JP2023099314A - レーダー信号処理方法及び装置 - Google Patents

レーダー信号処理方法及び装置 Download PDF

Info

Publication number
JP2023099314A
JP2023099314A JP2022201773A JP2022201773A JP2023099314A JP 2023099314 A JP2023099314 A JP 2023099314A JP 2022201773 A JP2022201773 A JP 2022201773A JP 2022201773 A JP2022201773 A JP 2022201773A JP 2023099314 A JP2023099314 A JP 2023099314A
Authority
JP
Japan
Prior art keywords
radar
deterministic
phase error
component
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022201773A
Other languages
English (en)
Inventor
成▲ド▼ 崔
Sung-Do Choi
迎▲れ▼ 趙
Young Rae Cho
現雄 ▲ちょう▼
Hyunwoong Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2023099314A publication Critical patent/JP2023099314A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】 レーダー信号処理方法及び装置が提供される。【解決手段】 一実施形態によれば、レーダー信号処理方法は、レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信し、レーダー信号の反射信号をレーダーセンサの受信アンテナ素子を介して受信し、送信時間の間隔に基づいて反射信号に対応するレーダーデータを送信アンテナ素子ごとに分類して送信アンテナ素子に対応する個別DOAデータを決定し、個別DOAデータの位相誤差成分にレーダーデータによる非確定的ドップラー速度を適用して位相誤差成分の確定的成分を決定し、位相誤差成分の非確定的成分が抑制された状態で個別DOAデータを統合し、送信アンテナ素子に対応する統合DOAデータを決定するステップを含む。【選択図】図9

