JP2023104178A - Circumference search device - Google Patents

Circumference search device Download PDF

Info

Publication number
JP2023104178A
JP2023104178A JP2022005023A JP2022005023A JP2023104178A JP 2023104178 A JP2023104178 A JP 2023104178A JP 2022005023 A JP2022005023 A JP 2022005023A JP 2022005023 A JP2022005023 A JP 2022005023A JP 2023104178 A JP2023104178 A JP 2023104178A
Authority
JP
Japan
Prior art keywords
optical
azimuth
rotation axis
rangefinder
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022005023A
Other languages
Japanese (ja)
Inventor
正 黒岩
Tadashi Kuroiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2022005023A priority Critical patent/JP2023104178A/en
Publication of JP2023104178A publication Critical patent/JP2023104178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Cameras In General (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

To provide a circumference search device that reduces an inertial load during searching.SOLUTION: In a circumference search device 100 in which a turntable 30 that is continuously rotatable in an azimuthal direction and supported by a turntable rotation axis 20 that is a first axis of rotation in the azimuthal (lateral) direction is mounted to a stationary portion 10 that is a foundation of the entire device, the turntable is equipped with a first gimbal device and a second gimbal device. The first gimbal device is equipped with a first azimuth moving part 50 that is a moving part in the azimuth direction and supported by an azimuth rotation axis 40 that is a second rotation axis in the azimuth direction, a high/low rotation axis 51 is arranged on the first azimuth moving part and a reflecting mirror 52 is mounted on the rotating side of the high/low rotation axis. The second gimbal device is equipped with a second azimuth moving part 70 that is supported on an azimuth rotation axis 60 that is a third axis of rotation in the azimuth direction, a high-low axis of rotation 71 is arranged on the second azimuth moving part, and a reflecting mirror 72 is mounted on the rotating side of the high-low axis of rotation.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、周囲捜索装置に関する。 An embodiment of the present invention relates to a perimeter search device.

周囲の移動体または静止体であって目標物である捜索対象物までの距離を計測する光学的測距器と撮像器を用いて周囲の対象物を捜索および監視する周囲捜索装置では、捜索および監視する対象である対象物の領域、すなわち覆域が撮像器の視野より広いときには、撮像器を2軸以上の駆動軸を有するジンバル装置(ジンバル機構)の可動部上に搭載し、この撮像器の視軸方向を逐次移動させて覆域内を走査させる方法がしばしば用いられる。 Surrounding search devices for searching and monitoring surrounding objects using an optical range finder and an imager for measuring the distance to a search object, which is a surrounding mobile or stationary object. When the area of the object to be monitored, that is, the coverage area, is wider than the field of view of the imager, the imager is mounted on the movable part of a gimbal device (gimbal mechanism) having two or more drive axes, and the imager is A method of scanning the coverage area by sequentially moving the direction of the visual axis is often used.

また、ジンバル装置の可動部上に搭載される光学的測距器としては、レーザ光を送受信するレーザ測距器が多く用いられる。しかし、このレーザ光である送信光の広がりは、一般的には撮像器の視野よりも狭いため、撮像器の視野内に捉えられた対象物にレーザ光軸である送信光軸を合わせてレーザ光を送信できる2軸の光軸方向補正機構が必要である。 Also, as an optical rangefinder mounted on the movable part of the gimbal device, a laser rangefinder that transmits and receives laser light is often used. However, the spread of the transmitted light, which is laser light, is generally narrower than the field of view of the imager. A two-axis optical axial correction mechanism that can transmit light is required.

また、光学的測距器の受信器の視野が撮像器の視野よりも狭いときには、受信器へ入射させるレーザ光軸である受信光軸の方向を上記送信光軸の方向と同じ方向に向ける必要がある。 Also, when the field of view of the receiver of the optical rangefinder is narrower than the field of view of the imaging device, it is necessary to orient the direction of the receiving optical axis, which is the laser optical axis to be incident on the receiver, in the same direction as the transmitting optical axis. There is

周囲捜索装置の小型化および消費電力の低減化のための方策の一つとして、慣性負荷が比較的大きい撮像器および光学的測距器の全て又は一部分を、周囲捜索装置の土台である固定部側に配置すること(例えば特許文献1参照)、又は中間の可動部上に配置することが考えられる。 As one of the measures to reduce the size and power consumption of the perimeter search device, all or part of the image pickup device and the optical rangefinder, which have a relatively large inertial load, are replaced with a fixed part that is the base of the perimeter search device. It is conceivable to arrange it on the side (see, for example, Patent Document 1) or on an intermediate moving part.

撮像器が、上記のジンバル装置の固定部側又は中間の可動部上に配置されたとき、ジンバル装置の回転に伴って、撮像器により撮像されて得られた画像、すなわち対象物の像も回転するが、ジンバル装置の回転角度を計測し、この計測された角度を用いて座標変換を行なえば、対象物の方向を検出することができる(例えば特許文献1参照)。 When the imaging device is arranged on the fixed part side of the gimbal device or on the movable part in the middle, the image obtained by imaging with the imaging device, that is, the image of the object, also rotates with the rotation of the gimbal device. However, by measuring the rotation angle of the gimbal device and performing coordinate transformation using the measured angle, the direction of the object can be detected (see, for example, Patent Document 1).

また、別の例として、例えば特許文献2には、外部からの動揺外乱を抑圧する空間安定制御における静止摩擦による影響を低減させるために、同じ方向の回転軸に対する可動部を二重の可動部として、片側の可動部を一定の角速度で回転させる機構が示される。 As another example, for example, in Patent Document 2, in order to reduce the influence of static friction in space stability control that suppresses disturbance from the outside, a movable part with respect to the rotating shaft in the same direction is doubled. , a mechanism that rotates the movable part on one side at a constant angular velocity is shown.

特許第5010634号公報Japanese Patent No. 5010634 特開2001-290540号公報Japanese Patent Application Laid-Open No. 2001-290540

一般的なジンバル装置において、所定の捜索および監視領域を複数の領域に分けて撮像する場合、この撮像のために静止させる動作と、異なる撮像方向に撮像器を指向させる動作とを繰り返す必要があることから、比較的大きな慣性負荷を有する可動部に対して、急激な加減速を伴う動作を行わせる必要があり、装置の消費電力が多大となっていた。 In a general gimbal device, when a predetermined search and monitoring area is divided into a plurality of areas and images are captured, it is necessary to repeat an operation of holding still for this imaging and an operation of pointing the imager in a different imaging direction. For this reason, it is necessary to cause the movable part having a relatively large inertial load to perform an operation accompanied by rapid acceleration and deceleration, resulting in a large power consumption of the device.

また、上記特許文献2に開示された機構においても、慣性負荷が比較的大きい機器、例えば撮像器は、機構の先端側の可動部上に搭載されており、この状態では同様に急激な加減速を伴う動作が繰り返されるので、装置の消費電力が多大となってしまう。 Also in the mechanism disclosed in Patent Document 2, a device with a relatively large inertial load, such as an image pickup device, is mounted on the movable portion on the distal end side of the mechanism, and in this state, rapid acceleration and deceleration are also possible. Since the operation accompanied by is repeated, the power consumption of the apparatus becomes large.

なお、上記特許文献2に開示された機構において、慣性負荷が比較的大きい機器を一定の角速度で動作させる可動部上に搭載できれば、上記消費電力を低減することが可能となる。 In the mechanism disclosed in Patent Document 2, if a device with a relatively large inertial load can be mounted on a movable portion that operates at a constant angular velocity, the power consumption can be reduced.

上記特許文献1及び特許文献2に示される例では、慣性負荷は撮像器のみである。
しかし、ジンバル装置に撮像器に加えて光学的測距器も搭載され、かつこれらがジンバル装置の固定部又は中間の可動部上に配置されるとき、光学機器の光路数は、撮像器への受信光、光学的測距器からの送信光、及び光学的測距器への受信光でなる3つであるため、これらの光路をジンバル装置の回転軸に組み込むのは容易ではなかった。
In the examples shown in Patent Documents 1 and 2, the only inertial load is the imager.
However, when the gimbal system is equipped with an optical range finder in addition to the imager, and these are placed on a fixed part or an intermediate movable part of the gimbal system, the number of optical paths to the imager is reduced. Since there are three paths: the received light, the transmitted light from the optical rangefinder, and the received light to the optical rangefinder, it was not easy to incorporate these optical paths into the rotation axis of the gimbal device.

本発明が解決しようとする課題は、周囲の捜索時の慣性負荷を低減することが可能な周囲捜索装置を提供することである。 The problem to be solved by the present invention is to provide a surroundings search device capable of reducing the inertial load when searching the surroundings.

