JP2023103926A - Method, device and program for analyzing press molding - Google Patents

Method, device and program for analyzing press molding Download PDF

Info

Publication number
JP2023103926A
JP2023103926A JP2022021760A JP2022021760A JP2023103926A JP 2023103926 A JP2023103926 A JP 2023103926A JP 2022021760 A JP2022021760 A JP 2022021760A JP 2022021760 A JP2022021760 A JP 2022021760A JP 2023103926 A JP2023103926 A JP 2023103926A
Authority
JP
Japan
Prior art keywords
press
blank
shape
formed product
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022021760A
Other languages
Japanese (ja)
Other versions
JP7392746B2 (en
Inventor
剛史 小川
Takashi Ogawa
智史 澄川
Satoshi Sumikawa
豊久 新宮
Toyohisa Shingu
雄司 山▲崎▼
Yuji Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2022/041518 priority Critical patent/WO2023135913A1/en
Publication of JP2023103926A publication Critical patent/JP2023103926A/en
Application granted granted Critical
Publication of JP7392746B2 publication Critical patent/JP7392746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a method, a device and a program for analyzing press molding that predict impact from shape change of a blank.SOLUTION: A method for analyzing press molding includes: a reference press molding product shape acquisition step; a waveform blank model generation step of generating a waveform blank model 7; a waveform blank press molding product shape acquisition step of acquiring a waveform blank press molding product shape 9; a first deviation amount acquisition step of providing a deviation amount between the reference press molding product shape 5 and the waveform blank press molding product shape 9; a cycle misalignment waveform blank model generation step of generating a cycle misalignment waveform blank model 11; a cycle misalignment waveform blank press molding product shape acquisition step of acquiring a cycle misalignment waveform blank press molding product shape 13; a second deviation amount acquisition step of providing a deviation amount between the reference press molding product shape 5 and the cycle misalignment waveform blank press molding product shape 13; and a countermeasure necessary part identifying step of identifying a countermeasure necessary part.SELECTED DRAWING: Figure 1

Description

本発明は形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラムに関する。 The present invention relates to a press-forming analysis method, a press-forming analysis apparatus, and a press-forming analysis program for estimating the influence of shape variation of a blank taken from a metal plate having shape variation, when the blank is press-formed.

自動車の衝突安全性基準の厳格化により自動車車体の衝突安全性の向上が進展する中で、昨今の二酸化炭素排出規制を受けて自動車の燃費向上を図るため、車体の軽量化も必要とされている。これら衝突安全性能と車体の軽量化を両立するために、従来よりさらに高強度な金属板が車体に採用されつつある。 As the collision safety standards for automobiles become stricter, the collision safety of automobile bodies progresses, and in response to the recent carbon dioxide emission regulations, it is necessary to reduce the weight of automobile bodies in order to improve the fuel efficiency of automobiles. there is In order to achieve both collision safety performance and weight reduction of the vehicle body, a metal plate with higher strength than before is being adopted for the vehicle body.

従来から、プレス成形品を得るためのブランクを採取する実際の金属板は、完全に平坦なものはなく、波形状(形状変動)を有している。
したがって、金属板から採取した実際のブランクもまた、必ずしも平坦であるとは限らず、形状変動を有する場合がある。
Conventionally, an actual metal plate from which a blank for obtaining a press-formed product is taken does not have a completely flat plate, but has a corrugated shape (variation in shape).
Therefore, the actual blank taken from the metal plate is also not necessarily flat and may have shape variations.

このような波打ち形状の金属板をブランクとして用いて、車体部品にプレス成形した場合、プレス成形後に得られたプレス成形品は、その形状変動が影響して、目標となる寸法精度から外れることが危惧される。 When such a corrugated metal plate is used as a blank and press-formed into a vehicle body part, the press-formed product obtained after press-forming may deviate from the target dimensional accuracy due to the influence of the shape variation. feared.

プレス成形した後のプレス成形品について、目標となる寸法精度から外れたものを選別する技術として、例えば特許文献1、2が開示されている。 For example, Patent Literatures 1 and 2 disclose techniques for sorting press-molded products that do not meet the target dimensional accuracy.

特開昭62-047504号公報JP-A-62-047504 特開2019-002834号公報JP 2019-002834 A

特許文献1または特許文献2に開示の技術は、プレス成形後の成形品同士の形状を比較するものであって、プレス成形前のブランクの形状変動によるプレス成形後のプレス成形品への影響を予測できるものではない。
従来は、ブランクの形状変動によるプレス成形品の形状への影響を予測することは行われておらず、また、プレス成形品のどの部位がブランクの形状変動の影響を受けやすいかを特定することも行われていなかった。
The technique disclosed in Patent Document 1 or Patent Document 2 compares the shapes of press-formed products with each other, and measures the influence of the shape variation of the blank before press-forming on the press-formed product after press-forming. Not predictable.
Conventionally, it has not been possible to predict the effect of blank shape variation on the shape of a press-formed product, and it is necessary to specify which parts of a press-formed product are susceptible to blank shape variation. was not done.

また、プレス成形に用いるブランクは、鋼板などの金属板から打ち抜きやせん断によって採取される。形状変動のある金属板から採取する際の位置が異なることで、同じ金属板から採取したブランクであっても、個々のブランクで凹凸を呈する部位が異なる。
したがって、ブランクの形状変動によるプレス成形品の形状への影響を予測するにあたっては、個々のブランクの形状変動に差異があることも考慮して行う必要がある。
A blank used for press molding is obtained by punching or shearing from a metal plate such as a steel plate. Due to the difference in the positions when the blanks are taken from the metal plate with shape variation, even if the blanks are taken from the same metal plate, the individual blanks have different portions exhibiting unevenness.
Therefore, in estimating the effect of blank shape variation on the shape of a press-formed product, it is necessary to take into consideration that there are differences in the shape variation of individual blanks.

本発明はかかる課題を解決するためになされたものであり、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラムを提供することを目的としている。 The present invention has been made to solve such problems. An object of the present invention is to provide a forming analysis device and a press forming analysis program.

(1)本発明に係るプレス成形解析方法は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測する方法であって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
前記形状変動に対応した所定の波長と所定の振幅の波形状を有する波形状ブランクモデルを生成する波形状ブランクモデル生成ステップと、
前記波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得する波形状ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と前記波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1乖離量取得ステップと、
前記波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する周期ずれ波形状ブランクモデル生成ステップと、
前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得する周期ずれ波形状ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と一種類又は複数種類の前記周期ずれ波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2乖離量取得ステップと、
前記第1乖離量取得ステップ及び前記第2乖離量取得ステップで得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定ステップとを備えたことを特徴とするものである。
(1) A press forming analysis method according to the present invention is a method for predicting the influence of shape variation of a blank obtained from a metal plate with shape variation when press forming is performed,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition step;
a wavy blank model generation step of generating a wavy blank model having a wavy shape with a predetermined wavelength and a predetermined amplitude corresponding to the shape variation;
A corrugated blank press for obtaining a press-formed product shape after mold release as a corrugated blank press-formed product shape by performing press-forming analysis when press-molding is performed with the predetermined mold model using the corrugated blank model. a molded product shape acquisition step;
a first divergence amount acquisition step of comparing the reference press-formed product shape and the wave-shaped blank press-formed product shape, and obtaining a divergence portion and the divergence amount between the two shapes;
a cycle-shifted wave-shaped blank model generation step of generating one or a plurality of types of a cycle-shifted wave-shaped blank model having a wave shape with the same amplitude as that of the wave-shaped blank model but with a shifted cycle;
Using the period-shifted wavy blank model, press-molding analysis is performed when press-molding is performed with the predetermined mold model, and the press-formed product shape after mold release is acquired as the period-shifted wavy blank press-formed product shape. a step of acquiring a shape of a period-shifted waveform blank press-formed product;
a second divergence amount acquisition step of comparing the reference press-formed product shape with one or more types of the period-shifted waveform blank press-formed product shapes, and obtaining a divergence portion and the divergence amount between the two shapes;
and a step of identifying a portion requiring countermeasure for identifying, as a portion requiring countermeasure, a portion having a deviation amount exceeding a threshold among the amounts of deviation obtained in the first step of obtaining the amount of deviation and the step of obtaining the second amount of divergence. It is characterized.

(2)また、上記(1)に記載のものにおいて、前記第1乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記周期ずれ波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とするものである。
(2) Further, in the above (1), the first divergence amount acquisition step includes:
A difference between a springback amount of a predetermined portion of the reference press-formed product shape and a springback amount of the same portion as the predetermined portion of the reference press-formed product shape of the wavy blank press-formed product shape is obtained as the divergence amount. death,
The second divergence amount acquisition step includes:
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the period deviation waveform blank press-formed product shape. It is characterized by acquiring as

(3)また、本発明に係るプレス成形解析方法は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測する方法であって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
前記金属板の所定位置から採取した第1の実ブランクの形状を測定した測定結果に基づいて、第1の実ブランクモデルを生成する第1の実ブランクモデル生成ステップと、
前記第1の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第1の実ブランクプレス成形品形状として取得する第1の実ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と前記第1の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1実乖離量取得ステップと、
前記金属板における前記第1の実ブランクとは異なる位置から採取した一つ又は複数の第2の実ブランクの形状を測定した測定結果に基づいて、一種類又は複数種類の第2の実ブランクモデルを生成する第2の実ブランクモデル生成ステップと、
前記第2の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第2の実ブランクプレス成形品形状として取得する第2の実ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と一種類又は複数種類の前記第2の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2実乖離量取得ステップと、
前記第1実乖離量取得ステップ及び前記第2実乖離量取得ステップで得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定ステップとを備えたことを特徴とするものである。
(3) In addition, a press forming analysis method according to the present invention is a method of predicting the influence of shape variation of a blank taken from a metal plate with shape variation and press forming using the blank,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition step;
a first actual blank model generation step of generating a first actual blank model based on measurement results obtained by measuring the shape of the first actual blank sampled from a predetermined position of the metal plate;
Using the first real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is obtained as the shape of the first real blank press-formed product. a first actual blank press-molded product shape acquisition step;
a first actual divergence amount acquiring step of comparing the reference press-formed product shape and the first actual blank press-formed product shape, and obtaining a deviation portion and a deviation amount between the two shapes;
Based on the measurement result of measuring the shape of one or more second real blanks taken from a position different from the first real blank on the metal plate, one type or a plurality of types of second real blank models a second real blank model generation step that generates
Using the second real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is acquired as the shape of the second real blank press-formed product. a second actual blank press-molded product shape acquisition step;
a second actual deviation amount acquiring step of comparing the reference press-formed product shape with one or more types of the second actual blank press-formed product shapes, and obtaining a deviation portion and a deviation amount between the two shapes;
and a countermeasure-required part identification step of identifying a part where a deviation amount exceeding a threshold among the deviation amounts obtained in the first actual deviation amount obtaining step and the second actual divergence amount obtaining step is identified as a countermeasure-required part. It is characterized by

(4)また、上記(3)に記載のものにおいて、前記第1実乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第1の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2実乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第2の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とするものである。
(4) In addition, in the method described in (3) above, the first actual divergence amount acquisition step includes:
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the first actual blank press-formed product shape. and get as
The second actual divergence amount acquisition step includes:
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the second actual blank press-formed product shape. It is characterized by acquiring as