Description

以下の実施形態は、レーダー信号処理方法及び装置に関する。
先進運転支援システム(Advanced Driver Assistance System、ADAS)は、車両の内部又は外部に搭載されるセンサを用いて運転者の安全及び便宜を増進し、危険な状況を回避しようとする目的をもって運転を支援するシステムである。
ADASで使用されるセンサは、カメラ、赤外線センサ、超音波センサ、LiDAR、及び、レーダーを含んでもよい。このうち、レーダーは、光学基盤センサに比べて天気のような周囲の環境の影響を受けることなく、車両周辺のオブジェクトを安定的に測定することができる。
本発明の実施形態は、レーダー信号処理方法及び装置を提供することにその目的がある。
一実施形態によれば、TDM(time division multiplexing)に基づくMIMO(multiple input multiple output)レーダーシステムのレーダー信号処理方法は、レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信するステップと、前記レーダー信号の反射信号を前記レーダーセンサの受信アンテナ素子を介して受信するステップと、前記送信時間の間隔に基づいて前記反射信号に対応するレーダーデータを前記送信アンテナ素子ごとに分類し、前記送信アンテナ素子に対応する個別の到来角(direction of arrival、DOA)データを決定するステップと、前記個別DOAデータの位相誤差成分に前記レーダーデータによる非確定的ドップラー速度を適用して前記位相誤差成分の確定的成分を決定するステップと、前記位相誤差成分の非確定的成分が抑制された状態に前記個別DOAデータを統合し、前記送信アンテナ素子に対応する統合DOAデータを決定するステップとを含む。
一実施形態によると、TDM(time division multiplexing)に基づくMIMO(multiple input multiple output)レーダーシステムは、レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信し、前記レーダー信号の反射信号を前記レーダーセンサの受信アンテナ素子を介して受信し、前記送信時間の間隔に基づいて、前記反射信号に対応するレーダーデータを前記送信アンテナ素子ごとに分類して前記送信アンテナ素子に対応する個別到来角(direction of arrival、DOA)データを決定し、前記個別DOAデータの位相誤差成分に前記レーダーデータによる非確定的ドップラー速度を適用して前記位相誤差成分の確定的成分を決定し、前記位相誤差成分の非確定的成分が抑制された状態で前記個別DOAデータを統合し、前記送信アンテナ素子に対応する統合DOAデータを決定するプロセッサを含む。
一実施形態に係る車両は、送信アンテナ素子及び受信アンテナ素子を用いてTDM(time division multiplexing)に基づくMIMO(multiple input multiple output)方式のアンテナ配列を含むレーダーセンサと、レーダー信号を前記送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信し、前記レーダー信号の反射信号を前記受信アンテナ素子を介して受信し、前記送信時間の間隔に基づいて前記反射信号に対応するレーダーデータを前記送信アンテナ素子ごとに分類し、前記送信アンテナ素子に対応する個別到来角(direction of arrival、DOA)データを決定し、前記個別DOAデータの位相誤差成分に前記レーダーデータによる非確定的ドップラー速度を適用して前記位相誤差成分の確定的成分を決定し、前記位相誤差成分の非確定的成分が抑制された状態で前記個別DOAデータを統合し、前記送信アンテナ素子に対応する統合DOAデータを決定するプロセッサと、前記統合DOAデータに基づいて車両を制御するコントロールシステムとを含む。
一実施形態に係る方法は、送信アンテナを介してTDM(time division multiplexing)遅延時間に対応する送信時間の間隔を有する信号を送信するステップと、受信アンテナを介して前記送信された信号の反射信号を受信するステップと、前記送信時間の間隔に基づいて前記送信アンテナ素子にそれぞれ対応する個別到来角(directions of arrival、DOA)を決定するステップと、前記個別DOAの位相誤差に非確定的ドップラー速度を適用し、前記反射信号に基づいて前記位相誤差の確定的成分を決定するステップと、前記位相誤差の確定的成分の決定に基づいて前記位相誤差の非確定的成分を抑制し、前記個別DOAを統合することによって統合DOAを決定するステップとを含む。
実施形態によると、レーダー信号処理方法及び装置を提供することができる。
一実施形態に係るレーダー信号処理方法によって周囲の環境を認識する過程を示す。 一実施形態に係るレーダー信号処理装置の構成を示す。 一実施形態に係るレーダーセンサの構成を示す。 一実施形態に係るレーダーセンサの受信アンテナアレイを示す。 一実施形態に係るチャープシーケンスを処理する動作を示す。 一実施形態に係るドップラー非確定性及び動き起因位相誤差を示す。 一実施形態に係るドップラー非確定性及び動き起因位相誤差を示す。 一実施形態に係るドップラー非確定性及び動き起因位相誤差を示す。 一実施形態に係るドップラー非確定性及び動き起因位相誤差を示す。 一実施形態に係る絶対値演算を介して位相誤差成分の非確定的成分を抑制する動作を示す。 一実施形態に係る活性化順整列を介して位相誤差成分の非確定的成分を抑制する動作を示す。 一実施形態に係るレーダー信号処理方法を示す。 一実施形態に係る電子装置の構成を示す。
実施形態に対する特定な構造的又は機能的な説明は単なる例示のための目的として開示されたものであって、様々な形態に変更されることができる。したがって、実施形態は特定な開示形態に限定されるものではなく、本明細書の範囲は技術的な思想に含まれる変更、均等物ないし代替物を含む。
第1又は第2などの用語を様々な構成要素を説明するために用いることがあるが、このような用語は1つの構成要素を他の構成要素から区別する目的としてのみ解釈されなければならない。例えば、第1構成要素は第2構成要素と命名することができ、同様に、第2構成要素は第1構成要素にも命名することができる。
いずれかの構成要素が他の構成要素に「連結」されていると言及されたときには、その他の構成要素に直接的に連結されているか又は接続されているが、中間に他の構成要素が存在し得るものと理解されなければならない。
単数の表現は、文脈上、明白に異なる意味をもたない限り複数の表現を含む。本明細書において、「含む」又は「有する」等の用語は、明細書上に記載した特徴、数字、ステップ、動作、構成要素、部品又はこれを組み合わせたものが存在することを示すものであって、1つ又はそれ以上の他の特徴や数字、ステップ、動作、構成要素、部品、又はこれを組み合わせたものなどの存在又は付加の可能性を予め排除しないものとして理解しなければならない。
異なるように定義さがれない限り、技術的又は科学的な用語を含んで、ここで用いる全ての用語は、本実施形態が属する技術分野で通常の知識を有する者によって一般的に理解されるものと同じ意味を有する。一般的に用いられる予め定義された用語は、関連技術の文脈上で有する意味と一致する意味を有するものと解釈されなければならず、本明細書で明白に定義しない限り、理想的又は過度に形式的な意味として解釈されることはない。
以下、添付する図面を参照しながら実施形態を詳細に説明する。各図面に提示された同一の参照符号は同一の部材を示す。
図1は、一実施形態に係るレーダー信号処理方法によって周囲の環境を認識する過程を示す。図1を参照すると、レーダー信号処理装置110は、レーダーセンサ111で受信されたレーダー信号を分析して前方のターゲット180に関する情報(例えば、距離(range)、速度(velocity)、方向(direction)など)を検出することができる。レーダーセンサ111は、レーダー信号処理装置110の内部又は外部に位置し、レーダー信号処理装置110は、レーダーセンサ111から受信されたレーダー信号のみならず、他のセンサ(例えば、画像センサなど)で収集されたデータを共に考慮して前方のターゲット180に関する情報を検出してもよい。レーダーデータ処理の分解能は、ハードウェアの側面における分解能性能(resolving power performance)及びソフトウェアの側面における分解能性能に区分されるが、以下では主に、ソフトウェアの側面における分解能性能の改善について説明する。
参考として、本明細書において分解能(resolving power)は、極めて小さい差を分別する機器の能力、例えば、最小の単位分別能力であって、「分解能=(分別可能な最小の目盛り単位)/(全体動作範囲)」のように示す。機器の分解能数値が小さいほど、該当機器によって精密な結果が出力され得る。分解能数値は、分解能単位(resolving power unit)のように示してもよい。例えば、機器の分解能数値が小さければ、機器はより小さい単位を分別することができるため、より増加した解像度を有する精密度の向上された結果を出力することができる。反対に、機器の分解能数値が大きければ、機器は小さい単位を分別できなくなるため、より減少した解像度を有する精密度が低下された結果を出力する。
一実施形態によれば、レーダー信号処理装置110は、図1に示すように車両に搭載されてもよい。車両は、レーダー信号処理装置110によって検出されたターゲット180までの距離(range)に基づいて、アダプティブ・クルーズ・コントロール(Adaptive Cruise Control、ACC)、オートノーマス・エマージェンシー・ブレーキング(Autonomous Emergency Braking、AEB)、ブラインドスポット探知(Blind Spot Detection、BSD)、レーン・チェンジ・アシスト(Lane Change Assistance、LCA)などを行ってもよい。さらに、レーダー信号処理装置110は、距離検出の他にも周辺マップ130を生成することができる。周辺マップ130は、ターゲット180のようにレーダー信号処理装置110の周辺に存在する様々なターゲットの位置を示すマップとして、周辺のターゲットは、車両及び人のような動的オブジェクトであってもよく、ガードレール及び信号機のように背景に存在する静的オブジェクトであってもよい。
周辺マップ130を生成するための方法として、単一スキャンイメージ方法が使用されてもよい。レーダー信号処理装置110がセンサから単一スキャンイメージ120を取得し、取得された単一スキャンイメージ120から周辺マップ130を生成することが単一スキャンイメージ方法である。単一スキャンイメージ120は、単一レーダーセンサ111によって検知されたレーダー信号から生成されたイメージとして、任意の高度角又は仰角(elevation angle)から受信されたレーダー信号が指示する距離を比較的に高い分解能で示す。例えば、図1に示された単一スキャンイメージ120において、横軸はレーダーセンサ111のステアリング角度、縦軸はレーダーセンサ111からターゲット180までの距離を示す。但し、単一スキャンイメージの形態を図1に示されたものに限定されることなく、設計に応じて他のフォーマット(format)に表現されてもよい。
