C./hour or less. This is because if the temperature is not 100° C./hour or less, the temperature in the reaction vessel tends to vary, making it difficult to proceed with a uniform reaction.
The pressure for the hydrothermal treatment is preferably a spontaneously generated pressure at a constant temperature, and no particular pressurization is required.

水熱処理における撹拌の羽根先端速度(周速)は、0.4~4.0m/secが好ましく、0.5~3.0m/secがより好ましい。0.4m/secを下回ると原料の沈降が起こりやすく均一な反応が進みづらくなるためであり、4.0m/secを上回ると高速撹拌が可能な高価なモータが必要になるためである。
羽根先端速度(周速)は、下記の式で求めることができる。
V = π × D × N/60 (式3)
(V:羽根先端速度(m/s)、π:円周率、D:羽根径(m)、N:回転数(rpm))
The blade tip speed (peripheral speed) for stirring in the hydrothermal treatment is preferably 0.4 to 4.0 m/sec, more preferably 0.5 to 3.0 m/sec. This is because if the velocity is less than 0.4 m/sec, the raw materials tend to settle and the reaction does not progress uniformly, and if it exceeds 4.0 m/sec, an expensive motor capable of high-speed stirring is required.
The blade tip speed (peripheral speed) can be obtained by the following formula.
V = π × D × N/60 (Formula 3)
(V: blade tip speed (m/s), π: circumference ratio, D: blade diameter (m), N: rotation speed (rpm))

次いで、本発明を実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

〔実施例1〕
軟水3000gに炭酸ナトリウム((株)トクヤマ製)86gを添加して透明な水溶液になるまで撹拌混合し、そこに水酸化アルミニウム(グレード名:BF083、平均粒子径(レーザー回折・散乱法):10μm、一次粒子の平均値(SEM像より30点測長):6.5μm、日本軽金属(株)製)300gを入れてよく撹拌混合して水懸濁液を調製した。この水懸濁液を撹拌型オートクレーブ(容積:5L)へ入れ、180℃で10時間、1.71 m/sec で撹拌(羽根径:0.142 m、回転数:230 rpm)しながら水熱処理した。なお、室温(25℃)から180℃までは2時間で昇温した。水熱処理後のスラリーを脱水、水洗、乾燥し、試料を得た。
[Example 1]
Add 86 g of sodium carbonate (manufactured by Tokuyama Co., Ltd.) to 3000 g of soft water and stir and mix until a clear aqueous solution is formed. Aluminum hydroxide (grade name: BF083, average particle size (laser diffraction/scattering method): 10 μm) , Average value of primary particles (measured at 30 points from SEM image): 6.5 μm, manufactured by Nippon Light Metal Co., Ltd.) 300 g was added and thoroughly stirred to prepare an aqueous suspension. This aqueous suspension was placed in a stirring autoclave (volume: 5 L) and hydrothermally treated at 180° C. for 10 hours while stirring at 1.71 m/sec (blade diameter: 0.142 m, rotation speed: 230 rpm). The temperature was raised from room temperature (25°C) to 180°C in 2 hours. After the hydrothermal treatment, the slurry was dehydrated, washed with water, and dried to obtain a sample.

〔実施例2〕
軟水3500gにアルミン酸ナトリウム(関東化学(株)製)175gを添加して透明な水溶液になるまで撹拌混合し、そこに水酸化アルミニウム(グレード名:BF083、平均粒子径(レーザー回折・散乱法):10μm、一次粒子の平均値(SEM像より30点測長):6.5μm、日本軽金属(株)製)350gを入れてよく撹拌混合して水懸濁液を調製した。この水懸濁液を撹拌型オートクレーブ(容積:5L)へ入れ、180℃で8時間、1.49 m/sec で撹拌(羽根径:0.142 m、回転数:200 rpm)しながら水熱処理した。なお、室温(25℃)から180℃までは2時間で昇温した。水熱処理後のスラリーを脱水、水洗、乾燥し、試料を得た。
[Example 2]
Add 175 g of sodium aluminate (manufactured by Kanto Kagaku Co., Ltd.) to 3500 g of soft water and stir and mix until a clear aqueous solution is formed. Aluminum hydroxide (grade name: BF083, average particle size (laser diffraction/scattering method) : 10 µm, average value of primary particles (measured at 30 points from SEM image): 6.5 µm, manufactured by Nippon Light Metal Co., Ltd.) was added, and 350 g was thoroughly stirred and mixed to prepare an aqueous suspension. This aqueous suspension was placed in a stirring autoclave (volume: 5 L) and hydrothermally treated at 180° C. for 8 hours while stirring at 1.49 m/sec (blade diameter: 0.142 m, rotation speed: 200 rpm). The temperature was raised from room temperature (25°C) to 180°C in 2 hours. After the hydrothermal treatment, the slurry was dehydrated, washed with water, and dried to obtain a sample.

