JP2023102909A - Method for producing titanium concentrate - Google Patents

Method for producing titanium concentrate Download PDF

Info

Publication number
JP2023102909A
JP2023102909A JP2022003654A JP2022003654A JP2023102909A JP 2023102909 A JP2023102909 A JP 2023102909A JP 2022003654 A JP2022003654 A JP 2022003654A JP 2022003654 A JP2022003654 A JP 2022003654A JP 2023102909 A JP2023102909 A JP 2023102909A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
titanium
titanium concentrate
producing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022003654A
Other languages
Japanese (ja)
Inventor
一哉 米田
Kazuya Yoneda
斉昭 森山
Nariaki Moriyama
翼 東海
Tsubasa Tokai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2022003654A priority Critical patent/JP2023102909A/en
Publication of JP2023102909A publication Critical patent/JP2023102909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a method for producing a high quality titanium concentrate efficiently by a simple method from a titanium-containing material which includes impurities such as iron and silica components.SOLUTION: A method comprises the steps of: adding a hydrochloric acid-containing leachate (volume V (L)) having initial hydrochloric acid concentration of 15 mass% or more and a titanium-containing material (mass W (kg)) to a reactor so that V/W becomes 3.0 (L/kg) or less, heating the hydrochloric acid-containing leachate to 80°C or higher to leach impurities from the titanium-containing material, and then washing a solid recovered by subjecting slurry after performing the leaching step to solid-liquid separation, followed by drying. Hydrochloric acid recovered by subjecting the slurry to solid-liquid separation is reused as the hydrochloric acid-containing leachate.SELECTED DRAWING: None

Description

本発明は、含チタン鉄鉱石等のチタン含有材料から鉄分等の不純物を除去して、高品位のチタン濃縮物を製造する方法に関する。 TECHNICAL FIELD The present invention relates to a method of removing impurities such as iron from a titanium-containing material such as titaniferous iron ore to produce a high-grade titanium concentrate.

チタン濃縮物は、それを塩素化して四塩化チタンを製造するための原料として用いられている。四塩化チタンは、塩素法による二酸化チタン顔料の製造及び金属チタンの製造等に用いられる。このようなチタン濃縮物としては、塩素化を効率的に行うために、天然ルチル又はイルメナイトやイルメナイト・へマタイト鉱等の含チタン鉄鉱石等から鉄分を除去してチタン品位を高めたチタン濃縮物が使用されている。これらのチタン濃縮物は、例えば、含チタン鉄鉱石等に含まれる鉄分(III)を還元して鉄(II)の状態とし、チタン塩加水分解促進用シードやチタン(III)塩の存在下で、硫酸にて浸出後、焼成して製造できることが知られている(特許文献1及び特許文献2)。これらの方法の場合、原料である含チタン鉄鉱石等の変成度(該鉱石等が採掘される以前に受けた圧力及び温度によって決まる変成作用の程度)の違いにより、得られるチタン濃縮物のチタン品位にばらつきがある。 Titanium concentrate is used as a raw material for its chlorination to produce titanium tetrachloride. Titanium tetrachloride is used for the production of titanium dioxide pigments by the chlorine method, the production of metallic titanium, and the like. As such a titanium concentrate, in order to efficiently perform chlorination, a titanium concentrate obtained by removing iron from titanium-containing iron ore such as natural rutile or ilmenite or ilmenite/hematite ore to increase the titanium grade is used. It is known that these titanium concentrates can be produced, for example, by reducing iron (III) contained in titaniferous iron ore or the like to a state of iron (II), leaching with sulfuric acid in the presence of titanium salt hydrolysis promoting seeds and titanium (III) salts, and then calcining (Patent Documents 1 and 2). In the case of these methods, due to the difference in the degree of metamorphism of the raw material, such as titaniferous iron ore (the degree of metamorphism determined by the pressure and temperature to which the ore was subjected before being mined), the titanium grade of the obtained titanium concentrate varies.

そのため、変成度の低い含チタン鉄鉱石等を用いて、高品位のチタン濃縮物を製造する方法が種々提案されている。例えば、特許文献3には、含チタン鉄鉱石又はその類似物を330メッシュの篩を通過する粒度に粉砕して得た粉砕物を、1~20質量%の塩酸初期濃度で80℃以下の反応温度にて予備浸出を行った後、可溶性還元性物質の存在下、15~20質量%の塩酸初期濃度で90℃以上の反応温度にて本浸出を行うことを含むチタン濃縮物の製造方法において、本浸出後の浸出物のスラリーにフッ素系添加剤を添加すると、残存したシリカ成分を除去できることが記載されている。 Therefore, various methods have been proposed for producing high-grade titanium concentrates using titanium-containing iron ores or the like with a low degree of metamorphism. For example, Patent Document 3 describes a method for producing a titanium concentrate, which comprises preliminarily leaching a pulverized product obtained by pulverizing a titaniferous ore or its analogue to a particle size that can pass through a 330-mesh sieve with an initial hydrochloric acid concentration of 1 to 20% by mass at a reaction temperature of 80°C or lower, and then performing main leaching at a reaction temperature of 90°C or higher with an initial hydrochloric acid concentration of 15 to 20% by mass in the presence of a soluble reducing substance. It is described that the remaining silica component can then be removed.