ステアリング角度は、レーダー信号処理装置110からターゲット180に向かうターゲット方向に対応する角度を示す。例えば、ステアリング角度は、レーダー信号処理装置110(又は、レーダー処理装置110を含む車両)の進行方向とターゲット方向との間の角度である。参考として、本明細書でステアリング角度は、主に方位角(azimuth angle)を基準にして説明したが、これに限定されることはない。例えば、ステアリング角度は、高度角に対しても適用されてもよい。
一実施形態によれば、レーダー信号処理装置110は、多重レーダーマップ(multi radar map)を介してターゲット180の形状に関する情報を取得してもよい。多重レーダーマップは、複数のレーダースキャンイメージの結合から生成することができる。例えば、レーダー信号処理装置110は、レーダーセンサ111の移動により取得されるレーダースキャンイメージを時空間的に結合することで、周辺マップ130を生成できる。周辺マップ130はレーダーイメージマップの一種であってもよく、パイロットパーキング(pilot parking)などに使用されてもよい。
一実施形態によれば、レーダー信号処理装置110は、周辺マップ130を生成するために到来角(direction of arrival、DOA)情報を活用してもよい。DOA情報は、ターゲットから反射したレーダー信号が受信された方向を指示する情報を意味する。レーダー信号処理装置110は、上述したDOA情報を用いてレーダーセンサ111を基準にしてターゲットが存在する方向を識別することができる。したがって、このようなDOA情報は、レーダースキャンデータ及び周辺マップを生成するために使用されてもよい。
一実施形態によれば、レーダー信号処理装置110によって生成されたターゲット180に関する距離、速度、DOA、マップ情報などのレーダー情報は、レーダー信号処理装置110が装着された車両を制御するために用いられてもよい。例えば、車両の制御は、ACC、AEB、BSD、LCAのような車両の速度、操向制御を含んでもよい。車両のコントロールシステム(control system)は、レーダー情報を直的/間接的に用いて車両を制御することができる。例えば、あるターゲットのドップラー速度が測定された場合、コントロールシステムは、該当ターゲットについて行くように車両を加速したり、あるいは該当ターゲットとの衝突を防止するために車両を制動することができる。
図2は、一実施形態に係るレーダー信号処理装置の構成を示す。図2を参照すると、レーダー信号処理装置200は、レーダーセンサ210及びプロセッサ220を含む。レーダーセンサ210は、レーダー信号をレーダーセンサ210の外部に放射され、放射されたレーダー信号がターゲットによって反射した信号を受信する。本明細書において、放射されたレーダー信号はレーダー送信信号であって、受信された信号はレーダー受信信号に称されてもよい。レーダー送信信号は、周波数変調モデルに基づいてキャリア周波数が変調したチャープ(chirp)信号を含んでもよい。レーダー送信信号の周波数は、予め決定された帯域内で変わり得る。例えば、レーダー送信信号の周波数は、予め決定された帯域内で線型的に変わり得る。
レーダーセンサ210は配列アンテナを含んでもよく、配列アンテナを介してレーダー送信信号を送信してレーダー受信信号を受信することができる。配列アンテナは、複数のアンテナ素子(antenna element)を含んでもよい。一実施形態によれば、複数のアンテナ素子を介して多重入出力(multiple input multiple output、MIMO)が実現され得る。ここで、複数のアンテナ素子によって複数のMIMOチャネルが形成されてもよい。例えば、M個の送信アンテナ素子及びN個の受信アンテナ素子を介してM×N個の仮想アンテナに対応する複数のチャネルが形成されてもよい。ここで、各チャネルを介して受信されたレーダー受信信号は、受信方向により互いに異なる位相を有してもよい。
レーダー送信信号及びレーダー受信信号に基づいて、レーダーデータが生成され得る。例えば、レーダーセンサ210は、周波数変調モデルに基づいて配列アンテナを介してレーダー送信信号を送信し、レーダー送信信号がターゲットによって反射すれば、配列アンテナを介してレーダー受信信号を受信し、レーダー送信信号及びレーダー受信信号に基づいて中間周波数(intermediate frequency、IF)信号を生成することができる。中間周波数信号は、レーダー送信信号の周波数とレーダー受信信号の周波数との間の差に対応する周波数を有する。中間周波数は、ビット周波数(beat frequency)のように呼んでもよい。プロセッサ220は、中間周波数信号に関するサンプリング動作を行い、サンプリング結果を介してレーダーデータを生成することができる。レーダーデータは、中間周波数の生データ(raw data)に該当する。
プロセッサ220は、レーダーデータに基づいてターゲットに関する情報を生成し、これを使用することができる。例えば、プロセッサ220は、レーダーデータに基づいて距離FFT(range FFT(fast Fourier transform))、ドップラーFFT(Doppler FFT)、CFAR(constant false alarm rate detection)、DOA推定などを行い、距離、速度、方向などのターゲットに関する情報を取得することができる。このようなターゲットに関する情報は、ACC、AEB、BSD、LCAのような様々な応用(application)のために提供され得る。
図3は、一実施形態に係るレーダーセンサの構成を示す。図3を参照すると、レーダーセンサ310は、チャープ送信器(chirp transmitter)311、デュプレクサ312、アンテナ313、周波数ミキサ314、増幅器315、及びレーダー信号プロセッサ316を含む。レーダー信号プロセッサ316は、図2に示すプロセッサ220に対応する。この場合、レーダー信号プロセッサ316は、プロセッサ220のようにレーダーセンサ310の外部に配置されてもよい。レーダーセンサ310はアンテナ313を介して信号を放射し、アンテナ313を介して信号を受信することができる。図3にはアンテナ313が1つ図示されているが、アンテナ313は、少なくとも1つの送信アンテナ素子及び少なくとも1つの受信アンテナを含んでもよい。例えば、アンテナ313は、配列アンテナに該当する。一例として、アンテナ313は、3つ以上の受信アンテナ素子を含んでもよい。ここで、受信アンテナ素子は、同じ間隔で離隔されてもよい。
レーダーセンサ310は、例えば、mmWaveレーダーであってもよく、放射された電気波がターゲットに反射して戻ってくる時間であるToF(Time of Flight)と、レーダー信号の波形の変化を分析してターゲットまでの距離を測定することができる。参考として、mmWaveレーダーは、カメラをはじめとする光学基盤センサに比べて、霧、雨などの外部環境変化に関わらず前方を検出することができる。また、mmWaveレーダーは、LiDARに比べてコスト対比性能が優れるため、上述したカメラの短所を補完できるセンサの1つである。例えば、レーダーセンサ310は、FMCW(Frequency Modulated Continuous Wave)レーダーのように実現することができる。FMCWレーダーは、外部ノイズに強靭な特性を有する。
チャープ送信器311は、時間に応じて周波数が変わる周波数変調信号(FM signal、302)を生成することができる。例えば、チャープ送信器311は、周波数変調モデル301の周波数変調特性に応じて周波数変調することで、周波数変調信号302を生成することができる。周波数変調信号302はチャープ信号のように示してもよい。本明細書で周波数変調モデル301は、任意のレーダー送信信号において与えられた送信時間の間のキャリア周波数の変化を指示するモデルを示す。周波数変調モデル301の縦軸はキャリア周波数、横軸は時間を示す。例えば、周波数変調モデル301は、キャリア周波数を線型的に変化(例えば、線型的な増加、又は、線型的な減少)させる周波数変調特性を有する。異なる例として、周波数変調モデル301は、キャリア周波数を非線形に変化させる周波数変調特性を有してもよい。
図3に示す周波数変調モデル301は、時間に応じて周波数を線型的に増加させる周波数変調特性を有するものとして図示されている。チャープ送信器311は、周波数変調モデル301によるキャリア周波数を有する周波数変調信号302を生成する。例えば、図3に示すように、周波数変調信号302は、一部の区間では徐々にキャリア周波数が増加する波形を示し、残りの区間では徐々にキャリア周波数が減少する波形を示す。
チャープ送信器311は、周波数変調信号302をデュプレクサ312に伝達する。デュプレクサ312は、アンテナ313を通した信号の送信経路及び受信経路を決定することができる。例えば、レーダーセンサ310が周波数変調信号302を放射する間に、デュプレクサ312は、チャープ送信器311からアンテナ313までの信号経路を形成し、形成された信号経路を介して周波数変調信号302をアンテナ313に伝達してから外部に放射することができる。レーダーセンサ310がターゲットから反射した信号を受信する間に、デュプレクサ312は、アンテナ313からレーダー信号プロセッサ316までの信号経路を形成する。アンテナ313は、放射された信号が障害物に達した後反射されて戻ってきた受信信号を受信し、レーダーセンサ310は、アンテナ313からレーダー信号プロセッサ316までの信号経路を介して受信信号をレーダー信号プロセッサ316に伝達する。アンテナ313を介して放射される信号をレーダー送信信号、アンテナ313を介して受信される信号をレーダー受信信号のように示す。
周波数ミキサ314は、ターゲットから反射して受信されたレーダー受信信号の周波数308とレーダー送信信号の周波数307とを比較する。参考として、レーダー送信信号の周波数307は、周波数変調モデル301によって指示されるキャリア周波数変化に応じて変化し得る。周波数ミキサ314は、レーダー受信信号の周波数308とレーダー送信信号の周波数307との間の周波数の差に該当する中間周波数fIFを検出する。レーダー送信信号及びレーダー受信信号間の周波数の差は、図3に示されたグラフ309において、周波数変調モデル301でキャリア周波数が時間軸に沿って線型的に増加する区間の間の一定の差を示し、レーダーセンサ310とターゲットとの間の距離に比例する。したがって、レーダーセンサ310及びターゲット間の距離は、レーダー送信信号及びレーダー受信信号間の周波数の差から導出される。周波数ミキサ314を介して検出されたビット周波数信号は、増幅器315を経てレーダー信号プロセッサ316に伝達することができる。ビット周波数信号は、下記の数式(1)のように示す。
Figure 2023099314000002

