JP2023105732A - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP2023105732A
JP2023105732A JP2022006730A JP2022006730A JP2023105732A JP 2023105732 A JP2023105732 A JP 2023105732A JP 2022006730 A JP2022006730 A JP 2022006730A JP 2022006730 A JP2022006730 A JP 2022006730A JP 2023105732 A JP2023105732 A JP 2023105732A
Authority
JP
Japan
Prior art keywords
light
hole
measuring device
concentration measuring
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022006730A
Other languages
Japanese (ja)
Inventor
正明 永瀬
Masaaki Nagase
秀和 石井
Hidekazu Ishii
薫 平田
Kaoru Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2022006730A priority Critical patent/JP2023105732A/en
Publication of JP2023105732A publication Critical patent/JP2023105732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a concentration measuring device capable of measuring even higher concentration by suppressing reduction of transmittance of measuring light.SOLUTION: A concentration measuring device 1 includes: a body 3 having a flow passage 2 for flowing fluid to be measured; a translucent window 6 attached to the body 3 along the flow passage 2 and having a light incident part 4 and a light outgoing part 5 opposed to each other across the flow passage 2; a light emitting part 7 for making the light incident on the flow passage 2 through the light incident part 4; and a light receiving part 8 for receiving the light emitted from the flow passage 2 through the light outgoing part 5. The light translucent window 6 has a projection part 9 projecting in a direction for shortening a separation distance between the light incident part 4 and the light outgoing part 5.SELECTED DRAWING: Figure 1

Description

本発明は、濃度測定装置に関する。 The present invention relates to a concentration measuring device.

従来、流路を備える測定セルに所定波長の光を入射し、測定セル内を通過する際にガスによる吸収を受けた光を光検出器で検出することにより吸光度を測定し、ランベルト・ベールの法則を適用して吸光度からガスの濃度を演算する濃度測定装置が知られている(例えば、特許文献1、2、3等)。 Conventionally, light of a predetermined wavelength is incident on a measurement cell provided with a flow path, and the absorbance is measured by detecting with a photodetector the light absorbed by the gas when passing through the measurement cell. 2. Description of the Related Art There are known concentration measuring devices that apply a law to calculate gas concentration from absorbance (for example, Patent Documents 1, 2, 3, etc.).

また、測定精度を向上させるために、測定セルに入射する前の光の一部を分岐させて参照光として検出し、入射光の劣化等による吸光度演算値の誤差を補正する濃度測定装置も知られている(例えば、特許文献3、4等)。 In addition, in order to improve measurement accuracy, there is also known a concentration measuring device that splits a part of the light before it enters the measurement cell and detects it as reference light to correct errors in the absorbance calculation value due to deterioration of the incident light. (For example, Patent Documents 3, 4, etc.).

国際公開WO2016/017122号パンフレットInternational publication WO2016/017122 pamphlet 国際公開WO2014/181527号パンフレットInternational publication WO2014/181527 pamphlet 国際公開WO2018/021311号パンフレットInternational publication WO2018/021311 pamphlet 国際公開WO2017/029791号パンフレットInternational publication WO2017/029791 pamphlet

この種の濃度測定装置では一般に、入射光の波長として、測定されるべき物質の吸収ピーク波長領域の波長が用いられる。 In this type of concentration measuring apparatus, a wavelength in the absorption peak wavelength region of the substance to be measured is generally used as the wavelength of the incident light.

一方、測定されるべき物質の分子の数が増加するに従い、即ち、高濃度になるに従い、測定光の透過率は指数関数的に減少する。 On the other hand, as the number of molecules of the substance to be measured increases, that is, as the concentration increases, the transmittance of the measuring light decreases exponentially.

そのため、従来の濃度測定装置においては、高濃度における透過率の低下により、必要な濃度の測定が困難な場合があった。 Therefore, in the conventional density measuring apparatus, it is sometimes difficult to measure the required density due to the decrease in transmittance at high density.

そこで本発明は、より高い濃度でも測定可能な濃度測定装置を提供することを主たる目的とする。 SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a concentration measuring apparatus capable of measuring even higher concentrations.

上記目的を達成するため、本発明の一態様に係る濃度測定装置は、被測定流体を流すための流路を有する本体と、前記流路に沿って前記本体に取り付けられ、前記流路を挟んで対向する光入射部及び光出射部を有する透光窓と、前記光入射部を介して前記流路に光を入射させる発光部と、前記光出射部を介して前記流路から出射した前記光を受光する受光部と、を備え、前記透光窓は、前記光入射部と前記光出射部との離間距離を短縮する方向に突出する突出部を有する。 In order to achieve the above object, a concentration measuring device according to an aspect of the present invention includes a main body having a flow path for flowing a fluid to be measured, and attached to the main body along the flow path to sandwich the flow path. a light-transmitting window having a light-incident portion and a light-output portion facing each other; a light-emitting portion that causes light to enter the flow channel through the light-incidence portion; a light-receiving portion that receives light, wherein the translucent window has a protruding portion that protrudes in a direction that shortens the separation distance between the light-incident portion and the light-emitting portion.