実施形態における周囲捜索装置は、捜索対象物を撮像する撮像器と、前記撮像器によって撮像された画像に基づいて前記捜索対象物への方向を検出する目標検出器と、前記目標検出器によって検出された前記捜索対象物への方向への出射光と前記出射光が前記捜索対象物にて反射して戻ってくる受信光とを用いて前記捜索対象物までの距離を計測する光学的測距器と、固定部に対して方位方向に回転可能に取り付けられ、前記撮像器および前記光学的測距器が搭載されるターンテーブルと、前記ターンテーブルに搭載され、前記光学的測距器から前記捜索対象物への送信光の中心軸および前記捜索対象物から前記光学的測距器への受信光の中心軸を指向させる2つ以上の回転軸を有する第1のジンバル装置と、前記ターンテーブルに搭載され、前記撮像器への受信光の中心軸を指向させる2つ以上の回転軸を有する第2のジンバル装置と、前記ターンテーブルの回転軸および前記第2のジンバル装置の回転軸の駆動を制御して前記撮像器を指向させるとともに、前記目標検出器によって検出された前記捜索対象物への方向に基づいて、前記第1のジンバル装置の回転軸および前記ターンテーブルの回転軸の駆動を制御し、前記光学的測距器を前記捜索対象物への方向に指向させる制御部とを有する。 An apparatus for searching surroundings in an embodiment includes an imaging device that images a search target, a target detector that detects a direction to the search target based on the image captured by the imaging device, and detection by the target detector. optical distance measurement for measuring the distance to the search object by using the emitted light directed toward the search object and the received light returned after the emitted light is reflected by the search object. a turntable mounted rotatably in the azimuth direction with respect to a fixed part, on which the imaging device and the optical rangefinder are mounted; a first gimbal device having two or more rotation axes for directing a central axis of transmitted light to a search target and a central axis of received light from the search target to the optical rangefinder; and the turntable. a second gimbal device having two or more rotation shafts for directing the central axis of the received light to the imaging device; and driving the rotation shaft of the turntable and the rotation shaft of the second gimbal device. to orient the image pickup device, and drive the rotation axis of the first gimbal device and the rotation axis of the turntable based on the direction to the search target detected by the target detector. a control unit for controlling and directing the optical rangefinder toward the search object.

本発明によれば、大きな慣性負荷をもつ撮像器と光学的測距器を一定角速度で駆動させるターンテーブル上に搭載することによって、周囲捜索装置による捜索時における加減速を伴う部位の慣性負荷を低減することができ、捜索時における消費電力の低減と静粛性の向上ができる。 According to the present invention, by mounting an image pickup device having a large inertial load and an optical rangefinder on a turntable that is driven at a constant angular velocity, the inertial load of a region that accompanies acceleration and deceleration during searching by a surrounding search device can be reduced. It is possible to reduce power consumption and improve quietness during searching.

実施形態に係る周囲捜索装置の全体の構成の一例を示す図。The figure which shows an example of the whole structure of the surroundings search apparatus which concerns on embodiment. 光学的測距器の送受信光軸を指向させるジンバル装置の構成例を示す図。FIG. 3 is a diagram showing a configuration example of a gimbal device for directing the transmission/reception optical axis of an optical rangefinder; 光学的測距器の送信光軸を指向させるジンバル装置の構成例を示す図。FIG. 4 is a diagram showing a configuration example of a gimbal device for directing the transmission optical axis of an optical rangefinder; 光学的測距器の受信光軸を指向させるジンバル装置の構成例を示す図。FIG. 4 is a diagram showing a configuration example of a gimbal device for directing the receiving optical axis of an optical rangefinder; 撮像器の受信光軸を指向させるジンバル装置の構成例を示す図。FIG. 4 is a diagram showing a configuration example of a gimbal device that orients the receiving optical axis of an image pickup device; 実施形態に係る周囲捜索装置の制御機能構成の一例を示すブロック図。1 is a block diagram showing an example of a control function configuration of a surroundings search device according to an embodiment; FIG. 周囲捜索装置に係る回転軸の回転角度の制御の一例を示す図。The figure which shows an example of control of the rotation angle of the rotating shaft which concerns on a surroundings search apparatus. 実施形態に係る周囲捜索装置の各部の構成の変形例を示す図。The figure which shows the modification of the structure of each part of the surroundings search apparatus which concerns on embodiment.

以下、実施形態について図面を用いて説明する。
図1は、実施形態に係る周囲捜索装置の全体の構成の一例を示す図である。
図1に示された例では、実施形態に係る周囲捜索装置100は、光学的測距器および撮像器を用いて、ターンテーブル、光学的測距器側の2軸ジンバル装置(第1のジンバル装置)および撮像器側の2軸ジンバル装置(第2のジンバル装置)を制御して、対象物(目標物)を捜索する装置である。撮像器で撮像した画像を基に対象物への方向が検出され、光学的測距器は、この検出した方向へ光波を出射光(送信光)として向けて、この出射光が対象物にて反射して戻ってくる受信光とを用いて、対象物までの距離を計測する。
Embodiments will be described below with reference to the drawings.
FIG. 1 is a diagram showing an example of the overall configuration of a surroundings search device according to an embodiment.
In the example shown in FIG. 1 , the surroundings searching apparatus 100 according to the embodiment uses an optical rangefinder and an imager, a turntable, a two-axis gimbal device on the optical rangefinder side (first gimbal device) and a two-axis gimbal device (second gimbal device) on the imaging device side to search for an object (target object). The direction to the object is detected based on the image captured by the imaging device. The distance to the object is measured using the received light that is reflected and returned.

実施形態に係る周囲捜索装置100では、装置全体の土台である固定部10に対して、方位方向(側方)の第1の回転軸であるターンテーブル回転軸20に支持されて方位方向に連続回転可能であるターンテーブル(ターンテーブル回転部)30が搭載される。 In the surroundings search device 100 according to the embodiment, the fixed portion 10, which is the base of the entire device, is supported by the turntable rotation shaft 20, which is the first rotation shaft in the azimuth direction (side), and is continuous in the azimuth direction. A rotatable turntable (turntable rotating portion) 30 is mounted.

このターンテーブル30には、第1のジンバル装置と第2のジンバル装置が搭載される。 A first gimbal device and a second gimbal device are mounted on the turntable 30 .

ターンテーブル30には、光学的測距器の送信器31、反射ミラー32、集光レンズ33、反射ミラー34、光学的測距器の受信器35、反射ミラー36、および撮像器37が搭載される。 The turntable 30 is equipped with an optical rangefinder transmitter 31 , a reflecting mirror 32 , a condenser lens 33 , a reflecting mirror 34 , an optical rangefinder receiver 35 , a reflecting mirror 36 and an imager 37 . be.

ターンテーブル30における方位回転軸40の延長線上を含む軸上の、方位回転軸40に最も近い側の光路内に上記反射ミラー32が配置され、この光路では、光学的測距器の送信器31からの方位方向の送信光(以下、測距器送信光と称することがある)L1の光路の中心軸を、方位回転軸40の延長線上を含む軸上の反射ミラー32により方位回転軸40と同軸方向かつ第1方位可動部50に向けた方向に導光させる。 The reflecting mirror 32 is arranged in the optical path on the side closest to the azimuth rotation axis 40 on the axis including the extension of the azimuth rotation axis 40 in the turntable 30, and in this optical path, the transmitter 31 of the optical rangefinder The central axis of the optical path of the transmitted light L1 in the azimuth direction (hereinafter sometimes referred to as the rangefinder transmitted light) from the The light is guided in the coaxial direction and in the direction toward the first orientation movable section 50 .

次に、光学的測距器側の第1のジンバル装置の各部について説明する。
第1のジンバル装置には、方位方向の第2の回転軸である方位回転軸40に支持される方位方向の可動部である第1方位可動部50が搭載され、第1方位可動部50には、高低方向の第1の回転軸である高低回転軸51が配置され、この高低回転軸51の回転側に反射ミラー52が取り付けられる。
Next, each part of the first gimbal device on the optical rangefinder side will be described.
The first gimbal device is equipped with a first azimuth movable section 50 which is a movable section in the azimuth direction supported by an azimuth rotation shaft 40 which is a second rotation shaft in the azimuth direction. , an elevation rotation shaft 51 that is a first rotation axis in the elevation direction is arranged, and a reflecting mirror 52 is attached to the rotation side of the elevation rotation shaft 51 .

反射ミラー52は、高低回転軸51を中心として高低方向に回転可能であり、この反射ミラー52により、光学的測距器からの送信光L1および、外部から入射する光学的測距器への受信光(以下、測距器受信光と称することがある)L2の光軸方向を指向させる。また、この第1方位可動部50には、プリズム53が設けられる。 The reflecting mirror 52 is rotatable in the elevation direction around the elevation rotation axis 51, and the reflection mirror 52 receives the transmitted light L1 from the optical rangefinder and the external incident light L1 to the optical rangefinder. The light (hereinafter sometimes referred to as rangefinder received light) L2 is directed in the optical axis direction. Also, a prism 53 is provided in the first orientation movable section 50 .