数式(1)において、αは経路損失減衰(path loss attenuation)、φは位相オフセット、fはキャリア周波数、tは往復遅延(round-trip delay)、Bは送信されたチャープのスイープ帯域幅(sweep bandwidth)、Tはチャープデュレーションを示す。φはDC定数(direct current constant)値である。Tは、グラフ309のTchirpと同一の値を示す。
一実施形態によれば、複数のレーダーセンサが車両の複数の部位に設けられてもよく、複数のレーダーセンサによって検出された情報に基づいて、レーダー信号処理装置が車両の全方位(all direction)に対するターゲットまでの距離、方向、及び相対速度を算出することができる。レーダー信号処理装置は車両に搭載され、算出された情報を用いて走行に役立つ多様な機能(例えば、ACC、AEB、BSD、LCAなど)を提供する。
複数のレーダーセンサそれぞれは、周波数変調モデルに基づいて周波数変調したチャープ信号を含むレーダー送信信号を外部に放射し、ターゲットから反射した信号を受信することができる。レーダー信号処理装置は、放射されたレーダー送信信号及び受信されたレーダー受信信号間の周波数の差から複数のレーダーセンサそれぞれからターゲットまでの距離を決定する。また、レーダーセンサ310が複数のチャネルから構成される場合、レーダー信号処理装置は、レーダーデータの位相情報を用いて、ターゲットから反射したレーダー受信信号のDOAを導き出すことができる。
レーダーセンサ310は、様々な応用の広い視野角(Field ofView、FoV)及び高解像度(High Resolution、HR)の要求に応じて広い帯域幅を用いてMIMO方式を採択することができる。広い帯域幅を介して距離解像度が増加し、MIMO方式を介して角度解像度が増加し得る。距離解像度は、ターゲットに関する距離情報をどれほど小さい単位に分別できるかを示し、角度解像度は、ターゲットに関するDOA情報をどれほど小さい単位に分別できるかを示す。例えば、レーダーセンサ210は、200MHz、500MHz、1GHzのような狭帯域の代わりに、4GHz、5GHz、7GHzのような広帯域を用いてもよい。
レーダーセンサ310は、TDM(time division multiplexing)を介してMIMOによる各送信アンテナの送信信号を区分する。TDMによれば、送信アンテナが交代に送信信号を送信しなければならないため、各送信信号でキャリア周波数の上昇区間の時間の長さ、言い換えれば、チャープ反復周期(repetition period)が長くなる。これは、確定的に(unambiguosly)測定可能なドップラー速度及び/又はドップラー周波数の範囲の減少を招く。レーダー信号プロセッサ316は、TDM MIMO方式のレーダーシステムにおいて、ターゲットの動きによるドップラー速度及び/又はドップラー周波数とDOAとの間の結合成分を補償し、ドップラーの曖昧性に強靭な信号処理を行うことができる。
図4は、一実施形態に係るレーダーセンサの受信アンテナアレイを示す。数式(1)のビット周波数信号の往復遅延成分をさらに細部的に分析すれば、下記の数式(2)を導き出すことができる。
Figure 2023099314000003