〔実施例3〕
軟水3000gに炭酸ナトリウム((株)トクヤマ製)86gを添加して透明な水溶液になるまで撹拌混合し、そこに水酸化アルミニウム(グレード名:B103、平均粒子径(レーザー回折・散乱法):7μm、一次粒子の平均値(SEM像より30点測長):4μm、日本軽金属(株)製)300gを入れてよく撹拌混合して水懸濁液を調製した。この水懸濁液を撹拌型オートクレーブ(容積:5L)へ入れ、170℃で8時間、1.49 m/secで撹拌(羽根径:0.142 m、回転数:200 rpm)しながら水熱処理した。なお、室温(25℃)から170℃までは2時間で昇温した。水熱処理後のスラリーを脱水、水洗、乾燥し、試料を得た。
[Example 3]
Add 86 g of sodium carbonate (manufactured by Tokuyama Co., Ltd.) to 3000 g of soft water and stir and mix until a clear aqueous solution is formed. Aluminum hydroxide (grade name: B103, average particle size (laser diffraction/scattering method): 7 μm) , Average value of primary particles (measured at 30 points from SEM image): 4 µm, manufactured by Nippon Light Metal Co., Ltd.) was added and mixed well with stirring to prepare an aqueous suspension. This aqueous suspension was placed in a stirring autoclave (volume: 5 L) and hydrothermally treated at 170° C. for 8 hours while stirring at 1.49 m/sec (blade diameter: 0.142 m, rotation speed: 200 rpm). The temperature was raised from room temperature (25°C) to 170°C in 2 hours. After the hydrothermal treatment, the slurry was dehydrated, washed with water, and dried to obtain a sample.

〔実施例4〕
軟水3000gに炭酸ナトリウム((株)トクヤマ製)260gを添加して透明な水溶液になるまで撹拌混合し、そこに水酸化アルミニウム(グレード名:BF083、平均粒子径(レーザー回折・散乱法):10μm、一次粒子の平均値(SEM像より30点測長):6.5μm、日本軽金属(株)製)300gを入れてよく撹拌混合して水懸濁液を調製した。この水懸濁液を撹拌型オートクレーブ(容積:5L)へ入れ、180℃で6時間、1.49 m/sec で撹拌(羽根径:0.142 m、回転数:200 rpm)しながら水熱処理した。なお、室温(25℃)から180℃までは2時間で昇温した。水熱処理後のスラリーを脱水、水洗、乾燥し、試料を得た。
[Example 4]
Add 260 g of sodium carbonate (manufactured by Tokuyama Co., Ltd.) to 3000 g of soft water and stir and mix until a clear aqueous solution is formed. , Average value of primary particles (measured at 30 points from SEM image): 6.5 μm, manufactured by Nippon Light Metal Co., Ltd.) 300 g was added and thoroughly stirred to prepare an aqueous suspension. This aqueous suspension was placed in a stirring autoclave (volume: 5 L) and hydrothermally treated at 180° C. for 6 hours while stirring at 1.49 m/sec (blade diameter: 0.142 m, rotation speed: 200 rpm). The temperature was raised from room temperature (25°C) to 180°C in 2 hours. After the hydrothermal treatment, the slurry was dehydrated, washed with water, and dried to obtain a sample.

〔比較例1〕
水酸化アルミニウム(グレード名:BF013、平均粒子径(レーザー回折・散乱法):1μm、一次粒子の平均値(SEM像より30点測長):1μm、日本軽金属(株)製)に変更した以外は、実施例1と同様の方法で試料を製造した。
[Comparative Example 1]
Aluminum hydroxide (grade name: BF013, average particle size (laser diffraction/scattering method): 1 μm, average value of primary particles (measured at 30 points from SEM image): 1 μm, manufactured by Nippon Light Metal Co., Ltd.) produced samples in the same manner as in Example 1.

〔比較例2〕
水酸化アルミニウム(グレード名:BF013、平均粒子径(レーザー回折・散乱法):1μm、一次粒子の平均値(SEM像より30点測長):1μm、日本軽金属(株)製)に変更した以外は、実施例2と同様の方法で試料を製造した。
[Comparative Example 2]
Aluminum hydroxide (grade name: BF013, average particle size (laser diffraction/scattering method): 1 μm, average value of primary particles (measured at 30 points from SEM image): 1 μm, manufactured by Nippon Light Metal Co., Ltd.) manufactured samples in a manner similar to that of Example 2.