特公昭49-18330号公報Japanese Patent Publication No. 49-18330 特公昭49-37484号公報Japanese Patent Publication No. 49-37484 国際公開公報WO2021/002332International Publication WO2021/002332

変成度の低い含チタン鉄鉱石等を鉱酸で浸出して高品位のチタン濃縮物を製造するには、酸化、還元処理や二段階浸出処理等が必要となり、工程が長く煩雑である。また、大量の鉱酸を使用することに起因し、(1)腐蝕に耐えうる材質の装置や配管等が必要となる、(2)大規模な廃酸処理設備が必要となる等の課題があった。 In order to produce a high-grade titanium concentrate by leaching a titaniferous ore or the like with a low degree of metamorphism with a mineral acid, oxidation, reduction treatment, two-step leaching treatment, etc. are required, and the process is long and complicated. In addition, due to the use of a large amount of mineral acid, there are problems such as (1) equipment and piping made of materials resistant to corrosion are required, and (2) large-scale waste acid treatment equipment is required.

本発明者らは、上記課題を解決するため、鋭意工夫した結果、塩酸初期濃度が15質量%以上である塩酸含有浸出液と、チタン含有材料を特定比となるように反応容器に添加し、80℃以上で浸出反応させることによって、大量の鉱酸を使用しなくても高品位のチタン濃縮物が得られるとの知見を得て、本発明を完成した。また、塩酸による浸出反応を行った後のスラリーを固液分離して回収した回収塩酸を塩酸含有浸出液として再使用できること、さらに、同様の回収操作を複数回繰り返して回収した塩酸(複数回回収塩酸)を塩酸含有浸出液として循環再使用が可能となることから、大量の塩酸を処理する設備がなくても、高品位のチタン濃縮物を効率的に製造することが可能であるとの知見を得て、本発明を完成した。 In order to solve the above problems, the present inventors have devised diligently, and as a result, have found that a high-grade titanium concentrate can be obtained without using a large amount of mineral acid by adding a hydrochloric acid-containing leaching solution having an initial hydrochloric acid concentration of 15% by mass or more and a titanium-containing material in a specific ratio to a reaction vessel, and performing a leaching reaction at 80° C. or higher, thereby completing the present invention. In addition, the present invention was completed based on the knowledge that the recovered hydrochloric acid recovered by solid-liquid separation of the slurry after the leaching reaction with hydrochloric acid can be reused as a hydrochloric acid-containing leachate, and that the hydrochloric acid recovered by repeating the same recovery operation multiple times (recovered hydrochloric acid) can be recycled and reused as a hydrochloric acid-containing leachate, so that it is possible to efficiently produce a high-quality titanium concentrate without a facility for processing a large amount of hydrochloric acid.