(5)また、本発明に係るプレス成形解析装置は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するものであって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得部と、
前記形状変動に対応した所定の波長と所定の振幅の波形状を有する波形状ブランクモデルを生成する波形状ブランクモデル生成部と、
前記波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得する波形状ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と前記波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1乖離量取得部と、
前記波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する周期ずれ波形状ブランクモデル生成部と、
前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得する周期ずれ波形状ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と一種類又は複数種類の前記周期ずれ波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2乖離量取得部と、
前記第1乖離量取得部及び前記第2乖離量取得部で得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定部とを備えたことを特徴とするものである。
(5) In addition, the press forming analysis device according to the present invention predicts the influence of shape variation of the blank when press forming is performed using a blank taken from a metal plate with shape variation,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition unit;
a wavy blank model generation unit that generates a wavy blank model having a wavy shape with a predetermined wavelength and a predetermined amplitude corresponding to the shape variation;
A corrugated blank press for obtaining a press-formed product shape after mold release as a corrugated blank press-formed product shape by performing press-forming analysis when press-molding is performed with the predetermined mold model using the corrugated blank model. a molded product shape acquisition unit;
a first divergence amount acquisition unit that compares the reference press-formed product shape and the wave-shaped blank press-formed product shape, and obtains a part where both shapes diverge and the amount of divergence;
a period-shifted wave-shaped blank model generation unit that generates one or a plurality of types of a cycle-shifted wave-shaped blank model having a wave shape having the same amplitude as the wave-shaped blank model in the wave-shaped blank model, but having a wave shape with a shifted period;
Using the period-shifted wavy blank model, press-molding analysis is performed when press-molding is performed with the predetermined mold model, and the press-formed product shape after mold release is acquired as the period-shifted wavy blank press-formed product shape. a period deviation waveform blank press-formed product shape acquisition unit;
a second divergence amount acquisition unit that compares the reference press-formed product shape with one or more types of the period-shift wave-shaped blank press-formed product shapes, and obtains a portion where the two shapes diverge and the amount of divergence;
and a countermeasure-required part identification unit that identifies a part where a deviation amount exceeding a threshold among the deviation amounts obtained by the first deviation amount acquisition part and the second deviation amount acquisition part occurs as a countermeasure-required part. It is characterized.

(6)また、上記(5)に記載のものにおいて、前記第1乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記周期ずれ波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とするものである。
(6) Further, in the device described in (5) above, the first divergence amount acquiring unit
A difference between a springback amount of a predetermined portion of the reference press-formed product shape and a springback amount of the same portion as the predetermined portion of the reference press-formed product shape of the wavy blank press-formed product shape is obtained as the divergence amount. death,
The second divergence amount acquisition unit
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the period deviation waveform blank press-formed product shape. It is characterized by acquiring as

(7)また、本発明に係るプレス成形解析装置は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するものであって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得部と、
前記金属板の所定位置から採取した第1の実ブランクの形状を測定し、測定結果に基づいて第1の実ブランクモデルを生成する第1の実ブランクモデル生成部と、
前記第1の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第1の実ブランクプレス成形品形状として取得する第1の実ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と前記第1の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1実乖離量取得部と、
前記金属板における前記第1の実ブランクとは異なる位置から採取した一つ又は複数の第2の実ブランクの形状を測定し、測定結果に基づいて一種類又は複数種類の第2の実ブランクモデルを生成する第2の実ブランクモデル生成部と、
前記第2の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第2の実ブランクプレス成形品形状として取得する第2の実ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と一種類又は複数種類の前記第2の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2実乖離量取得部と、
前記第1実乖離量取得部及び前記第2実乖離量取得部で得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定部とを備えたことを特徴とするものである。
(7) In addition, the press forming analysis device according to the present invention predicts the influence of shape variation of the blank when press forming is performed using a blank taken from a metal plate with shape variation,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition unit;
a first actual blank model generation unit that measures the shape of a first actual blank sampled from a predetermined position of the metal plate and generates a first actual blank model based on the measurement result;
Using the first real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is obtained as the shape of the first real blank press-formed product. a first actual blank press-formed product shape acquisition unit;
a first actual divergence amount acquisition unit that compares the reference press-formed product shape and the first actual blank press-formed product shape, and obtains a deviation portion and a deviation amount between the two shapes;
Measuring the shape of one or more second real blanks sampled from a position different from the first real blank on the metal plate, and based on the measurement results, one or more types of second real blank models a second real blank model generator that generates
Using the second real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is acquired as the shape of the second real blank press-formed product. a second actual blank press-formed product shape acquisition unit;
a second actual deviation amount acquisition unit that compares the reference press-formed product shape with one or more types of the second actual blank press-formed product shapes, and obtains a deviation portion and a deviation amount between the two shapes;
a countermeasure-required part identification unit for identifying a part where a deviation amount exceeding a threshold among the deviation amounts obtained by the first actual deviation amount acquisition part and the second actual deviation amount acquisition part is generated as a countermeasure-required part. It is characterized by

(8)また、上記(7)に記載のものにおいて、前記第1実乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第1の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2実乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第2の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とするものである。
(8) In addition, in the device described in (7) above, the first actual divergence amount acquiring unit
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the first actual blank press-formed product shape. and get as
The second actual divergence amount acquisition unit,
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the second actual blank press-formed product shape. It is characterized by acquiring as

(9)また、本発明に係るプレス成形解析プログラムは、コンピュータを上記(5)乃至(8)のいずれかに記載のプレス成形解析装置として機能させることを特徴とするものである。 (9) Further, a press-forming analysis program according to the present invention is characterized by causing a computer to function as the press-forming analysis apparatus according to any one of (5) to (8) above.

本発明によれば、個々のブランクにおける形状変動の差異も考慮して、ブランクの形状変動がプレス成形品のスプリングバック後の形状に与える影響の大きい部位やブランクの形状変動に起因する乖離量を知ることができる。
また、乖離量と予め定めた閾値とに基づいてプレス成形品の良否を判定し、これによってブランクの良否を予測できる。これにより、プレス成形品に要求される形状精度に収まるブランクの形状精度の限界を把握できて、適切な形状のブランクを選定することにより安定して形状の良好なプレス成形が可能になる。
また、プレス成形品の形状不良が発生した場合、プレス成形前のブランクのどの部位が形状不良の原因であったのかも特定できて、早急にその対策も採れるようになり、生産性の向上にもつながる。
According to the present invention, in consideration of the difference in shape variation among individual blanks, the portion where the shape variation of the blank greatly affects the shape of the press-formed product after springback and the amount of divergence due to the shape variation of the blank are determined. can know.
Also, the quality of the press-formed product can be determined based on the amount of deviation and the predetermined threshold value, and the quality of the blank can be predicted based on this. As a result, it is possible to grasp the limit of the shape accuracy of the blank within the shape accuracy required for the press-formed product, and by selecting a blank having an appropriate shape, it is possible to stably press-form a good shape.
In addition, if a shape defect occurs in a press-formed product, it will be possible to identify the part of the blank that caused the shape defect before press-forming. also connected.

実施の形態1に係るプレス成形解析方法の各ステップの説明図である。FIG. 4 is an explanatory diagram of each step of the press forming analysis method according to Embodiment 1; 実施の形態1で対象とした部品の外観図である。1 is an external view of a component targeted in Embodiment 1. FIG. 実施の形態1で用いた平坦ブランクモデルの説明図である。FIG. 2 is an explanatory diagram of a flat blank model used in Embodiment 1; 図4(a)は図3の平坦ブランクモデルを用いてプレス成形解析した基準プレス成形品形状の説明図であり、図4(b)は図4(a)の変化量を平坦ブランクモデルに対応させて示した図である。FIG. 4(a) is an explanatory diagram of the standard press-formed product shape obtained by press-forming analysis using the flat blank model of FIG. 3, and FIG. 4(b) shows the amount of change in FIG. 1 is a diagram showing the 周期的な波形状を有する波形状ブランクモデルの説明図である。FIG. 4 is an explanatory diagram of a wavy blank model having a periodic wavy shape; 図6(a)は図5の波形状ブランクモデルを用いてプレス成形解析した波形状ブランクプレス成形品形状の説明図であり、図6(b)は図6(a)の変化量を平坦ブランクモデルに対応させて示した図である。FIG. 6(a) is an explanatory diagram of the shape of a corrugated blank press-formed product obtained by press-molding analysis using the corrugated blank model of FIG. 5, and FIG. It is the figure shown corresponding to the model. 図4の基準プレス成形品形状と図6の波形状ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。6. It is a figure explaining the deviation amount when comparing the reference|standard press-formed product shape of FIG. 4, and the wave-shaped blank press-formed product shape of FIG. 図5の波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルの説明図である。FIG. 6 is an explanatory diagram of a period-shifted waveform blank model having a waveform having the same amplitude as the waveform in the waveform blank model of FIG. 5 but having a shifted period; 図9(a)は図8の周期ずれ波形状ブランクモデルを用いてプレス成形解析した周期ずれ波形状ブランクプレス成形品形状の説明図であり、図9(b)は図9(a)の変化量を平坦ブランクモデルに対応させて示した図である。FIG. 9(a) is an explanatory diagram of the shape of the off-cycle wavy blank press-formed product subjected to press forming analysis using the off-cycle wavy blank model of FIG. 8, and FIG. 9(b) is a change in FIG. 9(a). FIG. 11 shows the quantities corresponding to a flat blank model; 図4の基準プレス成形品形状と図9の周期ずれ波形状ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。FIG. 10 is a diagram for explaining the amount of divergence when comparing the reference press-formed product shape of FIG. 4 and the cycle-shifted waveform blank press-formed product shape of FIG. 9 ; 図7と図10における乖離量の幅を平坦ブランクモデルに対応させて示した図である。FIG. 11 is a diagram showing the range of deviation amounts in FIGS. 7 and 10 in correspondence with a flat blank model; 実施の形態1に係るプレス成形解析方法の他の態様の説明図である。FIG. 5 is an explanatory diagram of another aspect of the press forming analysis method according to Embodiment 1; 実施の形態2に係るプレス成形解析装置の説明図である。FIG. 6 is an explanatory diagram of a press forming analysis device according to Embodiment 2; 実施の形態2に係るプレス成形解析装置の他の態様の説明図である。FIG. 9 is an explanatory diagram of another aspect of the press forming analysis device according to Embodiment 2; 実施例に係る周期ずれ波形状ブランクモデルの説明図である。FIG. 4 is an explanatory diagram of a period-shifted waveform blank model according to an example; 図16(a)は図15の周期ずれ波形状ブランクモデルを用いてプレス成形解析した周期ずれ波形状ブランクプレス成形品形状の説明図であり、図16(b)は図16(a)の変化量を平坦ブランクモデルに対応させて示した図である。FIG. 16(a) is an explanatory diagram of the shape of the off-cycle wavy blank press-formed product subjected to press forming analysis using the off-cycle wavy blank model of FIG. 15, and FIG. 16(b) is a change in FIG. 16(a) FIG. 11 shows the quantities corresponding to a flat blank model; 図4の基準プレス成形品形状と図16の周期ずれ波形状ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。FIG. 17 is a diagram for explaining the amount of divergence when comparing the standard press-formed product shape of FIG. 4 and the cycle-shifted wave-shaped blank press-formed product shape of FIG. 16 ; 図7と図17における乖離量の幅を平坦ブランクモデルに対応させて示した図である。FIG. 18 is a diagram showing the range of deviation amounts in FIGS. 7 and 17 in correspondence with a flat blank model;

[実施の形態1]
本実施の形態に係るプレス成形解析方法は、形状変動(凹凸)のある金属板から採取したブランクを用いてプレス成形(フォーム成形やドロー成形など)した際のブランクの形状変動の影響を予測するプレス成形解析方法であって、図1に示すように、基準プレス成形品形状取得ステップS1と、波形状ブランクモデル生成ステップS3と、波形状ブランクプレス成形品形状取得ステップS5と、第1乖離量取得ステップS7と、周期ずれ波形状ブランクモデル生成ステップS9と、周期ずれ波形状ブランクプレス成形品形状取得ステップS11と、第2乖離量取得ステップS13と、要対策部位特定ステップS15と、を備えている。
図2に示すプレス成形品1を目標形状としてプレス成形する場合を例に挙げて、以下、各構成を詳細に説明する。なお、本実施形態では板厚1.2mmの1.5GPa級鋼板のブランクモデルを用いたが、これにこだわるものではない。
[Embodiment 1]
The press forming analysis method according to the present embodiment predicts the influence of blank shape change when press forming (form forming, draw forming, etc.) is performed using a blank taken from a metal plate with shape change (unevenness). A press forming analysis method, as shown in FIG. Acquisition step S7, cycle-shifted wave-shaped blank model generation step S9, cycle-shifted wave-shaped blank press-formed product shape acquisition step S11, second deviation amount acquisition step S13, and countermeasure required part identification step S15 there is
Hereinafter, each configuration will be described in detail, taking as an example a case where the press-formed product 1 shown in FIG. 2 is press-formed with a target shape. In this embodiment, a blank model of a 1.5 GPa grade steel plate with a thickness of 1.2 mm is used, but this is not the only option.

