JP2023102724A - sound deadening structure - Google Patents

sound deadening structure Download PDF

Info

Publication number
JP2023102724A
JP2023102724A JP2022003406A JP2022003406A JP2023102724A JP 2023102724 A JP2023102724 A JP 2023102724A JP 2022003406 A JP2022003406 A JP 2022003406A JP 2022003406 A JP2022003406 A JP 2022003406A JP 2023102724 A JP2023102724 A JP 2023102724A
Authority
JP
Japan
Prior art keywords
flow
diameter portion
enlarged diameter
tubular body
sound deadening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022003406A
Other languages
Japanese (ja)
Inventor
裕 道脇
Yutaka Michiwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Next Innovation GK
Original Assignee
Next Innovation GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next Innovation GK filed Critical Next Innovation GK
Priority to JP2022003406A priority Critical patent/JP2023102724A/en
Publication of JP2023102724A publication Critical patent/JP2023102724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Ventilation (AREA)
  • Duct Arrangements (AREA)

Abstract

To provide means for securing air permeability and obtaining sound deadening effect over a wide frequency band with a simple structure without making a fluid flow space large-sized.SOLUTION: A sound deadening structure has: a fluid space in which a gas is allowed to flow and which is encircled with a partition wall partitioning off the inside and outside, both ends thereof communicating directly or indirectly with the inside and outside respectively; and a diameter-increased part which is formed by increasing the cross-sectional area of the fluid space.SELECTED DRAWING: Figure 1

Description

本発明は、空間内での気柱の共鳴を抑制し消音する消音構造体に関するものである。 TECHNICAL FIELD The present invention relates to a sound deadening structure that suppresses resonance of air columns in a space and muffles noise.

従来、ダクト、マフラ、及び換気スリーブ等の通気性を確保する構造物は、気体、風、又は熱等を通過させると同時に音も通過及び/又は発生させてしまうことから、騒音対策を要することがある。騒音対策としては振動板を備える吸音体をダクト内に配するものが知られている(例えば、特許文献1参照)。このような吸音体では、例えば、音源の音波を受けると振動板が共鳴(共振)周波数帯域で共鳴(振動)する。これにより、吸音体内の空気層が圧縮と膨張とを繰り返し、音エネルギが熱エネルギに変換され吸音される。従って、ダクト内には、入射する音の周波数帯域に合わせた吸音ピーク周波数の吸音体が設置される。 Conventionally, structures that ensure air permeability such as ducts, mufflers, and ventilation sleeves pass gas, wind, heat, etc., and at the same time pass and/or generate sound, so noise measures may be required. As a countermeasure against noise, it is known to dispose a sound absorber having a diaphragm in a duct (see, for example, Patent Document 1). In such a sound absorber, for example, when receiving sound waves from a sound source, the diaphragm resonates (vibrates) in a resonance (resonance) frequency band. As a result, the air layer in the sound absorber repeats compression and expansion, and sound energy is converted into heat energy and sound is absorbed. Therefore, a sound absorber having a sound absorption peak frequency matching the frequency band of incident sound is installed in the duct.

特開2016-170194号公報JP 2016-170194 A

しかしながら、特許文献1の吸音体は、吸音ピーク周波数以外の周波数の音に対する吸音効果が著しく低下してしまうため、広い周波数帯域での消音には多数の種類の吸音体を配することが必要となり、ダクト内に設置することが困難となる他、吸音体を配するためにダクトを大型化させた場合にはダクトの設置場所が限定されるという問題がある。またダクト内に吸音体を配することによって通気性が悪化してしまうという問題がある。 However, the sound absorbing body of Patent Document 1 has a significantly reduced sound absorbing effect for sound of frequencies other than the sound absorption peak frequency, so it is necessary to arrange many types of sound absorbing bodies for silencing in a wide frequency band. In addition, there is a problem that air permeability is deteriorated by arranging a sound absorbing body in the duct.

本発明は、上記問題点に鑑みて本発明者の鋭意研究により成されたものであり、簡易な構造によって、流動空間を大型化させることなく、通気性を確保できて広い周波数帯域での消音効果を得るための手段を提供することを目的とする。 The present invention has been made by the present inventors as a result of intensive research in view of the above problems.

本発明の消音構造体は、内部に気体を流動させ得、内外を画成する画壁に囲繞され、両端がそれぞれ内外に直接又は間接的に連通する開口を有する流動空間と、上記流動空間の横断面積を拡げて成る拡径部と、を有することを特徴とする。 The muffler structure of the present invention is characterized by having a flow space which allows gas to flow therein, is surrounded by partition walls defining the inside and the outside, and has openings at both ends of which directly or indirectly communicate with the inside and the outside, and an enlarged diameter portion formed by enlarging the cross-sectional area of the flow space.

また、本発明の消音構造体は、前記拡径部が前記画壁の端部に配されることを特徴とする。 Further, in the sound deadening structure of the present invention, the enlarged diameter portion is arranged at an end portion of the screen wall.

また、本発明の消音構造体は、前記拡径部が気体の流動方向の下流側の開口を含む箇所に配されることを特徴とする。 Further, in the sound deadening structure of the present invention, the enlarged diameter portion is arranged at a location including an opening on the downstream side in the flow direction of the gas.

また、本発明の消音構造体は、前記拡径部が内径が異なる複数の領域を有することを特徴とする。 Further, in the sound deadening structure of the present invention, the enlarged diameter portion has a plurality of regions with different inner diameters.