即ち、本発明は、以下の通りである。
[1] 塩酸初期濃度が15質量%以上である塩酸含有浸出液(容積V(L))と、チタン含有材料(質量W(kg))とをV/Wが3.0(L/kg)以下となるように反応容器に添加し、該塩酸含有浸出液を80℃以上に加熱して該チタン含有材料から不純物を浸出する浸出工程を含むチタン濃縮物の製造方法。
[2] 塩酸含有浸出液が塩酸又は回収塩酸である[1]に記載のチタン濃縮物の製造方法。
[3] 回収塩酸が、塩酸による前記浸出工程を行った後のスラリーを固液分離して回収した回収塩酸である[2]に記載のチタン濃縮物の製造方法。
[4] 回収塩酸が、回収塩酸による前記浸出工程を行った後のスラリーを固液分離して回収する操作を複数回繰り返した複数回回収塩酸である[2]に記載のチタン濃縮物の製造方法。
[5] 塩酸含有浸出液の塩酸初期濃度が15~25質量%である[1]~[4]の何れか一項に記載のチタン濃縮物の製造方法。
[6] 前記浸出工程を行った後のスラリーを固液分離して回収した固形物を洗浄し、乾燥する工程を含む[1]~[5]の何れか一項に記載のチタン濃縮物の製造方法。
[7] 前記洗浄・乾燥工程の後、さらに分級又は造粒する工程を含む[6]に記載のチタン濃縮物の製造方法。
[8] 前記洗浄・乾燥工程の後、固形物を焼成する工程を含む[1]~[7]の何れか一項に記載のチタン濃縮物の製造方法。
[9] 前記浸出工程を、塩酸含有浸出液の沸点以下の反応温度で行う[1]~[8]の何れか一項に記載の製造方法。
[10] チタン含有材料のTiO品位が70~90質量%である[1]~[9]の何れか一項に記載のチタン濃縮物の製造方法。
[11] チタン含有材料のTiO品位が80~90質量%である[10]に記載のチタン濃縮物の製造方法。
[12] 得られるチタン濃縮物のTiO品位が93質量%以上である[1]~[11]の何れか一項に記載のチタン濃縮物の製造方法。
[13] 得られるチタン濃縮物のTiO品位が95質量%以上である[12]に記載のチタン濃縮物の製造方法。
That is, the present invention is as follows.
[1] A method for producing a titanium concentrate, comprising a leaching step of adding a hydrochloric acid-containing leachate (volume V (L)) having an initial hydrochloric acid concentration of 15% by mass or more and a titanium-containing material (mass W (kg)) to a reaction vessel such that V/W is 3.0 (L/kg) or less, and heating the hydrochloric acid-containing leachate to 80°C or higher to leach impurities from the titanium-containing material.
[2] The method for producing a titanium concentrate according to [1], wherein the hydrochloric acid-containing leachate is hydrochloric acid or recovered hydrochloric acid.
[3] The method for producing a titanium concentrate according to [2], wherein the recovered hydrochloric acid is recovered by solid-liquid separation of the slurry after the leaching step with hydrochloric acid.
[4] The method for producing a titanium concentrate according to [2], wherein the recovered hydrochloric acid is obtained by repeating the operation of solid-liquid separation and recovering the slurry after performing the leaching step with the recovered hydrochloric acid multiple times.
[5] The method for producing a titanium concentrate according to any one of [1] to [4], wherein the hydrochloric acid-containing leachate has an initial hydrochloric acid concentration of 15 to 25% by mass.
[6] The method for producing a titanium concentrate according to any one of [1] to [5], including a step of solid-liquid separation of the slurry after the leaching step, and washing and drying the collected solid matter.
[7] The method for producing a titanium concentrate according to [6], further comprising a step of classifying or granulating after the washing/drying step.
[8] The method for producing a titanium concentrate according to any one of [1] to [7], including a step of calcining the solid after the washing/drying step.
[9] The production method according to any one of [1] to [8], wherein the leaching step is performed at a reaction temperature not higher than the boiling point of the hydrochloric acid-containing leaching solution.
[10] The method for producing a titanium concentrate according to any one of [1] to [9], wherein the titanium-containing material has a TiO 2 grade of 70 to 90% by mass.
[11] The method for producing a titanium concentrate according to [10], wherein the titanium-containing material has a TiO 2 grade of 80 to 90% by mass.
[12] The method for producing a titanium concentrate according to any one of [1] to [11], wherein the obtained titanium concentrate has a TiO 2 grade of 93% by mass or more.
[13] The method for producing a titanium concentrate according to [12], wherein the obtained titanium concentrate has a TiO 2 grade of 95% by mass or more.

本発明のチタン濃縮物の製造方法では、チタン含有材料に対して少量の塩酸含有浸出液の使用でも不純物を除去でき、高品位のチタン濃縮物を製造することができる。そのため、大量の塩酸を使用しないことから、小規模の装置や配管等で行うことができ、十分に防蝕を施すこともできる。また、使用した塩酸含有浸出液を回収し、再使用することができ、循環再使用することもできるため、大規模な廃酸処理設備が不要になる。 In the method for producing a titanium concentrate of the present invention, impurities can be removed from a titanium-containing material even by using a small amount of a hydrochloric acid-containing leaching solution, and a high-grade titanium concentrate can be produced. Therefore, since a large amount of hydrochloric acid is not used, it can be performed with a small-scale apparatus, piping, etc., and can be sufficiently protected against corrosion. In addition, since the used leaching solution containing hydrochloric acid can be recovered and reused, and can also be recycled and reused, a large-scale waste acid treatment facility is not required.

以下、本発明の実施するための形態について詳細に説明する。但し、本発明はこれらに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても、本発明の技術的範囲に含まれる。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to these, and various modifications are possible within the described range, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.

本発明の製造方法に適用できるチタン含有材料としては、例えば、イルメナイトやイルメナイト・へマタイト鉱等の含チタン鉄鉱石、鉄製錬における副産物のチタンスラグが挙げられる。また、それらから鉄分等の不純物を除去した低品位合成ルチルや天然ルチル(天然鉱石)等の低品位のチタン濃縮物や類似物を用いるとルチル含有率が高いチタン濃縮物が得られることから好ましい。これらのチタン含有材料のTiO品位は、90質量%以下のものを用いることができ、70~90質量%の範囲が好ましく、80~90質量%の範囲がより好ましい。前記低品位のチタン濃縮物のTiO品位は、通常70~90質量%であり、好ましくは80~90質量%である。 Titanium-containing materials applicable to the production method of the present invention include, for example, titanium-containing iron ores such as ilmenite and ilmenite-hematite ores, and titanium slag, which is a by-product of iron smelting. In addition, it is preferable to use a low-grade titanium concentrate such as low-grade synthetic rutile or natural rutile (natural ore) from which impurities such as iron are removed, or similar materials, because a titanium concentrate with a high rutile content can be obtained. The TiO 2 quality of these titanium-containing materials can be 90% by mass or less, preferably in the range of 70 to 90% by mass, more preferably in the range of 80 to 90% by mass. The TiO 2 grade of said low-grade titanium concentrate is usually 70-90% by weight, preferably 80-90% by weight.