数式(2)において、Rはアンテナ素子とターゲットとの間の距離、Rはレーダーセンサとターゲットと間の距離、Rθはレーダーセンサのアンテナ素子間の間隔による距離差、cは光の速度、dはアンテナ素子間の間隔を示す。数式(2)によれば、往復遅延成分は距離成分(td、0)とDOA成分(td、θ)に分解される。数式(1)は、往復遅延成分の距離成分(td、0)とDOA成分(td、θ)に基づいて下記の数式(3)のように示す。
Figure 2023099314000004

各アンテナ素子ごとにビット周波数信号の周波数分析(例えば、フーリエ変換(Fourier transform))を介してΦ(td、0)成分を検出し、ターゲットまでの距離が導き出される。アンテナ素子間の位相変化からΦ成分の3番目のターム(2πfd、θ)を検出してDOAを推定することができる。
レーダーデータの位相情報は、レーダーセンサが複数の受信チャネルを含む場合、各受信チャネルを介して受信された信号が有する位相と基準位相との間の位相差を示す。基準位相は、任意の位相であってもよく、複数の受信チャネルのいずれかの受信チャネルの位相に設定されてもよい。例えば、レーダー信号処理装置は、いずれかの受信アンテナ素子に対して、該当の受信アンテナ素子に隣接する受信アンテナ素子の位相を基準位相として設定してもよい。
また、レーダー信号処理装置は、レーダーデータからレーダーセンサの受信チャネル個数に対応する次元のレーダーベクトルを生成することができる。例えば、4個の受信チャネルが含まれているレーダーセンサの場合、レーダー信号処理装置は、各受信チャネルに対応する位相値を含む4次元のレーダーベクトルを生成することができる。各受信チャネルに対応する位相値は、上述した位相差を示す数値であってもよい。
レーダーセンサが1つの送信Txチャネル及び4個の受信Rxチャネルから構成される場合を例にして説明すれば、次の通りである。TXチャネルを介して放射されたレーダー信号は、ターゲット地点から反射された後、4個のRXチャネルを介して受信されてもよい。図4に示すように、レーダーセンサの受信アンテナアレイ410が第1受信アンテナ素子411、第2受信アンテナ素子412、第3受信アンテナ素子413、及び第4受信アンテナ素子414を含む場合、第1受信アンテナ素子411で受信される信号の位相が基準位相として設定されてもよい。同じターゲット地点から反射されたレーダー反射信号408が受信アンテナアレイ410で受信されるとき、ターゲット地点から第1受信アンテナ素子411までの距離と、ターゲット地点から第2受信アンテナ素子412までの距離との間の追加距離(additional distance)△は下記の数式(4)のように示す。
Figure 2023099314000005

数式(4)において、θはターゲット地点からレーダー反射信号408が受信されるDOA、dは受信アンテナ素子の間の間隔、cは光の速度を示す。
図5は、一実施形態に係るチャープシーケンスを処理する動作を示す。ターゲットが移動中である場合、ビット周波数は、ターゲットまでの距離による距離成分に加えてターゲットの動きによるドップラー周波数成分を含んでもよい。
Figure 2023099314000006

数式(5)において、fは距離成分、fはドップラー周波数成分、λは波長(wave length)、vはターゲットの速度を示す。ターゲットの速度は、図5に示す周波数変換510を介して算出される。
図5を参照すると、レーダーデータ501は、チャープデュレーションT及び帯域幅Bのチャープシーケンスを含んでもよい。レーダー信号処理装置は、レーダーデータ501に対する周波数変換510を行って距離ドップラーマップ(range-Doppler map)520を生成することができる。例えば、周波数変換510は、距離(range)基準の第1フーリエ変換及びドップラー周波数基準の第2フーリエ変換を含む2次元フーリエ変換である。ここで、第1フーリエ変換は距離FFTであってもよく、第2フーリエ変換はドップラーFFTであってもよく、2次元フーリエ変換は2次元FFTであってもよい。レーダー信号処理装置は、レーダーデータ501のチャープシーケンスに基づいて距離FFTを行い、距離FFTの結果に基づいてドップラーFFTを行う。
レーダー信号処理装置は、距離-ドップラーマップ520でターゲットセル521,522を検出することができる。例えば、レーダー信号処理装置は、距離-ドップラーマップ520に関するCFARを介してターゲットセル521,522を検出することができる。CFARは、閾値設定(thresholding)基盤の検出方式である。以下、ターゲットセル631~633のうち、第1ターゲットセル521に対応する第1ターゲットのドップラー速度を決定する動作について説明するが、このような動作は、他のターゲットセル522のターゲットにも適用されてもよい。
レーダー信号処理装置は、第1ターゲットセル521の第1周波数情報に基づいて第1ターゲットの非確定的ドップラー速度(ambiguous Doppler velocity)を決定することができる。例えば、第1ターゲットセル521は、レーダーデータ501のドップラースペクトルで最大強度に対応し、第1周波数情報は最大強度のドップラー周波数を示す。レーダー信号処理装置は、該当ドップラー周波数に対応するドップラー速度を非確定的ドップラー速度として決定することができる。確定的ドップラー速度(unambiguous Doppler velocity)と非確定的ドップラー速度との間の関係は、下記の数式(6)のように示す。
Figure 2023099314000007

数式(6)において、vD、unambは確定的ドップラー速度、vD、ambは非確定的ドップラー速度、qは非確定数(ambiguity number)、vD、maxはチャープシーケンス信号を介して確定的に測定可能なドップラー速度の最大範囲を示す。qは整数値を有する。
図6は、一実施形態に係るドップラー非確定性及び動き起因位相誤差を示す。図6Aを参照すると、送信アンテナ素子601及び受信アンテナ素子602に基づいて仮想アレイアンテナ603を実現することができる。仮想アレイアンテナ603を実現するためには、受信アンテナ素子602によって受信される反射信号が送信アンテナ素子601のいずれかの送信アンテナ素子のアンテナ信号に対応するかを区分する必要がある。実施形態によれば、TDMを介して仮想アレイアンテナ603を実現することができる。
図6Bを参照すると、レーダー送信信号610は、第1チャープシーケンス信号611及び第2チャープシーケンス信号612を含む。例えば、第1チャープシーケンス信号611は、MIMO配列アンテナの第1送信アンテナによって送信され、第2チャープシーケンス信号612は、第2送信アンテナによって送信されてもよい。図6において、Tは第1チャープシーケンス信号611のチャープデュレーション(chirp duration)を示し、Tはチャープシーケンスの反復周期(repetition period)を示す。
チャープシーケンス波形を利用した方式に基づいて測定可能なドップラー速度の範囲は、チャープ反復周期により制限される。測定可能なドップラー周波数の最大値は、下記の数式(7)のように示す。
Figure 2023099314000008

数式(7)において、fD、maxは確定的に測定可能なドップラー周波数の最大値を示す。確定的に測定可能なドップラー周波数の最大範囲は、-fD、max~fD、maxに示す。数式(7)に示されたように、fD、maxはTに依存的である。ドップラー速度とドップラー周波数との間の関係を示す下記の数式(8)によれば、下記の数式(9)が導き出される。
Figure 2023099314000009
Figure 2023099314000010