また、本発明の消音構造体は、前記拡径部の前記内径が異なる複数の領域を、気体の流動方向の上流側から下流側に向かって径の小さい順に配することを特徴とする。 Further, in the sound deadening structure of the present invention, the plurality of regions having different inner diameters of the enlarged diameter portion are arranged in ascending order of diameter from the upstream side to the downstream side in the flow direction of the gas.

また、本発明の消音構造体は、前記拡径部の前記内径が異なる複数の領域を、気体の流動方向の上流側から下流側に向かって径の大きい順に配することを特徴とする。 Further, in the muffling structure of the present invention, the plurality of regions having different inner diameters of the enlarged diameter portion are arranged in descending order of diameter from the upstream side to the downstream side in the flow direction of the gas.

また、本発明の消音構造体は、気体を流動させるための流動発生部を設け、上記流動発生部は、前記拡径部の内部空間で回転するファンを有することを特徴とする。 Further, the muffling structure of the present invention is characterized by providing a flow generating portion for causing the gas to flow, and the flow generating portion has a fan that rotates in the inner space of the enlarged diameter portion.

また、本発明の消音構造体は、前記ファンの最大外径が、前記画壁の内径よりも大きく、前記拡径部の内径よりも小さいことを特徴とする。 Further, in the sound deadening structure of the present invention, the maximum outer diameter of the fan is larger than the inner diameter of the screen wall and smaller than the inner diameter of the expanded diameter portion.

また、本発明の消音構造体は、前記ファンの高さが前記拡径部の長さよりも低いことを特徴とする。 Further, in the sound deadening structure of the present invention, the height of the fan is lower than the length of the enlarged diameter portion.

本発明によれば、簡易な構造によって、流動空間を大型化させることなく、通気性を確保できて広い周波数帯域での消音効果を得ることができる。 According to the present invention, with a simple structure, air permeability can be ensured without enlarging the flow space, and a silencing effect in a wide frequency band can be obtained.

本発明の消音構造体である管状体を示す断面図である。FIG. 3 is a cross-sectional view showing a tubular body that is the muffling structure of the present invention; 拡径部の他の例を示す図である。FIG. 10 is a diagram showing another example of an enlarged diameter portion; 毒性対象減消装置を示す斜視図である。It is a perspective view which shows a poisonous object reduction|extinction apparatus. 毒性対象減消装置を示す断面図である。It is a cross-sectional view showing a poison target reduction device. 本発明の消音構造体として成るトンネルを示す断面図である。1 is a cross-sectional view showing a tunnel as a sound deadening structure of the present invention; FIG.

以下に、本発明の消音構造体の実施形態について図を参照して説明する。図1は本発明の消音構造体である管状体1を示す断面図である。管状体1は、両端が開口して内側に気体(空気)を流下させるものである。また管状体1は、内部に気体を流動させ得、内外を画成する画壁2に囲繞され、両端がそれぞれ内外に直接又は間接的に連通する開口を有する流動空間4と、両端部の開口の間で画壁2に形成された、上記流動空間における横断面積を変化させて上記流動空間に発生する気柱の共鳴を抑制する消音構造を成すための拡径部6と、を有する。 An embodiment of the muffling structure of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a tubular body 1, which is the muffling structure of the present invention. The tubular body 1 is open at both ends to allow gas (air) to flow down inside. Further, the tubular body 1 has a flow space 4 which is surrounded by partition walls 2 which define the inside and the outside and which allows gas to flow inside, and which has openings directly or indirectly communicating between the inside and the outside at both ends thereof, and an enlarged diameter portion 6 formed in the partition wall 2 between the openings at both ends to form a noise-reducing structure for suppressing the resonance of the air column generated in the flow space by changing the cross-sectional area of the flow space.

具体的に管状体1は、内外を画成する画壁2、両端を開口させて成る開口部3a、3b等を有し、延在方向に対する直交断面が無端形状を成す。また、画壁2によって囲繞される流動空間4には、一方の開口部3aを介して外部から空気が流入すると共に、流入した空気が他方の開口部3bに向かって流下し得る。勿論、他方の開口部3bを介して外部から空気が流入すると共に、一方の開口部3aに向かって流下し得るように管状体1を用いるようにしてもよい。 Specifically, the tubular body 1 has partition walls 2 defining the inside and outside, openings 3a and 3b formed by opening both ends, and the cross section orthogonal to the extending direction forms an endless shape. In addition, air can flow into the flow space 4 surrounded by the screen wall 2 from the outside through one opening 3a, and can flow down toward the other opening 3b. Of course, the tubular body 1 may be used so that air can flow in from the outside through the other opening 3b and flow down toward the one opening 3a.

なお、管状体1は、直管形状を有するが、曲管状等であってもよい。
管状体1は、開口部3aから開口部3b近傍の拡径部6を除いた箇所までの内径が略一様に設定される。開口部3b近傍の端部には、内径を拡径することで当該箇所における流動空間4の横断面積を拡げる拡径部6が配される。
In addition, although the tubular body 1 has a straight pipe shape, it may have a curved pipe shape or the like.
The tubular body 1 has a substantially uniform inner diameter from the opening 3a to a portion other than the enlarged diameter portion 6 near the opening 3b. At the end near the opening 3b, a diameter-enlarged portion 6 is arranged to expand the cross-sectional area of the flow space 4 at that location by enlarging the inner diameter.

拡径部6は、管状体1内部で生じ得る共鳴音を抑制するように機能する。拡径部6は、空気の流動方向の最下流側に配することが望ましい。従ってここでは管状体1の開口部3b側の端部に配する。勿論拡径部6を、開口部3a及び開口部3bの間の中途に配してもよい。 The enlarged diameter portion 6 functions to suppress resonance that may occur inside the tubular body 1 . It is desirable that the enlarged diameter portion 6 be arranged on the most downstream side in the air flow direction. Therefore, here, it is arranged at the end of the tubular body 1 on the side of the opening 3b. Of course, the enlarged diameter portion 6 may be disposed midway between the openings 3a and 3b.