上記の方位回転軸40と第1方位可動部50上の高低回転軸51および反射ミラー52は、測距器送信光L1および測距器受信光L2の光軸方向を指向させる2つ以上の軸数を有する、光学的測距器側の2軸ジンバル装置(第1のジンバル装置)を構成する。 The azimuth rotation axis 40, the elevation rotation axis 51 on the first azimuth movable part 50, and the reflection mirror 52 are two or more axes for directing the optical axis directions of the rangefinder transmission light L1 and the rangefinder reception light L2. A two-axis gimbal device (first gimbal device) on the side of the optical rangefinder is constructed.

プリズム53は、第1方位可動部50上の、方位回転軸40の延長線上を含む軸上でない離隔した位置に取り付けられ、反射ミラー52で反射した外部からの測距器受信光の光路の中心軸を、ターンテーブル30に係る方位回転軸40の延長線上を含む軸上との交点を有する方向、すなわち、方位回転軸40の延長線上を含む軸と交わり、この方位回転軸40の延長線上を含む軸に対して斜めの方向に曲げるために配置される光学部品である。 The prism 53 is mounted on the first azimuth movable part 50 at a spaced position that is not on the axis including the extension of the azimuth rotation axis 40, and is positioned at the center of the optical path of the light received by the rangefinder from the outside and reflected by the reflecting mirror 52. The axis intersects the axis including the extension line of the azimuth rotation axis 40 in a direction having an intersection point with the extension line of the azimuth rotation axis 40 related to the turntable 30, that is, the axis includes the extension line of the azimuth rotation axis 40. An optical component arranged to bend in a direction oblique to the containing axis.

第1のジンバル装置では、反射ミラー52上の、方位方向に互いに離隔した位置で複数個の捜索対象物への光束と捜索対象物からの光束を反射させて、これら複数個の光束の光軸方向を、ターンテーブル30上の方位回転軸40の延長線上の離隔した位置に設置した複数個の反射ミラー(本実施形態では反射ミラー32と反射ミラー34)に向けた方向に同期して指向させる。 In the first gimbal device, the light beams to and from a plurality of search objects are reflected at positions separated from each other in the azimuth direction on the reflecting mirror 52, and the optical axes of these plurality of light beams are reflected. The direction is directed synchronously toward a plurality of reflecting mirrors (reflecting mirrors 32 and 34 in this embodiment) installed at separated positions on the extension line of the azimuth rotation axis 40 on the turntable 30. .

測距器送信光L1は、方位回転軸40と同軸の光路を経由して第1のジンバル装置に入射され、第1方位可動部50上に設置された反射ミラー52で方位方向に反射して、捜索対象物に対する送信光として出射される。 Range finder transmission light L1 is incident on the first gimbal device via an optical path coaxial with the azimuth rotation axis 40, and is reflected in the azimuth direction by the reflecting mirror 52 installed on the first azimuth moving part 50. , is emitted as transmitted light for the search object.

捜索対象物からの測距器受信光L2は、第1方位可動部50の反射ミラー52でプリズム53に向けて高低方向に反射し、当該プリズム53でターンテーブル30の集光レンズ33の視野33aの範囲を通過するように屈折される。測距器受信光L2の光束は、方位回転軸40回りに回転する。
すなわち、第1のジンバル装置は、光学的測距器から側索対象物への送信光L1の中心軸および捜索対象物から光学的測距器への受信光L2の中心軸を指向させる2つ以上の回転軸を有する。そして、光学的測距器への受信光L2の光路の中心軸は、第1のジンバル装置が支持される方位回転軸40から離隔した位置から発して方位回転軸40と交点をもつ。
The light L2 received by the rangefinder from the object to be searched is reflected by the reflecting mirror 52 of the first azimuth moving part 50 toward the prism 53 in the vertical direction, and the prism 53 reflects the field of view 33a of the condenser lens 33 of the turntable 30. is refracted to pass through the range of The luminous flux of the rangefinder received light L2 rotates around the azimuth rotation axis 40 .
That is, the first gimbal device has two components that direct the central axis of the transmitted light L1 from the optical rangefinder to the side search target and the central axis of the received light L2 from the search target to the optical rangefinder. or more rotating shaft. The central axis of the optical path of the received light L2 to the optical rangefinder originates from a position separated from the azimuth rotation axis 40 on which the first gimbal device is supported and has an intersection with the azimuth rotation axis 40 .

次に、撮像器側の第2のジンバル装置の各部について説明する。
第2のジンバル装置には、方位方向の第3の回転軸である方位回転軸60に支持される第2方位可動部70が搭載され、この第2方位可動部70には、高低方向の第2の回転軸である高低回転軸71が配置され、この高低回転軸71の回転側に反射ミラー72が取り付けられる。反射ミラー72は、高低回転軸71を中心として高低方向に回転可能である。外部から入射する撮像器受信光L3は、その光路の中心軸が、反射ミラー72によって方位回転軸60と同軸(その延長線上を含む)となるように反射される。
なお、方位回転軸60と、この軸と同軸となる撮像器受信光L3の光束は、方位回転軸40を中心として回転する測距器受信光L2の光束の軌跡全体の領域と干渉しない位置に配置される必要がある。
Next, each part of the second gimbal device on the imaging device side will be described.
The second gimbal device is equipped with a second azimuth movable section 70 supported by an azimuth rotation axis 60, which is a third rotation axis in the azimuth direction. 2, and a reflection mirror 72 is attached to the rotation side of the elevation rotation axis 71 . The reflecting mirror 72 is rotatable in the elevation direction around the elevation rotation axis 71 . The imaging device received light L3 incident from the outside is reflected by the reflecting mirror 72 so that the central axis of the optical path becomes coaxial with the azimuth rotation axis 60 (including its extension line).
The azimuth rotation axis 60 and the luminous flux of the image pickup device received light L3 coaxial with this axis are positioned so as not to interfere with the entire trajectory area of the luminous flux of the rangefinder received light L2 rotating about the azimuth rotation axis 40. need to be placed.

上記の方位回転軸60と第2方位可動部70上の高低回転軸71および反射ミラー72は、撮像器受信光L3の光軸方向を指向させる2つ以上の軸数を有する、撮像器側の2軸ジンバル装置(第2のジンバル装置)を構成する。
第2のジンバル装置では、反射ミラー72上で、捜索対象物からの光束を反射させて、この光束の光軸方向をターンテーブル30上に設置した反射ミラー36に向けた方向に指向させる。すなわち、第2のジンバル装置は、撮像器37への受信光L3の中心軸を指向させる2つ以上の回転軸を有する。
The azimuth rotating shaft 60, the elevation rotating shaft 71 on the second azimuth moving part 70, and the reflecting mirror 72 have two or more axes for directing the optical axis direction of the received light L3 of the imaging device. A two-axis gimbal device (second gimbal device) is constructed.
In the second gimbal device, the luminous flux from the object to be searched is reflected on the reflective mirror 72 and the optical axis direction of this luminous flux is directed toward the reflective mirror 36 installed on the turntable 30 . That is, the second gimbal device has two or more rotation axes that direct the central axis of the received light L3 to the image pickup device 37 .

次に、ターンテーブル30上の各部について説明する。
光学的測距器の送信器31から出射された測距器送信光L1は、その光路の中心軸が、反射ミラー32によって方位回転軸40と同軸(その延長線上を含む)となるように反射される。
Next, each part on the turntable 30 will be described.
The rangefinder transmission light L1 emitted from the transmitter 31 of the optical rangefinder is reflected by the reflecting mirror 32 so that the central axis of the optical path becomes coaxial with the azimuth rotation axis 40 (including its extension line). be done.

第1のジンバル装置上のプリズム53で屈折された測距器受信光L2は、集光レンズ33の視野33aの範囲を通過し、当該集光レンズ33によって集光され、高低方向の光として固定部10側に向かった先の反射ミラー34で方位方向に反射して光学的測距器の受信器35に入射される。 Rangefinder received light L2 refracted by the prism 53 on the first gimbal device passes through the range of the field of view 33a of the condenser lens 33, is condensed by the condenser lens 33, and is fixed as light in the elevation direction. It is reflected in the azimuth direction by the reflecting mirror 34 on the side of the unit 10 and enters the receiver 35 of the optical rangefinder.