チタン含有材料は適宜、粉砕して用いてもよい。粉砕は、乾式粉砕であっても溶媒中で粉砕を行う湿式粉砕であってもよく、普通に用いる粉砕手段、例えばボールミル、チューブミル、振動ボールミル、サンドミル、ディスクミル、メディアミル、メディアレスミル、ローラーミル等を用いて行うことができる。湿式粉砕を行った場合には、粉砕後、溶媒と粉砕物を固液分離する。固液分離は、デカンテーション、沈降分離、遠心分離、濾過、膜分離等により行うことができるが、デカンテーションにて行うのが好ましい。 The titanium-containing material may be appropriately pulverized before use. The pulverization may be dry pulverization or wet pulverization in which pulverization is carried out in a solvent, and can be carried out using commonly used pulverization means such as ball mills, tube mills, vibrating ball mills, sand mills, disc mills, media mills, medialess mills, roller mills, and the like. When wet pulverization is performed, the solvent and the pulverized product are separated into solid and liquid after pulverization. Solid-liquid separation can be carried out by decantation, sedimentation, centrifugation, filtration, membrane separation, etc., preferably by decantation.

本発明の製造方法では、塩酸初期濃度が15質量%以上である塩酸含有浸出液(容積V(L))と、チタン含有材料(質量W(kg))とをV/Wが3.0(L/kg)以下となるように反応容器に添加し、該塩酸含有浸出液を80℃以上に加温して該チタン含有材料から鉄分等の不純物を浸出除去する(浸出工程)。塩酸含有浸出液は、塩酸初期濃度を15質量%以上とすることが重要であり、チタン含有材料から鉄分等をより効率的に除去できる。ここでいう塩酸初期濃度は、浸出開始時の塩酸濃度を意味する。塩酸初期濃度は、装置の腐食性の観点から15~25質量%が好ましい。塩酸含有浸出液は、例えば塩酸又は回収塩酸が挙げられる。回収塩酸としては、塩酸による浸出工程後のスラリーを固液分離して得た回収塩酸(第一次回収塩酸)と、第一次回収塩酸による浸出反応を行った後、同様の固液分離し回収する操作を複数回繰り返した複数回回収塩酸が挙げられる。塩酸含有浸出液として、回収塩酸を使用する場合、塩酸初期濃度が15質量%以上となる限り、浸出反応と固液分離を複数回繰り返して回収したものであってもよく、塩酸初期濃度が15質量%以下になる場合は、高濃度の塩酸又は回収塩酸を追加してもよい。また、浸出反応を行う容器は、開放型容器であっても、オートクレーブのような密閉型容器であってもよく、塩酸によって腐蝕されない材質の反応容器を用いる。 In the production method of the present invention, a hydrochloric acid-containing leachate (volume V (L)) having an initial hydrochloric acid concentration of 15% by mass or more and a titanium-containing material (mass W (kg)) are added to a reaction vessel so that V/W is 3.0 (L/kg) or less, and the hydrochloric acid-containing leachate is heated to 80° C. or higher to leach and remove impurities such as iron from the titanium-containing material (leaching step). It is important that the hydrochloric acid-containing leaching solution has an initial hydrochloric acid concentration of 15% by mass or more, so that iron and the like can be removed more efficiently from the titanium-containing material. The initial concentration of hydrochloric acid here means the concentration of hydrochloric acid at the start of leaching. The initial concentration of hydrochloric acid is preferably 15 to 25% by mass from the viewpoint of corrosiveness of the apparatus. Hydrochloric acid-containing leachate includes, for example, hydrochloric acid or recovered hydrochloric acid. Examples of the recovered hydrochloric acid include recovered hydrochloric acid (primary recovered hydrochloric acid) obtained by solid-liquid separation of the slurry after the leaching step with hydrochloric acid, and multiple recovered hydrochloric acid obtained by repeating the same solid-liquid separation and recovery operation multiple times after performing the leaching reaction with the primary recovered hydrochloric acid. When using recovered hydrochloric acid as the hydrochloric acid-containing leaching solution, it may be recovered by repeating the leaching reaction and solid-liquid separation multiple times as long as the initial concentration of hydrochloric acid is 15% by mass or more. If the initial concentration of hydrochloric acid is 15% by mass or less, high-concentration hydrochloric acid or recovered hydrochloric acid may be added. The vessel for the leaching reaction may be an open vessel or a closed vessel such as an autoclave, and a reaction vessel made of a material that is not corroded by hydrochloric acid is used.