また、拡径部6は、流動空間の横断面積を拡げる形状であれば、その断面形状や径方向の寸法を適宜設定し得るが、拡径部6における流動空間の横断面積や管状体1の内径の横断面積に対する拡径部6の内径の横断面積の比が小さ過ぎると騒音低減或いは消音効果が過小となることに注意する。 The cross-sectional shape and radial dimensions of the enlarged diameter portion 6 can be appropriately set as long as they have a shape that expands the cross-sectional area of the flow space. However, it should be noted that if the ratio of the cross-sectional area of the inner diameter of the enlarged diameter portion 6 to the cross-sectional area of the flow space in the enlarged diameter portion 6 or the cross-sectional area of the inner diameter of the tubular body 1 is too small, the noise reduction or silencing effect will be too small.

上記のように管状体1は、拡径部6を設けて横断面積を不連続に拡大させている為、音波のエネルギ密度の著しい低下が生じ、音圧レベルを低下させることができる。また、管状体1の拡径によって拡径部6の近傍が半開放端様となり、流動空間4での管状体1が共振し得る周波数(共鳴周波数)のシフトが生じて、その周波数における気柱振動を抑制し、共鳴音(騒音)の発生を抑制することができる。このように管状体1に拡径部6を設ければよいため、通気性を確保しながらも、管状体1全体を大型化させることなく、広い周波数帯域での消音効果を得ることができる。 As described above, since the tubular body 1 is provided with the expanded diameter portion 6 to discontinuously expand the cross-sectional area, the energy density of the sound waves is remarkably lowered, and the sound pressure level can be lowered. In addition, due to the diameter expansion of the tubular body 1, the vicinity of the enlarged diameter portion 6 becomes like a semi-open end, and the frequency (resonant frequency) at which the tubular body 1 can resonate in the flow space 4 shifts, suppressing the air column vibration at that frequency and suppressing the generation of resonance sound (noise). Since it is only necessary to provide the tubular body 1 with the expanded diameter portion 6, it is possible to obtain a silencing effect in a wide frequency band without increasing the size of the entire tubular body 1 while ensuring air permeability.

なお、拡径部6の形状は、管状体1の内径を急激に拡大させる段状(例えば、図1参照)の他、図2(a)に示す管状体1の内径を漸次拡大させる形状、即ち略逆テーパ状に拡径する形状の拡径部6を設けてもよい。
また拡径部6は、多段状に内径を拡大させるように拡径部6の形状を設定してもよい。即ち、図2(b)に示すように管状体1の内径よりも拡径させた第一の拡径領域6aと、第一の拡径領域6aよりも拡径させた第二拡径領域6bとを有するように拡径部6を形成してもよい。
勿論、拡径部6を多段状にした場合の段数(拡径領域の数)は、三以上であってもよく、特に限定されるものではないことは言うまでもない。また、拡径部6の各拡径領域の配置は、適宜設定し得る。例えば気体の流動方向の上流側から下流側に向かって各拡径領域を内径の小さい順(又は大きい順)に配することが出来る。
The shape of the enlarged diameter portion 6 may be a stepped shape (see, for example, FIG. 1) that abruptly increases the inner diameter of the tubular body 1, or a shape that gradually increases the inner diameter of the tubular body 1 shown in FIG.
Further, the shape of the enlarged diameter portion 6 may be set so that the inner diameter is enlarged in a multi-stage manner. That is, as shown in FIG. 2B, the enlarged diameter portion 6 may be formed so as to have a first enlarged diameter region 6a larger than the inner diameter of the tubular body 1 and a second enlarged diameter region 6b larger than the first enlarged diameter region 6a.
Needless to say, the number of stages (the number of diameter-enlarging regions) when the diameter-enlarged portion 6 is multi-staged may be three or more, and is not particularly limited. In addition, the arrangement of the enlarged diameter regions of the enlarged diameter portion 6 can be set as appropriate. For example, the diameter-enlarged regions can be arranged in ascending order (or in ascending order) of the inner diameter from the upstream side to the downstream side in the gas flow direction.

管状体1は、種々の部材に適用することができる。管状体1を毒性対象減消装置に適用した例を示す。図3は毒性対象減消装置10を示す斜視図、図4は毒性対象減消装置10を示す断面図である。毒性対象減消装置10は、管状体1の軸心を略鉛直方向に向けた縦置きの姿勢で使用される。また、毒性対象減消装置10は、吸込口12を介して装置外の空気を装置内部に取り込み略鉛直方向に沿って流下させると共に、空気中の毒性対象を減消(例えば、分解、不活化、滅菌等)させる。そして、毒性対象を減消させた空気を排出口14から外部に排出する。 The tubular body 1 can be applied to various members. An example in which the tubular body 1 is applied to a poison target reduction device is shown. FIG. 3 is a perspective view showing the poisonous object extinguishing device 10, and FIG. 4 is a sectional view showing the poisonous object extinguishing device 10. As shown in FIG. The poisonous object extinguishing device 10 is used in an upright position with the axial center of the tubular body 1 directed substantially vertically. In addition, the poisonous target reduction device 10 takes in air from outside the device into the device through the suction port 12 and makes it flow down in a substantially vertical direction, and at the same time, reduces (for example, decomposes, inactivates, sterilizes, etc.) poisonous substances in the air. Then, the air in which the toxic object has been reduced is discharged from the discharge port 14 to the outside.