〔比較例3〕
軟水3000gに水酸化ナトリウム(関東化学工業(株)製)25gを添加して透明な水溶液になるまで撹拌混合し、そこに水酸化アルミニウム(グレード名:BF083、平均粒子径(レーザー回折・散乱法):10μm、一次粒子の平均値(SEM像より30点測長):6.5μm、日本軽金属(株)製)300gを入れてよく撹拌混合して水懸濁液を調製した。この水懸濁液を撹拌型オートクレーブ(容積:5L)へ入れ、180℃で8時間、1.49 m/sec で撹拌(羽根径:0.142 m、回転数:200 rpm)しながら水熱処理した。なお、室温(25℃)から180℃までは2時間で昇温した。水熱処理後のスラリーを脱水、水洗、乾燥し、試料を得た。
[Comparative Example 3]
Add 25 g of sodium hydroxide (manufactured by Kanto Kagaku Kogyo Co., Ltd.) to 3000 g of soft water and stir and mix until a clear aqueous solution is formed. ): 10 µm, average value of primary particles (measured at 30 points from SEM image): 6.5 µm, 300 g of Nippon Light Metal Co., Ltd.) was added and thoroughly stirred to prepare an aqueous suspension. This aqueous suspension was placed in a stirring autoclave (volume: 5 L) and hydrothermally treated at 180° C. for 8 hours while stirring at 1.49 m/sec (blade diameter: 0.142 m, rotation speed: 200 rpm). The temperature was raised from room temperature (25°C) to 180°C in 2 hours. After the hydrothermal treatment, the slurry was dehydrated, washed with water, and dried to obtain a sample.

〔比較例4〕
炭酸ナトリウムと水酸化アルミニウムが混合された水懸濁液を撹拌混合することなく静置して水熱処理した以外は、実施例1と同様な方法で試料を製造した。
[Comparative Example 4]
A sample was produced in the same manner as in Example 1, except that the aqueous suspension in which sodium carbonate and aluminum hydroxide were mixed was allowed to stand without being stirred and mixed, and then hydrothermally treated.

上記の実施例1~実施例4及び比較例1~比較例4について、下記の各種の試験を行った。 The following various tests were performed on Examples 1 to 4 and Comparative Examples 1 to 4 described above.