浸出工程における塩酸含有浸出液の使用量(容積V(L))は、チタン含有材料の質量(質量W(kg))に対して、V/Wで3.0(L/kg)以下とすることが重要であり、好ましくは0.5~2.5(L/kg)とする。V/Wが低い場合、塩酸含有浸出液とチタン含有材料の撹拌混合が物理的に困難になるが、チタン含有材料が塩酸含有浸出液に浸漬していれば浸出反応が進むため、撹拌混合を行わなくてもよい。塩酸含有浸出液とチタン含有材料を所定量反応容器に添加し加熱して、塩酸含有浸出液を80℃以上にすることが重要である。一方、反応温度は、塩酸含有浸出液の沸点以下が好ましい。塩酸含有浸出液の沸点又は沸点に近い温度で塩酸蒸気の発生が著しい場合は、適宜冷却してもよい。反応時間は適宜設定することができ、2~20時間とするのが好ましい。開放型容器を使用する場合には、80~110℃(塩酸含有浸出液の沸点以下)で5~20時間浸出反応を行うのが好ましく、密閉型容器を使用する場合には、加圧条件によって温度及び時間を適宜設定することができ、110~160℃で、2~18時間浸出反応を行うのが好ましい。 It is important that the amount (volume V (L)) of the hydrochloric acid-containing leaching solution used in the leaching step is 3.0 (L/kg) or less in V/W with respect to the mass (mass W (kg)) of the titanium-containing material, preferably 0.5 to 2.5 (L/kg). If the V/W is low, it becomes physically difficult to stir and mix the hydrochloric acid-containing leach solution and the titanium-containing material. It is important that predetermined amounts of the hydrochloric acid-containing leachate and the titanium-containing material are added to the reaction vessel and heated to raise the hydrochloric acid-containing leachate to 80° C. or higher. On the other hand, the reaction temperature is preferably below the boiling point of the hydrochloric acid-containing leachate. If hydrochloric acid vapor is significantly generated at the boiling point of the hydrochloric acid-containing leachate or at a temperature close to the boiling point, the liquid may be cooled appropriately. The reaction time can be appropriately set, and is preferably 2 to 20 hours. When using an open container, the leaching reaction is preferably carried out at 80 to 110° C. (below the boiling point of the hydrochloric acid-containing leaching solution) for 5 to 20 hours. When using a closed container, the temperature and time can be appropriately set according to the pressurization conditions, and the leaching reaction is preferably carried out at 110 to 160° C. for 2 to 18 hours.

本発明の製造方法において、浸出工程後のスラリーは、デカンテーション、沈降分離、遠心分離、濾過、膜分離等により、チタン濃縮物含む固形物と、浸出により除去された鉄分等の不純物を溶存する浸出液とに固液分離する。固液分離はバッチ式でも連続式でもよい。 In the production method of the present invention, the slurry after the leaching step is subjected to solid-liquid separation by decantation, sedimentation, centrifugation, filtration, membrane separation, or the like into a solid containing titanium concentrate and a leaching solution containing impurities such as iron removed by leaching. Solid-liquid separation may be of a batch type or a continuous type.

固液分離で得たチタン濃縮物を含む固形物は、洗浄して、固形物に残存する共存イオンの脱塩処理を行うのが好ましい。脱塩処理は電気伝導度が0.1S/m以下となるまで洗浄するのが好ましい。固形分を洗浄した後の湿ケーキは通常、粉体とするために必要に応じて乾燥する(洗浄・乾燥工程)。乾燥に用いる乾燥機としては、バンドドライヤー、ロータリードライヤー等の連続式乾燥機、箱型棚式乾燥機等のバッチ式乾燥機等を適宜使用できる。乾燥の際に分級又は造粒を同時に行ってもよい。乾燥と造粒を同時に行う場合は、通常の造粒乾燥機を用いることができ、流動層造粒乾燥機、スプレードライヤー等を適宜選択できる。スプレードライヤーにより造粒乾燥するには、前記の脱塩処理後の湿ケーキをスラリーにするのが好ましい。造粒乾燥によりチタン濃縮物を30~300μmの粒度に整粒することができる。乾燥温度は適宜設定することができる。以上のようにして製造されたチタン濃縮物のTiO品位は93質量%以上と極めて高く、95質量%以上とすることもできる。 The solid matter containing the titanium concentrate obtained by the solid-liquid separation is preferably washed to remove coexisting ions remaining in the solid matter. In the desalting treatment, washing is preferably carried out until the electric conductivity becomes 0.1 S/m or less. After washing the solids, the wet cake is usually dried as necessary to obtain a powder (washing/drying step). As a dryer used for drying, a continuous dryer such as a band dryer and a rotary dryer, a batch dryer such as a box-type shelf dryer, and the like can be appropriately used. Classification or granulation may be performed at the same time as drying. When drying and granulation are performed at the same time, an ordinary granulation dryer can be used, and a fluid bed granulation dryer, a spray dryer, etc. can be appropriately selected. For granulation drying with a spray dryer, it is preferable to make the wet cake after the desalting treatment into a slurry. The titanium concentrate can be granulated to a particle size of 30 to 300 μm by granulation drying. The drying temperature can be set appropriately. The TiO 2 quality of the titanium concentrate produced as described above is extremely high at 93% by mass or more, and can be 95% by mass or more.

また、洗浄・乾燥工程の後、必要に応じて分級又は造粒してもよい(造粒工程)。分級機、造粒機は、通常の機具を用いて、その粒度を適宜調整することができ、チタン濃縮物を流動化しながら塩素化するために、例えば、30~300μmの粒度に整粒することができる。 Further, after the washing/drying process, classification or granulation may be performed as necessary (granulation process). Classifiers and granulators can be appropriately adjusted in particle size using ordinary equipment, and in order to chlorinate the titanium concentrate while fluidizing it, for example, it can be sized to a particle size of 30 to 300 μm.