なお、毒性対象とは、菌やウイルス等の病原微生物の他、有害分子を含んだホルムアルデヒドや亜硫酸ガス、亜硝酸ガス等を含むものであって少なくとも人体に対して毒性を有し、空気と共に移動する対象物である。 The toxic target includes pathogenic microorganisms such as bacteria and viruses, as well as those containing harmful molecules such as formaldehyde, sulfurous acid gas, nitrous acid gas, etc., which are at least toxic to the human body and move with the air.

毒性対象減消装置10は、管状体1を挟んで上部に吸込口12を具える外気導入部11、下部に排出口14を具える空気排出部13等を具え、各部の内部空間を接続するように各部が連結されて成る。即ち、吸込口12から導入されている空気を管状体1の内側を通過させて排出口14から排出するように、各部を連結させる。 The toxic object extinguishing device 10 has an outside air introduction part 11 having an inlet 12 at the upper part and an air discharge part 13 having an outlet 14 at the lower part with the tubular body 1 sandwiched therebetween, and each part is connected so as to connect the internal space of each part. That is, each part is connected so that the air introduced from the suction port 12 passes through the inside of the tubular body 1 and is discharged from the discharge port 14 .

勿論、外気導入部11と空気排出部13の位置は、これに限定するものではなく、外気導入部11を管状体1の下部に配し、空気排出部13を管状体1の上部に配することもできる。また、毒性対象減消装置10は、縦置きの姿勢以外の、横置きの姿勢で使用することも可能であることは言うまでもない。即ち、管状体1の向きは適宜設定し得るものであり、鉛直方向に対して傾斜させた向きに使用することも可能である。 Of course, the positions of the outside air introduction part 11 and the air discharge part 13 are not limited to this, and the outside air introduction part 11 can be arranged in the lower part of the tubular body 1, and the air discharge part 13 can be arranged in the upper part of the tubular body 1. Needless to say, the poisonous object extinguishing device 10 can also be used in a horizontal position other than the vertical position. That is, the orientation of the tubular body 1 can be appropriately set, and it is also possible to use it in an orientation inclined with respect to the vertical direction.

また、図5に示すように、毒性対象減消装置10の内部には、毒性対象減消手段としての紫外線放出部16、装置内部で空気の流動を発生させる流動発生部18等が配される。具体的に紫外線放出部16は、管状体1内で管状体1の軸心と平行に延在するように配する。 As shown in FIG. 5, the poisonous object extinguishing device 10 is provided with an ultraviolet emitting portion 16 as a poisonous object extinguishing means, a flow generating portion 18 for generating air flow inside the device, and the like. Specifically, the ultraviolet emitting part 16 is arranged so as to extend parallel to the axis of the tubular body 1 within the tubular body 1 .

流動発生部18は、複数枚の羽根を具えて成るファン18aが拡径部6の内部空間で回転し得るように配設することができる。即ち、流動発生部18は、空気排出部13内に位置し、且つファン18aが拡径部6によって囲繞されるように配設される。勿論、流動発生部18の位置は、適宜設定し得、ファン18aを拡径部6よりも空気の流動方向の下流側に位置させた、管状体1近傍であってもよい。 The flow generator 18 can be arranged so that a fan 18 a having a plurality of blades can rotate in the internal space of the enlarged diameter portion 6 . That is, the flow generating portion 18 is located inside the air discharge portion 13 and is arranged so that the fan 18 a is surrounded by the enlarged diameter portion 6 . Of course, the position of the flow generating portion 18 can be set as appropriate, and may be near the tubular body 1 where the fan 18a is located downstream of the enlarged diameter portion 6 in the air flow direction.

外気導入部11は、管状体1の上側端部に接続されており、頂部に吸込口12を有する他、後述する紫外線放出部16から放出された紫外線が吸込口12を通して装置外に漏出するのを防止するルーバ20等を有する。 The outside air introduction part 11 is connected to the upper end part of the tubular body 1, and has a suction port 12 at the top, as well as a louver 20 and the like that prevent ultraviolet rays emitted from an ultraviolet ray emitting part 16, which will be described later, from leaking out of the device through the suction port 12.

空気排出部13は、管状体1の拡径部6を囲繞するように、管状体1の下側端部を収容し得る部材であり、流動発生部18や、各部に電力を供給するための不図示の電力供給部等を配設する。また空気排出部13の周面には、排出口14が設けられる。排出口14は、複数設けられ、総開口面積が吸込口12の開口面積を超えるように、各々の開口面積や配設数等が設定される。即ち、軸方向視で略矩形状を成す空気排出部13において、四面の外周面にそれぞれ複数の排出口14を設けている。 The air discharge portion 13 is a member capable of accommodating the lower end portion of the tubular body 1 so as to surround the enlarged diameter portion 6 of the tubular body 1, and is provided with a flow generating portion 18 and a power supply portion (not shown) for supplying power to each portion. A discharge port 14 is provided on the peripheral surface of the air discharge portion 13 . A plurality of outlets 14 are provided, and the opening area and number of outlets are set so that the total opening area exceeds the opening area of the suction port 12 . That is, in the air discharge portion 13 having a substantially rectangular shape when viewed in the axial direction, a plurality of discharge ports 14 are provided on each of the four outer peripheral surfaces.

排出口14の軸方向に沿った配設位置は、適宜位置に設定し得るが、管状体1の下端部よりも上方に設定した場合は、空気排出部13内には、管状体1から排出口14まで空気の流動を案内する案内路等を設けてもよい。 The arrangement position of the discharge port 14 along the axial direction can be set at an appropriate position, but when it is set above the lower end portion of the tubular body 1, a guide path or the like for guiding the flow of air from the tubular body 1 to the discharge port 14 may be provided in the air discharge portion 13.