ある一態様において、前記透光窓は、前記光入射部と前記光出射部とを別体として備え、前記突出部は、前記光入射部に設けられた第1突出部を含み得る。 In one aspect, the light-transmitting window may include the light entrance section and the light exit section as separate bodies, and the protrusion may include a first protrusion provided in the light entrance section.

ある一態様において、前記光入射部は、周縁部が前記本体に固定される第1板状基部を備え、前記第1板状基部に前記第1突出部が突設されている。 In one aspect, the light incident portion includes a first plate-like base portion having a peripheral portion fixed to the main body, and the first protrusion portion is provided to protrude from the first plate-like base portion.

ある一態様において、前記透光窓は、前記光入射部と前記光出射部とを別体として備え、前記突出部は、前記光出射部に設けられた第2突出部を含む。 In one aspect, the light-transmitting window includes the light incident portion and the light emitting portion as separate bodies, and the projecting portion includes a second projecting portion provided on the light emitting portion.

ある一態様において、前記光出射部は、周縁部が前記本体に固定される第2板状基部を備え、前記第2板状基部に前記第2突出部が突設されている。 In one aspect, the light emitting portion includes a second plate-like base portion having a peripheral portion fixed to the main body, and the second protrusion portion is provided to protrude from the second plate-like base portion.

ある一態様において、前記透光窓は、前記光入射部と前記光出射部とを一体的に有する透光ブロックを備え、前記透光ブロックが前記本体に固定されている。 In one aspect, the light-transmitting window includes a light-transmitting block integrally including the light entrance portion and the light exit portion, and the light-transmitting block is fixed to the main body.

ある一態様において、前記透光ブロックが、前記流路の一部を構成する通孔を有し、前記突出部が、前記通孔の内周に突出して設けられている。 In one aspect, the light-transmitting block has a through hole that forms part of the flow path, and the projecting portion is provided so as to protrude from the inner periphery of the through hole.

ある一態様において、前記突出部が環状である。 In one aspect, the protrusion is annular.

ある一態様において、前記本体が、前記流路と交差する貫通孔を備え、前記貫通孔は、前記流路が開通する第1部分と、前記第1板状基部の前記周縁部が係止する段部からなる第2部分と、を含み、前記本体が、前記周縁部を押圧して固定する第1固定部材を更に含み、前記第1部分に前記突出部が突出し、前記離間距離が、前記貫通孔に開通する前記流路の直径より小さい。 In one aspect, the main body includes a through-hole that intersects with the flow path, and the through-hole engages a first portion through which the flow path opens and the peripheral portion of the first plate-shaped base. a second portion formed of a stepped portion, wherein the main body further includes a first fixing member that presses and fixes the peripheral portion, the projecting portion protrudes from the first portion, and the separation distance is the It is smaller than the diameter of the channel that opens into the through hole.

ある一態様において、前記本体が、前記流路と交差する貫通孔を備え、前記貫通孔は、前記流路が開通する第1部分と、前記第2板状基部の前記周縁部が係止する段部からなる第3部分と、を含み、前記本体が、前記周縁部を押圧して固定する第2固定部材を更に含み、前記第1部分に前記突出部が突出し、前記離間距離が、前記貫通孔に開通する前記流路の直径より小さい。 In one aspect, the main body includes a through hole that intersects with the flow path, and the through hole engages a first portion through which the flow path opens and the peripheral portion of the second plate-shaped base. a third portion formed of a stepped portion, the main body further including a second fixing member that presses and fixes the peripheral edge portion, the projecting portion protrudes from the first portion, and the separation distance is the smaller than the diameter of the channel opening into the through-hole.

ある一態様において、前記本体が、前記流路と交差する貫通孔を備え、前記通孔と前記流路とが合致するように、前記貫通孔に前記透光ブロックが嵌入され、前記本体は、前記透光ブロックを両側から挟持して固定する固定部材を含む。 In one aspect, the main body includes a through hole that intersects with the flow path, the translucent block is inserted into the through hole so that the through hole and the flow path are aligned, and the main body includes: A fixing member for holding and fixing the light-transmitting block from both sides is included.