また、洗浄・乾燥工程の後、必要に応じて固形物を焼成してもよい(焼成工程)。焼成温度は、300~1600℃が好ましく、800~1400℃がより好ましい。焼成により、チタン濃縮物のルチル含有率、硬度、嵩密度を高めることができる。ルチル型酸化チタンの含有率が高いと塩素化反応が進みやすく、四塩化チタンを効率的に製造することができる。焼成時間は適宜設定することができる。 Further, after the washing/drying process, the solid may be calcined as necessary (calcining process). The firing temperature is preferably 300 to 1600°C, more preferably 800 to 1400°C. The calcination can increase the rutile content, hardness and bulk density of the titanium concentrate. When the content of rutile-type titanium oxide is high, the chlorination reaction proceeds easily, and titanium tetrachloride can be produced efficiently. The baking time can be set appropriately.

本発明の製造方法では、低品位合成ルチルや天然ルチル等の低品位チタン濃縮物を原料に用いると、高温で焼成しなくても、乾燥を行うとルチル型構造を有する酸化チタンのみを含有する高品位のチタン濃縮物が製造できる。ルチル型構造を有する酸化チタンは、塩素ガスとの反応性がよいため、塩素化反応が効率よく行われる利点がある。 In the production method of the present invention, when a low-grade titanium concentrate such as low-grade synthetic rutile or natural rutile is used as a raw material, drying without baking at a high temperature can produce a high-grade titanium concentrate containing only titanium oxide having a rutile structure. Titanium oxide having a rutile structure has a good reactivity with chlorine gas, and therefore has the advantage of efficient chlorination reaction.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例及び比較例によって何ら限定されるものではない。使用したチタン含有材料、製造したチタン濃縮物の各成分を(株)リガク 波長分散蛍光X線分析装置 ZSX Primus IVで分析した。 EXAMPLES Next, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited by the following Examples and Comparative Examples. The titanium-containing material used and each component of the titanium concentrate produced were analyzed with a wavelength dispersive fluorescent X-ray spectrometer ZSX Primus IV manufactured by Rigaku Corporation.

チタン含有材料として実施例で用いた低品位のチタン濃縮物(合成ルチル)の組成を表1に示す。Ti、Fe、Mn、Mgの含有率はそれぞれの酸化物に換算した値である。 Table 1 shows the composition of the low-grade titanium concentrate (synthetic rutile) used in the examples as the titanium-containing material. The contents of Ti, Fe, Mn, and Mg are values converted to respective oxides.

Figure 2023102909000001
Figure 2023102909000001

実施例1
上記のチタン含有材料と20質量%塩酸がV/W=1(L/kg)となるように、撹拌機付きの反応容器に入れて撹拌混合しながら加熱し、108℃(塩酸含有浸出液の沸点)で5時間浸出させた。反応終了後、固液分離して得た固形物をろ過水洗し、熱風循環式乾燥機を用いて120℃で乾燥して、チタン濃縮物を得た。
Example 1
The above titanium-containing material and 20% by mass hydrochloric acid were placed in a reaction vessel equipped with a stirrer so that V/W = 1 (L/kg), heated while being stirred and mixed, and leached at 108°C (boiling point of the hydrochloric acid-containing leachate) for 5 hours. After completion of the reaction, the solid matter obtained by solid-liquid separation was filtered, washed with water, and dried at 120° C. using a hot air circulation dryer to obtain a titanium concentrate.

実施例2
実施例1において、V/W=2(L/kg)となるようにチタン含有材料と塩酸含有浸出液を撹拌混合したこと以外は同様にして、チタン濃縮物を得た。
Example 2
A titanium concentrate was obtained in the same manner as in Example 1, except that the titanium-containing material and the hydrochloric acid-containing leachate were stirred and mixed so that V/W=2 (L/kg).

実施例3
実施例2において、20質量%塩酸を実施例2の固液分離後の回収塩酸(塩酸濃度19質量%)に代えたこと以外は同様にしてチタン濃縮物を得た。
Example 3
A titanium concentrate was obtained in the same manner as in Example 2, except that the 20% by mass hydrochloric acid was replaced with the recovered hydrochloric acid (hydrochloric acid concentration: 19% by mass) after solid-liquid separation in Example 2.

実施例4
実施例2において、20質量%塩酸を実施例3の固液分離後の回収塩酸(塩酸濃度17質量%)に代えたこと以外は同様にしてチタン濃縮物を得た。
Example 4
A titanium concentrate was obtained in the same manner as in Example 2, except that the 20% by mass hydrochloric acid was replaced with the recovered hydrochloric acid (hydrochloric acid concentration: 17% by mass) after solid-liquid separation in Example 3.

実施例5
実施例2において、20質量%塩酸を実施例4の固液分離後の回収塩酸(塩酸濃度 15質量%)に代えたこと以外は同様にしてチタン濃縮物を得た。
Example 5
A titanium concentrate was obtained in the same manner as in Example 2, except that the 20% by mass hydrochloric acid was replaced with the recovered hydrochloric acid after solid-liquid separation in Example 4 (hydrochloric acid concentration: 15% by mass).

実施例6
実施例1において、撹拌混合しないで加熱したこと以外は同様にしてチタン濃縮物を得た。
Example 6
A titanium concentrate was obtained in the same manner as in Example 1, except that the mixture was heated without being stirred and mixed.