<基準プレス成形品形状取得ステップ>
基準プレス成形品形状取得ステップS1は、図3に示すような、平坦なブランクモデル(以下、「平坦ブランクモデル3」という)を用いて、所定の金型モデルでプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得するステップである。
なお、本説明の「プレス成形解析」とは、成形下死点の形状を取得する解析と、離型後、即ちスプリングバックした後の形状を取得する解析を含むものとする(以下同様)。
<Reference press-molded product shape acquisition step>
The reference press-formed product shape acquisition step S1 uses a flat blank model (hereinafter referred to as "flat blank model 3") as shown in FIG. This is the step of acquiring the subsequent press-formed product shape as the reference press-formed product shape.
Note that the "press forming analysis" in this description includes analysis for obtaining the shape at the bottom dead center of forming and analysis for obtaining the shape after releasing from the mold, that is, after springback (the same applies hereinafter).

平坦ブランクモデル3とは、従来、一般的にプレス成形解析で用いられるブランクモデルであり、凹凸のない平らな形状のものである。 The flat blank model 3 is a blank model generally used in press forming analysis, and has a flat shape without irregularities.

プレス成形解析は、通常、有限要素法(FEM)などのCAE解析が行われる。CAE解析による成形はフォーム成形でもドロー成形でもよいが、本実施の形態ではフォーム成形の場合を例に挙げて説明する。 For press forming analysis, CAE analysis such as finite element method (FEM) is usually performed. Forming by CAE analysis may be either form forming or draw forming, but in the present embodiment, the case of form forming will be described as an example.

プレス成形解析による離型後の基準プレス成形品形状5を図4(a)に示す。図4では、形状に加えて成形下死点からの変化量を色の濃淡で示している。
変化量とは、プレス成形方向において、プレス成形後に離型しスプリングバックした後のプレス成形品形状の各部位の高さから、成形下死点の形状の対応する部位の高さを差し引いた値であり、プレス成形方向のスプリングバック量に相当する。高さの差(変化量)が+(プラス)の場合は成形下死点形状より凸状となり、高さの差(変化量)が-(マイナス)の場合は成形下死点形状より凹み状となる。
図4(a)においては、成形下死点よりも凹み状になる部位の色を薄くし、凸状になる部位の色を濃くしている。また、図中に表示した数字は、+が凸方向への変化量、-が凹方向への変化量で、単位はmmである。
FIG. 4(a) shows a reference press-formed product shape 5 after release from the press-forming analysis. In FIG. 4, in addition to the shape, the amount of change from the bottom dead center of molding is indicated by the shade of color.
The amount of change is the value obtained by subtracting the height of the part corresponding to the shape of the bottom dead point of the forming from the height of each part of the shape of the press-formed product after releasing the mold after press forming and springing back in the press forming direction. , which corresponds to the amount of springback in the press forming direction. If the height difference (variation) is + (plus), it will be convex from the molded bottom dead center shape, and if the height difference (variation) is - (minus), it will be concave from the molded bottom dead center shape. becomes.
In FIG. 4(a), the color of the recessed portion from the bottom dead center of the molding is lightened, and the color of the convex portion is darkened. In the figures shown in the figure, + indicates the amount of change in the convex direction, and - indicates the amount of change in the concave direction, and the unit is mm.

本例においては、図4(a)に示すように、基準プレス成形品形状5の左端部(部位A)の変化量は、4.4mmであり、天板部の左端(部位B)は、-0.9mm、長手方向中央部(部位C)は、1.5mm、下底部(部位D、E)は、1.8~2.1mm、右端部(部位F)は、-2.0mmであった。
プレス成形前のブランク形状とスプリングバック後の変化量との対応関係を示すため、図4(b)に、平坦ブランクモデル3に部位A~部位Fの変化量を対応させて示す。
In this example, as shown in FIG. 4(a), the amount of change at the left end (portion A) of the reference press-formed product shape 5 is 4.4 mm, and the left end (portion B) of the top plate portion is - It was 0.9 mm, 1.5 mm at the longitudinal center (site C), 1.8-2.1 mm at the bottom (sites D and E), and -2.0 mm at the right end (site F).
In order to show the correspondence relationship between the blank shape before press forming and the amount of change after springback, FIG.

<波形状ブランクモデル生成ステップ>
波形状ブランクモデル生成ステップS3は、金属板の形状変動、例えば凹凸の波打ち形状に対応した形状の波形状ブランクモデル7(図5(a)参照)を生成するステップである。具体的な形状を以下に説明する。
<Corrugated blank model generation step>
The wavy blank model generation step S3 is a step of generating a wavy blank model 7 (see FIG. 5A) having a shape corresponding to the shape variation of the metal plate, for example, the corrugated shape of unevenness. A specific shape will be described below.

図5(a)に示す例は、所定の波長と所定の振幅の波形状を有するブランクモデルであり、図5(a)における濃淡が凹凸を表現しており、色の濃い部分が紙面手前に凸形状、色の淡い部分が紙面奥に凹む形状である。
図5(a)を白抜き矢印の方向から見た状態が図5(b)であり、その一部拡大図が図5(c)である。図5に示す例は、板厚1.2mmで、形状の凹凸の振幅が2.0mm(±1.0mm)、凹凸の波長(図5(d)参照)が320mmの形状である。また、ブランクに設定する凹凸の開始位置や終了位置はブランクの端である必要はない。なお、図5(e)に図5(a)の形状の凹凸部位を強調して示した。
The example shown in FIG. 5(a) is a blank model having a waveform with a predetermined wavelength and a predetermined amplitude. It has a convex shape and a shape in which the light-colored portion is recessed in the back of the paper.
FIG. 5(b) is a state in which FIG. 5(a) is viewed from the direction of the white arrow, and FIG. 5(c) is a partially enlarged view thereof. The example shown in FIG. 5 has a plate thickness of 1.2 mm, an amplitude of irregularities of 2.0 mm (±1.0 mm), and a wavelength of irregularities (see FIG. 5(d)) of 320 mm. Also, the start position and end position of the unevenness set in the blank need not be the edge of the blank. In addition, the uneven|corrugated part of the shape of Fig.5 (a) was emphasized in FIG.5(e).

なお、波形状ブランクモデル生成ステップS3において生成する波形状ブランクモデル7は、形状変動のある金属板の所定位置から採取した実ブランクの形状を、例えばレーザ距離計による3次元形状測定器などによって測定し、測定結果に基づいて(例えば代表的な波長と振幅を設定に用いるなどして)生成するようにしてもよい。 The wavy blank model 7 generated in the wavy blank model generating step S3 is obtained by measuring the shape of an actual blank sampled from a predetermined position of a metal plate with shape variation by a three-dimensional shape measuring device such as a laser rangefinder. and may be generated based on measurement results (eg, using representative wavelengths and amplitudes for setting).

<波形状ブランクプレス成形品形状取得ステップ>
波形状ブランクプレス成形品形状取得ステップS5は、波形状ブランクモデル7を用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得するステップである。
波形状ブランクプレス成形品形状9を図6(a)に示す。図6(a)に示す、色や数値は図4(a)と同様である。
<Wave shaped blank press molded product shape acquisition step>
In step S5 for obtaining the shape of a corrugated blank press-formed product, the corrugated blank model 7 is used to perform press forming analysis when press forming is performed with the same predetermined mold model as in the step for obtaining the shape of a reference press-formed product in step S1. This is the step of obtaining the post-press-formed product shape as a wave-shaped blank press-formed product shape.
A corrugated blank press-formed product shape 9 is shown in FIG. 6(a). The colors and numerical values shown in FIG. 6(a) are the same as those in FIG. 4(a).

本例においては、図6(a)に示すように、波形状ブランクプレス成形品形状9の左端部(部位A)の変化量は、5.2mmであり、天板部の左端(部位B)は、-1.0mm、長手方向中央部(部位C)は、2.3mm、下底部(部位D、E)は、2.8~4.1mm、右端部(部位F)は、-2.5mmであった。
図6(b)に、波形状ブランクプレス成形品形状9における部位A~部位Fの変化量をプレス成形解析前の波形状ブランクモデル7(図5(e))に対応させて示す。
In this example, as shown in FIG. 6(a), the amount of change at the left end (portion A) of the corrugated blank press-formed product shape 9 is 5.2 mm, and the left end (portion B) of the top plate portion is , -1.0 mm, 2.3 mm at the longitudinal center (site C), 2.8-4.1 mm at the bottom (sites D, E), and -2.5 mm at the right end (site F).
FIG. 6(b) shows the amount of change in the parts A to F in the corrugated blank press-formed product shape 9 in correspondence with the corrugated blank model 7 (FIG. 5(e)) before the press forming analysis.

<第1乖離量取得ステップ>
第1乖離量取得ステップS7は、基準プレス成形品形状5(図4(a))と波形状ブランクプレス成形品形状9(図6(a))を比較し、両形状の乖離する部位と、乖離量とを求めるステップである。
<Step of obtaining first divergence amount>
The first divergence amount acquisition step S7 compares the reference press-formed product shape 5 (FIG. 4(a)) and the wave-shaped blank press-formed product shape 9 (FIG. 6(a)), This is the step of obtaining the deviation amount.

本実施の形態では、成形下死点におけるプレス成形品の形状を基準形状として、CAE解析により求めたプレス成形品の各部位における基準形状からの変化量(スプリングバック量)を求めて、平坦ブランクと形状変動のあるブランクとの変化量を比較し、ブランクの形状変動による変化量の差を乖離量として求めた。
すなわち、第1乖離量取得ステップS7で求める乖離量とは、形状変動のあるブランクを用いた波形状ブランクプレス成形品形状9の変化量(図6)から、平坦なブランクを用いた基準プレス成形品形状5の変化量(図4)を差し引いた値となる。したがって、変化量の差(乖離量)が+(プラス)の場合は、波形状ブランクプレス成形品形状9の当該部位は、基準プレス成形品形状5に比べて凸形状となり、変化量の差(乖離量)が-(マイナス)の場合は、波形状ブランクプレス成形品形状9の当該部位は、基準プレス成形品形状5に比べて凹み形状となる。
In the present embodiment, the shape of the press-formed product at the bottom dead center of the forming is used as a reference shape, and the amount of change (springback amount) from the reference shape at each part of the press-formed product obtained by CAE analysis is obtained to obtain a flat blank. The difference in the amount of change due to the shape variation of the blank was obtained as the amount of divergence.
That is, the divergence amount obtained in the first divergence amount acquisition step S7 is obtained from the amount of change in the wave-shaped blank press-molded product shape 9 using a blank with shape variation ( FIG. 6 ), the reference press-molding using a flat blank It is a value obtained by subtracting the amount of change in product shape 5 (Fig. 4). Therefore, when the difference in the amount of change (the amount of divergence) is + (plus), the corresponding portion of the wave-shaped blank press-formed product shape 9 becomes a convex shape compared to the reference press-formed product shape 5, and the difference in the amount of change ( When the amount of divergence) is - (minus), the corresponding portion of the wave-shaped blank press-formed product shape 9 is recessed compared to the reference press-formed product shape 5 .