本発明によれば、透過窓に突出部を設けて、測定光が被測定流体を通過する光路長を短縮することにより、測定光の透過率の低下を抑え、より高い濃度でも測定することが可能となる。 According to the present invention, by providing the transmission window with a projecting portion and shortening the optical path length of the measurement light passing through the fluid to be measured, it is possible to suppress a decrease in the transmittance of the measurement light and measure even higher concentrations. It becomes possible.

本発明に係る濃度測定装置の第1実施形態を示す断面図である。1 is a cross-sectional view showing a first embodiment of a concentration measuring device according to the present invention; FIG. 図1の濃度測定装置の要部拡大断面図である。2 is an enlarged cross-sectional view of a main part of the concentration measuring device of FIG. 1; FIG. 図1の濃度測定装置を分解した状態を示す断面図である。2 is a cross-sectional view showing an exploded state of the concentration measuring device of FIG. 1; FIG. 図1の濃度測定装置の構成要素である透光窓を示す斜視図である。FIG. 2 is a perspective view showing a translucent window that is a component of the concentration measuring device of FIG. 1; 本発明に係る濃度測定装置の第2実施形態を示す断面図である。FIG. 5 is a cross-sectional view showing a second embodiment of a concentration measuring device according to the present invention; 図5の濃度測定装置の構成要素である透光窓を示す斜視図である。FIG. 6 is a perspective view showing a translucent window that is a component of the concentration measuring device of FIG. 5; 図6の透光窓の断面を示す斜視図である。FIG. 7 is a perspective view showing a cross section of the translucent window of FIG. 6;

本発明に係る濃度測定装置の実施形態について、以下に図1~図7を参照して説明する。なお、全図及び全実施形態を通じて、同一又は類似の構成要素については同符号を付した。 An embodiment of a concentration measuring device according to the present invention will be described below with reference to FIGS. 1 to 7. FIG. In addition, the same reference numerals are attached to the same or similar components throughout all the drawings and all the embodiments.

先ず、本発明の第1実施形態に係る濃度測定装置について、図1~図4を参照して説明する。第1実施形態の濃度測定装置1は、オゾンガス等の被測定流体Gを流すための流路2を有する本体3と、流路2に沿って本体3に取り付けられ、流路2を挟んで対向する光入射部4及び光出射部5を有する透光窓6と、光入射部4を介して流路2に光を入射させる発光部7と、光出射部5を介して流路2から出射した光を受光する受光部8と、を備える。透光窓6は、光入射部4と光出射部5との離間距離L(図2)を短縮する方向に突出する突出部9を有する。 First, a concentration measuring device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. The concentration measuring device 1 of the first embodiment has a main body 3 having a flow path 2 for flowing a fluid G to be measured such as ozone gas, and is attached to the main body 3 along the flow path 2 so as to face each other with the flow path 2 interposed therebetween. a light-transmitting window 6 having a light incident portion 4 and a light emitting portion 5, a light emitting portion 7 for causing light to enter the flow channel 2 via the light incident portion 4, and a light emitting portion 5 to emit light from the flow channel 2. and a light receiving portion 8 for receiving the light. The translucent window 6 has a protruding portion 9 protruding in the direction of shortening the separation distance L (FIG. 2) between the light incident portion 4 and the light emitting portion 5 .

第1実施形態では、透光窓6は、光入射部4と光出射部5とを別体として備えている。また、突出部9は、光入射部4及び光出射部5の其々に設けられ、光入射部4に第1突出部9aが設けられ、光出射部5に第2突出部9bが設けられている。図示例において、光入射部4と光出射部5は、同じ形状及び寸法を有している。 In the first embodiment, the translucent window 6 includes the light entrance section 4 and the light exit section 5 as separate bodies. In addition, the projecting portions 9 are provided in the light incident portion 4 and the light emitting portion 5 respectively, the light incident portion 4 is provided with the first projecting portion 9a, and the light emitting portion 5 is provided with the second projecting portion 9b. ing. In the illustrated example, the light entrance portion 4 and the light exit portion 5 have the same shape and size.