実施例7
実施例1において、チタン含有材料を予めボールミルで粉砕したことと、浸出時間を7時間としたこと以外は同様にしてチタン濃縮物を得た。
Example 7
A titanium concentrate was obtained in the same manner as in Example 1, except that the titanium-containing material was ground in advance with a ball mill and the leaching time was set to 7 hours.

比較例1
実施例1において、低品位チタン濃縮物に代わり、表2に示した組成のイルメナイト鉱石を用いて、該イルメナイト鉱石と20質量%塩酸をV/W=6(L/kg)となるように混合した以外は同様にしてチタン濃縮物を得た。
Comparative example 1
A titanium concentrate was obtained in the same manner as in Example 1, except that ilmenite ore having the composition shown in Table 2 was used instead of the low-grade titanium concentrate, and the ilmenite ore and 20 mass% hydrochloric acid were mixed so that V/W = 6 (L/kg).

Figure 2023102909000002
Figure 2023102909000002

実施例と比較例で得られたチタン濃縮物の各成分分析の結果を表3に示す。 Table 3 shows the results of component analysis of the titanium concentrates obtained in Examples and Comparative Examples.

Figure 2023102909000003
Figure 2023102909000003

比較例1のチタン濃縮物のTiO品位が84.9質量%であるのに対し、実施例1~7のチタン濃縮物のTiO品位が93.6~95.1質量%であり、93質量%を超える高い値となることがわかった。比較例1では多量の塩酸(V/W=6)を用いても高品位のチタン濃縮物が得られないことが分かる。また、実施例では、低品位チタン濃縮物を用いているため、乾燥段階でルチル型構造を有する酸化チタンのみを含有する高品位のチタン濃縮物が製造できることを確認した。 While the TiO 2 grade of the titanium concentrate of Comparative Example 1 is 84.9% by mass, the TiO 2 grade of the titanium concentrates of Examples 1 to 7 is 93.6 to 95.1% by mass, exceeding 93% by mass. It can be seen that in Comparative Example 1, even if a large amount of hydrochloric acid (V/W=6) is used, a high-grade titanium concentrate cannot be obtained. Moreover, in the examples, since a low-grade titanium concentrate is used, it was confirmed that a high-grade titanium concentrate containing only titanium oxide having a rutile structure can be produced in the drying stage.

本発明のチタン濃縮物の製造方法は、チタン含有材料に対して少量の塩酸含有浸出液の使用でも不純物を除去できることから、簡便かつ効率的な方法で高品位のチタン濃縮物を製造することができる。また、使用した塩酸含有浸出液を回収し、循環再使用することもできるため、大規模な廃酸処理設備が不要になる。 The method for producing a titanium concentrate of the present invention can remove impurities from a titanium-containing material even by using a small amount of a hydrochloric acid-containing leaching solution, so that a high-quality titanium concentrate can be produced in a simple and efficient manner. In addition, since the used leaching solution containing hydrochloric acid can be recovered and reused, a large-scale waste acid treatment facility becomes unnecessary.

Claims (13)