上記のように求めた乖離量と、波形状ブランクモデル7の凹凸形状を対応させて図7(a)、図7(b)に示す。なお、図中のMaxは凸形状の最大値であることを示し、Minは凹み形状の最大値(数値では最小)であることを示している。
図7(a)に示されるように、波形状ブランクモデル7を用いた場合の乖離量は、部位Aで0.8mm、部位Bで-0.1mm、部位Cで0.8mm、部位Dで2.0mm、部位Eで1.0mm、部位F-0.5mmであった。
FIG. 7(a) and FIG. 7(b) show the relationship between the amount of divergence obtained as described above and the corrugated shape of the corrugated blank model 7. FIG. In the figure, Max indicates the maximum value of the convex shape, and Min indicates the maximum value (minimum numerical value) of the concave shape.
As shown in FIG. 7(a), the amount of divergence when using the corrugated blank model 7 is 0.8 mm at site A, −0.1 mm at site B, 0.8 mm at site C, 2.0 mm at site D, It was 1.0 mm at site E and 0.5 mm at site F.

また、図7(a)と図7(b)を比較すると、凸方向に最も大きく乖離した部位Dは、波形状ブランクモデル7の対応する部位の凸形状が影響していると考えられる。同様に、凹み方向に最も大きく乖離した部位Fに関しては、波形状ブランクモデル7の対応する部位の凹形状が影響していると考えられる。 7(a) and 7(b), it can be considered that the convex shape of the corrugated blank model 7 corresponding to the portion D, which diverges most in the convex direction, has an effect. Similarly, it is considered that the concave shape of the corrugated blank model 7 corresponding to the portion F that deviates the most in the concave direction has an effect.

なお、乖離量を求めた波形状ブランクプレス成形品形状9について、逆成形解析によりブランクに展開して、前記乖離量に影響する波形状ブランクモデル7の部位を特定してもよい。これは、第2乖離量取得ステップS13も同様である。 In addition, the waveform blank press-formed product shape 9 for which the amount of deviation is obtained may be developed into a blank by inverse molding analysis to specify the portion of the waveform blank model 7 that affects the amount of deviation. This also applies to the second divergence amount acquisition step S13.

<周期ずれ波形状ブランクモデル生成ステップ>
周期ずれ波形状ブランクモデル生成ステップS9は、波形状ブランクモデル7における波形状と波長及び振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデル11(図8(a)の例を参照)を生成するステップである。具体的な形状を以下に説明する。
<Period deviation waveform blank model generation step>
The period-shifted waveform blank model generation step S9 generates a period-shifted waveform blank model 11 (example in FIG. reference). A specific shape will be described below.

図8(a)に示す例は、所定の波長と所定の振幅を有する周期的な波形状を有するブランクモデルであり、図8(a)における濃淡が凹凸を表現している。
図8(a)を白抜き矢印の方向から見た状態が図8(b)であり、その一部拡大図が図8(c)である。図8に示す例は、板厚1.2mmで、凹凸の振幅と波長が図5の波形状ブランクモデル7と同じであるが、波形状の周期が波形状ブランクモデル7よりも1/4波長分紙面右方向にずれている(図8(d)、図8(e)参照)。
The example shown in FIG. 8(a) is a blank model having a periodic waveform having a predetermined wavelength and a predetermined amplitude, and the shading in FIG. 8(a) expresses unevenness.
FIG. 8(b) is a state in which FIG. 8(a) is viewed from the direction of the white arrow, and FIG. 8(c) is a partially enlarged view thereof. The example shown in FIG. 8 has a plate thickness of 1.2 mm, and the amplitude and wavelength of the unevenness are the same as those of the corrugated blank model 7 of FIG. It is shifted rightward on the paper (see FIGS. 8(d) and 8(e)).

<周期ずれ波形状ブランクプレス成形品形状取得ステップ>
周期ずれ波形状ブランクプレス成形品形状取得ステップS11は、周期ずれ波形状ブランクモデル11を用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得するステップである。
周期ずれ波形状ブランクプレス成形品形状13を図9(a)に示す。図9(a)に示す色や数値は図4(a)、図6(a)と同様である。
<Step for acquiring the shape of a blank press-formed product with a period deviation wave shape>
In step S11 for acquiring the shape of the press-formed blank with a period deviation, a press-forming analysis is performed when the press-molded product is press-formed with the same predetermined mold model as in the acquisition step S1 for the shape of the reference press-formed product using the period-shifted wave-shaped blank model 11. and acquiring the shape of the press-formed product after the release from the mold as the shape of the wave-shaped blank press-formed product with a period deviation.
FIG. 9(a) shows the off-cycle waveform blank press-formed product shape 13. As shown in FIG. The colors and numerical values shown in FIG. 9(a) are the same as those in FIGS. 4(a) and 6(a).

本例においては、図9(a)に示すように、周期ずれ波形状ブランクプレス成形品形状13の左端部(部位A)の変化量は、3.7mmであり、天板部の左端(部位B)は、-1.3mm、長手方向中央部(部位C)は、2.0mm、下底部(部位D、E)は、2.0~2.5mm、右端部(部位F)は、0.5mmであった。
図9(b)に、周期ずれ波形状ブランクプレス成形品形状13における部位A~部位Fの変化量をプレス成形解析前の周期ずれ波形状ブランクモデル11(図8(e))に対応させて示す。
In this example, as shown in FIG. 9A, the amount of change at the left end (portion A) of the period-shifted wave-shaped blank press-formed product shape 13 is 3.7 mm, and the left end (portion B) of the top plate portion is 3.7 mm. ) was -1.3 mm, the longitudinal central portion (site C) was 2.0 mm, the lower bottom portions (sites D and E) were 2.0-2.5 mm, and the right end (site F) was 0.5 mm.
In FIG. 9(b), the amount of change in the portions A to F in the period-shifted wave-shaped blank press-formed product shape 13 corresponds to the period-shifted wave-shaped blank model 11 (FIG. 8(e)) before the press-forming analysis. show.

<第2乖離量取得ステップ>
第2乖離量取得ステップS13は、基準プレス成形品形状5と周期ずれ波形状ブランクプレス成形品形状13を比較し、両形状の乖離する部位と、乖離量とを求めるステップである。乖離量の求め方は第1乖離量取得ステップS7で説明した方法と同様であるので説明を省略する。
<Second Deviation Amount Acquisition Step>
The second divergence amount acquisition step S13 is a step of comparing the reference press-formed product shape 5 and the cycle-shift wave-shaped blank press-formed product shape 13, and obtaining the part where the two shapes diverge and the divergence amount. The method of obtaining the deviation amount is the same as the method described in the first deviation amount acquisition step S7, so the description is omitted.

基準プレス成形品形状5(図4(a))と周期ずれ波形状ブランクプレス成形品形状13(図9(a))とを比較したときの乖離量と、周期ずれ波形状ブランクモデル11の凹凸形状を対応させて図10(a)、図10(b)に示す。なお、図中のMax、Minの意味は図7と同様である。
図10(a)に示されるように、周期ずれ波形状ブランクモデル11を用いた場合の乖離量は、部位Aで-0.7mm、部位Bで-0.4mm、部位Cで0.5mm、部位Dで0.4mm、部位Eで0.2mm、部位F2.5mmであった。
Deviation amount when comparing the reference press-formed product shape 5 (FIG. 4(a)) and the cycle-shifted wave-shaped blank press-formed product shape 13 (FIG. 9(a)), and the unevenness of the cycle-shifted wave-shaped blank model 11 The corresponding shapes are shown in FIGS. 10(a) and 10(b). Note that the meanings of Max and Min in the figure are the same as in FIG.
As shown in FIG. 10( a ), the amount of divergence when using the period-shifted waveform blank model 11 is −0.7 mm at site A, −0.4 mm at site B, 0.5 mm at site C, and 0.5 mm at site D. 0.4 mm, 0.2 mm at site E, and 2.5 mm at site F.

また、図10(a)と図10(b)を比較すると、凸方向に最も大きく乖離した部位Fは、周期ずれ波形状ブランクモデル11の対応する部位の凸形状が影響していると考えられる。同様に、凹み方向に最も大きく乖離した部位Aに関しては、周期ずれ波形状ブランクモデル11の対応する部位の凹形状が影響していると考えられる。 10(a) and 10(b), it can be considered that the convex shape of the corresponding portion of the period-shifted wave-shaped blank model 11 influences the portion F that deviates most in the convex direction. . Similarly, it is conceivable that the concave shape of the corresponding portion of the period-shifted wave-shaped blank model 11 has an effect on the portion A, which deviates most in the concave direction.

<要対策部位特定ステップ>
要対策部位特定ステップS15は、第1乖離量取得ステップS7及び第2乖離量取得ステップS13で得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定するステップである。
<Steps for identifying areas requiring countermeasures>
The action-required portion identification step S15 is a step of identifying, as a countermeasure-required portion, a portion having a deviation amount exceeding a threshold among the deviation amounts obtained in the first deviation amount acquisition step S7 and the second deviation amount acquisition step S13. .

例えば、複数のプレス成形品を重ね合わせて接合して車体のメンバー類に組み立てる場合など、プレス成形品の形状(特にフランジ部分など)に乖離が大きいとプレス成形品同士の接合が困難となり、何らかの対策を要する場合がある。そこで、本実施の形態では、形状変動のあるブランクによって乖離が大きいと想定される部位を要対策部位として特定し、金型の一部を修正するなどの対策をとれるようにしている。 For example, when multiple press-formed products are superimposed and joined to assemble a vehicle body member, if the shape of the press-formed products (especially the flange portion) deviates greatly, joining the press-formed products becomes difficult. Countermeasures may be required. Therefore, in the present embodiment, a portion that is assumed to have a large deviation due to a blank with shape variation is specified as a portion that requires countermeasures, and countermeasures such as correcting a part of the mold are made possible.

第1乖離量取得ステップS7で求めた乖離量(図7参照)と第2乖離量取得ステップS13で求めた乖離量(図10参照)の両方をブランク形状(平坦ブランクモデル3上に図示)に対応させて図11に示す。 Both the deviation amount obtained in the first deviation amount acquisition step S7 (see FIG. 7) and the deviation amount determined in the second deviation amount acquisition step S13 (see FIG. 10) are converted into a blank shape (illustrated on the flat blank model 3). FIG. 11 shows the correspondence.

例えば、要対策部位特定ステップS15における閾値を±1.5mmとすると、閾値を超える乖離量が生じた部位は、部位D(第1乖離量取得ステップS7で求めた乖離量が2.0mm)、部位F(第2乖離量取得ステップS13で求めた乖離量が2.5mm)となる。よって、部位D、Fを要対策部位として特定し、該当部分の金型の一部を修正するなどの対策をとることができる。 For example, if the threshold value in the step S15 for specifying a portion requiring countermeasure is set to ±1.5 mm, the portions where the amount of divergence exceeds the threshold are the portion D (the amount of divergence obtained in the step S7 for obtaining the amount of divergence is 2.0 mm), the portion F (The divergence amount obtained in the second divergence amount acquisition step S13 is 2.5 mm). Therefore, it is possible to specify the parts D and F as parts requiring countermeasures, and take countermeasures such as correcting part of the metal mold for the corresponding parts.