光入射部4は、鍔状の周縁部が本体3に固定される第1板状基部4aに、第1突出部9aが一体的に突設されている。光出射部5は、周縁部が本体3に固定される第2板状基部5aに、第2突出部9bが一体的に突設されている。斯かる構成により、光入射部4及び光出射部5は、断面ハット形又は凸形を有している。なお、図示しないが、光入射部4または光出射部5の何れか一方にのみ、突出部を設けこともできる。透光窓6は、機械的・化学的に安定なサファイアガラスが好適に用いられるが、他の安定な材料、例えば石英ガラス等も利用可能である。図示例の第1板状基部4a及び第2板状基部5aは円板状であるが、他の形状とすることもできる。 The light incident portion 4 has a first plate-like base portion 4a fixed to the main body 3 at a brim-shaped peripheral edge portion, and a first projecting portion 9a integrally protruding therefrom. The light emitting portion 5 has a second plate-shaped base portion 5a whose peripheral portion is fixed to the main body 3, and a second projecting portion 9b integrally protruding therefrom. With such a configuration, the light entrance portion 4 and the light exit portion 5 have a hat-shaped or convex cross-section. Although not shown, only one of the light entrance portion 4 and the light exit portion 5 may be provided with a protrusion. Mechanically and chemically stable sapphire glass is preferably used for the translucent window 6, but other stable materials such as quartz glass can also be used. Although the first plate-shaped base 4a and the second plate-shaped base 5a in the illustrated example are disk-shaped, they may have other shapes.

本体3は、流路2と交差する貫通孔10を備えている。流路2及び貫通孔10は、本体3のベース部3aに設けられている。貫通孔10は、流路2が開通する第1部分10aと、第1板状基部4aの前記周縁部が係止する段部を形成する第2部分10bと、第2板状基部5aの前記周縁部が係止する段部を形成する第3部分10cと、第1固定部材3bが嵌る第4部分10dと、第2固定部材3cが嵌る第5部分10eとを備えている。 The main body 3 has a through hole 10 that intersects with the channel 2 . The channel 2 and the through hole 10 are provided in the base portion 3a of the main body 3. As shown in FIG. The through-hole 10 includes a first portion 10a through which the flow path 2 is opened, a second portion 10b forming a stepped portion to which the peripheral portion of the first plate-like base portion 4a is locked, and the above-mentioned portion of the second plate-like base portion 5a. It has a third portion 10c forming a stepped portion with which the peripheral portion is engaged, a fourth portion 10d to which the first fixing member 3b is fitted, and a fifth portion 10e to which the second fixing member 3c is fitted.

第1固定部材3bが本体3のベース部3aに固定されることにより、第1板状基部4aの周縁部が、第1固定部材3bとベース部3aとに挟まれて固定される。また、第2固定部材3cが本体3のベース部3aに固定されることにより、第2板状基部5aの周縁部が、第2固定部材3cとベース部3aとに挟まれて固定される。第1板状基部4a及び第2板状基部5aとベース部3aとの間のシール性を考慮して、図2に示すようにシール材11が配設される。シール材11は、好ましくは、第1板状基部4a及び第2板状基部5aのそれぞれの2側面をシールする位置に設けられる。そのため、第2部分10bの段部を形成する直交2側面にシール材11が嵌る溝が形成される。同様に、第3部分10cの段部を形成する直交2側面にシール材11が嵌る溝が形成される。 By fixing the first fixing member 3b to the base portion 3a of the main body 3, the peripheral edge portion of the first plate-like base portion 4a is fixed by being sandwiched between the first fixing member 3b and the base portion 3a. Further, by fixing the second fixing member 3c to the base portion 3a of the main body 3, the peripheral edge portion of the second plate-like base portion 5a is sandwiched and fixed between the second fixing member 3c and the base portion 3a. Considering the sealing performance between the first plate-like base portion 4a and the second plate-like base portion 5a and the base portion 3a, a sealing material 11 is arranged as shown in FIG. The sealing material 11 is preferably provided at a position to seal two side surfaces of each of the first plate-shaped base portion 4a and the second plate-shaped base portion 5a. Therefore, grooves into which the sealing material 11 is fitted are formed in the two orthogonal side surfaces forming the stepped portion of the second portion 10b. Similarly, a groove into which the sealing material 11 is fitted is formed in the two orthogonal side surfaces forming the stepped portion of the third portion 10c.

貫通孔10の第1部分10aは、図の上下面が光入射部4と光出射部5とで閉じられ、周側面に、本体3のベース部3aに形成されている流路2が開通することにより、被測定流体Gが流れる流路の一部を構成している。第1部分10a内において、第1突出部9aと第2突出部9bとが内方に突出し、光入射部4と光出射部5との離間距離Lが短くなり、離間距離Lは、第1部分10aに開通する流路2の孔径(直径)Hより小さくなっている。離間距離Lは、後述する光路長に相当する。 The first portion 10a of the through-hole 10 is closed at its upper and lower surfaces by the light entrance portion 4 and the light exit portion 5, and the flow path 2 formed in the base portion 3a of the main body 3 opens on its peripheral side surface. This constitutes part of the flow path through which the fluid G to be measured flows. In the first portion 10a, the first protruding portion 9a and the second protruding portion 9b protrude inward, and the distance L between the light incident portion 4 and the light emitting portion 5 is shortened. It is smaller than the hole diameter (diameter) H of the channel 2 that opens to the portion 10a. The separation distance L corresponds to the optical path length, which will be described later.