第2のジンバル装置上の反射ミラー72で反射された高低方向の撮像器受信光L3は、方位回転軸60と同軸の光路を経由して反射ミラー36に入射され、当該反射ミラー36で方位方向に反射して撮像器37のレンズに入射される。 The image pickup device received light L3 in the elevation direction reflected by the reflection mirror 72 on the second gimbal device is incident on the reflection mirror 36 via an optical path coaxial with the azimuth rotation axis 60, and is reflected by the reflection mirror 36 in the azimuth direction. and is incident on the lens of the imaging device 37 .

本実施形態では、比較的大きな慣性負荷を有する撮像器37と光学的測距器(同送信器31および同受信器35)とが、方位方向の回転軸回りに連続回転可能なターンテーブル30上に搭載される。 In this embodiment, an imager 37 having a relatively large inertial load and an optical rangefinder (the transmitter 31 and the receiver 35) are mounted on a turntable 30 that can rotate continuously around a rotation axis in the azimuth direction. installed in the

撮像器受信光L3の光軸の方向と、測距器送信光L1および測距器受信光L2の光軸の方向は、それぞれ独立した、方位軸回りおよび高低軸回りに動作可能な2式のジンバル機構によって変化する。 The direction of the optical axis of the image sensor received light L3 and the direction of the optical axes of the rangefinder transmitted light L1 and the rangefinder received light L2 are independent of each other, and can be operated around the azimuth axis and the elevation axis. It changes depending on the gimbal mechanism.

図2乃至図4は、光学的測距器の送受信光軸を指向させるジンバル装置の構成例を示す図である。図2は、ジンバル機構を正面から見たときの模式図である。図3は、方位回転軸40およびそれと同軸の測距器送信光軸L1を通る断面を側面から見たときの模式図である。図4は、測距器受信光L2の光軸およびプリズム53を通る断面を側面から見たときの模式図である。図5は、撮像器の方位回転軸60およびそれと同軸の撮像器受信光L3の光軸を指向させるジンバル装置の構成例を示す図である。
上記の第1および第2の2式のジンバル機構の主要な慣性負荷は、ジンバル機構自身の一部、反射ミラー、および一部の付加光学部品とし、慣性負荷を出来るだけ低減させた構成としている。
2 to 4 are diagrams showing configuration examples of a gimbal device for directing the transmission/reception optical axis of an optical rangefinder. FIG. 2 is a schematic diagram of the gimbal mechanism viewed from the front. FIG. 3 is a schematic side view of a cross section passing through the azimuth rotation axis 40 and the rangefinder transmission optical axis L1 coaxial therewith. FIG. 4 is a schematic side view of a cross section passing through the optical axis of the rangefinder received light L2 and the prism 53. As shown in FIG. FIG. 5 is a diagram showing a configuration example of a gimbal device for directing the azimuth rotation axis 60 of the imaging device and the optical axis of the received light L3 of the imaging device coaxial therewith.
The main inertia loads of the first and second gimbal mechanisms are a part of the gimbal mechanism itself, a reflecting mirror, and a part of the additional optical components. .

光学的測距器側のジンバル機構の方位回転軸40及び撮像器光軸側のジンバル機構の方位回転軸60は、ともに、ターンテーブル回転軸20と平行に位置する中空の軸であり、方位回転軸40の内部に、中心軸を当該方位回転軸40と同軸とする測距器送信光L1の光路を通せる構造をなし、また、方位回転軸60の内部に、中心軸を方位回転軸60と同軸とする撮像器受信光L3の光路を通せる構造をなす。なお、撮像器光軸側のジンバル機構の方位回転軸60は、ターンテーブル回転軸20と同軸であることが望ましい。
本実施形態では、撮像器光軸側のジンバル機構の方位回転軸60を通過する撮像器受信光L3の光軸中心は、当該方位回転軸60と同軸である。
The azimuth rotation axis 40 of the gimbal mechanism on the optical rangefinder side and the azimuth rotation axis 60 of the gimbal mechanism on the optical axis side of the image pickup device are both hollow shafts positioned parallel to the turntable rotation axis 20 and rotate in the azimuth direction. Inside the shaft 40, there is a structure in which the optical path of the rangefinder transmission light L1 whose central axis is coaxial with the azimuth rotation axis 40 can pass. and the optical path of the received light L3 coaxial with the image pickup device. The azimuth rotation axis 60 of the gimbal mechanism on the optical axis side of the image pickup device is preferably coaxial with the turntable rotation axis 20 .
In this embodiment, the optical axis center of the image pickup device received light L3 passing through the azimuth rotation axis 60 of the gimbal mechanism on the optical axis side of the image pickup device is coaxial with the azimuth rotation axis 60 .

図2乃至4に示された例では、光学的測距器側のジンバル機構の方位回転軸40と同じ軸方向を通過する光路数が複数、ここでは2つであるが、この例では、ターンテーブル30側の方位回転軸40と同軸の直線上である延長線上を光路の個数に区切り、この同軸の直線上の各区切りに配置された光学部品に光路が一つずつ集められる構成をなす。この構成は、例えば実開昭58-40709号公報に開示される。 In the examples shown in FIGS. 2 to 4, the number of light paths passing in the same axial direction as the azimuth rotation axis 40 of the gimbal mechanism on the optical rangefinder side is a plurality, here two, but in this example, the turn The extension line on the straight line coaxial with the azimuth rotation axis 40 on the side of the table 30 is divided into the number of optical paths, and the optical parts are arranged one by one at each division on the coaxial straight line. This configuration is disclosed, for example, in Japanese Utility Model Laid-Open No. 58-40709.

方位回転軸40と同軸の直線上を区切った複数の光路における第1方位可動部50に最も近い側の区切り内は、光学的測距器からの送信光L1の光路に割り当てられる。第1方位可動部50を通過する測距器送信光L1の光軸中心は方位回転軸40と同軸であり、この送信光L1の光路上に反射ミラー32が配置される。本実施形態では、方位回転軸40の軸方向とは異なる方向、例えば、直交する方向に配置される光学的測距器の送信器31からの送信光L1が反射ミラー32に入射し、この反射ミラー32からの出射光である反射光の光軸中心を上記のように方位回転軸40と同軸にする。 The section closest to the first azimuth moving part 50 in a plurality of optical paths sectioned on a straight line coaxial with the azimuth rotation axis 40 is assigned to the optical path of the transmission light L1 from the optical rangefinder. The center of the optical axis of the rangefinder transmission light L1 passing through the first azimuth movable part 50 is coaxial with the azimuth rotation axis 40, and the reflecting mirror 32 is arranged on the optical path of this transmission light L1. In this embodiment, the transmission light L1 from the transmitter 31 of the optical range finder arranged in a direction different from the axial direction of the azimuth rotation axis 40, for example, in a direction perpendicular to it, is incident on the reflection mirror 32, and is reflected by the transmission light L1. The center of the optical axis of the reflected light, which is the emitted light from the mirror 32, is made coaxial with the azimuth rotation axis 40 as described above.

これによって、方位回転軸40が回転しても、その可動部側である第1方位可動部50におけるターンテーブル30側からの測距器送信光L1の光路の中心軸の方向は変化しない。一般的に、光学的測距器に多用されるレーザ光は、近似的に軸対称とみなすことができるので、光軸中心の方向が同じであれば、軸回りの回転による測距性能への影響は無視できる。 As a result, even if the azimuth rotary shaft 40 rotates, the direction of the central axis of the optical path of the rangefinder transmission light L1 from the turntable 30 side in the first azimuth movable part 50 on the movable part side does not change. In general, laser beams, which are frequently used in optical rangefinders, can be regarded as approximately axially symmetrical. The impact is negligible.

図2に示された例では、捜索対象物へ出射させる測距器送信光L1と捜索対象物から入射してくる測距器受信光L2の光軸の方向を平行とするために、高低回転軸51回りで測距器送信光L1および測距器受信光L2を反射する反射ミラー52の反射面は、同一平面上の反射面を用いるとよい。 In the example shown in FIG. 2, in order to make the directions of the optical axes of the range finder transmission light L1 emitted to the search target and the range finder reception light L2 incident from the search target parallel, elevation rotation is performed. The reflection surface of the reflection mirror 52 that reflects the rangefinder transmission light L1 and the rangefinder reception light L2 about the axis 51 is preferably a coplanar reflection surface.

本実施形態では、測距器送信光L1の光路と測距器受信光L2の光路とを分離させるため、反射ミラー52上の測距器送信光L1の光軸中心と測距器受信光L2の光軸中心とを離隔させる。 In this embodiment, in order to separate the optical path of the range finder transmission light L1 and the range finder reception light L2, the center of the optical axis of the range finder transmission light L1 on the reflecting mirror 52 and the range finder reception light L2 and the center of the optical axis.