以上、本実施の形態によれば、ブランクにおける形状変動がプレス成形品のスプリングバック後の形状に与える影響が大きい部位や形状変動に起因する乖離量を知ることができる。また、形状変動のあるブランクを想定したブランクモデルを複数パターン生成し、それぞれの場合の乖離量を求めているので、個々の実ブランクの形状変動に差異があることを考慮したものとなっている。
そして、該乖離量の大きさに基づいてプレス成形品の良否を判定し、各ブランクの良否を予測できる。
さらに、乖離量が大きい(閾値を超える)部位に関し、プレス成形前のブランクのどの部位が形状不良の原因であったのかも特定できて、早急にその対策も採れるようになり、生産性の向上にもつながる。
これにより、プレス成形品に要求される形状精度に収まるブランクの形状精度の限界を把握できて、適切な形状のブランクを選定したり、金型の一部を修正するなどの対策を採ることにより安定して形状の良好なプレス成形が可能になる。
As described above, according to the present embodiment, it is possible to know the portion where the shape change in the blank greatly affects the shape of the press-formed product after springback and the amount of divergence caused by the shape change. In addition, multiple patterns of blank models are generated assuming blanks with shape variations, and the amount of divergence in each case is obtained, so it is considered that there are differences in the shape variations of individual actual blanks. .
Then, it is possible to judge the quality of the press-formed product based on the magnitude of the divergence amount, and predict the quality of each blank.
In addition, it is possible to identify which part of the blank before press forming was the cause of the shape defect in the part where the amount of deviation is large (exceeds the threshold), so that countermeasures can be taken immediately, improving productivity. It also leads to
As a result, it is possible to grasp the limit of the shape accuracy of the blank that is within the shape accuracy required for the press-formed product. It is possible to stably perform press molding with a good shape.

なお、上記は周期ずれ波形状ブランクモデルを一種類だけ生成したものであったが、周期ずれ波形状ブランクモデルを複数種類生成してもよい。その場合、周期ずれ波形状ブランクモデルの波形状は、互いに周期がずれるようにする(波長及び振幅は波形状ブランクモデル及びすべての周期ずれ波形状ブランクモデルで共通とする)とよい。
形状変動のあるブランクを想定したブランクモデルのパターンを増やすことで、個々の実ブランクの形状変動の差異をより具体的に考慮できる。
In the above description, only one type of period-shifted waveform blank model is generated, but a plurality of types of period-shifted waveform blank models may be generated. In that case, it is preferable that the waveforms of the period-shifted waveform blank models are shifted in period from each other (the wavelength and amplitude are common to the period-shifted waveform blank model and all the period-shifted waveform blank models).
By increasing the number of blank model patterns assuming blanks with shape variations, differences in shape variations of individual actual blanks can be considered more specifically.

また、上記の説明では、ブランクが平坦な場合のプレス成形品形状(基準プレス成形品形状)とブランクが凹凸を有する場合のプレス成形品形状(波形状ブランクプレス成形品形状又は周期ずれ波形状ブランクプレス成形品形状)を比較するにあたり、プレス成形方向における成形下死点からの変化量(スプリングバック量)の差を乖離量としたが、本発明はこれに限らない。
例えば、プレス成形方向において、ブランクが凹凸を有する場合の離型後(スプリングバック後)のプレス成形品形状の各部位の高さから、ブランクが平坦な場合の離型後(スプリングバック後)のプレス成形品形状の各部位の高さを差し引いた差を乖離量としてもよい。
もっとも、この場合は、二つのプレス成形品形状に共通する固定点を設定する必要があり、固定点の選び方によって、乖離量が変動する場合がある。
この点、本実施の形態のように、ブランクの形状によらず一定である下死点形状を基準とした変化量同士を比較するようにすれば、正確かつ容易に乖離量を求めることができて好ましい。
In the above description, the shape of the press-formed product when the blank is flat (reference press-formed product shape) and the shape of the press-formed product when the blank has unevenness (wavy blank press-formed product shape or period-shifted wave-shaped blank When comparing press-formed product shapes), the difference in the amount of change (springback amount) from the forming bottom dead center in the press-forming direction was used as the divergence amount, but the present invention is not limited to this.
For example, in the press molding direction, from the height of each part of the press-molded product shape after mold release (after springback) when the blank has unevenness, the height after mold release (after springback) when the blank is flat A difference obtained by subtracting the height of each part of the shape of the press-molded product may be used as the amount of divergence.
However, in this case, it is necessary to set a fixed point common to the two press-formed product shapes, and the amount of divergence may vary depending on how the fixed point is selected.
In this respect, as in the present embodiment, if the amounts of change are compared with each other based on the shape of the bottom dead center, which is constant regardless of the shape of the blank, the amount of divergence can be obtained accurately and easily. preferred.

また、上記は、形状変動のある金属板から採取したブランクに対応するモデルとして、周期的な波形状を有するブランクモデルを生成したが、実ブランクの不規則な凹凸形状を反映したブランクモデルを生成してもよい。例えば、形状変動のある金属板から採取した実ブランクの形状を、レーザ距離計による3次元形状測定器などによって測定し、該測定データを用いて、実際の不規則な凹凸形状に対応した形状の実ブランクモデルを生成してもよい。 In addition, in the above, a blank model having a periodic wave shape was generated as a model corresponding to a blank sampled from a metal plate with shape variation, but a blank model reflecting the irregular uneven shape of the actual blank was generated. You may For example, the shape of an actual blank taken from a metal plate with shape variation is measured by a three-dimensional shape measuring device such as a laser rangefinder, and the measurement data is used to determine the shape corresponding to the actual irregular uneven shape. A real blank model may be generated.

その場合のプレス成形解析方法は、図12に示すように、波形状ブランクモデル生成ステップS3に代わって第1の実ブランクモデル生成ステップS4、波形状ブランクプレス成形品形状取得ステップS5に代わって第1の実ブランクプレス成形品形状取得ステップS6、第1乖離量取得ステップS7に代わって第1実乖離量取得ステップS8、周期ずれ波形状ブランクモデル生成ステップS9に代わって第2の実ブランクモデル生成ステップS10、周期ずれ波形状ブランクプレス成形品形状取得ステップS11に代わって第2の実ブランクプレス成形品形状取得ステップS12、第2乖離量取得ステップS13に代わって第2実乖離量取得ステップS14を備える。各ステップについて、以下具体的に説明する。 As shown in FIG. 12, the press forming analysis method in that case includes a first actual blank model generation step S4 instead of the wavy blank model generation step S3, and a first actual blank model generation step S5 instead of the wavy blank press-formed product shape acquisition step S5. First actual blank press-formed product shape acquisition step S6 and first deviation amount acquisition step S7 are replaced with first actual deviation amount acquisition step S8, and period deviation waveform blank model generation step S9 is replaced with second actual blank model generation step S9. Step S10, a second actual blank press-molded product shape acquisition step S12 in place of the cycle-shift wave-shaped blank press-formed product shape acquisition step S11, and a second actual deviation amount acquisition step S14 in place of the second deviation amount acquisition step S13. Prepare. Each step will be specifically described below.

第1の実ブランクモデル生成ステップS4は、金属板の所定位置から採取した第1の実ブランクの形状を測定し、測定結果に基づいて第1の実ブランクモデルを生成するステップである。
第1の実ブランクプレス成形品形状取得ステップS6は、第1の実ブランクモデルを用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第1の実ブランクプレス成形品形状として取得するステップである。
第1実乖離量取得ステップS8は、基準プレス成形品形状と第1の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求めるステップである。
The first actual blank model generating step S4 is a step of measuring the shape of a first actual blank sampled from a predetermined position on the metal plate and generating a first actual blank model based on the measurement results.
The first actual blank press-formed product shape acquisition step S6 uses the first actual blank model to perform press-forming analysis when press-molding is performed with the same predetermined mold model as in the reference press-formed product shape acquisition step S1. 1) is a step of acquiring the shape of the press-formed product after mold release as the shape of the first actual blank press-formed product.
The first actual divergence amount acquisition step S8 is a step of comparing the reference press-formed product shape and the first actual blank press-formed product shape, and determining the part where the two shapes diverge and the deviation amount.

第2の実ブランクモデル生成ステップS10は、金属板における第1の実ブランクとは異なる位置から採取した一つ又は複数の第2の実ブランクの形状を測定し、測定結果に基づいて一種類又は複数種類の第2の実ブランクモデルを生成するステップである。
第2の実ブランクプレス成形品形状取得ステップS12は、第2の実ブランクモデルを用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第2の実ブランクプレス成形品形状として取得するステップである。
第2実乖離量取得ステップS14は、基準プレス成形品形状と一種類又は複数種類の第2の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求めるステップである。
The second real blank model generation step S10 measures the shape of one or more second real blanks sampled from positions different from the first real blank on the metal plate, and based on the measurement results, one type or This is the step of generating a plurality of types of second real blank models.
The second actual blank press-formed product shape acquisition step S12 uses the second actual blank model to perform press-forming analysis when press-molding is performed with the same predetermined mold model as in the reference press-formed product shape acquisition step S1. 1) acquires the shape of the press-formed product after mold release as the shape of the second actual blank press-formed product.
The second actual divergence amount acquisition step S14 is a step of comparing the reference press-formed product shape with one or more types of second actual blank press-formed product shapes, and obtaining the portion where the two shapes diverge and the deviation amount. be.

上記は、形状変動のある金属板から採取した実ブランクの不規則な凹凸形状を反映したブランクモデルを生成して解析に用いる以外は、図1に示すフローの例と同様であるので詳細な説明を省略するが、効果は図1の例と同様に得ることができる。 The above is the same as the example of the flow shown in FIG. are omitted, but the effect can be obtained in the same manner as in the example of FIG.

[実施の形態2]
実施の形態1で説明したプレス成形解析方法は、予め設定されたプログラムをPC(パーソナルコンピュータ)等のコンピュータに実行させることで実現できる。そのような装置の一例であるプレス成形解析装置を本実施の形態で説明する。
本実施の形態に係るプレス成形解析装置15は、図13に示すように、PC(パーソナルコンピュータ)等のコンピュータによって構成され、表示装置17、入力装置19、記憶装置21、作業用データメモリ23及び演算処理部25を有している。
そして、表示装置17、入力装置19、記憶装置21及び作業用データメモリ23は、演算処理部25に接続され、演算処理部25からの指令によってそれぞれの機能が実行される。
以下、図2に示すプレス成形品1を解析対象とし、本実施の形態に係るプレス成形解析装置の各構成について説明する。
[Embodiment 2]
The press forming analysis method described in Embodiment 1 can be realized by causing a computer such as a PC (personal computer) to execute a preset program. A press forming analysis device, which is an example of such a device, will be described in the present embodiment.
As shown in FIG. 13, the press forming analysis apparatus 15 according to the present embodiment is configured by a computer such as a PC (personal computer), and includes a display device 17, an input device 19, a storage device 21, a working data memory 23 and It has an arithmetic processing unit 25 .
The display device 17, the input device 19, the storage device 21, and the work data memory 23 are connected to the arithmetic processing section 25, and their respective functions are executed by commands from the arithmetic processing section 25. FIG.
Hereinafter, each configuration of the press-forming analysis apparatus according to the present embodiment will be described with the press-formed product 1 shown in FIG. 2 as the object of analysis.

≪表示装置≫
表示装置17は、解析結果の表示等に用いられ、液晶モニター等で構成される。
≪Display device≫
The display device 17 is used for displaying analysis results, etc., and is composed of a liquid crystal monitor or the like.

≪入力装置≫
入力装置19は、ブランクやプレス成形品等の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。
≪Input device≫
The input device 19 is used for displaying instructions for blanks, press-molded products, etc., for inputting conditions by an operator, etc., and is composed of a keyboard, a mouse, and the like.