発光部7は、発光ダイオード、レーザーダイオード等の発光素子が好適に用いられる。図示例の発光部7は、LED素子を覆う封止樹脂が砲弾型をした、いわゆる砲弾型発光ダイオードである。発光部7は、被測定流体の種類に応じた波長の光を発する発光素子が用いられる。例えばオゾンガスの濃度を測定する場合、波長230nm~320nmの発光素子が好適に用いられる。受光部8は、フォトダイオード、フォトトランジスター等の光センサーが用いられ得る。 A light-emitting element such as a light-emitting diode or a laser diode is preferably used for the light-emitting portion 7 . The light-emitting portion 7 in the illustrated example is a so-called bullet-shaped light-emitting diode in which the sealing resin covering the LED element is shaped like a bullet. A light-emitting element that emits light having a wavelength corresponding to the type of fluid to be measured is used as the light-emitting unit 7 . For example, when measuring the concentration of ozone gas, a light-emitting element with a wavelength of 230 nm to 320 nm is preferably used. An optical sensor such as a photodiode or a phototransistor can be used for the light receiving unit 8 .

発光部7から出射した光を参照光として検出する参照光検出器12が、発光部7の側方に設けられている。また、参照光検出器12は、発光部7の後方に配置されている。即ち、参照光検出器12と透光窓6との距離は、発光部7と透光窓6との距離より大きい。参照光検出器12は、受光部8と同様の光センサーを用いることができる。 A reference light detector 12 for detecting light emitted from the light emitting section 7 as reference light is provided on the side of the light emitting section 7 . Also, the reference light detector 12 is arranged behind the light emitting unit 7 . That is, the distance between the reference light detector 12 and the translucent window 6 is greater than the distance between the light emitting section 7 and the translucent window 6 . The reference light detector 12 can use an optical sensor similar to the light receiving section 8 .

発光部7及び参照光検出器12は、保持部材13の凹部13aに取り付けられている。保持部材13は、第1固定部材3bに固定されている。第1固定部材3bは、ベース部3aの貫通孔10と略同径で同一軸線を持つ第1孔3b1を備えている。保持部材13の凹部13aは、第1孔3b1と略同径の内周を持ち、第1孔3b1の開口と貫通孔10との開口が略一致する。 The light emitter 7 and the reference light detector 12 are attached to the recess 13 a of the holding member 13 . The holding member 13 is fixed to the first fixing member 3b. The first fixing member 3b has a first hole 3b1 having substantially the same diameter and the same axis as the through hole 10 of the base portion 3a. The recessed portion 13a of the holding member 13 has an inner circumference with substantially the same diameter as the first hole 3b1, and the opening of the first hole 3b1 and the opening of the through hole 10 substantially match.

受光部8は、第2固定部材3cの第2孔3c1に取り付けられている。第2孔3c1は、貫通孔10と略同径で、同一軸線上に位置する。第2孔3c1には、集光レンズ14が配設されている。集光レンズ14は、光出射部5と受光部8との間に設けられている。 The light receiving portion 8 is attached to the second hole 3c1 of the second fixing member 3c. The second hole 3c1 has substantially the same diameter as the through hole 10 and is positioned on the same axis. A condensing lens 14 is arranged in the second hole 3c1. The condenser lens 14 is provided between the light emitting section 5 and the light receiving section 8 .

発光部7から発せられた光は、凹部13a、第1孔3b1、光入射部4、流路2の一部である第1部分10a、光出射部5、第1孔3b1内の集光レンズ14を順に通って、受光部8で受光される。所定波長の光は、光入射部4と光出射部5との間を通る際に、被測定流体による吸収を受ける。 The light emitted from the light emitting portion 7 passes through the concave portion 13a, the first hole 3b1, the light incident portion 4, the first portion 10a which is a part of the flow path 2, the light emitting portion 5, and the condensing lens in the first hole 3b1. 14 in order and is received by the light receiving portion 8 . Light of a predetermined wavelength is absorbed by the fluid to be measured when passing between the light entrance portion 4 and the light exit portion 5 .