上記の、方位回転軸40と同軸の直線上を区切った光路の2番目の区切りには、測距器受信光L2の光路が割り当てられる。
測距対象物からの測距器受信光L2の光路の中心軸は、反射ミラー52で反射された後、方位回転軸40を挟んだ向こう側にあるターンテーブル30の2番目の光路の区切り内で方位回転軸40と交わる方向に出射されるように光軸方向を斜めに変化させる。図2に示された例では、この光軸方向を変化させる光学部品はプリズム53であるが、同等の機能を有する他の光学部品、例えば反射ミラーでも良い。
The optical path of the range finder received light L2 is assigned to the second division of the optical path on the straight line coaxial with the azimuth rotation axis 40 .
After being reflected by the reflecting mirror 52, the center axis of the optical path of the rangefinder received light L2 from the object to be measured is within the second optical path section of the turntable 30 on the other side of the azimuth rotation axis 40. , the direction of the optical axis is obliquely changed so that the light is emitted in a direction intersecting the azimuth rotation axis 40 . In the example shown in FIG. 2, the optical component for changing the direction of the optical axis is the prism 53, but other optical components having equivalent functions, such as a reflecting mirror, may be used.

方位回転軸40が回転したとき、測距器受信光L2の光軸中心は、方位回転軸40と同軸の直線との交点を頂点とする円錐面上を移動する。
図2に示された例では、上記の測距器受信光L2の光路と、方位回転軸40と同軸の直線との交点に集光レンズ33が配置される。この集光レンズ33は、一般的には軸対称な構造であるが、集光された光路の中心軸が方位回転軸40と同軸となるように配置される。
When the azimuth rotation axis 40 rotates, the center of the optical axis of the rangefinder received light L2 moves on a conical surface whose apex is the intersection of the azimuth rotation axis 40 and the coaxial straight line.
In the example shown in FIG. 2, the condensing lens 33 is arranged at the intersection of the optical path of the rangefinder received light L2 and the straight line coaxial with the azimuth rotation axis 40. In the example shown in FIG. The condensing lens 33 generally has an axially symmetrical structure, but is arranged so that the central axis of the condensed optical path is coaxial with the azimuth rotation axis 40 .

集光レンズ33の視野33aは、測距器受信光L2の光軸中心が方位回転軸40の回転動作範囲を動いたときの、測距器受信光L2の光束を方位回転軸40から遠い側(外側)で包絡した範囲を含む大きさとする。これによって、方位回転軸40の回転によっても、常に測距対象物からの測距器受信光L2を光学的測距器の受信器35のセンサに導光させることができる。なお、方位回転軸40は、方位方向に全周回転する必要はない。これは、方位回転軸40とターンテーブル回転軸20は平行で、ターンテーブル回転軸20が全周回転可能なことによる。これによって、測距器受信光L2の光束が占める領域は方位回転軸回りの全周に渡ることはないので、集光レンズ33の方位可動部50側に配置される光学的測距器の送信器31と反射ミラー32をターンテーブル30に固定することができる。 The field of view 33a of the condenser lens 33 directs the luminous flux of the received light beam L2 from the range finder to the far side from the azimuth rotation axis 40 when the center of the optical axis of the range finder light L2 moves within the rotational movement range of the azimuth rotation axis 40. The size includes the range enclosed by (outside). As a result, even when the azimuth rotating shaft 40 rotates, the rangefinder received light L2 from the range-finding object can always be guided to the sensor of the receiver 35 of the optical rangefinder. It should be noted that the azimuth rotating shaft 40 does not have to rotate all around in the azimuth direction. This is because the azimuth rotating shaft 40 and the turntable rotating shaft 20 are parallel and the turntable rotating shaft 20 can rotate all around. As a result, the area occupied by the light flux of the rangefinder received light L2 does not cover the entire circumference around the azimuth rotation axis. A device 31 and a reflecting mirror 32 can be fixed to the turntable 30 .

光学的測距器の受信器35の光学系のセンサは、撮像器の画素にあたるものは一般的には1個のセンサとみなすことができるので、センサの受光面に反射光の光束が結像されればよく、この受光面内における反射光の光束の結像位置は測距性能に直接的には影響しない。したがって、集光レンズ33は、対象物からの集光レンズ33への反射光が入射する方向が変化しても、反射光の光束を受信器35の光学系のセンサの受光面に入射させるように構成すればよい。 Since the sensor of the optical system of the receiver 35 of the optical rangefinder can generally be regarded as one sensor corresponding to the pixel of the image pickup device, the light flux of the reflected light forms an image on the light receiving surface of the sensor. The image forming position of the reflected light flux within the light receiving surface does not directly affect the distance measurement performance. Therefore, the condenser lens 33 is arranged so that the reflected light flux is incident on the light receiving surface of the sensor of the optical system of the receiver 35 even if the direction in which the reflected light from the object enters the condenser lens 33 changes. should be configured to

なお、図1および図2に示される光学系の構成で、光学的測距器の送信器31からの測距器送信光L1の光路と、受信器35での測距器受信光L2の光路とが入れ替えられた構成では、集光レンズ33を透過した送信光は、広い視野33aの範囲に分散し、方位回転軸40の回転に伴って光路が遮断されてしまうとともにプリズム53には光量のごく一部しか到達できないので、このような光路の入れ替えは適切でない。 1 and 2, the optical path of the range finder transmission light L1 from the transmitter 31 of the optical range finder and the optical path of the range finder reception light L2 at the receiver 35 In the configuration in which (1) and (2) are exchanged, the transmitted light transmitted through the condenser lens 33 is dispersed over a wide field of view 33a, and the optical path is blocked as the azimuth rotation axis 40 rotates, and the prism 53 receives less light. Such a reversal of optical paths is not suitable, as only a small portion can be reached.

図6は、実施形態に係る周囲捜索装置の制御機能構成の一例を示すブロック図である。
図6に示された例では、周囲捜索装置100は、全体の制御を司る制御器101、目標検出器102、ターンテーブル回転軸20の駆動機構103、測距器側方位回転軸40の駆動機構104、測距器側高低回転軸51の駆動機構105、撮像器側方位回転軸60の駆動機構106、撮像器側高低回転軸71の駆動機構107、撮像器37、光学的測距器の送信器31、および光学的測距器の受信器35を有する。制御器101および目標検出器102は、ハードウェアで構成されてもよいし、ハードウェアとソフトウェアの組み合わせで構成されてもよい。
FIG. 6 is a block diagram showing an example of the control function configuration of the surroundings search device according to the embodiment.
In the example shown in FIG. 6, the surroundings searching apparatus 100 includes a controller 101 for overall control, a target detector 102, a drive mechanism 103 for the turntable rotary shaft 20, and a drive mechanism for the rangefinder side azimuth rotary shaft 40. 104, the drive mechanism 105 of the rangefinder-side elevation rotation shaft 51, the drive mechanism 106 of the imaging device-side azimuth rotation shaft 60, the drive mechanism 107 of the imaging device-side elevation rotation shaft 71, the imaging device 37, and the transmission of the optical rangefinder 31 and receiver 35 of an optical rangefinder. The controller 101 and the target detector 102 may be configured by hardware, or may be configured by a combination of hardware and software.

目標検出器102は、撮像器37によって撮像された画像に基づいて目標物への方向を検出する。制御器101は、図示しない角度センサ及び角速度センサによる検出結果を用いて、周囲捜索装置100の周囲の捜索および監視時に、ターンテーブル回転軸20の駆動機構103を制御してターンテーブル30を一定の角速度で回転させる。撮像器37によって撮像がなされるとき、すなわち、撮像器37の画像センサに被撮像物からの撮像器受信光L3が入射される時間、ここでは撮像時間又は感光時間と、その近傍の時間帯に、撮像器側方位回転軸駆動機構106を制御して、撮像器側の方位回転軸60の回転角速度がターンテーブル回転軸20の回転角速度と逆向きかつ同じ大きさとなるように制御し、また、必要に応じて、撮像器側高低回転軸71の駆動機構107を制御することで、撮像器側の高低回転軸71の回転を制御する。 The target detector 102 detects the direction to the target based on the image captured by the imaging device 37 . The controller 101 controls the drive mechanism 103 of the turntable rotating shaft 20 to rotate the turntable 30 at a constant level when searching and monitoring the surroundings of the surroundings search device 100 using the detection results of the angle sensor and the angular velocity sensor (not shown). Rotate at an angular velocity. When an image is taken by the image pickup device 37, that is, the time when the image pickup device received light L3 from the object to be imaged is incident on the image sensor of the image pickup device 37, here, the image pickup time or the exposure time and the time period in the vicinity thereof. , the image pickup device side azimuth rotation shaft drive mechanism 106 is controlled so that the rotation angular velocity of the image pickup device side azimuth rotation shaft 60 is opposite to and has the same magnitude as the rotation angular velocity of the turntable rotation shaft 20; By controlling the driving mechanism 107 of the imaging device-side elevation rotation shaft 71 as necessary, the rotation of the imaging device-side elevation rotation shaft 71 is controlled.