1.ベーマイト化の有無
X線回折装置(Bluker(株)製、D2 Phaser)で結晶相を測定した。未反応の原料が残らずベーマイトの結晶が認められる場合は○、未反応の原料が残っている場合は×と評価した。
2.カードハウス構造化の有無
試料をカーボンテープの上に張り付け、走査型電子顕微鏡(日本電子(株) JSM-7500FA)を用いて、粒子表面及び形状を観察した。カードハウス構造が認められるものを○、カードハウス構造が認められないか、殆どカードハウス構造が認められないものを×と評価した。
3.粒度(D50、D16、D84(いずれも体積基準))
0.2 %ヘキサメタりん酸ナトリウム水溶液に試料を分散させ、レーザー回折・散乱式の粒度分布測定装置(マイクロトラック・ベル(株)製 MT3000)を用いて粒度分布(体積基準)を測定し、D50、D16、D84の値を読み取った。
4.標準偏差SD、変動係数CV
次の式を用いて、標準偏差SD、変動係数CVを算出した。
標準偏差SD=(D84-D16)/2 (式1)
変動係数CV =(標準偏差SD/D50)×100 (式2)
5.吸油量
試薬のあまに油(関東化学(株)製)を用いて、JIS K5101-13-1(2004)の精製あまに油法に準じて測定した。測定手順は次のとおりである。
(1)試料2 gを秤量し、ガラス製の測定板の上に置いた。
(2)あまに油をスポイトから1回につき4~5滴ずつ徐々に加え、パレットナイフであまに油に試料を練り込んだ。
(3)上記(2)の操作を繰り返し行い、あまに油および試料の塊ができるところまで滴下を続けた。
(4)以後、あまに油を1滴ずつ滴下し、完全に混練するようにして繰り返し、ペーストが柔らかな硬さになったところを終点とした。
(5)下記の式を用いて、吸油量の値を求めた。
吸油量(g/100g)=(終点までに用いたあまに油の重量(g)/試料の重量(g))× 100 (式4)
6.タップ密度
10mLのメスシリンダーに試料0.5g又は1gをいれ、一定高さより一定速度で嵩の変化がなくなるまで落下させることによって充填した。充填後の体積の値を読み取り、次の式を用いてタップ密度の値を算出した。
タップ密度(g/cm3)=試料重量(g)/充填後の体積(cm3) (式5)
7.比表面積
全自動比表面積測定装置(マウンテック(株)製 Macsorb(登録商標) HM model-1200)を使用し、BET表面積の測定前に150℃で30分の真空加熱排気による前処理を行ってから、液体窒素温度近傍(77K)にてBET流動法(1点法)で測定した。
8.1%重量減少温度
示差熱・熱重量同時測定装置 (TG-DTA 2000SA、ブルカー・エイエックスエス(株)製)を用いて測定した。昇温速度は30℃/minとし、100℃を基準として1.00重量%減少した温度を読み取った。
9.積算細孔容積
水銀ポロシメータ(メーカ:アントンパール社製、型式:Poremaster 60)を用いて測定した。試料約0.2gを投入した測定セルを装置に設置し、十分減圧した(10m torr)後水銀を導入し、徐々に水銀に圧力を加えて約410MPaまで加圧した。この時、水銀に加えた圧力に対する試料に注入された水銀量を測定した。水銀に加えた圧力をWashburnの式を用いて細孔径に換算し、水銀注入量を用いて細孔径分布を求めた。この細孔径分布より、0.05~0.50 μm、0.05~1.00 μm、0.05~2.00μmの範囲の積算細孔容積をそれぞれ導出した。
1. Presence or absence of boehmite formation
The crystal phase was measured with an X-ray diffractometer (D2 Phaser, manufactured by Bluker Co.). When no unreacted starting material remained and boehmite crystals were observed, it was evaluated as ◯, and when unreacted starting material remained, it was evaluated as x.
2. Presence or Absence of Card House Structure A sample was stuck on a carbon tape, and the particle surface and shape were observed using a scanning electron microscope (JSM-7500FA, manufactured by JEOL Ltd.). A sample with a card house structure was evaluated as ◯, and a sample with no card house structure or almost no card house structure was evaluated as x.
3. Particle size (D50, D16, D84 (both based on volume))
The sample is dispersed in 0.2% sodium hexametaphosphate aqueous solution, and the particle size distribution (volume basis) is measured using a laser diffraction/scattering particle size distribution measuring device (MT3000 manufactured by Microtrack Bell Co., Ltd.), D50, D16 , the value of D84 was read.
4. Standard deviation SD, coefficient of variation CV
Standard deviation SD and coefficient of variation CV were calculated using the following formulas.
Standard deviation SD = (D84-D16)/2 (Formula 1)