≪記憶装置≫
記憶装置21は、ブランク及びプレス成形品の形状ファイル43等の各種ファイルの記憶等に用いられ、ハードディスク等で構成される。
≪Storage device≫
The storage device 21 is used to store various files such as the shape file 43 of blanks and press-molded products, and is composed of a hard disk or the like.

≪作業用データメモリ≫
作業用データメモリ23は、演算処理部25で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
≪Work data memory≫
The work data memory 23 is used for temporary storage and calculation of data used by the arithmetic processing unit 25, and is composed of a RAM (Random Access Memory) or the like.

≪演算処理部≫
演算処理部25は、図13に示すように、基準プレス成形品形状取得部27と、波形状ブランクモデル生成部29と、波形状ブランクプレス成形品形状取得部31と、第1乖離量取得部33と、周期ずれ波形状ブランクモデル生成部35と、周期ずれ波形状ブランクプレス成形品形状取得部37と、第2乖離量取得部39と、要対策部位特定部41と、を有し、PC等のCPU(中央演算処理装置)によって構成される。
これらの各部は、CPUが所定のプログラムを実行することによって機能する。
演算処理部25における上記の各部の機能を以下に説明する。
≪Arithmetic processing section≫
As shown in FIG. 13, the arithmetic processing unit 25 includes a reference press-formed product shape acquisition unit 27, a wavy blank model generation unit 29, a wavy blank press-formed product shape acquisition unit 31, and a first divergence amount acquisition unit. 33, a period-shifted waveform blank model generation unit 35, a period-shifted waveform blank press-formed product shape acquisition unit 37, a second divergence amount acquisition unit 39, and a countermeasure required part identification unit 41, and a PC It is configured by a CPU (Central Processing Unit) such as.
Each of these units functions when the CPU executes a predetermined program.
Functions of the above-described units in the arithmetic processing unit 25 will be described below.

基準プレス成形品形状取得部27は、実施の形態1において説明した基準プレス成形品形状取得ステップS1を実行するものである。同様に、波形状ブランクモデル生成部29は波形状ブランクモデル生成ステップS3を、波形状ブランクプレス成形品形状取得部31は波形状ブランクプレス成形品形状取得ステップS5を、第1乖離量取得部33は第1乖離量取得ステップS7を、周期ずれ波形状ブランクモデル生成部35は周期ずれ波形状ブランクモデル生成ステップS9を、周期ずれ波形状ブランクプレス成形品形状取得部37は周期ずれ波形状ブランクプレス成形品形状取得ステップS11を、第2乖離量取得部39は第2乖離量取得ステップS13を、要対策部位特定部41は要対策部位特定ステップS15を、それぞれ実行する。 The reference press-formed product shape acquisition unit 27 executes the reference press-formed product shape acquisition step S1 described in the first embodiment. Similarly, the wavy blank model generation unit 29 performs the wavy blank model generation step S3, the wavy blank press-formed product shape acquisition unit 31 performs the wavy blank press-formed product shape acquisition step S5, and the first divergence amount acquisition unit 33 performs the first divergence amount acquisition step S7, the cycle-shift wave blank model generation unit 35 performs the cycle-shift wave-shape blank model generation step S9, the cycle-shift wave-shape blank press molded product shape acquisition unit 37 performs the cycle-shift wave-shape blank press The second divergence amount acquisition unit 39 executes the second divergence amount acquisition step S13, and the countermeasure required part identification unit 41 executes the countermeasure necessary part identification step S15, respectively.

本実施の形態に係るプレス成形解析装置15によれば、実施の形態1と同様に、ブランクにおける形状変動がプレス成形品のスプリングバック後の形状に与える影響が大きい部位や形状変動に起因する乖離量を知ることができる。また、形状変動のあるブランクを想定したブランクモデルを複数パターン生成し、それぞれ場合の乖離量を求めているので、個々の実ブランクの形状変動に差異があることを考慮したものとなっている。
そして、該乖離量の大きさに基づいてプレス成形品の良否を判定し、各ブランクの良否を予測できる。
さらに、乖離量が大きい(閾値を超える)部位に関し、プレス成形前のブランクのどの部位が形状不良の原因であったのかも特定できて、早急にその対策も採れるようになり、生産性の向上にもつながる。
これにより、プレス成形品に要求される形状精度に収まるブランクの形状精度の限界を把握できて、適切な形状のブランクを選定したり、金型の一部を修正するなどの対策を採ることにより安定して形状の良好なプレス成形が可能になる。
According to the press-forming analysis device 15 according to the present embodiment, as in the first embodiment, the deviation caused by the part where the shape change in the blank has a large influence on the shape after the springback of the press-formed product and the shape change quantity can be known. Also, since a plurality of patterns of blank models are generated assuming blanks with shape variations and the amount of divergence in each case is obtained, it is possible to take into consideration the fact that there are differences in the shape variations of individual actual blanks.
Then, it is possible to judge the quality of the press-formed product based on the magnitude of the divergence amount, and predict the quality of each blank.
In addition, it is possible to identify which part of the blank before press forming was the cause of the shape defect in the part where the amount of deviation is large (exceeds the threshold), so that countermeasures can be taken immediately, improving productivity. It also leads to
As a result, it is possible to grasp the limit of the shape accuracy of the blank that is within the shape accuracy required for the press-formed product. It is possible to stably perform press molding with a good shape.

図13のプレス成形解析装置15は、図1のプレス成形解析方法を実現するものであるが、図12のプレス成形解析方法を実現する場合には、図14に示すようなプレス成形解析装置45を用いることができる。なお、図14において、図13と同様の部分には同一の符号を付し説明を省略する。
図14のプレス成形解析装置45は、波形状ブランクモデル生成部29に代わって第1の実ブランクモデル生成部47、波形状ブランクプレス成形品形状取得部31に代わって第1の実ブランクプレス成形品形状取得部49、第1乖離量取得部33に代わって第1実乖離量取得部51、周期ずれ波形状ブランクモデル生成部35に代わって第2の実ブランクモデル生成部53、周期ずれ波形状ブランクプレス成形品形状取得部37に代わって第2の実ブランクプレス成形品形状取得部55、第2乖離量取得部39に代わって第2実乖離量取得部57を備える。
The press-forming analysis apparatus 15 of FIG. 13 implements the press-forming analysis method of FIG. 1. When implementing the press-forming analysis method of FIG. can be used. 14, the same parts as in FIG. 13 are denoted by the same reference numerals, and description thereof is omitted.
The press forming analysis device 45 of FIG. The product shape acquisition unit 49, the first actual deviation amount acquisition unit 51 instead of the first deviation amount acquisition unit 33, the second actual blank model generation unit 53 instead of the period shift wave shape blank model generation unit 35, the period shift wave A second actual blank press-formed product shape acquisition unit 55 replaces the shape blank press-formed product shape acquisition unit 37 and a second actual deviation amount acquisition unit 57 replaces the second deviation amount acquisition unit 39 .

第1の実ブランクモデル生成部47は、実施の形態1の他の態様で説明した第1の実ブランクモデル生成ステップS4を実行するものである。同様に、第1の実ブランクプレス成形品形状取得部49は第1の実ブランクプレス成形品形状取得ステップS6を、第1実乖離量取得部51は第1実乖離量取得ステップS8を、第2の実ブランクモデル生成部53は第2の実ブランクモデル生成ステップS10を、第2の実ブランクプレス成形品形状取得部55は第2の実ブランクプレス成形品形状取得ステップS12を、第2実乖離量取得部57は第2実乖離量取得ステップS14を、それぞれ実行する。
プレス成形解析装置45もプレス成形解析装置15と同様の効果を奏する。
The first real blank model generation unit 47 executes the first real blank model generation step S4 described in another aspect of the first embodiment. Similarly, the first actual blank press-formed product shape acquisition unit 49 performs the first actual blank press-formed product shape acquisition step S6, and the first actual deviation amount acquisition unit 51 performs the first actual deviation amount acquisition step S8. The second actual blank model generation unit 53 performs the second actual blank model generation step S10, the second actual blank press-formed product shape acquisition unit 55 performs the second actual blank press-formed product shape acquisition step S12, and the second actual blank model generation step S10. The divergence amount obtaining unit 57 executes the second actual divergence amount obtaining step S14.
The press-forming analysis device 45 also has the same effects as the press-forming analysis device 15 .

なお、上述したように、本実施の形態のプレス成形解析装置15、45における演算処理部25の各部は、CPUが所定のプログラムを実行することで実現されるものである。
したがって、本発明に係るプレス成形解析プログラムは、コンピュータを、基準プレス成形品形状取得部27、波形状ブランクモデル生成部29(又は第1の実ブランクモデル生成部47)、波形状ブランクプレス成形品形状取得部31(又は第1の実ブランクプレス成形品形状取得部49)、第1乖離量取得部33(又は第1実乖離量取得部51)、周期ずれ波形状ブランクモデル生成部35(又は第2の実ブランクモデル生成部53)、周期ずれ波形状ブランクプレス成形品形状取得部37(又は第2の実ブランクプレス成形品形状取得部55)、第2乖離量取得部39(又は第2実乖離量取得部57)、及び要対策部位特定部41として機能させるもの、と特定することができる。
Incidentally, as described above, each part of the arithmetic processing part 25 in the press forming analysis devices 15 and 45 of the present embodiment is realized by the CPU executing a predetermined program.
Therefore, the press-forming analysis program according to the present invention provides a computer with a reference press-formed product shape acquisition unit 27, a wavy blank model generation unit 29 (or the first actual blank model generation unit 47), and a wavy blank press-formed product. Shape acquisition unit 31 (or first actual blank press-molded product shape acquisition unit 49), first deviation amount acquisition unit 33 (or first actual deviation amount acquisition unit 51), period deviation waveform blank model generation unit 35 (or Second actual blank model generation unit 53), period deviation waveform blank press-formed product shape acquisition unit 37 (or second actual blank press-formed product shape acquisition unit 55), second divergence amount acquisition unit 39 (or second It can be specified that it functions as the actual divergence amount acquiring unit 57) and the part requiring countermeasure specifying unit 41).

本発明の効果を確認するために、図1で説明したプレス成形解析方法を実施した。本実施例におけるCAE解析の成形は、上記実施の形態と同様にフォーム成形とした。また、板厚1.2mmの1.5GPa級鋼板のブランクモデルを用いた。
本実施例では、基準プレス成形品形状取得ステップS1~第1乖離量取得ステップS7を実施の形態1と同様に実施した。したがって、平坦ブランクモデル3、基準プレス成形品形状5、波形状ブランクモデル7、波形状ブランクプレス成形品形状9及び第1乖離量取得ステップS7で求めた乖離量は図3~図7と同様であるので説明を省略する。
本実施例では、周期ずれ波形状ブランクモデル生成ステップS9において、実施の形態1の周期ずれ波形状ブランク11(図8参照)とは異なる周期ずれ波形状ブランク59を生成した。以下、本実施例における周期ずれ波形状ブランクモデル生成ステップS9以降のステップについて、図15~図18を用いて説明する。なお、図15~図18において示している数値、濃淡、凸状、凹み状、Max、Minは上記の実施の形態で示したものと同義である。
In order to confirm the effects of the present invention, the press forming analysis method described with reference to FIG. 1 was carried out. Molding for CAE analysis in this example was foam molding as in the above embodiment. A blank model of a 1.5 GPa grade steel plate with a thickness of 1.2 mm was also used.
In this example, the reference press-formed product shape acquisition step S1 to the first deviation amount acquisition step S7 were performed in the same manner as in the first embodiment. Therefore, the flat blank model 3, the reference press-formed product shape 5, the wavy blank model 7, the wavy blank press-formed product shape 9, and the deviation amount obtained in the first deviation amount acquisition step S7 are the same as those in FIGS. Therefore, the explanation is omitted.
In the present example, a period-shifted waveform blank 59 different from the period-shifted waveform blank 11 (see FIG. 8) of the first embodiment is generated in the period-shifted waveform blank model generating step S9. 15 to 18, the steps following the step S9 for generating a wave-shaped blank model with a period deviation in this embodiment will be described below. Numerical values, gradation, convexity, depression, Max, and Min shown in FIGS. 15 to 18 are synonymous with those shown in the above embodiment.