受光部8及び参照光検出器12によって検出された検出信号光は、制御部15に送られる。制御部15は、発光部7に供給する電流を制御するとともに、公知の電流-電圧変換回路により、受光部8及び参照光検出器12の出力を電圧として測定する測定回路16を備えている。また、制御部15は、測定回路16で測定された測定値を記憶するデータロガー17、濃度計算及び補正処理を演算するコンピュータ18等を備えることができ、測定回路16で測定された測定値に基づいて濃度計算処理及び補正処理を行うことができる。なお、ランベルト・ベールの法則を適用してガスの濃度を演算する方法、その演算値を、参照光を用いて補正する方法等は公知であるので詳細な説明を省略する。 The detection signal light detected by the light receiving section 8 and the reference light detector 12 is sent to the control section 15 . The control unit 15 controls the current supplied to the light emitting unit 7, and includes a measurement circuit 16 that measures the outputs of the light receiving unit 8 and the reference photodetector 12 as voltages using a known current-voltage conversion circuit. In addition, the control unit 15 can include a data logger 17 for storing measured values measured by the measuring circuit 16, a computer 18 for calculating concentration and correction processing, and the like. Based on this, density calculation processing and correction processing can be performed. Since the method of calculating the gas concentration by applying the Beer-Lambert law and the method of correcting the calculated value using the reference light are well known, detailed description thereof will be omitted.

ランベルト・ベールの法則によれば、被測定流体の濃度は、以下の式(1)によって導きだされる。 According to the Beer-Lambert law, the concentration of the fluid to be measured is derived from the following equation (1).

A=aLc・・・(1)
ここで、Aは吸光度、aはモル吸光係数、Lは光路長、cは濃度である。また、吸光度Aは、A=-log10I/Iと定義され、Iは被測定流体に当てる特定波長の光の初期強度、Iは被測定流体を透過した光の強度である。I/Iは、透過率である。
A=aLc (1)
Here, A is the absorbance, a is the molar extinction coefficient, L is the optical path length, and c is the concentration. Also, the absorbance A is defined as A=-log 10 I/I 0 , where I 0 is the initial intensity of light of a specific wavelength impinging on the fluid to be measured, and I is the intensity of light transmitted through the fluid to be measured. I/I 0 is the transmittance.

光路長は、被測定流体を光が通る長さであり、離間距離Lに相当する。被測定流体の濃度が増加すると透過率は指数関数的に減少し、吸収ピークが飽和すると、濃度測定が困難となる。 The optical path length is the length of light passing through the fluid to be measured, and corresponds to the separation distance L. As the concentration of the fluid to be measured increases, the transmittance decreases exponentially, and concentration measurement becomes difficult when the absorption peak saturates.

本発明によれば、突出部9を設けて光路長を短縮することにより、突出部9を備えない場合、即ち、透光窓が単純な平板で形成される場合に比べて、透過率を増加させることができる。それにより、本発明は、突出部9が無い場合に比較して、より高い濃度を測定することが可能となる。 According to the present invention, by providing the projecting portion 9 to shorten the optical path length, the transmittance is increased compared to the case where the projecting portion 9 is not provided, i.e., when the translucent window is formed of a simple flat plate. can be made As a result, the present invention can measure a higher concentration than when there is no projecting portion 9. FIG.

次に、本発明の第2実施形態に係る濃度測定装置について、図5~図7を参照して説明する。 Next, a concentration measuring device according to a second embodiment of the invention will be described with reference to FIGS. 5 to 7. FIG.

第2実施形態の透光窓6は、光入射部4と光出射部5とを一体的に有する透光ブロックにより構成されている。その他の構成は、上記第1実施形態と同様である。図示例の透光ブロックは、直方体であるが、円柱形とすることもできる。 The light-transmitting window 6 of the second embodiment is composed of a light-transmitting block integrally including the light entrance portion 4 and the light exit portion 5 . Other configurations are the same as those of the first embodiment. The light-transmitting block in the illustrated example is a rectangular parallelepiped, but may be cylindrical.

透光窓6を構成する透光ブロックは、流路2の一部を構成する通孔2aを有している。突出部9は、通孔2aの内周に突出して設けられている。通孔2aは、本体3のベース部3aに形成されている流路2と合致し、連通する。図示例の突出部9は、環状であるが、他の形状であってもよい。 A light-transmitting block that constitutes the light-transmitting window 6 has a through hole 2 a that constitutes a part of the flow path 2 . The protrusion 9 is provided so as to protrude from the inner circumference of the through hole 2a. The through hole 2a matches and communicates with the channel 2 formed in the base portion 3a of the main body 3. As shown in FIG. Although the projection 9 in the illustrated example is annular, it may have other shapes.