Coefficient of variation CV = (standard deviation SD/D50) x 100 (Formula 2)
5. Oil Absorption Measured according to the refined linseed oil method of JIS K5101-13-1 (2004) using linseed oil (manufactured by Kanto Kagaku Co., Ltd.) as a reagent. The measurement procedure is as follows.
(1) 2 g of sample was weighed and placed on a glass measuring plate.
(2) 4 to 5 drops of linseed oil were gradually added at a time from a dropper, and the sample was kneaded into the linseed oil with a palette knife.
(3) The above operation (2) was repeated, and dropping was continued until lumps of linseed oil and the sample were formed.
(4) Thereafter, the linseed oil was dropped drop by drop, and the mixture was thoroughly kneaded.
(5) The value of oil absorption was obtained using the following formula.
Oil absorption (g/100g) = (weight of linseed oil used up to the end point (g)/weight of sample (g)) x 100 (Formula 4)
6. tap density
0.5 g or 1 g of the sample was placed in a 10 mL graduated cylinder and filled by dropping from a constant height at a constant speed until the change in volume disappeared. The value of the volume after filling was read, and the tap density value was calculated using the following formula.
Tap density (g/cm 3 ) = sample weight (g)/volume after filling (cm 3 ) (Formula 5)
7. Specific surface area Using a fully automatic specific surface area measuring device (Macsorb (registered trademark) HM model-1200 manufactured by Mountec Co., Ltd.), pretreatment by vacuum heating and exhausting at 150 ° C for 30 minutes before measuring the BET surface area. , was measured by the BET flow method (single-point method) near liquid nitrogen temperature (77K).
8.1% Weight Loss Temperature Measured using a simultaneous differential thermal/thermogravimetric analyzer (TG-DTA 2000SA, manufactured by Bruker AXS Co., Ltd.). The temperature was raised at a rate of 30°C/min, and the temperature at which the temperature decreased by 1.00% by weight from 100°C was read.
9. Accumulated pore volume Measured using a mercury porosimeter (manufacturer: Anton Paar, model: Poremaster 60). A measuring cell containing about 0.2 g of a sample was installed in the apparatus, and after the pressure was sufficiently reduced (10 mtorr), mercury was introduced, and the pressure was gradually increased to about 410 MPa. At this time, the amount of mercury injected into the sample was measured against the pressure applied to the mercury. The pressure applied to mercury was converted to pore size using the Washburn equation, and the pore size distribution was determined using the amount of mercury injected. From this pore size distribution, cumulative pore volumes in the ranges of 0.05 to 0.50 μm, 0.05 to 1.00 μm, and 0.05 to 2.00 μm were derived.