図15(a)は本実施例の周期ずれ波形状ブランクモデル生成ステップS9で生成した周期ずれ波形状ブランクモデル59であり、図15(a)を白抜き矢印の方向から見た状態が図15(b)である。また、図15(b)の一部拡大図が図15(c)である。図15に示す例は、板厚1.2mmで、凹凸の振幅と波長が図5の波形状ブランクモデル7と同じであるが、波形状の周期が波形状ブランクモデル7よりも1/2波長分ずれている(図15(d)、図15(e)参照)。 FIG. 15(a) shows the period-shifted waveform blank model 59 generated in the period-shifted waveform blank model generation step S9 of this embodiment. (b). 15(c) is a partially enlarged view of FIG. 15(b). The example shown in FIG. 15 has a plate thickness of 1.2 mm, and the amplitude and wavelength of the unevenness are the same as those of the corrugated blank model 7 of FIG. It is misaligned (see FIGS. 15(d) and 15(e)).

図15の周期ずれ波形状ブランクモデル59を用いて周期ずれ波形状ブランクプレス成形品形状取得ステップS11を行って取得した周期ずれ波形状ブランクプレス成形品形状61を図16(a)に示す。
図16(a)に示すように、周期ずれ波形状ブランクプレス成形品形状61の左端部(部位A)の変化量は、-2.1mmであり、天板部の左端(部位B)は、-0.3mm、長手方向中央部(部位C)は、0.9mm、下底部(部位D、E)は、1.7~2.0mm、右端部(部位F)は、2.8mmであった。
図16(b)に、周期ずれ波形状ブランクプレス成形品形状61における部位A~部位Fの変化量をプレス成形解析前の周期ずれ波形状ブランクモデル59(図15(e))に対応させて示す。
FIG. 16(a) shows a cycle-shifted wave-shaped blank press-formed product shape 61 obtained by performing the cycle-shifted wave-shaped blank press-formed product shape acquisition step S11 using the cycle-shifted wave-shaped blank model 59 of FIG.
As shown in FIG. 16(a), the amount of change at the left end (portion A) of the period-shifted waveform blank press-formed product shape 61 is -2.1 mm, and the left end (portion B) of the top plate portion is - 0.3 mm, 0.9 mm at the central portion in the longitudinal direction (part C), 1.7 to 2.0 mm at the lower base (parts D and E), and 2.8 mm at the right end (part F).
FIG. 16(b) shows the amounts of change in the portions A to F in the period-shifted wave-shaped blank press-formed product shape 61, corresponding to the period-shifted wave-shaped blank model 59 (FIG. 15(e)) before the press-forming analysis. show.

第2乖離量取得ステップS13において、基準プレス成形品形状5と周期ずれ波形状ブランクプレス成形品形状61とを比較したときの乖離量と、周期ずれ波形状ブランクモデル61の凹凸形状を対応させて図17(a)、図17(b)に示す。
図17(a)に示されるように、周期ずれ波形状ブランクモデル59を用いた場合の乖離量は、部位Aで-6.5mm、部位Bで0.6mm、部位Cで-0.6mm、部位Dで0.4mm、部位Eで0.2mm、部位Fで4.8mmであった。
In the second deviation amount acquisition step S13, the deviation amount when comparing the reference press-formed product shape 5 and the period-shifted wave-shaped blank press-formed product shape 61 is associated with the irregular shape of the cycle-shifted wave-shaped blank model 61. It is shown in FIGS. 17(a) and 17(b).
As shown in FIG. 17( a ), the amount of divergence when using the period-shifted waveform blank model 59 is −6.5 mm at site A, 0.6 mm at site B, −0.6 mm at site C, and 0.6 mm at site D. 0.4 mm, site E 0.2 mm, site F 4.8 mm.

また、図17(a)と図17(b)を比較すると、凸方向に最も大きく乖離した部位Fは、周期ずれ波形状ブランクモデル59の対応する部位の凸形状が影響していると考えられる。同様に、凹み方向に最も大きく乖離した部位Aに関しては、周期ずれ波形状ブランクモデル59の対応する部位の凹形状が影響していると考えられる。 17(a) and 17(b), it can be considered that the convex shape of the corresponding portion of the period-shifted wave-shaped blank model 59 influences the portion F that deviates most in the convex direction. . Similarly, it is considered that the concave shape of the corresponding portion of the period-shifted wave-shaped blank model 59 has an effect on the portion A that deviates most in the concave direction.

第1乖離量取得ステップS7で求めた乖離量(図7参照)と第2乖離量取得ステップS13で求めた乖離量(図17参照)の双方をブランク形状(平坦ブランクモデル3上に図示)に対応させて図18に示す。 Both the deviation amount obtained in the first deviation amount acquisition step S7 (see FIG. 7) and the deviation amount determined in the second deviation amount acquisition step S13 (see FIG. 17) are converted into a blank shape (illustrated on the flat blank model 3). FIG. 18 shows the correspondence.

車体を構成する部品同士を組み立てるための接合を行うにあたり、本実施例における要対策部位特定ステップS15の閾値を±2.0mmとした。その結果、部位Aと部位Fに何らかの対策を要することが一見して把握できた。そこで、当該部位に対応する金型を修正する、ブランクの当該部位を矯正する、金属板からのブランクの採取位置を変更するなどの対策を講じ、安定して良好な形状のプレス成形品が製造できる。 In performing joining for assembling the parts constituting the vehicle body, the threshold value of the step S15 for identifying the part requiring countermeasure in the present embodiment was set to ±2.0 mm. As a result, it could be grasped at a glance that some countermeasures were required for the parts A and F. Therefore, we take countermeasures such as correcting the mold corresponding to the relevant part, correcting the relevant part of the blank, and changing the position where the blank is taken from the metal plate. can.

1 プレス成形品(目標形状)
3 平坦ブランクモデル
5 基準プレス成形品形状
7 波形状ブランクモデル
9 波形状ブランクプレス成形品形状
11 周期ずれ波形状ブランクモデル
13 周期ずれ波形状ブランクプレス成形品形状
15 プレス成形解析装置
17 表示装置
19 入力装置
21 記憶装置
23 作業用データメモリ
25 演算処理部
27 基準プレス成形品形状取得部
29 波形状ブランクモデル生成部
31 波形状ブランクプレス成形品形状取得部
33 第1乖離量取得部
35 周期ずれ波形状ブランクモデル生成部
37 周期ずれ波形状ブランクプレス成形品形状取得部
39 第2乖離量取得部
41 要対策部位特定部
43 ブランク及びプレス成形品の形状ファイル
45 プレス成形解析装置(他の態様)
47 第1の実ブランクモデル生成部
49 第1の実ブランクプレス成形品形状取得部
51 第1実乖離量取得部
53 第2の実ブランクモデル生成部
55 第2の実ブランクプレス成形品形状取得部
57 第2実乖離量取得部
59 周期ずれ波形状ブランクモデル(実施例)
61 周期ずれ波形状ブランクプレス成形品形状(実施例)
1 Press-formed product (target shape)
3 flat blank model 5 reference press-formed product shape 7 corrugated blank model 9 corrugated blank press-formed product shape 11 cycle-shifted corrugated blank model 13 cycle-shifted corrugated blank press-formed product shape 15 press forming analyzer 17 display device 19 input Apparatus 21 Storage device 23 Work data memory 25 Arithmetic processing unit 27 Reference press-molded product shape acquisition unit 29 Waveform blank model generation unit 31 Waveform blank press-form product shape acquisition unit 33 First divergence amount acquisition unit 35 Cyclic deviation waveform Blank model generating unit 37 Cycle deviation waveform blank press-formed product shape acquisition unit 39 Second divergence amount acquisition unit 41 Part identification unit requiring countermeasure 43 Blank and press-formed product shape file 45 Press forming analysis device (other aspect)
47 First actual blank model generation unit 49 First actual blank press-formed product shape acquisition unit 51 First actual deviation amount acquisition unit 53 Second actual blank model generation unit 55 Second actual blank press-formed product shape acquisition unit 57 Second actual divergence amount acquisition unit 59 Cycle deviation waveform blank model (Example)
61 Cycle deviation waveform blank press molded product shape (Example)

Claims (9)