紫外線放出部16は、紫外線によってターゲットである毒性対象の分解、不活化、消毒、除菌、殺菌、滅菌等の減消を行う。紫外線放出部16は、殺菌灯、紫外線ランプ、紫外線LED等の紫外線光源を有するものであり、長尺状の直管形状を成し、軸方向視で略放射状に紫外線を放出する。なお、紫外線放出部16の形状は、直管形状に限定するものではなく、例えば、電球形状、環形状、曲線形状等に設定し得る。 The ultraviolet ray emitting unit 16 decomposes, inactivates, disinfects, removes bacteria, sterilizes, and sterilizes the toxic target, which is a target, by ultraviolet rays. The ultraviolet emitting part 16 has an ultraviolet light source such as a germicidal lamp, an ultraviolet lamp, an ultraviolet LED, or the like, has an elongated straight pipe shape, and emits ultraviolet rays substantially radially when viewed in the axial direction. The shape of the ultraviolet emitting portion 16 is not limited to a straight pipe shape, and may be, for example, a bulb shape, a ring shape, a curved shape, or the like.

紫外線放出部16から放出される紫外線は、波長が100~400nm程度であることが好ましく、特に250~270nm近傍に設定することがより望ましい。勿論、紫外線は、少なくとも毒性対象を減消させ得るものであれば波長が260nm未満の近紫外線(UV-C)、遠紫外線(波長10~200nm)、極端紫外線(波長10~121nm)等であってもよい。また、波長が300nmを超える近紫外線(UV-A、UV-B)であってもよく、これらを複合して用いてもよい。 The ultraviolet rays emitted from the ultraviolet emitting section 16 preferably have a wavelength of about 100 to 400 nm, and more preferably set in the vicinity of 250 to 270 nm. Of course, the ultraviolet rays may be near ultraviolet rays (UV-C) with a wavelength of less than 260 nm, far ultraviolet rays (wavelengths of 10 to 200 nm), extreme ultraviolet rays (wavelengths of 10 to 121 nm), etc., as long as they can at least extinguish toxic substances. In addition, near ultraviolet rays (UV-A, UV-B) having a wavelength exceeding 300 nm may be used, or a combination thereof may be used.

流動発生部18は、装置内部で空気の流動を発生させるためのファン構造を有する。即ち、流動発生部18は、回転軸周りに複数の羽根を有して成るファン、回転軸を回転させるための駆動モータ等によって構成される。従って流動発生部18は、軸流ファン、遠心ファン、斜流ファン、遠心軸流ファン、渦流ファン、横断流ファン等があり得る。 The flow generator 18 has a fan structure for generating air flow inside the device. That is, the flow generating unit 18 is composed of a fan having a plurality of blades around a rotating shaft, a driving motor for rotating the rotating shaft, and the like. Therefore, the flow generating section 18 can be an axial fan, a centrifugal fan, a mixed flow fan, a centrifugal axial fan, a vortex fan, a transverse flow fan, or the like.

流動発生部18は、ファン18aの回転によって装置周囲の空気を装置内部に導入し、所定の流路に沿って流下させることができる。この際、例えば、ファン18aは、最大外径が画壁2の内径(内寸)よりも大きく、拡径部6の内径(内寸)よりも小さく設定してもよい。更にファン18aの高さ(径直交方向の長さ)は、流動方向に沿った拡径部6の長さよりも低く(小さく)設定される。勿論、流動発生部18の羽根のサイズは、適宜設定し得、例えばファン18aを拡径部6の外側に位置させた場合、ファン18aの外径を拡径部6の内径よりも大きく設定し、またファンの高さを流動方向に沿った拡径部6の長さよりも高く(大きく)設定してもよい。 The flow generator 18 can introduce the air around the apparatus into the inside of the apparatus by rotating the fan 18a and cause the air to flow down along a predetermined flow path. At this time, for example, the maximum outer diameter of the fan 18 a may be set to be larger than the inner diameter (inner dimension) of the screen wall 2 and smaller than the inner diameter (inner dimension) of the expanded diameter portion 6 . Furthermore, the height of the fan 18a (the length in the direction perpendicular to the diameter) is set lower (smaller) than the length of the enlarged diameter portion 6 along the flow direction. Of course, the size of the blades of the flow generating portion 18 can be appropriately set. For example, when the fan 18a is positioned outside the enlarged diameter portion 6, the outer diameter of the fan 18a may be set larger than the inner diameter of the enlarged diameter portion 6, and the height of the fan may be set higher (larger) than the length of the enlarged diameter portion 6 along the flow direction.

また、管状体1は、内周面の一部又は全部に紫外線放出部16からの紫外線を反射する紫外線反射性を有する紫外線反射面を具える。このような紫外線反射面としては、紫外線を反射させるコールドミラーが有り得、例えば管状体1の内周面に誘電体を多層にわたって蒸着させた誘電体多層膜によって形成することができる。或いはコールドミラーを蒸着させた薄板を管状体1の内周面に張り付けたり、管状体1の内側に配置したりして紫外線反射面を設けてもよい。 Further, the tubular body 1 has an ultraviolet reflective surface having ultraviolet reflectivity for reflecting ultraviolet rays emitted from the ultraviolet emitting portion 16 on a part or the whole of the inner peripheral surface. Such an ultraviolet reflecting surface can be a cold mirror that reflects ultraviolet rays, and can be formed of, for example, a dielectric multilayer film in which multiple layers of dielectric material are vapor-deposited on the inner peripheral surface of the tubular body 1 . Alternatively, a thin plate on which a cold mirror is vapor-deposited may be adhered to the inner peripheral surface of the tubular body 1 or arranged inside the tubular body 1 to provide an ultraviolet reflecting surface.