数式(8)において、fはドップラー周波数、λは波長(wave length)、vはドップラー速度を示す。数式(9)において、vD、maxは、確定的に測定可能なドップラー速度の最大値を示す。確定的に測定可能なドップラー速度の最大範囲は、-vD、max~vD、maxのように示す。最大値が有する意味に応じて、数式(7)及び数式(8)を介して数式(9)を導き出す過程で、その符号は省略されてもよい。また、ドップラー速度とドップラー周波数は、数式(8)を介して変換され得るため、ドップラー速度及びドップラー周波数のいずれか1つに関する説明は、許容される範囲で残り1つにも適用されてもよい。
もし、レーダー送信信号610が第1チャープシーケンス信号611にのみ含まれていれば、レーダー送信信号610のチャープ反復周期はTである。これとは異なり、レーダー送信信号610がTDMの実現のために、第1チャープシーケンス信号611及び第2チャープシーケンス信号612を全て含んでいれば、レーダー送信信号610のチャープ反復周期はTである。この場合、チャープ反復周期の増加によって確定的に測定可能なドップラー速度の範囲が減少し得る。例えば、TがTの2倍である場合、ドップラー速度の測定可能範囲は1/2に減少される。
ターゲットの速度が最大測定可能な速度範囲を超過すれば、このようなドップラー非確定性(Doppler ambiguity)が問題になる。図6Cを参照してドップラー非確定性についてさらに説明する。図6Cは、測定可能な周波数範囲とエイリアシング効果(aliasing effect)を示す。例えば、レーダー受信信号のドップラースペクトルを介して周波数値622がターゲットのドップラー周波数fに測定されてもよい。ところで、実際に他の周波数値621,623,624がターゲットのドップラー周波数fである場合にも、エイリアシング効果によってターゲットのドップラー周波数fは周波数値622に測定されてもよい。したがって、周波数値622がターゲットの実際のドップラー周波数fに該当するか否かが不明になる状況が生じる。このようなドップラー非確定性は、理論的にチャープシーケンスの反復周期を短く減らすことで解決可能であるが、ハードウェア的に実現可能なサンプリング周波数に限界があるため、チャープシーケンスの反復周期を減少すると、測定可能な距離も短くなるという他の問題が生じる。TDM MIMO方式を使用する場合、チャープシーケンスの反復周期が運用している送信アンテナ素子の個数だけさらに長くなるため、ドップラー非確定性問題がさらに大きくなる。
ドップラー非確定性はターゲットの速度推定だけでなく、ターゲットのDOAの推定にも誤差を発生させ得る。数式(3)のビット周波数信号モデルにドップラー周波数成分を追加して下記の数式(10)が導き出される。
Figure 2023099314000011

数式(10)において、最初の成分はターゲットまでの距離を示し、2番目の成分はターゲットの移動速度を示し、3番目の成分はターゲットのDOAを示し、4番目の成分は動き起因位相誤差(motion-induced phase error)を示す。数式(10)において、lはチャープインデックス、nはアンテナの番号(例えば、均一線型アレイ(uniform linear array)のアンテナ番号)、mはチャープ反復周期内の送信活性化順、Tchirpはチャープデュレーション、Tはチャープシーケンスの反復周期、Mは送信アンテナ素子の個数を示す。このような数式(10)の4種類成分に基づいてビット周波数信号の位相を決定することができる。
図6Dは、図6Aに示す送信アンテナ素子601及び受信アンテナ素子602が仮想アレイアンテナ603を形成し、送信アンテナ素子601が図6Bに示すレーダー送信信号610を送信し、受信アンテナ素子602がレーダー送信信号610の反射信号に対応する平面波(plane wave)を受信する状況を示す。
レーダー送信信号610のTDM特性に応じて受信アンテナ素子602が第1チャープシーケンス信号611の反射信号を第1位置631で受信し、第2チャープシーケンス信号612の反射信号を第2位置で受信するものような効果がある。このような効果は、動き起因位相誤差として作用する。したがって、動き起因位相誤差を考慮してDOA指向位相の傾き(DOA oriented phase gradient)を推定することが要求される。数式(6)のドップラー非確定性及び数式(10)の動き起因位相誤差成分に基づいて、数式(11)の動き起因位相誤差モデルを導き出すことができる。
Figure 2023099314000012

数式(11)において、smcは動き起因位相誤差モデルを示す。数式(6)は、非確定的ドップラー速度、確定的ドップラー速度、ドップラー非確定数、及び測定可能な最大ドップラー速度間の関係を示し、数式(6)による関係を数式(11)の動き起因位相誤差成分に代入して数式(11)が導き出される。数式(11)において、vD、unambは確定的ドップラー速度を示す。vD、unambはドップラー非確定性が解決された状態で取得できる。vD、ambは非確定的ドップラー速度を示す。vD、ambは周波数変換(例えば、周波数変換510)に基づいて取得できる。vD、maxはクラシックチャープシーケンスを介して確定的に測定可能なドップラー速度の最大範囲を示す。qは、推定が必要なドップラー非確定数を示す。したがって、smcにおいて、
Figure 2023099314000013

は確定的成分(unambiguous element)を表し、
Figure 2023099314000014

は非確定的成分(ambiguous element)を表す。確定的成分はドップラー非確定数に独立的であり、非確定的成分はドップラー非確定数に依存的である。smcを介してDOAの推定正確度を向上させるためには、ターゲットの移動速度の非確定性問題の解決が求められる。
ドップラー非確定性問題を解決するために、VCF(variable carrier frequency)、MPRF(multiple pulse repetition frequency)、SPRF(staggered pulse repetition frequency)、ランダム送信(random Tx)などの様々な方式が提案されている。ランダム送信プラスVCF(random Tx plusVCF)方式は、TDM MIMOによって発生するドップラー非確定性問題はランダム送信方式に基づいて解決し、ターゲットの極めて大きい速度によって発生するドップラー非確定性問題は、VCF方式に基づいて解決する方案である。
ランダム送信プラスVCF方式でターゲットのDOAを推定するためには、ターゲットの移動速度によって発生する動き起因位相誤差成分が補正されなければならない。そのためには、ドップラー非確定性が優先的に処理されなければならない。しかし、ドップラー非確定性処理においてTDM MIMO指向ドップラー非確定性は、ビームフォーミング前処理(BF(beamforming)preprocessing)及びドップラーFFTを介して除去され、ターゲットの絶対的な移動の速度値が大き過ぎることで発生するドップラー非確定性は、VCF方式に基づいて非確定数を推定し除去することができる。しかし、実際のビット周波数信号には、システムノイズ及び環境クラッタ(clutter)などの要因が含まれているため、非確定数がポイント単位で正確に推定することが難い。代わりに、クラスタリング結果を用いてイントラ-クラスタ内で推定される非確定数を総合する方式(例えば、平均化、投票など)により非確定数の推定正確度を向上することができる。したがって、正確なDOA推定のためには、ドップラー非確定性の問題を解決しなければならず、そのためにクラスタリングを実行すべきであり、クラスタリングの入力で使用されるターゲットの位置値を算出するためには、ターゲットのDOAが必要であるというジレンマがある。
実施形態に係るレーダー信号処理装置は、各送信アンテナ素子に対応して分割された個別DOAデータを決定し、個別DOAデータの動き起因位相誤差成分(motion-induced phase error element)にレーダーデータによる非確定的ドップラー速度を適用して位相誤差成分の確定的成分を決定し、位相誤差成分の非確定的成分(ambiguous element)が抑制された状態で個別DOAデータを統合し、送信アンテナ素子に対応する統合DOAデータを決定することができる。
個別DOAデータは、各送信アンテナを基準にして分割されるため、TDM MIMOに起因するドップラー非確定性問題を回避することができる。レーダー信号処理装置は、レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信し、レーダー信号の反射信号をレーダーセンサの受信アンテナ素子を介して受信し、送信時間の間隔に基づいて反射信号に対応するレーダーデータを送信アンテナ素子ごとに分類して送信アンテナ素子に対応する個別DOAデータを決定することができる。信号処理装置は、BF前処理過程で距離-チャープシーケンス-BF DOAの3次元データをTDM遅延時間単位に分割し、個別DOAデータを取得することができる。
レーダー信号処理装置は、レーダーデータに基づいた2次元フーリエ変換を行って非確定的ドップラー速度を決定し、非確定的ドップラー速度を個別DOAデータの動き起因位相誤差成分に適用することができる。より具体的に、レーダー信号処理装置は、中間周波数信号に対応するレーダーデータに基づいて距離FFT、BF前処理、ドップラーFFT、CFARを順に行ってもよいが、BF前処理により個別DOAデータを決定し、ドップラーFFTにより非確定的ドップラー速度を決定することができる。非確定的ドップラー速度を通した1次的動き補償(motion compensation)により、動き起因位相誤差成分の確定的成分が決定されてもよい。
動き起因位相誤差成分の残りの非確定的成分は、個別DOAデータの統合過程で抑制され得る。例えば、非確定的成分は、絶対値演算又は活性化順の整列を介して抑制されてもよい。このような統合方式は、個別DOAデータのTDM MIMOに起因するドップラー非確定性問題に対する回避状態も保持できる。
図7は、一実施形態に係る絶対値演算を介して位相誤差成分の非確定的成分を抑制する動作を示す。図7の例示において、送信アンテナ素子の個数はM=12であってもよい。第1送信アンテナ素子Tx1~第9送信アンテナ素子Tx9は、方位データ(azimuth data)を生成するために用いられ、第10送信アンテナ素子Tx10~第12送信アンテナ素子Tx12は、高度データ(elevation data)を生成するために用いられる。以下では、代表的に方位データの生成に関して説明するが、これは高度データの生成に適用されてもよい。
送信アンテナ素子は、送信活性化順mに応じてレーダー信号を送信することができる。例えば、第1送信アンテナ素子Tx1はm=0でレーダー信号を送信し、第2送信アンテナ素子Tx2は、m=1でレーダー信号を送信することができる。送信活性化順mは、TDM遅延時間に対応する。レーダー信号の送信は、TDM遅延時間による送信時間の間隔で行われることができる。例えば、チャープデュレーションに基づいた送信時間の間隔でレーダー信号が送信されてもよい。
レーダー信号処理装置は、送信時間の間隔に基づいて反射信号に対応するレーダーデータを送信アンテナ素子ごとに分類し、送信アンテナ素子に対応する個別DOAデータを決定することができる。例えば、レーダー信号処理装置は、m=0に対応するレーダーデータに基づいて第1送信アンテナ素子Tx1に対応する第1個別DOAデータを決定し、m=1に対応するレーダーデータに基づいて第2送信アンテナ素子Tx2に対応する第2つ別DOAデータを決定することができる。
個別DOAデータの動き起因位相誤差は、確定的成分
Figure 2023099314000015