形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析方法であって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
前記形状変動に対応した所定の波長と所定の振幅の波形状を有する波形状ブランクモデルを生成する波形状ブランクモデル生成ステップと、
前記波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得する波形状ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と前記波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1乖離量取得ステップと、
前記波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する周期ずれ波形状ブランクモデル生成ステップと、
前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得する周期ずれ波形状ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と一種類又は複数種類の前記周期ずれ波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2乖離量取得ステップと、
前記第1乖離量取得ステップ及び前記第2乖離量取得ステップで得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定ステップとを備えたことを特徴とするプレス成形解析方法。
A press forming analysis method for predicting the influence of shape variation of a blank when press forming is performed using a blank taken from a metal plate with shape variation,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition step;
a wavy blank model generation step of generating a wavy blank model having a wavy shape with a predetermined wavelength and a predetermined amplitude corresponding to the shape variation;
A corrugated blank press for obtaining a press-formed product shape after mold release as a corrugated blank press-formed product shape by performing press-forming analysis when press-molding is performed with the predetermined mold model using the corrugated blank model. a molded product shape acquisition step;
a first divergence amount acquisition step of comparing the reference press-formed product shape and the wave-shaped blank press-formed product shape, and obtaining a divergence portion and the divergence amount between the two shapes;
a cycle-shifted wave-shaped blank model generation step of generating one or a plurality of types of a cycle-shifted wave-shaped blank model having a wave shape with the same amplitude as that of the wave-shaped blank model but with a shifted cycle;
Using the period-shifted wavy blank model, press-molding analysis is performed when press-molding is performed with the predetermined mold model, and the press-formed product shape after mold release is acquired as the period-shifted wavy blank press-formed product shape. a step of acquiring a shape of a period-shifted waveform blank press-formed product;
a second divergence amount acquisition step of comparing the reference press-formed product shape with one or more types of the period-shifted waveform blank press-formed product shapes, and obtaining a divergence portion and the divergence amount between the two shapes;
and a step of identifying a portion requiring countermeasure for identifying, as a portion requiring countermeasure, a portion having a deviation amount exceeding a threshold among the amounts of deviation obtained in the first step of obtaining the amount of deviation and the step of obtaining the second amount of divergence. Characteristic press forming analysis method.
前記第1乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記周期ずれ波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とする請求項1に記載のプレス成形解析方法。
The first divergence amount acquisition step includes:
A difference between a springback amount of a predetermined portion of the reference press-formed product shape and a springback amount of the same portion as the predetermined portion of the reference press-formed product shape of the wavy blank press-formed product shape is obtained as the divergence amount. death,
The second divergence amount acquisition step includes:
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the period deviation waveform blank press-formed product shape. The press forming analysis method according to claim 1, characterized in that it acquires as.
形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析方法であって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
前記金属板の所定位置から採取した第1の実ブランクの形状を測定した測定結果に基づいて、第1の実ブランクモデルを生成する第1の実ブランクモデル生成ステップと、
前記第1の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第1の実ブランクプレス成形品形状として取得する第1の実ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と前記第1の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1実乖離量取得ステップと、
前記金属板における前記第1の実ブランクとは異なる位置から採取した一つ又は複数の第2の実ブランクの形状を測定した測定結果に基づいて、一種類又は複数種類の第2の実ブランクモデルを生成する第2の実ブランクモデル生成ステップと、
前記第2の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第2の実ブランクプレス成形品形状として取得する第2の実ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と一種類又は複数種類の前記第2の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2実乖離量取得ステップと、
前記第1実乖離量取得ステップ及び前記第2実乖離量取得ステップで得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定ステップとを備えたことを特徴とするプレス成形解析方法。
A press forming analysis method for predicting the influence of shape variation of a blank when press forming is performed using a blank taken from a metal plate with shape variation,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition step;
a first actual blank model generating step of generating a first actual blank model based on measurement results obtained by measuring the shape of the first actual blank sampled from a predetermined position of the metal plate;
Using the first real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is obtained as the shape of the first real blank press-formed product. a first actual blank press-molded product shape acquisition step;
a first actual divergence amount acquiring step of comparing the reference press-formed product shape and the first actual blank press-formed product shape, and obtaining a deviation portion and a deviation amount between the two shapes;
Based on the measurement result of measuring the shape of one or more second real blanks taken from a position different from the first real blank on the metal plate, one type or a plurality of types of second real blank models a second real blank model generation step that generates
Using the second real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is obtained as the shape of the second real blank press-formed product. a second actual blank press-molded product shape acquisition step;
a second actual deviation amount acquisition step of comparing the reference press-formed product shape with one or more types of the second actual blank press-formed product shapes, and obtaining a deviation portion and a deviation amount between the two shapes;
and a countermeasure-required part identification step of identifying a part in which a deviation amount exceeding a threshold among the deviation amounts obtained in the first actual deviation amount obtaining step and the second actual divergence amount obtaining step is identified as a countermeasure-required part. A press forming analysis method characterized by:
前記第1実乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第1の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2実乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第2の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とする請求項3に記載のプレス成形解析方法。
The first actual divergence amount acquisition step includes:
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the first actual blank press-formed product shape. and get as
The second actual divergence amount acquisition step includes:
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the second actual blank press-formed product shape. 4. The press forming analysis method according to claim 3, wherein the data is acquired as
形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析装置であって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得部と、
前記形状変動に対応した所定の波長と所定の振幅の波形状を有する波形状ブランクモデルを生成する波形状ブランクモデル生成部と、
前記波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得する波形状ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と前記波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1乖離量取得部と、
前記波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する周期ずれ波形状ブランクモデル生成部と、
前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得する周期ずれ波形状ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と一種類又は複数種類の前記周期ずれ波形状ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2乖離量取得部と、
前記第1乖離量取得部及び前記第2乖離量取得部で得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定部とを備えたことを特徴とするプレス成形解析装置。
A press forming analysis apparatus for predicting the influence of shape variation of a blank obtained from a metal plate with shape variation when press forming is performed using the blank,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition unit;
a wavy blank model generation unit that generates a wavy blank model having a wavy shape with a predetermined wavelength and a predetermined amplitude corresponding to the shape variation;
A corrugated blank press for obtaining a press-formed product shape after mold release as a corrugated blank press-formed product shape by performing press-forming analysis when press-molding is performed with the predetermined mold model using the corrugated blank model. a molded product shape acquisition unit;
a first divergence amount acquisition unit that compares the reference press-formed product shape and the wave-shaped blank press-formed product shape, and obtains a part where both shapes diverge and the amount of divergence;
a period-shifted wave-shaped blank model generation unit that generates one or a plurality of types of a cycle-shifted wave-shaped blank model having a wave shape having the same amplitude as the wave-shaped blank model in the wave-shaped blank model, but having a wave shape with a shifted period;
Using the period-shifted wavy blank model, press-molding analysis is performed when press-molding is performed with the predetermined mold model, and the press-formed product shape after mold release is acquired as the period-shifted wavy blank press-formed product shape. a period deviation waveform blank press-formed product shape acquisition unit;
a second divergence amount acquisition unit that compares the reference press-formed product shape with one or more types of the period-shift wave-shaped blank press-formed product shapes, and obtains a portion where the two shapes diverge and the amount of divergence;
and a countermeasure-required part identification unit that identifies a part where a deviation amount exceeding a threshold among the deviation amounts obtained by the first deviation amount acquisition part and the second deviation amount acquisition part occurs as a countermeasure-required part. Characteristic press forming analysis equipment.
前記第1乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記周期ずれ波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とする請求項5に記載のプレス成形解析装置。
The first divergence amount acquisition unit
A difference between a springback amount of a predetermined portion of the reference press-formed product shape and a springback amount of the same portion as the predetermined portion of the reference press-formed product shape of the wavy blank press-formed product shape is obtained as the divergence amount. death,
The second divergence amount acquisition unit
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the period deviation waveform blank press-formed product shape. 6. The press forming analysis apparatus according to claim 5, characterized in that it acquires as.
形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析装置であって、
平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得部と、
前記金属板の所定位置から採取した第1の実ブランクの形状を測定し、測定結果に基づいて第1の実ブランクモデルを生成する第1の実ブランクモデル生成部と、
前記第1の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第1の実ブランクプレス成形品形状として取得する第1の実ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と前記第1の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第1実乖離量取得部と、
前記金属板における前記第1の実ブランクとは異なる位置から採取した一つ又は複数の第2の実ブランクの形状を測定し、測定結果に基づいて一種類又は複数種類の第2の実ブランクモデルを生成する第2の実ブランクモデル生成部と、
前記第2の実ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第2の実ブランクプレス成形品形状として取得する第2の実ブランクプレス成形品形状取得部と、
前記基準プレス成形品形状と一種類又は複数種類の前記第2の実ブランクプレス成形品形状を比較し、両形状の乖離する部位と、乖離量とを求める第2実乖離量取得部と、
前記第1実乖離量取得部及び前記第2実乖離量取得部で得られた乖離量のうち閾値を超える乖離量が生じた部位を要対策部位として特定する要対策部位特定部とを備えたことを特徴とするプレス成形解析装置。
A press forming analysis apparatus for predicting the influence of shape variation of a blank obtained from a metal plate with shape variation when press forming is performed using the blank,
Using a flat blank model with a flat shape, press forming analysis is performed when press forming is performed with a predetermined mold model, and the shape of the press formed product after release from the mold is obtained as the reference press formed product shape. an acquisition unit;
a first actual blank model generation unit that measures the shape of a first actual blank sampled from a predetermined position of the metal plate and generates a first actual blank model based on the measurement result;
Using the first real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is obtained as the shape of the first real blank press-formed product. a first actual blank press-formed product shape acquisition unit;
a first actual divergence amount acquisition unit that compares the reference press-formed product shape and the first actual blank press-formed product shape, and obtains a deviation portion and a deviation amount between the two shapes;
Measuring the shape of one or more second real blanks sampled from a position different from the first real blank on the metal plate, and based on the measurement results, one or more types of second real blank models a second real blank model generator that generates
Using the second real blank model, press forming analysis is performed when press forming is performed with the predetermined mold model, and the shape of the press-formed product after mold release is acquired as the shape of the second real blank press-formed product. a second actual blank press-formed product shape acquisition unit;
a second actual deviation amount acquisition unit that compares the reference press-formed product shape with one or more types of the second actual blank press-formed product shapes, and obtains a deviation portion and a deviation amount between the two shapes;
a countermeasure-required part identification unit for identifying a part where a deviation amount exceeding a threshold among the deviation amounts obtained by the first actual deviation amount acquisition part and the second actual deviation amount acquisition part is generated as a countermeasure-required part. A press forming analysis device characterized by:
前記第1実乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第1の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
前記第2実乖離量取得部は、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第2の実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とする請求項7に記載のプレス成形解析装置。
The first actual divergence amount acquisition unit,
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the first actual blank press-formed product shape. and get as
The second actual divergence amount acquisition unit,
The divergence amount is defined as the difference between the springback amount of a predetermined portion in the reference press-formed product shape and the springback amount of the same portion as the predetermined portion of the reference press-formed product shape in the second actual blank press-formed product shape. 8. The press forming analysis device according to claim 7, characterized in that it acquires as.
コンピュータを請求項5乃至8のいずれか一項に記載のプレス成形解析装置として機能させることを特徴とするプレス成形解析プログラム。 A press-forming analysis program that causes a computer to function as the press-forming analysis apparatus according to any one of claims 5 to 8.
JP2022021760A 2022-01-14 2022-02-16 Press forming analysis method, press forming analysis device and press forming analysis program Active JP7392746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041518 WO2023135913A1 (en) 2022-01-14 2022-11-08 Press-forming analysis method, press-forming analysis device, and press-forming analysis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004081 2022-01-14
JP2022004081 2022-01-14

Publications (2)

Publication Number Publication Date
JP2023103926A true JP2023103926A (en) 2023-07-27
JP7392746B2 JP7392746B2 (en) 2023-12-06

Family

ID=87378507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022021760A Active JP7392746B2 (en) 2022-01-14 2022-02-16 Press forming analysis method, press forming analysis device and press forming analysis program

Country Status (1)

Country Link
JP (1) JP7392746B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052211B2 (en) 2003-09-10 2008-02-27 日産自動車株式会社 Press simulation model initial shape creation device, press simulation device, press simulation model initial shape creation method, and simulation method
EP3760332A4 (en) 2018-02-28 2021-04-14 JFE Steel Corporation Production method for pressed components, press molding device, and metal plate for press molding

Also Published As

Publication number Publication date
JP7392746B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
De Souza et al. Characterising material and process variation effects on springback robustness for a semi-cylindrical sheet metal forming process
US6947809B2 (en) Method of modifying stamping tools for spring back compensation based on tryout measurements
CN104582868B (en) Resilience Retraining Measures parts and manufacture method thereof
JP5967321B2 (en) Stretch flange crack prediction method, stretch flange crack prediction apparatus, computer program, and recording medium
Horton et al. Implementing material efficiency in practice: A case study to improve the material utilisation of automotive sheet metal components
JP2015053027A (en) Method and apparatus for analyzing structure
JP5742755B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
US20130268215A1 (en) System and Method for Prediction of Snap-Through Buckling of Formed Steel Sheet Panels
JP2023103926A (en) Method, device and program for analyzing press molding
WO2023135913A1 (en) Press-forming analysis method, press-forming analysis device, and press-forming analysis program
Gantar et al. Increasing the stability of the deep drawing process by simulation-based optimization
WO2023106013A1 (en) Press-forming analysis method, press-forming analysis device, and press-forming analysis program
WO2023135914A1 (en) Press-forming analysis method, press-forming analysis device, and press-forming analysis program
JP7392747B2 (en) Press forming analysis method, press forming analysis device and press forming analysis program
JP7410460B2 (en) Press forming analysis method, press forming analysis device and press forming analysis program
JP6841295B2 (en) Springback amount divergence factor part identification method and device
WO2023119915A1 (en) Press-forming analysis method, press-forming analysis device, and press-forming analysis program
JP6852750B2 (en) Springback amount Dissociation factor Part identification method and device
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP7371711B2 (en) Press forming analysis method, press forming analysis device and press forming analysis program
WO2023139900A1 (en) Method for evaluating analysis accuracy of press-forming analysis
JP7416106B2 (en) Analysis accuracy evaluation method for press forming analysis
WO2024047933A1 (en) Press-formed product manufacturing method
JP4622688B2 (en) Method and apparatus for predicting surface strain of press-formed product
US20190034567A1 (en) Computer-supported method and computer program for evaluating the quality of a material strand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7392746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150