表1に実施例及び比較例の製造方法を示し、表2及び表3に実施例及び比較例の各種試験の結果を示した。 Table 1 shows the production methods of Examples and Comparative Examples, and Tables 2 and 3 show the results of various tests of Examples and Comparative Examples.

Figure 2023106702000002
Figure 2023106702000002

Figure 2023106702000003
Figure 2023106702000003

Figure 2023106702000004
Figure 2023106702000004

図1~図7は、実施例1~実施例4及び比較例1~比較例3のSEM写真である。また、図8は、実施例4の鱗片状ベーマイト凝集体の断面を示すSEM写真であり、図9は比較例3の鱗片状ベーマイト凝集体の断面を示すSEM写真である。なお、図1~図7の下段は、上段の一部を拡大したSEM写真である。これらのSEM写真を参照の上、上記の結果に基づいて以下のことが解析できる。 1 to 7 are SEM photographs of Examples 1 to 4 and Comparative Examples 1 to 3. FIG. 8 is a SEM photograph showing a cross section of the scale-like boehmite aggregate of Example 4, and FIG. 9 is a SEM photograph showing a cross section of the scale-like boehmite aggregate of Comparative Example 3. FIG. 1 to 7 are SEM photographs in which a part of the upper part is enlarged. With reference to these SEM photographs, the following can be analyzed based on the above results.

・各実施例の下段のSEM写真に示すように、鱗片状ベーマイト凝集体は、嵩高いカードハウス構造を形成している。また、各実施例の上段のSEM写真に示すように、鱗片状ベーマイト凝集体は、粒度のばらつきが小さく、粒度の揃った粒子である。図8の実施例4の鱗片状ベーマイト凝集体の断面のSEM写真から、実施例4の鱗片状ベーマイト凝集体は、嵩高いカードハウス構造を形成していることが分かる。また、図9の比較例3の鱗片状ベーマイト凝集体の断面のSEM写真から、比較例3の鱗片状ベーマイト凝集体は密なカードハウス構造を形成していることが分かる。
一方、比較例1と比較例2は、カードハウス構造を形成しない鱗片状ベーマイトの結晶が分散した鱗片状ベーマイト粒子であることが分かる。
・実施例1と比較例1は、原料の水酸化アルミニウムの平均粒径が相違する以外、同じ方法で製造されたものである。実施例1は、嵩高いカードハウス構造を形成しているため、吸油量は比較例1の約1.8倍、タップ密度は比較例1に比し高値である。実施例1に比べタップ密度が低い比較例1が飛散し易いのに対し、実施例1は比較例1に比べ飛散し難く、ハンドリング性に優れている。また、変動係数CVの違いから、実施例1の方が比較例1より粒度のばらつきが小さく、粒度の揃った粒子であることが分かる。さらに、積算細孔容積のデータから、実施例1は細孔の直径0.05~2.00μmのマクロ孔が多くを占めており、マイクロサイズの凝集体であることが分かる。
また、原料の水酸化アルミニウムの平均粒径が相違する以外、同じ方法で製造された実施例2と比較例2についても、上記とほぼ同様に解析できる。
・比較例3は、原料の添加剤を炭酸ナトリウムに換えて水酸化ナトリウムとした以外、実施例1とほぼ同様な方法で製造されたもので、図7に示すように、鱗片状ベーマイトの結晶同士が凝集した密なカードハウス構造を有する鱗片状ベーマイト凝集体である。比較例3は、密なカードハウス構造を有するために空隙の容積は小さく、吸油量は各実施例の約40%~50%である。
・比較例4は、水懸濁液を静置した以外実施例1と同様の方法で製造したものである。
比較例4は成型物となり、ベーマイト化を確認できたものの、他の試験は十分には行えなかった。
・結晶化が進んだベーマイトの比表面積は、数m/g~数十m/gを呈する。実施例及び比較例の鱗片状ベーマイトの比表面積は、数m/gであり、実施例及び比較例はいずれも結晶性の高いマイクロサイズのベーマイトであることが分かる。
・実施例及び比較例のいずれの1%重量減少温度も420℃を越えているのは、実施例も比較例も製造に当たり有機系のバインダーを使用していないこと及びベーマイトの結晶性が高いことに起因する。
- As shown in the lower SEM photographs of each example, the scale-like boehmite aggregates form a bulky card house structure. In addition, as shown in the upper SEM photographs of each example, the scaly boehmite aggregates are particles of uniform particle size with little variation in particle size. From the SEM photograph of the cross section of the scale-like boehmite aggregates of Example 4 in FIG. 8, it can be seen that the scale-like boehmite aggregates of Example 4 form a bulky card house structure. Further, from the SEM photograph of the cross section of the scale-like boehmite aggregate of Comparative Example 3 in FIG. 9, it can be seen that the scale-like boehmite aggregate of Comparative Example 3 forms a dense card house structure.
On the other hand, it can be seen that Comparative Examples 1 and 2 are scaly boehmite particles in which scaly boehmite crystals that do not form a card house structure are dispersed.
- Example 1 and Comparative Example 1 were produced by the same method except that the average particle size of aluminum hydroxide as a raw material was different. Since Example 1 forms a bulky card house structure, the oil absorption is approximately 1.8 times that of Comparative Example 1, and the tap density is higher than that of Comparative Example 1. Compared to Example 1, Comparative Example 1, which has a lower tap density, is more likely to scatter, whereas Example 1 is less likely to scatter compared to Comparative Example 1, and is excellent in handleability. Also, from the difference in the coefficient of variation CV, it can be seen that Example 1 has smaller variation in particle size than Comparative Example 1, and the particles have a uniform particle size. Further, from the cumulative pore volume data, it can be seen that Example 1 is mostly composed of macropores with a pore diameter of 0.05 to 2.00 μm, and is a micro-sized aggregate.
Also, Example 2 and Comparative Example 2, which were produced in the same manner except that the average particle size of aluminum hydroxide used as the raw material was different, could be analyzed in substantially the same manner as described above.
・Comparative Example 3 was produced in substantially the same manner as in Example 1, except that sodium hydroxide was used instead of sodium carbonate as the raw material additive. It is a scale-like boehmite aggregate having a dense card house structure in which the particles are aggregated together. Since Comparative Example 3 has a dense card house structure, the void volume is small, and the oil absorption is about 40% to 50% of that of each Example.
- Comparative Example 4 was produced in the same manner as in Example 1 except that the aqueous suspension was allowed to stand.
In Comparative Example 4, a molded product was obtained, and although boehmite conversion was confirmed, other tests could not be performed sufficiently.
・The specific surface area of boehmite that has advanced crystallization is several m 2 /g to several tens of m 2 /g. The specific surface area of the scale-like boehmite of Examples and Comparative Examples is several m 2 /g, and it can be seen that both of Examples and Comparative Examples are micro-sized boehmite with high crystallinity.
・The reason why the 1% weight loss temperature of both Examples and Comparative Examples exceeds 420°C is that organic binders are not used in the production of Examples and Comparative Examples, and the crystallinity of boehmite is high. caused by.