誘電体多層膜は、高屈折率材料の誘電体薄膜と、低屈折率材料の誘電体薄膜とを交互に積層することによって構成することもできる膜である。高屈折率材料としては、例えば、二酸化チタン(TiO )、酸化アルミニウム(AL )、酸化ジルコニウム(ZrO )等が有り得る。低屈折率材料としては、例えば、二酸化ケイ素(SiO )、過酸化亜鉛(ZnO )、フッ化マグネシウム(MgF )等が有り得る。 A dielectric multilayer film is a film that can be constructed by alternately laminating a dielectric thin film of a high refractive index material and a dielectric thin film of a low refractive index material. Examples of high refractive index materials include titanium dioxide (TiO 2 ), aluminum oxide (AL 2 O 3 ), zirconium oxide (ZrO 2 ), and the like. Low refractive index materials may include, for example, silicon dioxide (SiO 2 ), zinc peroxide (ZnO 2 ), magnesium fluoride (MgF 2 ), and the like.

管状体1の内周面における紫外線反射面の配設箇所は適宜設定し得、例えば管状体1の内周面において軸方向及び/又は周方向に沿って断続的に設けることもできる。 The location of the ultraviolet reflective surface on the inner peripheral surface of the tubular body 1 can be set as appropriate, for example, it can be intermittently provided on the inner peripheral surface of the tubular body 1 along the axial direction and/or the circumferential direction.

また、紫外線反射面の厚みは、適宜設定し得るが、多層膜によって形成する場合、一層当たりの厚みを、例えば反射させる紫外線の波長の1/4の整数倍(紫外線の波長の1/4の奇数倍又は偶数倍)に設定することが出来る。具体的には反射させる対象となる紫外線の波長を253.7(nm)と設定した場合、一層の厚みを63.4(nm)(即ち、波長の1/4の1倍)、126.8(nm)(即ち、波長の1/4の2倍)、190.3(nm)(波長の1/4の3倍)程度等に設定する。勿論、反射層6を多層膜によって形成する場合の一層当たりの膜厚は、数10μm程度の所謂厚膜であってもよく、数μm程度の所謂薄膜であってもよく、数nm以下の所謂超薄膜であってもよい。 In addition, the thickness of the ultraviolet reflecting surface can be set as appropriate, but when forming a multilayer film, the thickness of each layer can be set to, for example, an integral multiple of 1/4 of the wavelength of the ultraviolet light to be reflected (odd multiple or even multiple of 1/4 of the wavelength of the ultraviolet light). Specifically, when the wavelength of ultraviolet rays to be reflected is set to 253.7 (nm), the thickness of one layer is set to about 63.4 (nm) (i.e., 1/4 times the wavelength), 126.8 (nm) (i.e., 1/4 times twice the wavelength), 190.3 (nm) (1/4 times 3 times the wavelength), or the like. Of course, when the reflective layer 6 is formed of a multilayer film, the film thickness per layer may be a so-called thick film of about several tens of μm, a so-called thin film of about several μm, or a so-called ultra-thin film of several nanometers or less.

管状体1は、横断面を略無端形状とすることで紫外線放出部16を囲繞し、紫外線を内側で高次に、即ち多数回繰り返し反射するように、内周面に反射層を配設したが、勿論、反射層を管状体1の外周面(外側表面)に配設して管状体1の基材を透過した紫外線を内側に反射させてもよい。その場合の管状体1は、例えば、アクリル、ポリカーボネート、ポリ塩化ビニル等の樹脂材料やガラス系材料等の紫外線、赤外線、可視光を透過させる透明性の材料から選択される一種以上によって形成することができる。なお、透明性を有する材料としては、金属材料、セラミック等の窯業系材料、セメント等の水硬性材料、炭素材料等を加えた透明性の材料であってもよい。 The tubular body 1 has a substantially endless cross-section so as to surround the ultraviolet emitting portion 16, and a reflective layer is disposed on the inner peripheral surface so as to reflect the ultraviolet rays in a high order, that is, to reflect the ultraviolet rays repeatedly many times. However, the reflective layer may be disposed on the outer peripheral surface (outer surface) of the tubular body 1 to reflect the ultraviolet rays transmitted through the base material of the tubular body 1 to the inside. In that case, the tubular body 1 can be made of, for example, one or more selected from transparent materials that transmit ultraviolet rays, infrared rays, and visible light, such as resin materials such as acrylic, polycarbonate, and polyvinyl chloride, and glass-based materials. The material having transparency may be a transparent material including a metal material, a ceramic material such as ceramic, a hydraulic material such as cement, or a carbon material.

上記のように管状体1に反射層を設けることにより、紫外線放出部16から放出される紫外線が内部で高次に反射する。結果、管状体1内部では、紫外線が増幅して成る高線量で且つ高密度の紫外線領域が作出される。 By providing the reflective layer on the tubular body 1 as described above, the ultraviolet rays emitted from the ultraviolet emitting portion 16 are reflected inside at a high order. As a result, a high-dose and high-density ultraviolet region is created inside the tubular body 1 by amplifying the ultraviolet rays.