塩酸初期濃度が15質量%以上である塩酸含有浸出液(容積V(L))と、チタン含有材料(質量W(kg))とをV/Wが3.0(L/kg)以下となるように反応容器に添加し、該塩酸含有浸出液を80℃以上に加熱して該チタン含有材料から不純物を浸出する浸出工程を含むチタン濃縮物の製造方法。 A method for producing a titanium concentrate, comprising a leaching step of adding a hydrochloric acid-containing leachate (volume V (L)) having an initial hydrochloric acid concentration of 15% by mass or more and a titanium-containing material (mass W (kg)) to a reaction vessel so that V/W is 3.0 (L/kg) or less, and heating the hydrochloric acid-containing leachate to 80° C. or higher to leach impurities from the titanium-containing material. 塩酸含有浸出液が塩酸又は回収塩酸である請求項1に記載のチタン濃縮物の製造方法。 2. The method for producing a titanium concentrate according to claim 1, wherein the hydrochloric acid-containing leachate is hydrochloric acid or recovered hydrochloric acid. 回収塩酸が、塩酸による前記浸出工程を行った後のスラリーを固液分離して回収した回収塩酸である請求項2に記載のチタン濃縮物の製造方法。 3. The method for producing a titanium concentrate according to claim 2, wherein the recovered hydrochloric acid is recovered by solid-liquid separation of the slurry after the leaching step with hydrochloric acid. 回収塩酸が、回収塩酸による前記浸出工程を行った後のスラリーを固液分離して回収する操作を複数回繰り返した複数回回収塩酸である請求項2に記載のチタン濃縮物の製造方法。 3. The method for producing a titanium concentrate according to claim 2, wherein the recovered hydrochloric acid is a multiple times recovered hydrochloric acid obtained by repeating an operation of solid-liquid separation and recovery of the slurry after the leaching step with the recovered hydrochloric acid. 塩酸含有浸出液の塩酸初期濃度が15~25質量%である請求項1~4の何れか一項に記載のチタン濃縮物の製造方法。 The method for producing a titanium concentrate according to any one of claims 1 to 4, wherein the hydrochloric acid-containing leachate has an initial hydrochloric acid concentration of 15 to 25% by mass. 前記浸出工程を行った後のスラリーを固液分離して回収した固形物を洗浄し、乾燥する工程を含む請求項1~5の何れか一項に記載のチタン濃縮物の製造方法。 The method for producing a titanium concentrate according to any one of claims 1 to 5, comprising a step of solid-liquid separation of the slurry after the leaching step, and washing and drying the collected solid matter. 前記洗浄・乾燥工程の後、さらに分級又は造粒する工程を含む請求項6に記載のチタン濃縮物の製造方法。 7. The method for producing a titanium concentrate according to claim 6, further comprising a step of classifying or granulating after the washing and drying steps. 前記洗浄・乾燥工程の後、固形物を焼成する工程を含む請求項1~7の何れか一項に記載のチタン濃縮物の製造方法。 The method for producing a titanium concentrate according to any one of claims 1 to 7, comprising a step of calcining the solid after the washing and drying steps. 前記浸出工程を、塩酸含有浸出液の沸点以下の反応温度で行う請求項1~8の何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the leaching step is performed at a reaction temperature below the boiling point of the hydrochloric acid-containing leaching solution. チタン含有材料のTiO品位が70~90質量%である請求項1~9の何れか一項に記載のチタン濃縮物の製造方法。 A method for producing a titanium concentrate according to any one of claims 1 to 9, wherein the titanium-containing material has a TiO 2 grade of 70 to 90 mass%. チタン含有材料のTiO品位が80~90質量%である請求項10に記載のチタン濃縮物の製造方法。 The method for producing a titanium concentrate according to claim 10, wherein the titanium-containing material has a TiO 2 grade of 80-90 wt%. 得られるチタン濃縮物のTiO品位が93質量%以上である請求項1~11の何れか一項に記載のチタン濃縮物の製造方法。 The method for producing a titanium concentrate according to any one of claims 1 to 11, wherein the titanium concentrate obtained has a TiO 2 grade of 93% by mass or more. 得られるチタン濃縮物のTiO品位が95質量%以上である請求項12に記載のチタン濃縮物の製造方法。 13. The method for producing a titanium concentrate according to claim 12, wherein the titanium concentrate obtained has a TiO2 grade of 95% by mass or more.
JP2022003654A 2022-01-13 2022-01-13 Method for producing titanium concentrate Pending JP2023102909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022003654A JP2023102909A (en) 2022-01-13 2022-01-13 Method for producing titanium concentrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022003654A JP2023102909A (en) 2022-01-13 2022-01-13 Method for producing titanium concentrate

Publications (1)

Publication Number Publication Date
JP2023102909A true JP2023102909A (en) 2023-07-26

Family

ID=87377616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022003654A Pending JP2023102909A (en) 2022-01-13 2022-01-13 Method for producing titanium concentrate

Country Status (1)

Country Link
JP (1) JP2023102909A (en)

Similar Documents

Publication Publication Date Title
EP2474633B1 (en) Titaniumrich hydrochloric acid leaching residue use thereof and preparation method of titanium dioxide
CA3008040C (en) Rare earth ore processing methods by acid mixing, sulphating and decomposing
WO2021002332A1 (en) Method for producing titanium concentrate
EP3167087B1 (en) Extraction of products from titanium-bearing minerals
Ismael et al. New method to prepare high purity anatase TiO2 through alkaline roasting and acid leaching from non-conventional minerals resource
WO2015131266A1 (en) The production of high-grade synthetic rutile from low-grade titanium-bearing ores
CA2480865C (en) Acid beneficiation of ore
JPS61183123A (en) Manufacture of pigment grade titanium dioxide
JPH08512361A (en) Method for modifying titanium-containing material
Lasheen Sulfate digestion process for high purity TiO 2 from titania slag
JP2023102909A (en) Method for producing titanium concentrate
CN113264553B (en) Method for recycling titanium oxide by adding seed crystal to titanium tetrachloride dust-collecting slag for recrystallization
WO2007052801A1 (en) Method for extraction of rutile
CN113227420A (en) Method for extracting products from titaniferous materials
WO2022059534A1 (en) Recovery method of alkali metal fluorides and use method thereof
Manaa Titania preparation from soda roasted slag using sulfuric acid solution
WO2016112432A1 (en) Beneficiation of titanium bearing materials
JPH0688149A (en) Method for refining titanium-containing material
RU2190678C1 (en) Method of recovering and separating tungsten and cobalt
Gireesh et al. Recovery of Niobium and Zirconium from the Cyclone Discharge of Chlorination Plant Producing Titanium Tetrachloride
US3860412A (en) Process for upgrading of titaniferous materials
Middlemas Energy-conscious production of titania and titanium powders from slag
WO2022076564A1 (en) Process for the production of titanium dioxide from anatase ore through sulphuric acid digestion, followed by leaching, hydrolysis, and calcination
JPH03183621A (en) Production of titanium concentrate
WO2023247630A1 (en) Recycling of components contained in a residue obtained from the chloride process