実施例1と比較例3について、下記の樹脂に試料を練込限界まで練り込んだ樹脂組成物の面上の熱伝導率を測定した。
(1)樹脂の種類:エポキシ樹脂(ビスフェノールA型)
(製品名:R140P、製造元:三井化学(株)製、25℃における粘度 12,000~15,000 cps)
(2)作製方法:205mLの紙コップにエポキシ樹脂30gを入れ、練込限界になるまで試料を徐々に配合し、自転・公転ミキサー(シンキー(株)製ARE-310)で混合する作業を繰り返した。試料を練込限界まで配合・混合後、2-エチル-4-メチルイミダゾール(和光純薬(株)社製)を0.6g加えて十分に混合・脱泡し、120℃で2時間加熱硬化した。得られた硬化物を目的とする形状に加工し、樹脂組成物の試験片を得た。
練込限界の試料の体積充填率は次の式により導出した。
試料の体積充填率(vol%)=(試料の体積(cm3)/(試料の体積(cm3)+エポキシ樹脂 の体積(cm3)))×100 (式6)
試料の体積(cm3)= 試料重量(g)/試料の密度(g/cm3) (式7)
エポキシ樹脂の体積(cm3)= エポキシ樹脂の重量(g)/エポキシ樹脂の密度(g/cm3) (式8)
ベーマイトの密度:3.0 g/cm3、エポキシ樹脂の密度:1.16 g/cm3
(3)測定方法:熱線法(製品名:QTM-500、京都電子(株)製)
(4)樹脂組成物の試験片の形状:直径5cm、厚さ1.5cmの円盤体
結果は、以下の通りである。
実施例1:練込限界まで充填した体積充填率(30vol%)、樹脂組成物の面上の熱伝導率(0.89W/(m・K))
比較例3:練込限界まで充填した体積充填率(34vol%)、樹脂組成物の面上の熱伝導率(1.09W/(m・K))
実施例1の練込限界まで充填した体積充填率が比較例3より低いのはカードハウス構造が嵩高いことに起因し、練込限界まで充填した体積充填率が低いことから樹脂組成物の熱伝導率も低くなる。また、比較例3の練込限界まで充填した体積充填率が実施例1より高いのは、カードハウス構造が密であることに起因し、練込限界まで充填した体積充填率が高いことから樹脂組成物の熱伝導率も高くなる。
このように、カードハウス構造が嵩高いか密かは、鱗片状ベーマイト凝集体を樹脂組成物に練込限界まで充填した体積充填率の違い及び熱伝導率の違いからも分かる。
For Example 1 and Comparative Example 3, the surface thermal conductivity of the resin composition obtained by kneading the sample into the following resin up to the kneading limit was measured.
(1) Type of resin: epoxy resin (bisphenol A type)
(Product name: R140P, manufacturer: Mitsui Chemicals, Inc., viscosity at 25°C: 12,000-15,000 cps)
(2) Preparation method: Put 30 g of epoxy resin in a 205 mL paper cup, gradually mix the sample until the kneading limit is reached, and repeat the process of mixing with a rotation / revolution mixer (Thinky Co., Ltd. ARE-310). rice field. After blending and mixing the sample up to the kneading limit, 0.6 g of 2-ethyl-4-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was added, thoroughly mixed and defoamed, and heat-cured at 120 ° C for 2 hours. . The resulting cured product was processed into a desired shape to obtain a test piece of the resin composition.
The volumetric filling rate of the kneading limit sample was derived from the following equation.
Sample volume filling rate (vol%) = (Sample volume (cm 3 ) / (Sample volume (cm 3 ) + Epoxy resin volume (cm 3 ))) × 100 (Formula 6)
Sample volume (cm 3 ) = sample weight (g)/sample density (g/cm 3 ) (Formula 7)
Epoxy resin volume (cm 3 ) = Epoxy resin weight (g)/Epoxy resin density (g/cm 3 ) (Formula 8)
Boehmite density: 3.0 g/cm 3 , Epoxy resin density: 1.16 g/cm 3
(3) Measurement method: hot wire method (product name: QTM-500, manufactured by Kyoto Electronics Co., Ltd.)
(4) Shape of test piece of resin composition: disc having a diameter of 5 cm and a thickness of 1.5 cm The results are as follows.
Example 1: Volume filling rate (30 vol%) filled to the kneading limit, thermal conductivity on the surface of the resin composition (0.89 W / (m K))
Comparative Example 3: Volume filling rate filled to the kneading limit (34 vol%), thermal conductivity on the surface of the resin composition (1.09 W / (m K))
The reason why the volume filling rate of Example 1 when filled to the kneading limit is lower than that of Comparative Example 3 is that the card house structure is bulky, and the volume filling rate of the resin composition when filled to the kneading limit is low. Conductivity is also lower. In addition, the reason why the volume filling rate of Comparative Example 3 when filled to the kneading limit is higher than that of Example 1 is that the card house structure is dense, and the volume filling rate when filled to the kneading limit is high. The thermal conductivity of the composition is also increased.
Thus, whether the card house structure is bulky or not can be understood from the difference in the volumetric filling rate and the thermal conductivity when the scale-like boehmite aggregates are filled into the resin composition to the kneading limit.