透光窓6を構成する透光ブロックは、本体3のベース部3aに設けられた角孔状の貫通孔10に嵌め込まれ、第1固定部材3b及び第2固定部材3cによって挟まれて固定されている。透光窓6を構成する透光ブロックと本体3との間にシール材11が配設される。 A light-transmitting block constituting the light-transmitting window 6 is fitted into a rectangular through-hole 10 provided in the base portion 3a of the main body 3, and is sandwiched and fixed by the first fixing member 3b and the second fixing member 3c. ing. A sealing material 11 is provided between the light-transmitting block constituting the light-transmitting window 6 and the main body 3 .

第2実施形態の濃度測定装置1は、上記第1実施形態と同様に、突出部9を設けたことにより、突出部の無い場合に比べて、光路長を短くし、より高い濃度の測定が可能となる。 As in the case of the first embodiment, the density measuring apparatus 1 of the second embodiment has the protrusion 9, so that the optical path length is shortened compared to the case without the protrusion, and higher density can be measured. It becomes possible.

本発明は、上記実施形態に限定解釈されず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。 The present invention is not interpreted as being limited to the above-described embodiments, and various modifications are possible without departing from the scope of the present invention.

1 濃度測定装置
2 流路
3 本体
4 光入射部
5 光出射部
6 透光窓
7 発光部
8 受光部
9 突出部
10 貫通孔
1 Concentration measuring device 2 Flow path 3 Main body 4 Light incident part 5 Light emitting part 6 Translucent window 7 Light emitting part 8 Light receiving part 9 Protruding part 10 Through hole

Claims (11)

被測定流体を流すための流路を有する本体と、
前記流路に沿って前記本体に取り付けられ、前記流路を挟んで対向する光入射部及び光出射部を有する透光窓と、
前記光入射部を介して前記流路に光を入射させる発光部と、
前記光出射部を介して前記流路から出射した前記光を受光する受光部と、を備え、
前記透光窓は、前記光入射部と前記光出射部との離間距離を短縮する方向に突出する突出部を有する、
濃度測定装置。
a main body having a channel for flowing the fluid to be measured;
a translucent window attached to the main body along the flow path and having a light incident portion and a light output portion facing each other with the flow path interposed therebetween;
a light-emitting portion that causes light to enter the flow path through the light-incident portion;
a light receiving unit that receives the light emitted from the flow path through the light emitting unit;
The translucent window has a protruding portion that protrudes in a direction that shortens the distance between the light entrance portion and the light exit portion,
Densitometer.
前記透光窓は、前記光入射部と前記光出射部とを別体として備え、
前記突出部は、前記光入射部に設けられた第1突出部を含む、
請求項1に記載の濃度測定装置。
the light-transmitting window includes the light entrance section and the light exit section as separate bodies,
wherein the protrusion includes a first protrusion provided on the light incident section,
The concentration measuring device according to claim 1.
前記光入射部は、周縁部が前記本体に固定される第1板状基部を備え、
前記第1板状基部に前記第1突出部が突設されている、
請求項2に記載の濃度測定装置。
The light incident part includes a first plate-shaped base part whose peripheral edge is fixed to the main body,
The first projecting portion protrudes from the first plate-shaped base,
3. The concentration measuring device according to claim 2.
前記透光窓は、前記光入射部と前記光出射部とを別体として備え、
前記突出部は、前記光出射部に設けられた第2突出部を含む、
請求項1に記載の濃度測定装置。
the light-transmitting window includes the light entrance section and the light exit section as separate bodies,
wherein the protrusion includes a second protrusion provided on the light emitting section,
The concentration measuring device according to claim 1.
前記光出射部は、周縁部が前記本体に固定される第2板状基部を備え、
前記第2板状基部に前記第2突出部が突設されている、
請求項4に記載の濃度測定装置。
The light emitting part includes a second plate-shaped base part whose peripheral edge is fixed to the main body,
The second projecting portion protrudes from the second plate-shaped base,
5. The concentration measuring device according to claim 4.
前記透光窓は、前記光入射部と前記光出射部とを一体的に有する透光ブロックを備え、
前記透光ブロックが前記本体に固定されている、
請求項1に記載の濃度測定装置。
the light-transmitting window includes a light-transmitting block integrally including the light entrance portion and the light exit portion;
wherein the translucent block is fixed to the body;
The concentration measuring device according to claim 1.
前記透光ブロックが、前記流路の一部を構成する通孔を有し、
前記突出部が、前記通孔の内周に突出して設けられている、
請求項6に記載の濃度測定装置。
the light-transmitting block has a through hole forming part of the flow path,
wherein the protruding portion is provided to protrude from the inner periphery of the through hole;
7. The concentration measuring device according to claim 6.
前記突出部が環状である、請求項7に記載の濃度測定装置。 8. The concentration measuring device according to claim 7, wherein said protrusion is annular. 前記本体が、前記流路と交差する貫通孔を備え、
前記貫通孔は、前記流路が開通する第1部分と、前記第1板状基部の前記周縁部が係止する段部からなる第2部分と、を含み、
前記本体が、前記周縁部を押圧して固定する第1固定部材を更に含み、
前記第1部分に前記突出部が突出し、前記離間距離が、前記貫通孔に開通する前記流路の直径より小さい、請求項3に記載の濃度測定装置。
the body comprises a through-hole intersecting with the channel,
The through-hole includes a first portion through which the flow path is opened and a second portion formed of a stepped portion to which the peripheral portion of the first plate-shaped base engages,
The main body further includes a first fixing member that presses and fixes the peripheral edge,
4. The concentration measuring device according to claim 3, wherein said projecting portion protrudes from said first portion, and said distance is smaller than the diameter of said channel opening to said through hole.
前記本体が、前記流路と交差する貫通孔を備え、
前記貫通孔は、前記流路が開通する第1部分と、前記第2板状基部の前記周縁部が係止する段部からなる第3部分と、を含み、
前記本体が、前記周縁部を押圧して固定する第2固定部材を更に含み、
前記第1部分に前記突出部が突出し、前記離間距離が、前記貫通孔に開通する前記流路の直径より小さい、請求項5に記載の濃度測定装置。
the body comprises a through-hole intersecting with the channel,
The through-hole includes a first portion through which the flow path opens, and a third portion formed of a stepped portion to which the peripheral portion of the second plate-shaped base engages,
The main body further includes a second fixing member that presses and fixes the peripheral edge,
6. The concentration measuring device according to claim 5, wherein said projecting portion protrudes from said first portion, and said separation distance is smaller than the diameter of said channel opening to said through hole.
前記本体が、前記流路と交差する貫通孔を備え、
前記通孔と前記流路とが合致するように、前記貫通孔に前記透光ブロックが嵌入され、
前記本体は、前記透光ブロックを両側から挟持して固定する固定部材を含む、
請求項7に記載の濃度測定装置。
the body comprises a through-hole intersecting with the channel,
the light-transmitting block is inserted into the through-hole such that the through-hole and the flow path match;
The main body includes a fixing member that sandwiches and fixes the light-transmitting block from both sides,
The concentration measuring device according to claim 7.
JP2022006730A 2022-01-19 2022-01-19 Concentration measuring device Pending JP2023105732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022006730A JP2023105732A (en) 2022-01-19 2022-01-19 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022006730A JP2023105732A (en) 2022-01-19 2022-01-19 Concentration measuring device