上述の毒性対象減消装置10による毒性対象の減消処理及び空気の流動について説明する。先ず毒性対象減消装置10の電源スイッチ(不図示)のON操作や、紫外線放出部16及び流動発生部18を動作させるための入力操作を行う。
これにより、紫外線放出部16から紫外線を放出し管状体1内部に高線量且つ高密度の紫外線領域を作出する。即ち、紫外線放出部16から放出された紫外線は、管状体1内側の紫外線反射面によって複数回反射(高次反射)を繰り返す。結果、紫外線の線量が増幅して紫外線領域が作出される。
The poisonous object reduction process and air flow by the above-described poisonous object reduction device 10 will be described. First, an input operation for turning on the power switch (not shown) of the toxic object reduction and extinguishing device 10 and for operating the ultraviolet emitting section 16 and the flow generating section 18 is performed.
As a result, ultraviolet rays are emitted from the ultraviolet emitting portion 16 to create a high-dose and high-density ultraviolet region inside the tubular body 1 . That is, the ultraviolet rays emitted from the ultraviolet emitting portion 16 are repeatedly reflected (high-order reflection) multiple times by the ultraviolet reflecting surface inside the tubular body 1 . As a result, the UV dose is amplified to create the UV region.

また、流動発生部18の作動によってファンが回転し、吸込口12、管状体1、排出口14の順に空気を通過させるように流動が発生する。具体的には、ファンの回転によって管状体1内の空気が排出口14に向かって流動して外部に排出される。また、毒性対象減消装置10内(管状体1内)が負圧となるため、吸込口12を介して毒性対象を含んだ外部の空気が吸引される。 Further, the fan rotates due to the operation of the flow generating part 18, and a flow is generated so that the air passes through the suction port 12, the tubular body 1, and the discharge port 14 in this order. Specifically, the rotation of the fan causes the air inside the tubular body 1 to flow toward the discharge port 14 and be discharged to the outside. In addition, since the inside of the poisonous object reduction device 10 (the inside of the tubular body 1 ) becomes negative pressure, external air containing the poisonous object is sucked through the suction port 12 .

従って、毒性対象減消装置10内部には、外部の空気が吸込口12を介して導入されると共に、管状体1内を流下して排出口14から排出されるように、空気の流路が形成される。更に該流路の途中に紫外線領域を作出しているため、空気中の毒性対象が紫外線によって減消されて排出口14からは毒性対象が減消された後の空気が排出される。 Therefore, an air flow path is formed inside the poisonous object extinguishing device 10 so that external air is introduced through the suction port 12, flows down inside the tubular body 1, and is discharged from the discharge port 14. Furthermore, since an ultraviolet region is created in the middle of the flow path, the toxic substances in the air are extinguished by the ultraviolet rays, and the air after the toxic substances are extinguished is discharged from the outlet 14 .

上記の毒性対象減消装置10は、内部に空気の流動を発生させるため、管状体1において気柱が共鳴し得るが、管状体1の拡径部6を設けた箇所が管状体1の内径を拡径させ、流動空間を拡大させた領域となって気柱の共鳴を阻害して空気の流動に伴う管状体1内部での騒音発生を抑制することができる。
また、本発明の管状体1によれば、ファンの回転によって流動発生部18の周りで発生する周期的に密度が変化してなる気体流による騒音を低減させることも可能である。即ち、流動発生部18の周囲を覆う毒性対象減消装置10の内部に配設されるハウジングと、周期的に密度が変化してなる気体流との相互干渉によるハウジング振動によって生じる振動音と、この振動音の管状体1への伝達によって発生する管伝達騒音を本発明の消音機構によって消音乃至低減することができる。
Since the above-described toxic target reduction device 10 generates air flow inside the tubular body 1, the air column may resonate in the tubular body 1. However, the portion where the enlarged diameter portion 6 of the tubular body 1 is provided expands the inner diameter of the tubular body 1, forming a region in which the flow space is expanded, thereby inhibiting the resonance of the air column and suppressing the noise generated inside the tubular body 1 due to the air flow.
Further, according to the tubular body 1 of the present invention, it is possible to reduce the noise caused by the gas flow whose density changes periodically, which is generated around the flow generating portion 18 by the rotation of the fan. That is, the noise reduction mechanism of the present invention can muffle or reduce the vibration sound generated by housing vibration caused by the mutual interference between the housing disposed inside the poisonous object reduction device 10 covering the flow generating part 18 and the gas flow whose density changes periodically, and the pipe-transmitted noise generated by the transmission of this vibration sound to the tubular body 1.

なお、本発明の消音構造体を管状体とした場合を例に説明したが、消音構造体は内部に気体が流動し得る流動空間を有するものであれば、ダクトや管路等の通気経路を有する構造物や装置等に適用することが出来、更にトンネル等の空洞を有する建造物に適用することも可能である。例えば図5に示すように、トンネルの開口端部30近傍に拡径部32を設けることで、トンネル内で発生する気柱共鳴が原因となる騒音を低減乃至消音することができる。 Although the case where the sound deadening structure of the present invention is a tubular body has been described as an example, as long as the sound deadening structure has a flow space in which gas can flow, it can be applied to structures, devices, etc., having ventilation paths such as ducts and pipes, and can also be applied to buildings having cavities such as tunnels. For example, as shown in FIG. 5, by providing an enlarged diameter portion 32 near the open end 30 of the tunnel, it is possible to reduce or eliminate noise caused by air column resonance occurring in the tunnel.

1…管状体、2…画壁、4…流動空間、6…拡径部、10…毒性対象減消装置、12…吸込口、14…排出口、16…紫外線放出部、18…流動発生部、18a…ファン。

DESCRIPTION OF SYMBOLS 1... Tubular body, 2... Painting wall, 4... Fluid space, 6... Expanding diameter part, 10... Poisonous target reduction|extinction apparatus, 12... Suction port, 14... Discharge port, 16... Ultraviolet emission part, 18... Flow generating part, 18a... Fan.