及び非確定的成分
Figure 2023099314000016

を含んでもよい。レーダー信号処理装置は、非確定的ドップラー速度vD、ambに基づいて確定的成分
Figure 2023099314000017

を決定し、絶対値演算を介して非確定的成分
Figure 2023099314000018

を除去する。レーダー信号処理装置は、非確定的成分に絶対値を適用して個別DOAデータを統合することで、非確定的成分が抑制された状態で統合DOAデータを決定することができる。絶対値演算を介して個別DOAデータで非確定的成分の位相成分は除去され、非確定的成分の絶対値のみが統合され、統合DOAデータを決定することができる。第1送信アンテナ素子Tx1~第9送信アンテナ素子Tx9のそれぞれに関する個別DOAデータが統合され、第1送信アンテナ素子Tx1~第9送信アンテナ素子Tx9の全体に関する統合DOAデータを決定することができる。
図8は、一実施形態に係る活性化順整列を介して位相誤差成分の非確定的成分を抑制する動作を示す。図8を参照すると、送信アンテナ素子は、レーダーセンサ内の配置順とは異なる活性化順にレーダー信号を送信することができる。活性化順は、m値に対応する。例えば、送信アンテナ素子は、レーダーセンサ内の第1送信アンテナ素子Tx1から第12送信アンテナ素子Tx12までの順に順次配置されてもよいが、配置順とは異なる順に活性化してレーダー信号を送信してもよい。例えば、図8において、第9送信アンテナ素子Tx9は、m=8ではないm=6であるとき、レーダー信号を送信することができる。
レーダー信号処理装置は、送信アンテナ素子を活性化順による順序値の和が同じ送信グループに分類することができる。例えば、送信アンテナ素子Tx3、Tx6、Tx9の第1送信グループの順序値の和は2+5+6=13であり、送信アンテナ素子Tx2、Tx5、Tx8の第2送信グループの順序値の和は1+4+8=13であり、送信アンテナ素子Tx1、Tx4、Tx7の第3送信グループの順序値の和は0+3+10=13であるため、送信アンテナ素子Tx1~Tx9は、このような第1送信グループ、第2送信グループ、及び第3送信グループに分類されてもよい。
レーダー信号処理装置は、送信グループごとに個別DOAデータを統合して中間データを決定し、中間データを統合して前記統合DOAデータを決定することができる。送信グループは、全て同じTDM遅延値を基準にして整列されるため、中間データの統合過程で各送信グループの中間データの非確定的成分が送信グループ間に誤差として作用しない。TDM遅延値は、統合DOAデータでオフセットとして作用する。統合DOAデータは、順序値の和に対応するオフセットを含んでもよい。
図9は、一実施形態に係るレーダー信号処理方法を示す。図9を参照すると、ステップS910において、レーダー信号処理装置は、レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信する。ステップS920において、レーダー信号処理装置は、レーダー信号の反射信号をレーダーセンサの受信アンテナ素子を介して受信する。ステップS930において、レーダー信号処理装置は、送信時間の間隔に基づいて反射信号に対応するレーダーデータを送信アンテナ素子ごとに分類し、送信アンテナ素子に対応する個別DOAデータを決定する。
ステップS940において、レーダー信号処理装置は、個別DOAデータの動き起因位相誤差成分にレーダーデータによる非確定的ドップラー速度を適用して位相誤差成分の確定的成分を決定する。レーダー信号処理装置は、レーダーデータに基づいた2次元フーリエ変換を行って非確定的ドップラー速度を決定することができる。2次元フーリエ変換は、距離基準のフーリエ変換及びドップラー周波数基準のフーリエ変換を含んでもよい。非確定的ドップラー速度の非確定性は、エイリアシング効果に起因する。
ステップS950において、レーダー信号処理装置は、位相誤差成分の非確定的成分が抑制された状態で個別DOAデータを統合し、送信アンテナ素子に対応する統合DOAデータを決定する。一実施形態によれば、レーダー信号処理装置は、位相誤差成分の非確定的成分の絶対値に基づいて個別DOAデータを統合することができる。他の実施例によると、送信アンテナ素子は、前記レーダーセンサ内の配置順とは異なる活性化順に前記レーダー信号を送信してもよく、前記送信アンテナ素子は、前記活性化順による順序値の和が同じ送信グループに分類され、レーダー信号処理装置は、前記送信グループごとに前記個別DOAデータを統合して中間データを決定し、前記中間データを統合して前記統合DOAデータを決定することができる。
位相誤差成分の確定的成分と非確定的成分は、非確定的ドップラー速度、確定的ドップラー速度、ドップラー非確定数、及び測定可能なドップラー速度の最大範囲間の関係に基づいて区分してもよい。位相誤差成分の確定的成分は、ドップラー非確定数に独立的であり、位相誤差成分の非確定的成分は、ドップラー非確定数に依存的である。
その他に、信号処理方法には、図1~図8、及び図10の説明が適用されてもよい。
図10は、一実施形態に係る電子装置の構成を示す。図10を参照すると、電子装置1000は、上記で説明したレーダー信号処理方法を行ってもよい。例えば、電子装置1000は、図2に示すレーダー信号処理装置200を機能的に及び/又は構造的に含んでもよい。電子装置1000は、例えば、イメージ処理装置、スマートフォン、ウェアラブル機器(wearable device)、タブレットコンピュータ、ネットブック、ラップトップ、デスクトップ、PDA(personal digital assistant)、HMD(head mounted display)、車両(例えば、自律走行車両)、及び車両に装着される走行補助装置であってもよい。
図10を参照すると、電子装置1000は、プロセッサ1010、格納装置1020、カメラ1030、入力装置1040、出力装置1050、及びネットワークインターフェース1060を含む。プロセッサ1010、格納装置1020、カメラ1030、入力装置1040、出力装置1050、及びネットワークインターフェース1060は、通信バス1070を介して通信することができる。
プロセッサ1010は、電子装置1000内で実行するための機能及び命令を実行する。例えば、プロセッサ1010は、格納装置1020に格納された命令を処理することができる。プロセッサ1010は、図1~図9を参照して説明した動作を行ってもよい。
格納装置1020は、プロセッサの実行に必要な情報ないしデータを格納する。格納装置1020は、コンピュータで読み出し可能な格納媒体又はコンピュータで読み出し可能な格納装置を含んでもよい。格納装置1020は、プロセッサ1010によって実行するための命令を格納し、電子装置1000によってソフトウェア又はアプリケーションが行われる間に関連情報を格納することができる。
カメラ1030は、複数のイメージフレームで構成されるイメージをキャプチャーする。例えば、カメラ1030は、フレームイメージを生成することができる。
入力装置1040は、触覚、ビデオ、オーディオ又はタッチ入力によってユーザから入力を受信する。入力装置1040は、キーボード、マウス、タッチスクリーン、マイクロホン、又は、ユーザから入力を検出し、検出された入力を伝達できる任意の他の装置を含んでもよい。
出力装置1050は、視覚的、聴覚的、又は触覚的なチャネルを介してユーザに電子装置1000の出力を提供することができる。出力装置1050は、例えば、ディスプレイ、タッチスクリーン、スピーカ、振動発生装置、又はユーザに出力を提供できる任意の他の装置を含んでもよい。ネットワークインターフェース1060は、有線又は無線ネットワークを介して外部装置と通信することができる。一実施形態によれば、出力装置1050は、レーダーデータを処理した結果などを視覚情報(visual information)、聴覚情報(auditory information)、及び触覚情報(haptic information)のうち少なくとも1つを用いてユーザに提供してもよい。
例えば、電子装置1000が車両に装着された場合、電子装置1000は、レーダーイメージマップをディスプレイを介して可視化することができる。異なる例として、電子装置1000は、到来角情報、距離情報、及び/又はレーダーイメージマップに基づいて装置1000が装着された車両の速度、加速度、及び操向のうち少なくとも1つを変更することができる。但し、これに限定されることなく、電子装置1000は、ACC、AEB、BSD、LCA及び自体測位(ego-localization)などの機能を行ってもよい。電子装置1000は、このような車両の制御のためのコントロールシステムを構造的及び/又は機能的に含むことができる。
以上で説明された実施形態は、ハードウェア構成要素、ソフトウェア構成要素、又はハードウェア構成要素及びソフトウェア構成要素の組み合せで具現される。例えば、本実施形態で説明した装置及び構成要素は、例えば、プロセッサ、コントローラ、ALU(arithmetic logic unit)、デジタル信号プロセッサ(digital signal processor)、マイクロコンピュータ、FPA(field programmable array)、PLU(programmable logic unit)、マイクロプロセッサー、又は命令(instruction)を実行して応答する異なる装置のように、1つ以上の汎用コンピュータ又は特殊目的コンピュータを用いて具現される。処理装置は、オペレーティングシステム(OS)及びオペレーティングシステム上で実行される1つ以上のソフトウェアアプリケーションを実行する。また、処理装置は、ソフトウェアの実行に応答してデータをアクセス、格納、操作、処理、及び生成する。理解の便宜のために、処理装置は1つが使用されるものとして説明する場合もあるが、当技術分野で通常の知識を有する者は、処理装置が複数の処理要素(processing element)及び/又は複数類型の処理要素を含むことが把握する。例えば、処理装置は、複数のプロセッサ又は1つのプロセッサ及び1つのコントローラを含む。また、並列プロセッサ(parallel processor)のような、他の処理構成も可能である。
ソフトウェアは、コンピュータプログラム、コード、命令、又はそのうちの一つ以上の組合せを含み、希望の通りに動作するよう処理装置を構成したり、独立的又は結合的に処理装置を命令することができる。ソフトウェア及び/又はデータは、処理装置によって解釈されたり処理装置に命令又はデータを提供するために、いずれかの類型の機械、構成要素、物理的装置、仮想装置、コンピュータ格納媒体又は装置、又は送信される信号波に永久的又は一時的に具体化することができる。ソフトウェアはネットワークに連結されたコンピュータシステム上に分散され、分散した方法で格納されたり実行され得る。ソフトウェア及びデータは一つ以上のコンピュータで読出し可能な記録媒体に格納され得る。
本実施形態による方法は、様々なコンピュータ手段を介して実施されるプログラム命令の形態で具現され、コンピュータ読み取り可能な記録媒体に記録される。記録媒体は、プログラム命令、データファイル、データ構造などを単独又は組み合せて含む。記録媒体及びプログラム命令は、本発明の目的のために特別に設計して構成されたものでもよく、コンピュータソフトウェア分野の技術を有する当業者にとって公知のものであり使用可能なものであってもよい。コンピュータ読み取り可能な記録媒体の例として、ハードディスク、フロッピー(登録商標)ディスク及び磁気テープのような磁気媒体、CD-ROM、DVDのような光記録媒体、フロプティカルディスクのような磁気-光媒体、及びROM、RAM、フラッシュメモリなどのようなプログラム命令を保存して実行するように特別に構成されたハードウェア装置を含む。プログラム命令の例としては、コンパイラによって生成されるような機械語コードだけでなく、インタプリタなどを用いてコンピュータによって実行される高級言語コードを含む。上記で説明したハードウェア装置は、本発明に示す動作を実行するために1つ以上のソフトウェアモジュールとして作動するように構成してもよく、その逆も同様である。
上述したように実施形態をたとえ限定された図面によって説明したが、当技術分野で通常の知識を有する者であれば、上記の説明に基づいて様々な技術的な修正及び変形を適用することができる。例えば、説明された技術が説明された方法と異なる順に実行され、及び/又は説明されたシステム、構造、装置、回路などの構成要素が説明された方法とは異なる形態に結合又は組み合わせられてもよく、他の構成要素又は均等物によって置き換え又は置換されたとしても適切な結果を達成することができる。
したがって、本開示の保護範囲は、実施形態の全ての変形及びこの等価物を含み得る。