これによって、周囲捜索装置100の撮像器37に入射する撮像器受信光L3の光路を静止させ、撮像器37での撮像における手振れの発生を防止し、鮮明かつ分解能が高い画像が撮像され得る。 As a result, the optical path of the image pickup device received light L3 incident on the image pickup device 37 of the surroundings searching apparatus 100 is stopped, the occurrence of camera shake during image pickup by the image pickup device 37 is prevented, and a clear and high-resolution image can be picked up.

図7は、周囲捜索装置に係る回転軸の回転角度の制御の一例を示す図である。
図7に示された例では、周囲捜索装置100に係る光軸の静止時間t1、当該時間t1に続く、周囲捜索装置100に係る光軸の指向時間t2、当該時間t2に続く、上記光軸の静止時間t3にわたる、各回転軸の回転角度が示される。
FIG. 7 is a diagram showing an example of control of the rotation angle of the rotation shaft related to the surroundings search device.
In the example shown in FIG. 7, the stationary time t1 of the optical axis related to the surroundings searching device 100, the orientation time t2 of the optical axis related to the surroundings searching device 100 following the time t1, and the optical axis following the time t2 The angle of rotation of each axis of rotation is shown over the stationary time t3 of .

この図7では、一定角速度で回転するターンテーブル30の回転角度(図7の符号a)、撮像器側の方位回転軸60の回転角度(図7の符号b)、および上記のターンテーブル30の回転角度と上記方位回転軸60の回転角度との和である、撮像器37の視軸中心の方位方向の角度(図7の符号c)が示される。 7, the rotation angle of the turntable 30 rotating at a constant angular velocity (symbol a in FIG. 7), the rotation angle of the azimuth rotation shaft 60 on the imaging device side (symbol b in FIG. 7), and the rotation angle of the turntable 30 The azimuth angle (mark c in FIG. 7) of the visual axis center of the imaging device 37, which is the sum of the rotation angle and the rotation angle of the azimuth rotation axis 60, is shown.

この撮像器37の視軸中心の方位方向の角度は、静止時間t1において撮像がなされる時間(図7の符号d)、および静止時間t3において撮像がなされる時間(図7の符号e)では変化しない。図7の符号f,gは上記光軸の静止時の撮像器37の視野の向きである。 The azimuth angle of the center of the visual axis of the imaging device 37 is It does not change. Symbols f and g in FIG. 7 indicate directions of the field of view of the imaging device 37 when the optical axis is stationary.

また、光学的測距器による距離計測時では、制御器101は、撮像器37が撮像した画像をもとに目標検出器102により得られた、捜索対象物への方向に基づいて、ターンテーブル回転軸20の駆動機構103を制御することでターンテーブル30を回転させ、測距器側方位回転軸40の駆動機構104を制御することで測距器側の方位回転軸40を回転させ、測距器側高低回転軸51の駆動機構105を制御することで測距器側の高低回転軸51を回転させ、レーザ測距器の送信光L1の光路と受信光L2を捜索対象物への方向に指向させる。
すなわち、制御器101は、ターンテーブル回転軸20および第2のジンバル装置の回転軸の駆動を制御して撮像器37の受信光の光軸を指向させるとともに、目標検出器102により検出された、捜索対象物への方向に基づいて、第1のジンバル装置の回転軸およびターンテーブル回転軸20の駆動を制御し、光学的測距器の送受信光の光軸を捜索対象物への方向に指向させる。
Further, during distance measurement by the optical rangefinder, the controller 101 controls the turntable based on the direction to the object to be searched, which is obtained by the target detector 102 based on the image captured by the imaging device 37 . By controlling the drive mechanism 103 of the rotary shaft 20, the turntable 30 is rotated, and by controlling the drive mechanism 104 of the rangefinder side azimuth rotary shaft 40, the rangefinder side azimuth rotary shaft 40 is rotated. By controlling the driving mechanism 105 of the rangefinder-side elevation rotary shaft 51, the rangefinder-side elevation rotary shaft 51 is rotated, and the optical path of the transmission light L1 and the reception light L2 of the laser rangefinder are directed toward the search target. direct to
That is, the controller 101 controls the drive of the turntable rotating shaft 20 and the rotating shaft of the second gimbal device to orient the optical axis of the light received by the image pickup device 37, and the target detector 102 detects the Based on the direction to the search object, the driving of the rotation axis of the first gimbal device and the turntable rotation axis 20 is controlled, and the optical axis of the transmission and reception light of the optical rangefinder is directed to the direction of the search object. Let

次に、本実施形態の変形例を説明する。図8は、実施形態に係る周囲捜索装置の各部の構成の変形例を示す図である。
図8に示された変形例では、図1などに示された例と比較して、測距器側の方位回転軸40を通過させる光路が1つ追加された例であり、ターンテーブル30に単一のジンバル装置が搭載されて、このジンバル装置に方位可動部80が搭載される。
この方位可動部80には、上記の第1方位可動部50にて配置されていた、高低方向の第1の回転軸である高低回転軸51が配置され、この高低回転軸51の回転側には第1方位可動部50と同様に反射ミラー52が取り付けられる。この方位可動部80には、第1方位可動部50と同様にプリズム53が設けられる。
さらに、この方位可動部80には、第2方位可動部70にて配置されていた、高低方向の第2の回転軸である高低回転軸71が配置され、この高低回転軸71の回転側に、第2方位可動部70にて配置されていた反射ミラー72が取り付けられる。
この変形例では、方位回転軸40を通過する2番目の光路の外側に同様の光路が追加され、測距器側の高低回転軸51に係る光学系と撮像器側の高低回転軸71に係る光学系が同じ方位可動部80に設けられる構成とする。図8に示された例では、図1に示された例で設けられた第2のジンバル装置およびこのジンバル装置に搭載される撮像器側の方位回転軸60は設けられず、方位可動部80には、反射ミラー72からみてターンテーブル30側のプリズム74が設けられる。
Next, a modified example of this embodiment will be described. FIG. 8 is a diagram showing a modification of the configuration of each part of the surroundings search device according to the embodiment.
The modification shown in FIG. 8 is an example in which one optical path for passing the azimuth rotation axis 40 on the side of the rangefinder is added as compared with the example shown in FIG. A single gimbal system is mounted, and the azimuth moveable part 80 is mounted on the gimbal system.
This azimuth movable section 80 is provided with the elevation rotation shaft 51 which is the first rotation axis in the elevation direction, which was arranged in the first orientation movable section 50 . is attached with a reflecting mirror 52 in the same manner as the first azimuth moving part 50 . This azimuth movable section 80 is provided with a prism 53 in the same manner as the first azimuth movable section 50 .
Further, in the orientation movable section 80, an elevation rotation shaft 71, which is the second rotation axis in the elevation direction, is arranged in the second orientation movable section 70. , the reflecting mirror 72 arranged at the second orientation movable portion 70 is attached.
In this modified example, a similar optical path is added outside the second optical path passing through the azimuth rotation axis 40, and the optical system related to the elevation rotation axis 51 on the rangefinder side and the elevation rotation axis 71 on the imaging device side are added. The configuration is such that the optical systems are provided in the same azimuth movable section 80 . In the example shown in FIG. 8, the second gimbal device provided in the example shown in FIG. is provided with a prism 74 on the turntable 30 side when viewed from the reflecting mirror 72 .

上記のように反射ミラー72で反射した撮像器受信光L3の光軸の方向は、プリズム74を通過することで、方位回転軸40との交点をもつ方向、すなわち、方位回転軸40と交わり、かつ方位回転軸40の軸方向に対して斜めの方向に曲げられる。 By passing through the prism 74, the direction of the optical axis of the image pickup device received light L3 reflected by the reflecting mirror 72 as described above intersects the direction of intersection with the azimuth rotation axis 40, that is, the azimuth rotation axis 40. Moreover, it is bent in a direction oblique to the axial direction of the azimuth rotation shaft 40 .