本発明の鱗片状ベーマイト凝集体は、樹脂などの充填剤や触媒担体として好適である。 The scale-like boehmite aggregates of the present invention are suitable as fillers such as resins and catalyst carriers.

Claims (5)

鱗片状ベーマイトの結晶同士が凝集した嵩高いカードハウス構造を有する鱗片状ベーマイト凝集体であって、JIS K5101-13-1(2004)の精製あまに油法に準じて測定した、精製あまに油の吸油量が190g/100g以上であり、かつ水銀ポロシメータによって測定した、細孔直径0.05~2.00μmにおける積算細孔容積が0.40mL/g以上であることを特徴とする鱗片状ベーマイト凝集体。 Refined linseed oil measured according to the refined linseed oil method of JIS K5101-13-1 (2004), which is a scaly boehmite aggregate having a bulky card house structure in which scaly boehmite crystals aggregate together. An oil absorption of 190 g/100 g or more, and a cumulative pore volume of 0.40 mL/g or more at a pore diameter of 0.05 to 2.00 μm, as measured by a mercury porosimeter. aggregates. 下記の式を用いて算出した変動係数CVが35%以下であることを特徴とする請求項1に記載の鱗片状ベーマイト凝集体。
標準偏差SD=(D84-D16)/2 (式1)
変動係数CV=(標準偏差SD/D50)×100 (式2)
2. The scale-like boehmite aggregates according to claim 1, wherein the coefficient of variation CV calculated using the following formula is 35% or less.
Standard deviation SD = (D84-D16) / 2 (Formula 1)
Coefficient of variation CV = (standard deviation SD / D50) × 100 (Formula 2)
熱重量分析において、100℃における重量減少率を0wt%とし、30℃/minの昇温速度で加熱した際に1wt%の重量減少が確認された温度である1%重量減少温度が420℃以上であることを特徴とする請求項1又は請求項2に記載の鱗片状ベーマイト凝集体。 In thermogravimetric analysis, the 1% weight loss temperature, which is the temperature at which 1 wt% weight loss is confirmed when the weight loss rate at 100 ° C. is 0 wt% and the heating is performed at a heating rate of 30 ° C./min, is 420 ° C. or higher. The scale-like boehmite aggregate according to claim 1 or 2, characterized in that: レーザー回折・散乱法で測定した平均粒径(体積基準)が4~20μmの水酸化アルミニウムと、炭酸ナトリウム又はアルミン酸ナトリウムのいずれか1種の添加剤と、を含む水懸濁液を撹拌しながら水熱処理することを特徴とする請求項1~請求項3のいずれか1項に記載の鱗片状ベーマイト凝集体の製造方法。 An aqueous suspension containing aluminum hydroxide having an average particle size (volume basis) of 4 to 20 μm as measured by a laser diffraction/scattering method and an additive of either sodium carbonate or sodium aluminate is stirred. 4. The method for producing scale-like boehmite aggregates according to any one of claims 1 to 3, wherein the hydrothermal treatment is performed while heating. 水酸化アルミニウムの水に対する濃度が1~20wt%で、添加剤の水に対する濃度が0.05~2.00mol/Lであり、水熱処理の定温が150~250℃であることを特徴とする請求項4に記載の鱗片状ベーマイト凝集体の製造方法。 A claim characterized in that the concentration of aluminum hydroxide in water is 1 to 20 wt%, the concentration of the additive in water is 0.05 to 2.00 mol/L, and the constant temperature of the hydrothermal treatment is 150 to 250°C. Item 5. A method for producing scale-like boehmite aggregates according to item 4.
JP2022007592A 2022-01-21 2022-01-21 Scaly boehmite aggregate and manufacturing method thereof Pending JP2023106702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022007592A JP2023106702A (en) 2022-01-21 2022-01-21 Scaly boehmite aggregate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022007592A JP2023106702A (en) 2022-01-21 2022-01-21 Scaly boehmite aggregate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2023106702A true JP2023106702A (en) 2023-08-02

Family

ID=87473357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022007592A Pending JP2023106702A (en) 2022-01-21 2022-01-21 Scaly boehmite aggregate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023106702A (en)

Similar Documents

Publication Publication Date Title
TWI573758B (en) A method for producing a spherical aluminum nitride powder and a spherical aluminum nitride powder obtained by the method
RU2302374C2 (en) Nanoporous ultra-fine powders and the sol-gel from alpha aluminum oxide, the method of their preparation
JP7005523B2 (en) Process for Producing Boron Nitride Aggregates
WO2012029868A1 (en) Spherical aluminum nitride powder
JP5995130B1 (en) Spinel particles and method for producing the same, and compositions and molded articles containing the spinel particles
KR910001300B1 (en) Process for production of aluminium nitride
JP5324112B2 (en) Boehmite fine particles and method for producing the same
Suchanek et al. Hydrothermal synthesis of novel alpha alumina nano-materials with controlled morphologies and high thermal stabilities
US20110081548A1 (en) Zinc oxide particle, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition
KR20180039516A (en) METHOD FOR PREPARING GLOBULAR α-ALUMINA POWDER
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
EP2361885A1 (en) Porous alumina free-standing film, alumina sol and methods for producing same
TW202039359A (en) Method for producing granular boron nitride and granular boron nitride
JP4944466B2 (en) Anhydrous magnesium carbonate powder and method for producing the same
JP2023106702A (en) Scaly boehmite aggregate and manufacturing method thereof
JP2016028993A (en) α-ALUMINA FINE PARTICLE AND PRODUCTION METHOD OF THE SAME
JP2023106713A (en) Scaly boehmite aggregate and manufacturing method thereof
JP2008137845A (en) Method of producing magnesium oxide
KR102157786B1 (en) METHOD FOR PREPARING GLOBULAR α-ALUMINA
JP6944803B2 (en) Magnesium oxide powder, its manufacturing method and composite material
JP5635650B2 (en) Alumina fine particles and method for producing the same
TWI564246B (en) Composite metal hydroxide particle, and resin composition containing same particle
JPH0789759A (en) Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JP2021172535A (en) Method for producing spherical aluminum nitride powder and spherical aluminum nitride powder
KR102612361B1 (en) Polishing material comprising α-alumina particles and method thereof