Publications (1)

Publication Number Publication Date
JP2023105732A true JP2023105732A (en) 2023-07-31

Family

ID=87468739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022006730A Pending JP2023105732A (en) 2022-01-19 2022-01-19 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP2023105732A (en)

Similar Documents

Publication Publication Date Title
US10113957B1 (en) Non-dispersive infrared carbon dioxide gas sensor with deposited hydrophobic thin film
US9625372B2 (en) Ultraviolet-based ozone sensor
US7593107B2 (en) Method and system for diffusion attenuated total reflection based concentration sensing
US5689114A (en) Gas analyzing apparatus
US20130026369A1 (en) Gas sensor with radiation guide
US20240053262A1 (en) Gas sensor
US5500536A (en) Spectrofluorometer
US8077316B2 (en) Chlorine dioxide sensor
KR20020073255A (en) Method for measuring light transmittance and apparatus therefor
IT201900006954A1 (en) DEVICE FOR THE ANALYSIS OF THE GAS COMPOSITION, AND RELATIVE METHOD OF ANALYSIS OF THE GAS COMPOSITION.
JP6516484B2 (en) Dissolved matter concentration measuring device
JP2023105732A (en) Concentration measuring device
JP4696959B2 (en) Optical detector
US7705313B1 (en) Ambient gas compensation in an optical system
JP2006300614A (en) Refractive index measuring appliance, refractive index measuring instrument and refractive index measuring method
WO2020084867A1 (en) Concentration sensor
JP6283291B2 (en) Gas analyzer and gas cell
JPH10281991A (en) Gloss sensor
JP6645347B2 (en) Flow cell
US20240102916A1 (en) Emission optical system, emission device, and optical measurement device
KR20220079977A (en) Concentration measuring method and concentration measuring device
RU2581429C1 (en) Photometer device with ball illuminator
JPH07198590A (en) Gas sensor using gas cell
KR20160105062A (en) Gas sense module
JP2021028614A (en) Optical device