この変形例では、ターンテーブル30では、方位回転軸40の延長線上(同軸)の箇所に反射ミラー36が設けられ、この反射ミラー36と光学的測距器の受信器に係る反射ミラー34との間で、プリズム74を通過した撮像器受信光L3の光路と、光学的測距器側の方位回転軸40の延長線上(同軸)の直線との交点に、測距器受信光L2の光路中に置かれた集光レンズ33と同様の機能をもつ集光レンズ38が新たに設けられる。なお、上記の理由から、追加される光路に係る光学系は受信光学系である。 In this modification, the turntable 30 is provided with a reflecting mirror 36 on an extension line (coaxial) of the azimuth rotation axis 40, and the reflecting mirror 36 and the reflecting mirror 34 associated with the receiver of the optical rangefinder are arranged. at the intersection of the optical path of the imager received light L3 that has passed through the prism 74 and the straight line on the extension (coaxial) of the azimuth rotation axis 40 on the optical rangefinder side, in the optical path of the rangefinder received light L2. A condenser lens 38 having a function similar to that of the condenser lens 33 placed at the bottom is newly provided. For the above reason, the optical system associated with the added optical path is the receiving optical system.

この変形例では、撮像器受信光L3は、反射ミラー72でプリズム74に向けた高低方向に反射して、当該プリズム74でターンテーブル30上に配置される集光レンズ38の視野38aの範囲を通過するように屈折されて、当該集光レンズ38により集光され、光学的測距器側の方位回転軸40と同軸である高低方向の光路として固定部10に向かった先の反射ミラー36で方位方向に反射して撮像器37に入射される。
すなわち、この変形例では、撮像器37への受信光の光路の中心軸は、光学的測距器への受信光の光路の中心軸よりもジンバル装置が支持される方位回転軸40から外側に離隔した位置から発し、光学的測距器への受信光の光路と方位回転軸40との交点よりも固定部10の側において方位回転軸40と交点をもつ。
In this modification, the light L3 received by the imaging device is reflected by the reflecting mirror 72 in the vertical direction toward the prism 74, and the prism 74 covers the range of the field of view 38a of the condenser lens 38 arranged on the turntable 30. It is refracted so as to pass through, is condensed by the condensing lens 38, and is directed to the fixed part 10 as an optical path in the elevation direction coaxial with the azimuth rotation axis 40 on the side of the optical rangefinder by the reflecting mirror 36 ahead. The light is reflected in the azimuth direction and enters the imaging device 37 .
That is, in this modification, the central axis of the optical path of the received light to the image pickup device 37 is positioned outside the central axis of the optical path of the received light to the optical rangefinder from the azimuth rotation axis 40 on which the gimbal device is supported. It is emitted from a distant position and has an intersection point with the azimuth rotation axis 40 on the fixed part 10 side of the intersection point of the optical path of the received light to the optical rangefinder and the azimuth rotation axis 40 .

以上説明した実施形態では、比較的大きな慣性負荷を有する撮像器と光学的測距器は、一定角速度で駆動するターンテーブル上に搭載される。これによって、加減速を伴う可動部の慣性負荷が低減されるので、周囲捜索装置による捜索対象物の捜索動作時の消費電力を低減でき、静粛性も向上する。 In the embodiments described above, the imager and the optical rangefinder, which have a relatively large inertial load, are mounted on a turntable driven at a constant angular velocity. As a result, the inertia load of the movable part that accompanies acceleration and deceleration is reduced, so power consumption during the search operation of the object to be searched by the perimeter search device can be reduced, and quietness is also improved.

また、本実施形態では、周囲捜索装置における、加減速を伴う部位の慣性負荷が比較的小さいことから、加減速時における角加速度および最大角速度を大きくし易くなるので、同じ捜索範囲をより高速に、すなわち短時間で捜索することができる。 In addition, in the present embodiment, since the inertial load of the parts that accompany acceleration and deceleration in the surrounding search device is relatively small, it becomes easy to increase the angular acceleration and the maximum angular velocity during acceleration and deceleration. That is, it can be searched in a short time.

さらに、撮像器による撮像時には撮像対象物から光路を静止させるために、ターンテーブルに搭載される、撮像器に係る可動部は方位方向に空間で静止しているが、ターンテーブル上の2つの回転軸はともに動いており、特許文献2に記載された効果と同じ効果、すなわち静止摩擦の影響による光軸の指向精度の悪化を避ける効果が期待できる。 Furthermore, in order to keep the optical path stationary from the object to be imaged when the imaging device is imaging, the movable part related to the imaging device mounted on the turntable is stationary in space in the azimuth direction, but two rotations on the turntable Since the axes move together, the same effect as described in Patent Document 2, that is, the effect of avoiding deterioration of the pointing accuracy of the optical axis due to static friction can be expected.

なお、本実施形態の変形例では、測距器からの送信光L1に係る方位回転軸40を通過させる光路の数を3個以上とすることができる。 In addition, in the modified example of the present embodiment, the number of optical paths through which the transmission light L1 from the rangefinder passes through the azimuth rotation axis 40 can be set to three or more.

本発明の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明の範囲に含まれる。 Embodiments of the invention are provided by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims.

100…周囲捜索装置、10…固定部、20…ターンテーブル回転軸、30…ターンテーブル、31…光学的測距器の送信器、32,34,36,52,72…反射ミラー、33,38…集光レンズ、35…光学的測距器の受信器、37…撮像器、40,60…方位回転軸、50…第1方位可動部、51,71…高低回転軸、53,74…プリズム、70…第2方位可動部、80…方位可動部、101…制御器、102…目標検出器、103…ターンテーブル回転軸駆動機構、104…測距器側方位回転軸駆動機構、105…測距器側高低回転軸駆動機構、106…撮像器側方位回転軸駆動機構、107…撮像器側高低回転軸駆動機構。 DESCRIPTION OF SYMBOLS 100... Surrounding search device 10... Fixed part 20... Turntable rotating shaft 30... Turntable 31... Transmitter of optical rangefinder 32, 34, 36, 52, 72... Reflecting mirror, 33, 38 Condensing lens 35 Optical rangefinder receiver 37 Imaging device 40, 60 Azimuth rotating shaft 50 First azimuth moving part 51, 71 Elevation rotating shaft 53, 74 Prism , 70 second azimuth moving part 80 azimuth moving part 101 controller 102 target detector 103 turntable rotary shaft drive mechanism 104 rangefinder side azimuth rotary shaft drive mechanism 105 measurement rangefinder side elevation rotation axis drive mechanism 106 image pickup device side azimuth rotation axis drive mechanism 107 image pickup device side elevation rotation axis drive mechanism;

Claims (5)