Claims (31)

  1. TDMに基づくMIMOレーダーシステムのレーダー信号処理方法であって、
    レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信するステップと、
    前記レーダー信号の反射信号を前記レーダーセンサの受信アンテナ素子を介して受信するステップと、
    前記送信時間の間隔に基づいて前記反射信号に対応するレーダーデータを前記送信アンテナ素子ごとに分類し、前記送信アンテナ素子に対応する個別到来角(DOA)データを決定するステップと、
    前記個別DOAデータの位相誤差成分に前記レーダーデータによる非確定的ドップラー速度を適用して前記位相誤差成分の確定的成分を決定するステップと、
    前記位相誤差成分の非確定的成分が抑制された状態に前記個別DOAデータを統合し、前記送信アンテナ素子に対応する統合DOAデータを決定するステップと、
    を含むレーダー信号処理方法。
  2. 前記統合DOAデータを決定するステップは、前記位相誤差成分の前記非確定的成分の絶対値に基づいて前記個別DOAデータを統合するステップを含む、請求項1に記載のレーダー信号処理方法。
  3. 前記送信アンテナ素子は、前記レーダーセンサ内の配置順とは異なる活性化順に前記レーダー信号を送信する、請求項1に記載のレーダー信号処理方法。
  4. 前記送信アンテナ素子は、前記活性化順に応じる順序値の和が同一である送信グループに分類され、
    前記統合DOAデータを決定するステップは、
    前記送信グループごとに前記個別DOAデータを統合して中間データを決定するステップと、
    前記中間データを統合して前記統合DOAデータを決定するステップと、
    を含む、請求項3に記載のレーダー信号処理方法。
  5. 前記統合DOAデータは、前記順序値の和に対応するオフセットを含む、請求項4に記載のレーダー信号処理方法。
  6. 前記非確定的ドップラー速度は、前記レーダーデータに基づいた2次元フーリエ変換を行って決定される、請求項1に記載のレーダー信号処理方法。
  7. 前記2次元フーリエ変換は、距離基準のフーリエ変換及びドップラー周波数基準のフーリエ変換を含む、請求項6に記載のレーダー信号処理方法。
  8. 前記位相誤差成分の前記確定的成分と前記非確定的成分は、前記非確定的ドップラー速度、確定的ドップラー速度、ドップラー非確定数、及び測定可能なドップラー速度の最大範囲間の関係に基づいて区分される、請求項1に記載のレーダー信号処理方法。
  9. 前記位相誤差成分の前記確定的成分は、ドップラー非確定数に独立的であり、
    前記位相誤差成分の前記非確定的成分は、前記ドップラー非確定数に依存的である、請求項8に記載のレーダー信号処理方法。
  10. 前記非確定的ドップラー速度の非確定性は、エイリアシング効果に起因する、請求項1に記載のレーダー信号処理方法。
  11. 前記位相誤差成分の前記確定的成分は動きに起因する、請求項1に記載のレーダー信号処理方法。
  12. 前記位相誤差成分の前記非確定的成分は、前記位相誤差成分の確定的成分に基づいて抑制される、請求項1に記載のレーダー信号処理方法。
  13. ハードウェアと結合して請求項1~12のいずれか一項に記載の方法を実行させるためにコンピュータで読み出し可能な記録媒体に格納されたコンピュータプログラム。
  14. TDMに基づくMIMOレーダーシステムであって、
    レーダー信号をレーダーセンサの送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信し、
    前記レーダー信号の反射信号を前記レーダーセンサの受信アンテナ素子を介して受信し、
    前記送信時間の間隔に基づいて、前記反射信号に対応するレーダーデータを前記送信アンテナ素子ごとに分類して前記送信アンテナ素子に対応する個別到来角(DOA)データを決定し、
    前記個別DOAデータの位相誤差成分に前記レーダーデータによる非確定的ドップラー速度を適用して前記位相誤差成分の確定的成分を決定し、
    前記位相誤差成分の非確定的成分が抑制された状態で前記個別DOAデータを統合し、前記送信アンテナ素子に対応する統合DOAデータを決定するプロセッサを含む、レーダーシステム。
  15. 前記プロセッサは、前記位相誤差成分の前記非確定的成分の絶対値に基づいて前記個別DOAデータを統合する、請求項14に記載のレーダーシステム。
  16. 前記送信アンテナ素子は、前記レーダーセンサ内の配置順とは異なる活性化順に前記レーダー信号を送信する、請求項14に記載のレーダーシステム。
  17. 前記送信アンテナ素子は、
    前記活性化順による順序値の和が同じ送信グループに分類され、
    前記プロセッサは、
    前記送信グループごとに前記個別DOAデータを統合して中間データを決定し、
    前記中間データを統合して前記統合DOAデータを決定する、請求項16に記載のレーダーシステム。
  18. 前記位相誤差成分の前記確定的成分と前記非確定的成分は、前記非確定的ドップラー速度、確定的ドップラー速度、ドップラー非確定数、及び測定可能なドップラー速度の最大範囲間の関係に基づいて区分される、請求項14に記載のレーダーシステム。
  19. 前記位相誤差成分の前記確定的成分は、ドップラー非確定数に独立的であり、
    前記位相誤差成分の前記非確定的成分は、前記ドップラー非確定数に依存的である、請求項18に記載のレーダーシステム。
  20. 前記位相誤差成分の前記確定的成分は動きに起因する、請求項14に記載のレーダーシステム。
  21. 前記レーダーシステムは、前記レーダーセンサをさらに含む電子装置である、請求項14に記載のレーダーシステム。
  22. 前記電子装置は車両であり、
    前記統合DOAデータは、前記車両を制御するためのものである、請求項21に記載のレーダーシステム。
  23. 前記位相誤差成分の前記非確定的成分は、前記位相誤差成分の確定的成分に基づいて抑制される、請求項14に記載のレーダーシステム。
  24. 送信アンテナ素子及び受信アンテナ素子を用いてTDMに基づくMIMO方式のアンテナ配列を含むレーダーセンサと、
    レーダー信号を前記送信アンテナ素子を介してTDM遅延時間による送信時間の間隔で送信し、
    前記レーダー信号の反射信号を前記受信アンテナ素子を介して受信し、
    前記送信時間の間隔に基づいて前記反射信号に対応するレーダーデータを前記送信アンテナ素子ごとに分類し、前記送信アンテナ素子に対応する個別到来角(DOA)データを決定し、
    前記個別DOAデータの位相誤差成分に前記レーダーデータによる非確定的ドップラー速度を適用して前記位相誤差成分の確定的成分を決定し、
    前記位相誤差成分の非確定的成分が抑制された状態で前記個別DOAデータを統合し、前記送信アンテナ素子に対応する統合DOAデータを決定するプロセッサと、
    前記統合DOAデータに基づいて車両を制御するコントロールシステムと、
    を含む車両。
  25. 前記プロセッサは、前記位相誤差成分の前記非確定的成分の絶対値に基づいて前記個別DOAデータを統合する、請求項24に記載の車両。
  26. 前記送信アンテナ素子は、前記レーダーセンサ内の配置順とは異なる活性化順に前記レーダー信号を送信し、
    前記送信アンテナ素子は、前記活性化順による順序値の和が同じ送信グループに分類され、
    前記プロセッサは、前記送信グループごとに前記個別DOAデータを統合して中間データを決定し、
    前記中間データを統合して前記統合DOAデータを決定する、請求項24に記載の車両。
  27. 前記位相誤差成分の前記確定的成分は、位相誤差成分の動き起因確定的成分を含む、請求項24に記載の車両。
  28. 送信アンテナを介してTDM遅延時間に対応する送信時間の間隔を有する信号を送信するステップと、
    受信アンテナを介して前記送信された信号の反射信号を受信するステップと、
    前記送信時間の間隔に基づいて前記送信アンテナ素子にそれぞれ対応する個別到来角(DOA)を決定するステップと、
    前記個別DOAの位相誤差に非確定的ドップラー速度を適用し、前記反射信号に基づいて前記位相誤差の確定的成分を決定するステップと、
    前記位相誤差の確定的成分の決定に基づいて前記位相誤差の非確定的成分を抑制し、前記個別DOAを統合することによって統合DOAを決定するステップと、
    を含む方法。
  29. 前記信号は、前記送信アンテナ及び前記受信アンテナを含むTDMに基づくMIMOレーダーシステムのためのものである、請求項28に記載の方法。
  30. 前記個別DOAは、前記受信アンテナを介してそれぞれ受信される前記反射信号のレーダーデータ成分を分類して決定される、請求項29に記載の方法。
  31. 前記分類は、CFARアルゴリズムの実行に基づいて行われる、請求項30に記載の方法。
JP2022201773A 2021-12-30 2022-12-19 レーダー信号処理方法及び装置 Pending JP2023099314A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0192883 2021-12-30
KR1020210192883A KR20230102619A (ko) 2021-12-30 2021-12-30 레이더 신호 처리 방법 및 장치

Publications (1)

Publication Number Publication Date
JP2023099314A true JP2023099314A (ja) 2023-07-12

Family

ID=84246081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022201773A Pending JP2023099314A (ja) 2021-12-30 2022-12-19 レーダー信号処理方法及び装置

Country Status (5)

Country Link
US (1) US20230213614A1 (ja)
EP (1) EP4206730A1 (ja)
JP (1) JP2023099314A (ja)
KR (1) KR20230102619A (ja)
CN (1) CN116381634A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627483B2 (en) * 2016-07-09 2020-04-21 Texas Instruments Incorporated Methods and apparatus for velocity detection in MIMO radar including velocity ambiguity resolution
US11346933B2 (en) * 2019-07-24 2022-05-31 GM Global Technology Operations LLC Doppler ambiguity resolution in MIMO radars using a SIMO evaluation
DE102020202498A1 (de) * 2020-02-27 2021-09-02 Robert Bosch Gmbh MIMO-Radarsystem
DE102020107222A1 (de) * 2020-03-17 2021-09-23 HELLA GmbH & Co. KGaA Verfahren zur Bestimmung einer Richtungsinformation

Also Published As

Publication number Publication date
CN116381634A (zh) 2023-07-04
EP4206730A1 (en) 2023-07-05
US20230213614A1 (en) 2023-07-06
KR20230102619A (ko) 2023-07-07

Similar Documents

Publication Publication Date Title
US11874395B2 (en) Radar processing chain for frequency-modulated continuous wave radar systems
US9939522B2 (en) Systems and methods for 4-dimensional radar tracking
US10481249B2 (en) Radar apparatus
JP7297505B2 (ja) レーダー駆動装置及び方法
CN111656217A (zh) 用于虚拟孔径雷达跟踪的系统和方法
US11762084B2 (en) Vehicle radar system
KR20200067629A (ko) 레이더 데이터를 처리하는 장치 및 방법
KR102516367B1 (ko) 레이더 데이터를 처리하는 장치 및 방법
KR102437345B1 (ko) 하나 이상의 표적의 반경방향 상대 가속도를 결정하기 위한 방법 및 레이더 장치
EP3842824A2 (en) Method and device to process radar signal
US20220155411A1 (en) Method and apparatus with radar signal processing
KR20220066796A (ko) 레이더 신호 처리 방법 및 장치
JP2023099314A (ja) レーダー信号処理方法及び装置
KR20240035140A (ko) 레이더 신호 처리 방법 및 장치
KR20230111882A (ko) 레이더 신호 처리 장치 및 방법
KR20240052377A (ko) 컷인 차량의 움직임 예측 방법 및 장치
Park et al. Air-Coupled FMCW Ultrasonic Sensor for High Resolution 3D perception
Ren et al. Research and Implementation of 77GHz Automotive Radar Target Detection Technology