Claims (9)

内部に気体を流動させ得、内外を画成する画壁に囲繞され、両端がそれぞれ内外に直接又は間接的に連通する開口を有する流動空間と、
上記流動空間の横断面積を拡げて成る拡径部と、を有することを特徴とする消音構造体。
a flow space in which a gas can flow, which is surrounded by partition walls that define the inside and outside, and has openings at both ends that directly or indirectly communicate with the inside and outside;
and an enlarged diameter portion formed by enlarging the cross-sectional area of the flow space.
前記拡径部は、前記画壁の端部に配されることを特徴とする請求項1記載の消音構造体。 2. A sound deadening structure according to claim 1, wherein said enlarged diameter portion is arranged at an end portion of said screen wall. 前記拡径部は、気体の流動方向の下流側の開口を含む箇所に配されることを特徴とする請求項1又は2記載の消音構造体。 3. The sound deadening structure according to claim 1, wherein the enlarged diameter portion is arranged at a location including an opening on the downstream side in the flow direction of the gas. 前記拡径部は、内径が異なる複数の領域を有することを特徴とする請求項1乃至3の何れかに記載の消音構造体。 4. The sound deadening structure according to any one of claims 1 to 3, wherein the enlarged diameter portion has a plurality of regions with different inner diameters. 前記拡径部は、前記内径が異なる複数の領域を、気体の流動方向の上流側から下流側に向かって径の小さい順に配することを特徴とする請求項4記載の消音構造体。 5. The sound deadening structure according to claim 4, wherein the enlarged diameter portion has a plurality of regions with different inner diameters arranged in ascending order of diameter from the upstream side to the downstream side in the flow direction of the gas. 前記拡径部は、前記内径が異なる複数の領域を、気体の流動方向の上流側から下流側に向かって径の大きい順に配することを特徴とする請求項4記載の消音構造体。 5. The sound deadening structure according to claim 4, wherein the plurality of regions having different inner diameters of the expanded diameter portion are arranged in descending order of diameter from the upstream side to the downstream side in the flow direction of the gas. 気体を流動させるための流動発生部を設け、
上記流動発生部は、前記拡径部の内部空間で回転するファンを有することを特徴とする請求項1乃至6の何れかに記載の消音構造体。
providing a flow generating part for causing the gas to flow,
7. The sound deadening structure according to claim 1, wherein the flow generating portion has a fan that rotates in the internal space of the enlarged diameter portion.
前記ファンの最大外径は、前記画壁の内径よりも大きく、前記拡径部の内径よりも小さいことを特徴とする請求項7記載の消音構造体。 8. A sound deadening structure according to claim 7, wherein the maximum outer diameter of said fan is larger than the inner diameter of said screen wall and smaller than the inner diameter of said enlarged diameter portion. 前記ファンの高さが前記拡径部の長さよりも低いことを特徴とする請求項7記載の消音構造体。


8. A sound deadening structure according to claim 7, wherein the height of said fan is lower than the length of said enlarged diameter portion.


JP2022003406A 2022-01-12 2022-01-12 sound deadening structure Pending JP2023102724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022003406A JP2023102724A (en) 2022-01-12 2022-01-12 sound deadening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022003406A JP2023102724A (en) 2022-01-12 2022-01-12 sound deadening structure

Publications (1)

Publication Number Publication Date
JP2023102724A true JP2023102724A (en) 2023-07-25

Family

ID=87377348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022003406A Pending JP2023102724A (en) 2022-01-12 2022-01-12 sound deadening structure

Country Status (1)

Country Link
JP (1) JP2023102724A (en)

Similar Documents

Publication Publication Date Title
ES2260022T3 (en) SILENCER ACOUSTIC NOZZLE.
WO2018131582A1 (en) Ultraviolet sterilization device
US10449265B2 (en) High efficiency ultra-violet reactor
EP3957924B1 (en) Disinfecting device for central air conditioner
TW526287B (en) Dielectric barrier discharge lamp and dry cleaning device using the same
JP2005508228A (en) UV sterilizer
RU2002123437A (en) FAN WITH DUST PROTECTOR
WO2018016115A1 (en) Deodorizing device and deodorizing filter
JP2008138660A (en) Centrifugal blower
JP2023102724A (en) sound deadening structure
US20230270897A1 (en) Toxic subject decreasing/eliminating device
KR102351680B1 (en) Photocatalysts filter module
JP2022027412A5 (en)
JP2023100227A (en) Silencing structure
Kumar et al. Modeling a UVC irradiation standalone system for inactivating Mycobacterium tuberculosis from indoor spaces
CN108344015A (en) Smoke exhaust ventilator silencing apparatus, method and smoke exhaust ventilator
JP2023014058A (en) Wave motion amplification device
JP2017192433A (en) Sterilizing apparatus and air conditioning apparatus
WO2022234527A2 (en) Device for disinfecting an air flow via uv-c radiation and assisted ventilation system comprising such a device
JP2009233013A (en) Vacuum cleaner
CN211011714U (en) Anti-aerosol virus central air-conditioning sterilization device and air-conditioning system
WO2016175274A1 (en) Photocatalyst module and refrigerator provided with same
JP7573074B2 (en) Ultraviolet irradiation device, ozone generation device, and ozone generation method
WO2023063307A1 (en) Reflector and electromagnetic wave amplification device
JP5391452B2 (en) Ozonizer and process system