捜索対象物を撮像する撮像器と、
前記撮像器によって撮像された画像に基づいて前記捜索対象物への方向を検出する目標検出器と、
前記目標検出器によって検出された前記捜索対象物への方向への出射光と前記出射光が前記捜索対象物にて反射して戻ってくる受信光とを用いて前記捜索対象物までの距離を計測する光学的測距器と、
固定部に対して方位方向に回転可能に取り付けられ、前記撮像器および前記光学的測距器が搭載されるターンテーブルと、
前記ターンテーブルに搭載され、前記光学的測距器から前記捜索対象物への送信光の中心軸および前記捜索対象物から前記光学的測距器への受信光の中心軸を指向させる2つ以上の回転軸を有する第1のジンバル装置と、
前記ターンテーブルに搭載され、前記撮像器への受信光の中心軸を指向させる2つ以上の回転軸を有する第2のジンバル装置と、
前記ターンテーブルの回転軸および前記第2のジンバル装置の回転軸の駆動を制御して前記撮像器を指向させるとともに、前記目標検出器によって検出された前記捜索対象物への方向に基づいて、前記第1のジンバル装置の回転軸および前記ターンテーブルの回転軸の駆動を制御し、前記光学的測距器を前記捜索対象物への方向に指向させる制御部と、
を備える周囲捜索装置。
an imaging device that images a search target;
a target detector that detects a direction to the search object based on the image captured by the imager;
The distance to the object to be searched is determined using the emitted light directed toward the object to be searched detected by the target detector and the received light returned after the emitted light is reflected by the object to be searched. a measuring optical rangefinder;
a turntable mounted rotatably in the azimuth direction with respect to a fixed part, and on which the imaging device and the optical rangefinder are mounted;
Two or more mounted on the turntable that direct the central axis of transmitted light from the optical rangefinder to the search object and the central axis of received light from the search object to the optical rangefinder a first gimbal device having a rotation axis of
a second gimbal device mounted on the turntable and having two or more rotation axes for directing the central axis of the received light to the imaging device;
Controlling the drive of the rotation axis of the turntable and the rotation axis of the second gimbal device to orient the imaging device, and based on the direction toward the search target detected by the target detector, a control unit for controlling the driving of the rotation axis of the first gimbal device and the rotation axis of the turntable and directing the optical rangefinder toward the search target;
Surrounding search device with.
前記第1のジンバル装置は、方位方向に回転する方位回転軸に支持されて前記ターンテーブルに搭載され、
前記光学的測距器からの送信光の光路の中心軸は、前記第1のジンバル装置が支持される前記方位回転軸と同軸であり、
前記光学的測距器への受信光の光路の中心軸は、前記第1のジンバル装置が支持される前記方位回転軸から離隔した位置から発して前記方位回転軸と交点をもつ、
請求項1に記載の周囲捜索装置。
The first gimbal device is mounted on the turntable supported by an azimuth rotation shaft that rotates in an azimuth direction,
the central axis of the optical path of the transmitted light from the optical rangefinder is coaxial with the azimuth rotation axis on which the first gimbal device is supported;
a center axis of an optical path of received light to the optical rangefinder originates from a position spaced apart from the azimuth rotation axis on which the first gimbal device is supported and has an intersection with the azimuth rotation axis;
The perimeter search device according to claim 1.
前記光学的測距器への受信光の光路の中心軸の方向は、光学部品により前記方位回転軸と交わる方向に変更され、
前記光学部品を通過した前記受信光は、前記第1のジンバル装置が支持される前記方位回転軸と同軸の箇所に配置された集光レンズにより集光されて前記光学的測距器に入射される、
請求項2に記載の周囲捜索装置。
The direction of the central axis of the optical path of the received light to the optical rangefinder is changed by an optical component to a direction that intersects the azimuth rotation axis,
The received light that has passed through the optical component is condensed by a condensing lens arranged coaxially with the azimuth rotation axis on which the first gimbal device is supported, and is incident on the optical rangefinder. Ru
A perimeter search device according to claim 2.
捜索対象物を撮像する撮像器と、
前記撮像器によって撮像された画像に基づいて前記捜索対象物への方向を検出する目標検出器と、
前記目標検出器によって検出された前記捜索対象物への方向への出射光と前記出射光が前記捜索対象物にて反射して戻ってくる受信光とを用いて前記捜索対象物までの距離を計測する光学的測距器と、
固定部に対して方位方向に回転可能に取り付けられ、前記撮像器および前記光学的測距器が搭載されるターンテーブルと、
前記ターンテーブルに搭載され、前記光学的測距器から前記捜索対象物への送信光の中心軸および前記捜索対象物から前記光学的測距器への受信光の中心軸を指向させる2つ以上の回転軸を有し、前記撮像器への受信光の中心軸を指向させる回転軸を有するジンバル装置と、
前記ターンテーブルの回転軸および前記ジンバル装置の回転軸の駆動を制御して前記撮像器を指向させるとともに、前記目標検出器によって検出された前記捜索対象物への方向に基づいて、前記ジンバル装置の回転軸および前記ターンテーブルの回転軸の駆動を制御し、前記光学的測距器を前記捜索対象物への方向に指向させる制御部と、
を備え、
前記ジンバル装置は、方位方向に回転する方位回転軸に支持されて前記ターンテーブルに搭載され、
前記光学的測距器からの送信光の光路の中心軸は、前記ジンバル装置が支持される前記方位回転軸と同軸であり、
前記光学的測距器への受信光の光路の中心軸は、前記ジンバル装置が支持される前記方位回転軸から離隔した位置から発して当該方位回転軸と交点をもち、
前記撮像器への受信光の光路の中心軸は、前記光学的測距器への受信光の光路の中心軸よりも前記ジンバル装置が支持される前記方位回転軸から外側に離隔した位置から発し、前記光学的測距器への受信光の光路と前記ジンバル装置が支持される前記方位回転軸との交点よりも前記固定部の側において当該方位回転軸と交点をもつ、
周囲捜索装置。
an imaging device that images a search target;
a target detector that detects a direction to the search object based on the image captured by the imager;
The distance to the object to be searched is determined using the emitted light directed toward the object to be searched detected by the target detector and the received light returned after the emitted light is reflected by the object to be searched. a measuring optical rangefinder;
a turntable mounted rotatably in the azimuth direction with respect to a fixed part, and on which the imaging device and the optical rangefinder are mounted;
Two or more mounted on the turntable that direct the central axis of transmitted light from the optical rangefinder to the search object and the central axis of received light from the search object to the optical rangefinder a gimbal device having a rotation axis of and directing the center axis of the received light to the image pickup device;
Controlling the driving of the rotation axis of the turntable and the rotation axis of the gimbal device to orient the imaging device, and based on the direction toward the search object detected by the target detector, the gimbal device a control unit for controlling the drive of the rotating shaft and the rotating shaft of the turntable and directing the optical rangefinder toward the search object;
with
The gimbal device is mounted on the turntable supported by an azimuth rotation shaft that rotates in an azimuth direction,
the central axis of the optical path of the transmitted light from the optical rangefinder is coaxial with the azimuth rotation axis on which the gimbal device is supported;
a central axis of an optical path of received light to the optical rangefinder originates from a position spaced apart from the azimuth rotation axis on which the gimbal device is supported and has an intersection with the azimuth rotation axis;
The central axis of the optical path of the received light to the image pickup device originates from a position spaced outward from the azimuth rotation axis on which the gimbal device is supported, relative to the central axis of the optical path of the received light to the optical rangefinder. , the optical path of the received light to the optical rangefinder and the intersection of the azimuth rotation axis on which the gimbal device is supported are on the fixed part side of the intersection with the azimuth rotation axis;
Surrounding device.
前記光学的測距器への受信光の光路の中心軸の方向は、第1の光学部品により前記ジンバル装置が支持される前記方位回転軸と交わる方向に変更され、
前記第1の光学部品を通過した、前記光学的測距器への前記受信光は、前記ジンバル装置が支持される前記方位回転軸と同軸の箇所に配置された第1の集光レンズにより集光されて前記光学的測距器に入射され、
前記撮像器への受信光の光路の中心軸の方向は、第2の光学部品により前記ジンバル装置が支持される前記方位回転軸と交わる方向に変更され、
前記第2の光学部品を通過した前記受信光は、前記ジンバル装置が支持される前記方位回転軸と同軸の箇所で前記第1の集光レンズが配置された箇所よりも前記固定部の側に配置された第2の集光レンズにより集光されて前記撮像器に入射される、
請求項4に記載の周囲捜索装置。
the direction of the central axis of the optical path of the received light to the optical rangefinder is changed to a direction that intersects the azimuth rotation axis on which the gimbal device is supported by the first optical component;
The received light to the optical rangefinder, which has passed through the first optical component, is collected by a first condenser lens coaxial with the azimuth axis of rotation on which the gimbal assembly is supported. illuminated and incident on the optical rangefinder;
changing the direction of the central axis of the optical path of the received light to the imaging device to a direction that intersects the azimuth rotation axis on which the gimbal device is supported by a second optical component;
The received light that has passed through the second optical component is positioned on the fixed part side of the position coaxial with the azimuth rotation axis where the gimbal device is supported, rather than the position where the first condenser lens is arranged. Condensed by the arranged second condensing lens and incident on the imaging device,
A perimeter search device according to claim 4.
JP2022005023A 2022-01-17 2022-01-17 Circumference search device Pending JP2023104178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022005023A JP2023104178A (en) 2022-01-17 2022-01-17 Circumference search device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022005023A JP2023104178A (en) 2022-01-17 2022-01-17 Circumference search device

Publications (1)

Publication Number Publication Date
JP2023104178A true JP2023104178A (en) 2023-07-28

Family

ID=87379699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022005023A Pending JP2023104178A (en) 2022-01-17 2022-01-17 Circumference search device

Country Status (1)

Country Link
JP (1) JP2023104178A (en)

Similar Documents

Publication Publication Date Title
CN108871265B (en) Measuring system
US7746449B2 (en) Light detection and ranging system
EP3407013B1 (en) Surveying instrument and three-dimensional camera
US11774557B2 (en) Distance measurement instrument with scanning function
US11536568B2 (en) Target instrument and surveying system
JP4228132B2 (en) Position measuring device
JP5624615B2 (en) TRACKING METHOD AND MEASUREMENT SYSTEM HAVING LASER TRACKER
US6057915A (en) Projectile tracking system
JP2009229462A (en) Detection device
EP1605231B1 (en) Surveying apparatus
US11598854B2 (en) Surveying system
JP2019039863A (en) Surveying system
US20150268346A1 (en) Optical axis directing apparatus
CN107819993A (en) A kind of device and method that large area scanning imaging is realized using photodetector array
JP2021067540A (en) Surveying device
JP2023104178A (en) Circumference search device
RU2604959C1 (en) Heat locator
US20220308183A1 (en) Surveying system
JP2001318148A (en) Omnidirectional light-wave distance measuring instrument and travel control system
JP2002357422A (en) Gps positioning device
RU162322U1 (en) HEAT DETECTOR
KR101877214B1 (en) Seeker for mounting aircraft
KR101817174B1 (en) Gimbal device
JP2023104180A (en) Periphery search device and periphery search method
US20220381886A1 (en) Detection system and method using a line detector

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230105